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Abstract. A basic concept in modeling fault tolerant systems is that
anticipated faults, being obviously outside of our control, may or may not
occur. A fault tolerant system design can be proved to correctly behave
under a given fault hypothesis, by proving the observational equivalence
between the system design specification and the fault-free system speci-
fication. Additionally, model checking of a temporal logic formula which
gives an abstract notion of correct behavior can be applied to verify the
correctness of the design. The usage of model checking and temporal logic
gives additional opportunities to better analyze the system behavior in
presence of faults.

1 Introduction

Process algebras are a standard tool for the specification of concurrent systems.
In order to specify a process and to prove its correctness, it is useful to decide
which properties of the model are relevant and which ones can be ignored. Fol-
lowing [24], the semantics of processes is given in terms of labeled transition
systems, which can describe their behavior in details, including their internal
computations. It is common to define equivalences over labeled transition sys-
tems to verify if a process is a correct implementation of a specification process.

A widely used equivalence is weak bisimulation, or observational equivalence,
first introduced by Milner [24], based on the idea that only the externally ob-
servable actions of a system are relevant in its interaction with the environment:
Two systems are then observationally equivalent whenever no observation can
distinguish them.

Model checking [12] is an alternative verification technique, in which the
system is modeled using a process algebra or an automaton-based formalism
and its correctness properties are expressed as temporal logic formulae [23].
Then these formulae are automatically checked on the specification of the system.
Proofs are carried out by exhaustive search of the transition system of the model.

In fault-tolerance analysis, the main goal is verifying that a system works
correctly in the presence of a given set of anticipated faults. In absence of im-
plementation techniques to detect, confine and recover from erroneous states,
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a system exhibits failing behaviors that deviate from the specified normal, or
correct, behaviors. Different kinds of faults cause different kinds of failing behav-
iors, or failure modes, and the constraints on how faults are expected to occur
in the system are expressed in the fault hypothesis. Given a set of anticipated
faults, under a particular failure mode, a system is fault-tolerant with respect
to the occurrence of faults as stated by the fault hypothesis if and only if the
occurrence of such faults does not inhibit the system’s ability to correctly satisfy
its specification.

With the process-algebraic approach, checking for fault-tolerance is accom-
plished by defining a specification process that models the normal, or correct,
behaviors, and an implementation process that models the possible behaviors in
the presence of faults. The system is considered fault-tolerant with respect to
the anticipated faults if the two processes are observationally equivalent.

This paper first discusses an issue related to the application of observational
equivalence to fault-tolerance verification, then it reports results on the applica-
tion of model-checking to the challenging problem of fault untestability in FPGA
devices.

As reported in [20], one problem of using bisimulation equivalence for fault
tolerance is that proving fault tolerance towards a given set of faults does not
imply fault tolerance towards a subset of those faults. A typical example is that
of compensating faults such as the loss and creation of messages in a commu-
nication channel. Fault actions are modeled as alternatives to the correct ones,
but according to the standard process algebra semantics, when the correct ac-
tions are not enabled the system is forced to execute the fault actions. In these
situations, faults are no longer random events independent of the system logic.
Moreover, one fault may compensate the effects of another fault.

Testing Single Event Upsets (SEU) faults is a main concern in the develop-
ment of aerospace applications based on FPGAs [17]. Such applications operate
in an environment exposed to cosmic radiations that increase the likelihood of
hardware faults. Radiation-hardened devices are expensive, so it is convenient to
use on-line testing and on-the-fly reconfiguration to cope with radiation-induced
faults. Given the large number of possible faults, it is important to optimize the
test set in order to reduce execution time and energy consumption for on-line
testing. Finding untestable faults is an important contribution to this purpose.
The problem of fault untestability has been dealt with by modeling FPGA ap-
plications as state machines and using model checking to prove if the fault is
untestable or not.

The paper is structured as follows: Section 2 reports related work, Section 3
discusses the use of process algebras and model checking in the analysis of the
alternating bit protocol with multiple faults, Section 4 describes the application
of model checking to the problem of fault untestability of FPGAs, and Section 5
concludes the paper.



2 Related work

A growing corpus of works on formal modeling and verification of fault tolerant
systems has been produced, in particular concerning the application of process
algebras and model checking. This section presents a small sample of the litera-
ture.

Partial model checking and µ-calculus are advocated by Gnesi et al. [16]
to frame the problem of fault-tolerance verification within a general µ-calculus
validation problem.

Francalanza and Hennessy [15] extend the Dπ language [18] to develop a be-
havioral theory of distributed programs in the presence of failures, using bisim-
ulation equivalence to compare systems.

A formal framework for the specification and verification of fault tolerant
system designs was presented in [9]. The work was focused on the possibility
of using automatic verification tools, exemplifying the use of tools working on
a particular process algebra and automata-based semantics (CCS/MEIJE and
networks of automata [11]) and the temporal logic ACTL [13].

The specification and verification of the GUARDS Inter-consistency mecha-
nism is reported in[7, 8]. This fault-tolerance mechanism was developed within
the European project GUARDS (Generic Upgradable Architecture for Real-
time Dependable Systems [26]) as a component of an architecture for embed-
ded safety-critical systems. The validation approach is based on model checking
technique and exploits the verification methodology supported by the JACK
environment [10].

A method for the verification of fault-tolerant distributed systems was pre-
sented by Jones and Pike [22], based on calendar automata [14] to model systems,
and introducing the technique of symbolic fault injection. The SAL (Symbolic
Analysis Laboratory model checker [25] is used for verification.

The Promela modeling language and the SPIN model checker [19] are used
by John et al. [21] to present an approach to model threshold-guarded distributed
algorithms.

3 Fault tolerance for systems with multiple faults

When observational equivalence is used to assess fault tolerance of a system with
respect to a given set of anticipated faults, the issue of fault monotonicity must
be considered. Simply stated, an equivalence criterion is fault monotonic if and
only if fault tolerance of an implementation with respect to a set Φ of anticipated
faults implies fault tolerance with respect to any subset Φ′ of Φ.

Janowski [20] has shown that bisimulation is in general not fault-monotonic,
using the alternating bit protocol as an example.

The purpose of the protocol is ensuring reliable communication over a medium
which may loose messages, i.e., Φo = {omission} is the set of anticipated faults.
A possible implementation of the protocol (Figure 1), similar to the one dis-
cussed in [20], consists of four processes: the Sender, the Receiver, and two



communication channels: one for the delivery of the message, and another for
the acknowledgment of message reception.

Sender and Receiver use the value of one bit to identify a message, so that
the identifier bit of each message is the complement of the preceding message’s
bit; a new message is not sent until the sender receives acknowledgment of the
current message. Since the channels can loose messages, both the Sender and the
Receiver resend the same message or, respectively, acknowledgment repeatedly
until the acknowledgment is received.

We first consider an implementation Sys of the protocol, represented in CCS
as in the following, where S0 and R1 are the Sender and Receiver, respectively,
A is the delivery channel, and B the acknowledgment one:

S0 = in.S′0

S′0 = a0.S
′
0 + d1.S

′
0 + d0.S1

S1 = in.S′1

S′1 = a1.S
′
1 + d0.S

′
1 + d1.S0

A = a0.A
′
0 + a1.A

′
1

A′0 = b0.A+ τ.A

A′1 = b1.A+ τ.A

B = c0.B
′
0 + c1.B

′
1

B′0 = d0.B + τ.B

B′1 = d1.B + τ.B

R1 = b0.R
′
0 + b1.R1 + c1.R1

R′0 = out .R0

R0 = b1.R
′
1 + b0.R0 + c0.R0

R′1 = out .R1

L = {a0, a1, b0, b1, c0, c1, d0, d1}

Sys = (S0|A|B|R1)\L .

The above system is represented in Figure 1 as a network of communicating
automata. Upon an in action at the system’s external interface, the Sender sends
the message to the Receiver through channel A by synchronizing on action a0
or a1 depending on the current value of the alternating bit (the first message is
identified as 0). Upon receiving the message, the Receiver executes out , mean-
ing that the message is available at the interface. Next, the Receiver sends the



acknowledgment by synchronizing with channel B on action c0 or c1 according
to the value of the identifier bit of the received message.

Omission of messages or acknowledgments is represented by the τ actions in
the processes for the channels, which can take a channel from state A′0 or A′1 (B′0
or B′1) to A (B) without executing the corresponding synchronization action.
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Fig. 1. Alternating bit protocol.

Let us now consider a system Sysoc affected by the set Φoc =
{omission, creation} of anticipated faults, i.e., we assume that the channels may
drop messages or acknowledgments and also emit spurious ones. The CCS de-
scription of this system differs from the original one in the channel processes, as
shown in Figure 2 and in the following code:

Aoc = a0.A
′
oc0 + a1.A

′
oc1 + b0.Aoc + b1.Aoc

A′oc0 = b0.Aoc + τ.Aoc

A′oc1 = b1.Aoc + τ.Aoc

Boc = c0.B
′
oc0 + c1.B

′
oc1 + d0.Boc + d1.Boc

B′oc0 = d0.Boc + τ.Boc

B′oc1 = d1.Boc + τ.Boc

Creation is modeled by the additional transitions in state A (B), which exe-
cute a synchronization without changing state.
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Fig. 2. Alternating bit protocol with omission or creation of messages or acknowledg-
ments.

Fault tolerance of Sysoc can be proved by checking that it is observationally
equivalent to a process P specifying the intended behavior, namely, the alterna-
tion of in and out actions:

Sysoc = (S0|Aoc|Boc|R1)\L
P = in.out .P

P ≈ Sysoc

If instead we consider a system Sysc with channels that can misbehave only
by creating messages or acknowledgments and not by dropping them, we would
expect the implementation to be still fault tolerant, given that in this case the
set Φc = {creation} of anticipated faults is a proper subset of Φoc. In this case,
we have:

Ac = a0.A
′
c0 + a1.A

′
1 + b1.Ac + b0.Ac

A′c0 = b0.Ac

A′c1 = b1.Ac

Bc = c0.B
′
c0 + c1.B

′
c1 + d1.Bc + d0.Bc

B′c0 = d0.Bc

B′c1 = d1.Bc

Sysc = (S0|Ac|Bc|R1)\L .



It is immediate to show that Sysc is not observationally equivalent to P , thus
proving that bisimulation is in general not fault-monotonic. Therefore, proving
that a system with more faults is observationally equivalent to the fault-free
system does not guarantee that observational equivalence holds for any subset
of faults.

However, we may observe that in this case creation faults are modeled as
non-deterministic actions on the same footing as the correct behavior. It may be
more natural to model them as internal actions as shown below for Φc:

AAc = a0.AA′0 + a1.AA′1 + τ.b1.AAc + τ.b0.AAc

AA′0 = b0.AAc

AA′1 = b1.AAc

BBc = c0.BB ′c0 + c1.BB ′c1 + τ.d1.BBc + τ.d0.BBc

BB ′c0 = d0.BBc

BB ′c1 = d1.BBc .

The case for Φoc is handled similarly.
In this case, observational equivalence is not satisfied in either case: creation

faults only, and omission and creation faults.
In addition, observational equivalence between the behavior of the fault free

system and that of the system affected by faults does not reveal some useful
information in case of occurrence of faults. For example, infinite loops of τ ac-
tions could not be detected. It is then advisable to introduce model checking of
temporal logic formulae to complement the techniques based on bi-simulation.

First, model checking a specification allows it to be validated with respect
to properties expressed in temporal logic. For example, we can use µ-calculus
to express the property that action out will eventually be executed (a minimal
sanity check), with the formula

α , µ.Z(<−> tt ∧ [−out ]Z) .

Model checking shows that α holds unsurprisingly for P , but it does not hold
for any of the implementations considered above. This is caused by the fact that
channels may drop messages or acknowledgments indefinitely by executing τ
actions.

The failure to prove property α shows that there exists a path in which out
is not executed. This is caused by cycles in which messages can be created and
lost. And what we can see is that such property is false also on the original
version of the protocol, with omission only. This because the specification of the
protocol allows the Sender (Receiver) to re-send or loose the same message an
unbounded number of times.

The example proves tolerance to the creation and omission of messages of
the protocol, in a context in which faults can freely occur. Other properties of



the fault tolerant system can be proved by model checking if actions modeling of
faults are made explicit. In this case we can prove for example, that the system
satisfies property α in case of one omission fault. What can be done is to state
an assumption on fault occurrences, and prove tolerance in that specific case.

In real system modeling, this approach reduces the state space explosion
problem. From the specification point of view, explicit actions modeling faults
and a new process, the fault hypothesis process, which synchronizes with the
system and states the possible occurrences of faults, are introduced in the spec-
ification.

4 Untestability of faults: SEUs in SRAM-based FPGAs
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Fig. 3. Structure of an FPGA.

SRAM-based FPGAs are programmable devices made of logic blocks inter-
connected by switch elements called switch boxes, in a structure shown in a very
simplified and scaled-down way by Figure 3. A logic block contains a small num-
ber of memory elements and combinatorial logic. The latter is implemented with
configurable look-up tables (LUT), which behave logically as associative memo-
ries mapping each combination of inputs to the corresponding value of a given
Boolean function. Figure 4 (a) is a logical representation, as a Karnaugh map,
of a LUT configured to implement the disjunction of its four inputs.
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Fig. 4. A LUT and the effect of a SEU.

A switch box is a matrix of switches called Programmable Interconnect Points
(PIPs) [27], which route signals by connecting pairs of wires. An example of
switch-box is shown in Figure 5 (a), where Pi and Pj are PIPs; Pi is programmed
to connect the input wire A to the output wire B. Similarly, Pj is programmed
to connect the input wire C to the output wire D. The connection between two
wires, such as A to B, is called a routing segment.

C C

(a) (b)

Pi

Pj

A D

B B

A D

Fig. 5. Bridge fault.

Programming an SRAM-FPGA device consists in downloading a configu-
ration code, called a bitstream, into its configuration memory. The bitstream
determines the functionality of each LUT and the configuration of the PIPs.
The bitstream is generated by a tool from a high-level hardware design language
(e.g., Verilog or VHDL). As an intermediate step, the Verilog/VHDL description
is synthesized into a logic netlist showing the logical interconnections of FPGA
components, such as LUTs and memory elements. Figure 6 shows a simplified
logic netlist for a system composed of three 2-input LUTs, one D flip-flop, a
clock generator, two input buffers (i.e., signal amplifiers), and one output buffer.
The LUTs implement two AND and one OR gate.
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Fig. 6. SEU unexcitability.

In a further step, the logic netlist is transformed into a place-and-routed
netlist including information on the physical placement of the components and
on the configuration of the switch boxes.

Both LUTs and switch boxes are affected by various types of faults, includ-
ing Single Event Upsets (SEU), caused by radiations, especially in aerospace
applications [2]. SEUs affecting a LUT change its logic function, whereas those
affecting a switch box modify the interconnection topology among logic blocks.

An example of a faulty LUT is shown in Figure 4 (b), where the dashed box
represents a SEU that flips a bit from 1 to 0, so that the LUT maps the input
vector (1111) to the output 0. However, the output of the faulty LUT differs
from the one of the fault-free LUT only for that specific input. That fault is
activated only when the input associated with the faulty configuration bit is
applied to the LUT.

A SEU in the configuration memory of PIPs may cause several types of
topological modifications [28] that manifest themselves as logical faults on the
output wires of the affected switch box [1], namely: stuck-at-0 (stuck-at-1 ), when
a wire is stuck at the 0 (1) logic value; bridge, when the values of two wires are
exchanged; wired-AND (wired-OR), when the value of an output wire is the
AND (OR) of the values of two input wires; and wired-MIX, when the values
of two output wires B and D are mixed so that they keep their correct values
if the values of the respective input wires are equal, otherwise they take the
complementary values. Figure 5 (b) shows the effects of a logical bridge fault.

When FPGAs are used in safety-critical applications, on-line testing is one
of the methods that can be applied at run-time to detect SEUs, and possibly
reconfigure the FPGA. Testing relies on a pre-computed set of test patterns,
and it is important to optimize this set with respect to the contrasting goals of
maximum fault coverage and minimum execution time and resource usage. One



way of optimizing the test set is finding offline the faults that can be excluded
from the set because they are undetectable, i.e., they are either unexcitable or
masked. A fault is unexcitable if the combination of input values that could
activate it will never be fed to the affected component. A fault is masked if it
cannot propagate wrong values to the external pins of the device.

In [6], model checking has been applied to prove unexcitability of SEUs and
the counter-example facility of the model checker has been used to generate test
patterns. The logic netlist was used to model faults in the LUTs and the route-
and-placed netlist to model faults in the switch boxes. For faults in a LUT, the
logic function of the faulty LUT was generated; for faults in the interconnect,
their logical effects were modeled. The routing faults and their effects were com-
puted using an external tool, E 2STAR [6], that operates on the place-and-routed
netlist.

netlist : CONTEXT =

BEGIN

circuit: MODULE =

BEGIN

INPUT i_pin_0: BOOLEAN; INPUT i_pin_1: BOOLEAN;

OUTPUT o_pin_0: BOOLEAN;

LOCAL i_buff_0: BOOLEAN; LOCAL i_buff_1: BOOLEAN;

LOCAL LUT_0: BOOLEAN; LOCAL LUT_1: BOOLEAN;

LOCAL LUT_2: BOOLEAN;

LOCAL d_ff_0: BOOLEAN; LOCAL 0_buff_0: BOOLEAN;

DEFINITION

i_buff_0 = i_pin_0; i_buff_1 = i_pin_0;

LUT_0 = (i_buff_0 AND i_buff_1); LUT_1 = (i_buff_0 OR i_buff_1);

LUT_2 = (i_LUT_0 OR LUT_1);

o_buff_0 = d_ff_0; o_pin_0 = o_buff_0;

INITIALIZATION

d_ff_0 = FALSE;

TRANSITION

d_ff_0’ = LUT_2;

END;

END

Fig. 7. SAL specification.

The behavioral model of the FPGA application is built in the Symbolic
Analysis Laboratory (SAL) framework [25], and the unexcitability property is
expressed as an LTL logic formula that checks whether the configuration acti-
vating the fault can be generated, starting from any possible input sequence of
the FPGA.

The SAL input language describes a system (context) as the parallel compo-
sition of modules, each representing a state machine defined by its input, local,



and output variables, by definitions equating variable values to functions of other
variables, and by transitions equating the next values of variables (denoted by
primes) to functions of the current state.

The SAL code for the netlist shown in Figure 6 is reported in Figure 7. In
this case, only one module is sufficient. The behavior of LUTs and buffers is
described by definitions:

– the behavior of LUTs is described by the corresponding logic functions;
– the behavior of an input buffer is described as an assignment between a local

variable, modeling the buffer, and an input variable, modeling the associated
input pin;

– similarly, two local variables are used for output buffers, one modeling the
buffer and the other modeling the output pin.

Flip-flops are described by transitions, that are executed at each clock cycle.
If a fault f in an n-input LUT affects a location corresponding to the input

vector if = (v0, v1, . . . vn−1) (e.g., if = (10) in LUT 2 of Figure 6), fault f is
unexcitable if the configuration if can never occur in the context C modeling
the whole system [4], therefore the property of unexcitability in LTL has the
general form

C ` G(¬(x0 = v0 ∧ x1 = v1 ∧ · · · ∧ xn = vn−1)) .

The unexcitability property for the SEU in the configuration bit of LUT 2
associated with input (10) is then

unex_LUT_2_10: THEOREM

circuit |- G(NOT(LUT_0 = TRUE AND LUT_1 = FALSE));

The theorem holds, since this fault can never be excited, because it is not
possible that the output of LUT 1 is 0 while the output of LUT 0 is 1 (Figure 6),
because LUT 1 implements the OR function, and LUT 0 implements the AND
of the same input signals. Similarly, the formula for the SEU in the configuration
bit of LUT 0 associated with input 11 is the following:

unex_LUT_0_11: THEOREM

circuit |- G(NOT(i_buff_0 = TRUE AND i_buff_1 = TRUE));

This theorem does not hold, and a trivial counter-example is shown:

Counter_example: (i_pin_0 = true, i_pin_1 =true)

The formulae for routing faults in the switch box of Figure 6, referring to the
logical netlist, are shown in Table 1, where Â and Ĉ are the values of A and C
(true if equals to 1, false otherwise) [5]. A Stuck-at 0 (1) on Pi is unexcitable if
the signal on A is always 0 (1). A Bridge between Pi and Pj is unexcitable if the
value of A always equals the value of C. A Wired-AND between Pi and Pj is
unexcitable if the value of B always equals A∧C and the value of C always equals
A ∧ C. A Wired-OR between Pi and Pj is unexcitable if the value of A always



Table 1. Unexcitability formulae for routing faults.

s-a-0 on Pi C ` G(¬(Â))

s-a-1 on Pi C ` G(¬(¬Â))

bridge between Pi and Pj C ` G(¬(Â 6= Ĉ))

Wired-AND between Pi and Pj C ` G(¬((Â 6= (Â ∧ Ĉ)) ∨ (Ĉ 6= (Â ∧ Ĉ))))

Wired-OR between Pi and Pj C ` G(¬((Â 6= (Â ∨ Ĉ)) ∨ (Ĉ 6= (Â ∨ Ĉ))))

Wired-MIX between Pi and Pj C ` G(¬((Â 6= Ĉ) ∧ (¬Â ∨ Ĉ)))

equals A ∨ C and the value of C always equals A ∨ C. A Wired-MIX between
Pi and Pj is unexcitable if (i) the value of A always equals the output of C or
(ii) the value of A is 1 and the value of C is 0, or viceversa. The unexcitability
theorem associated with the Bridge fault in Figure 5 is:

unex: THEOREM circuit |- G(NOT(B=D));

Experimental results [6] show that a substantial number of SEU faults are
not excitable. Knowing which faults are unexcitable reduces significantly the
time needed for test pattern generation and testing. In the same framework,
untestability of faults, that includes both unexcitability and fault masking, is
analyzed. Masked faults are found by comparing the values at the output pins
of the fault-free system to the values at the output pins of the faulty system at
each clock cycle, considering the full end-to-end paths from input to output. The
counter-example gives information on the test vector that must be applied at
every input to test the fault. The ability of model checkers to produce counter-
examples has been used in our framework to generate test patterns for testable
faults, optimized with a genetic algorithm [3].

5 Conclusions

This work reports on applications of model checking to different issues related
to fault tolerance. In particular, the problem of assessing fault tolerance in sys-
tems with multiple faults modeled with process algebras has been discussed,
and a method to analyze untestability of hardware faults has been presented.
Model checking has been shown as useful complement to method based on weak-
bisimulation equivalence. Model checking on state-machine based models has
been shown experimentally to be an effective tool to improve the performance
of on-line testing for systems affected by radiation faults.
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