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Abstract: The management of parasites, insect pests and vectors requests development of novel,
effective and eco-friendly tools. The development of resistance towards many drugs and pesticides
pushed scientists to look for novel bioactive compounds endowed with multiple modes of action,
and with no risk to human health and environment. Several natural products are used as
alternative/complementary approaches to manage parasites, insect pests and vectors due to their
high efficacy and often limited non-target toxicity. Their encapsulation into nanosystems helps
overcome some hurdles related to their physicochemical properties, for instance limited stability and
handling, enhancing the overall efficacy. Among different nanosystems, micro- and nanoemulsions
are easy-to-use systems in terms of preparation and industrial scale-up. Different reports support their
efficacy against parasites of medical importance, including Leishmania, Plasmodium and Trypanosoma as
well as agricultural and stored product insect pests and vectors of human diseases, such as Aedes and
Culex mosquitoes. Overall, micro- and nanoemulsions are valid options for developing promising
eco-friendly tools in pest and vector management, pending proper field validation. Future research
on the improvement of technical aspects as well as chronic toxicity experiments on non-target species
is needed.

Keywords: agricultural pests; dengue; filariasis; insecticides; larvicides; mosquito control; stored
product insects

1. Introduction

1.1. Micro- and Nanoemulsions

Over the past decades, pharmaceutical, food and agricultural research has focused the attention
on the development of delivery systems able to encapsulate, protect and deliver lots of different
compounds. One of the most versatile tools is represented by colloidal dispersions, which are
heterogeneous systems in which the inner phase is dispersed into a continuous medium. Micro- and
nanoemulsions (MEs and NEs respectively) are self-emulsifying colloidal systems, having the internal
phase usually smaller than 100 nm, dispersed in a liquid medium [1]. This characteristic enhances
some physicochemical properties, i.e., stability and bioavailability. In fact, the small size of the internal
phase allows the system to bypass the problems related to the gravity force, avoiding phenomena
as creaming or sedimentation. Moreover, the low surface and interfacial tensions promote suitable
spreading and penetration of the active compounds [2].

MEs and NEs are generally composed of an aqueous phase, an oily phase, a surfactant agent and
a possible cosurfactant. For this reason, they are able to incorporate both hydrophilic and lipophilic
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compounds [3]. The choice of MEs and NEs components are strictly related to their application. For
example, it is possible to select several oily phases between synthetic oils, (ethyl oleate, squalene and
triglycerides), mineral oils and vegetable oil (e.g., olive, sunflower and soybean oil). Generally, the
oily phase is used to solubilise and carry lipophilic molecules, but sometimes the oily fraction, as in
the case of plant essential oils (EOs), can also be the active ingredient. EOs have been widely used
in traditional medicine around the world since the Middle Ages, mainly for their antimicrobial and
antioxidant properties.

A fundamental aspect about the formulation of EOs is the selection of suitable surfactant agents.
The amphiphilic properties of a surfactant are represented by the hydrophilic–lipophilic balance
(HLB) value. The choice of the suitable HLB value depends on the nature of the continuous phase.
However, it should be desirable to select a surfactant with an intermediate value because it will
partition between the aqueous and the oily phase, lowering the interfacial tension and conferring the
optimal curvature of the layer, to guarantee the formation and stabilisation of the droplets. Depending
on the chemical properties, surfactants can be divided into different classes: anionic, cationic, non-ionic
and zwitterionic. The most diffused are polisorbates (anionic), such as Tween 80 (HLB 16.7) and Span
80 (HLB 8.6). In recent years there has been a growing interest in exploiting the surfactant properties of
natural products such as polysaccharides, proteins (lectin) and sugar esters, which are desirables for
the development of eco-friendly formulations. MEs and NEs have been deeply investigated, since they
possess some practical advantages: easiness of formulation, industrial scale-up and high potential for
use in several applications.

Apart from the terminology, these two systems present some substantial differences that it is
necessary to highlight to better understand the mechanisms of their formation: (i) physicochemical
behaviour, (ii) properties and (iii) applications. A summary of the main features of MEs and NEs is
reported in Figure 1.
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Figure 1. Comparison of the main physicochemical properties between micro- and nanoemulsion.

First, it is important to highlight that, despite the prefixes ‘micro’ and ‘nano’ define two different
orders of magnitude, i.e., 10−6 and 10−9, respectively, the size of the dispersed phase (generally oily
droplets) for both of these two systems fall in the nanometric range. According to the literature it is not
possible to exactly define a range of particle size distribution, since different authors report different
results within the nanometric order of magnitude [3,4]. In any case, it has been reported that MEs are
characterised by a smaller size of the dispersed phase respect to NEs [5,6].
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ME has been defined as “a system of water, oil and amphiphile, which is a single optically isotropic
and thermodynamically stable liquid solution” [7]. Introduced for the first time in 1944 by Hoar
and Schulman, MEs were initially investigated for oil recovery from underground reservoirs [8,9].
Furthermore, the interest around them spread into several application fields. MEs were studied in detail
in the pharmaceutical field as promising drug delivery systems for lipophilic compounds. As previously
mentioned, they show several advantages such as solubilization of lipophilic compounds, enhancement
of physicochemical stability respect to the related macro-systems (emulsions), improvement of the
active ingredients bioavailability, achievement of a controlled drug delivery system, easiness of
preparation and scale-up [10]. However, their real use is limited by the high amount of surfactant
requested for the formation of such system, being these agents irritant against mucous membranes and
potentially hazardous for the environment [11,12].

On the contrary, one of the most important advantages of NEs is the presence of low amounts
of surfactant, generally less than 10%, compared to almost 15% in MEs, and a low surfactant-to-oil
ratio (SOR) necessary for their formation, that is, >2 in MEs and comprised between 1 and 2 in
NEs [2,5,6]. Briefly, NE is defined as “a thermodynamically unstable colloidal dispersion consisting of
two immiscible liquids, with one of the liquids being dispersed as small spherical droplets (r < 100 nm)
in the other liquid” [5]. It can be considered as a conventional emulsion, with the only difference of a
smaller size of the dispersed phase. However, the most influential parameter varying in these two
nanostructured colloidal dispersions is their free energy, conferring them different features in terms of
preparation, formulation and stability.

As reported in the previous definitions, MEs are thermodynamically stable while NEs are
kinetically stable. This is due to the free energy possessed by the separate state (oil + water) respect
to the colloidal systems. MEs are energetically favoured, with ∆G values lower than the respective
separate phases. On the contrary, NEs (oily droplet in water) possess higher free energy than those of
the separate phases, water and oil.

The preparation methods of MEs and NEs are a direct consequence of this aspect. In fact, being the
formation of MEs favourable, they can be obtained spontaneously by mixing oil, water and surfactant,
without any external energy input. However, the application of magnetic stirring or heating could be
convenient to expedite the process in order to overcome the kinetic barriers.

The energetic process that drives the MEs formation is based on the following formula [13].

∆G = γ ∆A − T ∆S (1)

where ∆G is the free energy of the final system (ME), γ is the interfacial tension oil–water, ∆A is the
variation of the interfacial area, T is the temperature and ∆S is the variation of the system entropy.

Briefly, ∆G must be negative so that a process occurs spontaneously. Since ∆A is very high in
a ME (because of the formation of lots of small oily droplets that increases the interfacial area), this
process is promoted by a very slow interfacial tension (γ) and by the entropy of the system that rises for
the transition of the separate phases into only one containing a large number of particles; this allows
obtaining a negative ∆G value.

The formation of MEs is strictly dependent on the sensitive SOR and, to determine the optimal
one, is used to build a pseudoternary phase diagram. This kind of system, in fact, needs a very low
interfacial tension and a favourable packaging of surfactant molecules, given by the relative interaction
between their hydrophobic tails and the oil phase. This allows the formation of a fluid film at the
oil–water interface [14]. Usually, the addition of cosurfactant agents is required, generally alcohols, to
facilitate this phenomenon, useful to reduce the amount of surfactant as well [15]. Being MEs dynamic
systems, we have to take into account that the interface is continuously subjected to a rearrangement
of its structure and to the Brownian motion of the internal phase, with a possible variation of its
radius [16].

Since NEs are thermodynamically unstable, the free energy of the systems, ∆G (Formula (1)), will
be always positive. Thus, to exceed this value, an external energy input results to be necessary.
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Depending on the physicochemical mechanisms, the methods used for NE preparation can be
divided into high-energy and low-energy methods. The first ones use mechanical devices able to
provide the force needed for the disruption of the dispersed phase into very small droplets, in the
range of nanometres (r < 200 nm). Generally, NE formation follows a two steps procedure. In the first
phase there is the formation of a macroemulsion through a mechanic stirrer. In the second one the
macroemulsion is converted into a NE.

The most common devices used for this process are microfluidizer, sonicator, and high-pressure
homogenizer. This last device uses high pressure value to pump the macroemulsion in a very narrow
orifice that promotes the breaking of big droplets into smallest ones. The same result is achieved
through ultrasound waves that lead to the dispersion process by means of cavitation phenomenon.

Although these approaches seem to be robust, they show some limitations concerning costs,
process implementation and industrial scale-up [17].

On the contrary, low-energy methods are simpler, cheaper and more effective in producing smaller
droplets. However, they require an accurate knowledge of the process parameters, showing some
limitations in the ingredients and conditions [6,18].

Generally, low-energy methods are based on the phase inversion, transforming a W/O
macroemulsion into an O/W NE through the variation in composition (emulsion inversion point (EIP))
or temperature (phase inversion temperature (PIT)). At the inversion point, the interfacial tension is so
low that very fine droplets can be obtained, only with the support of low energy input.

Briefly, the phase inversion due to the PIT method is linked to the presence of surfactants that,
based on a temperature change, modify their affinity for the hydrophilic or lipophilic phase. With
EIP method there is a modification in the composition (water, surfactants, electrolytes) of the final
system, which leads to a variation of the lipophilic-hydrophilic balance, with a consequent change
in the curvature of surfactant layer. The free energy of the system influences the long-term stability
behaviour as well. MEs should remain stable indefinitely, if the initial conditions about the chemical
composition and storage will keep unchanged.

NEs, instead, will remain in a metastable state that will guarantee the stability of the systems if
the energy barrier between the two different energy states remains high enough to avoid the reversion
of the system and the phase separation. This occurs because of such instability phenomena such as
coalescence, flocculation and Ostwald ripening, which, bringing growth of droplets, lead to creaming.
It represents the migration of the dispersed phase influenced by buoyancy.

Coalescence is due to the merger of small droplets into bigger ones, while, in flocculation, droplets
become very closer to move as a unique phase. These phenomena are related to the surfactant layer
on the droplets surface that guarantees the steric stabilisation as much as the thickness of the layer is
comparable with the droplets size. For this reason, NEs are not particularly affected by coalescence
and flocculation, as compared to a traditional emulsion.

On the contrary, NEs are more prone to Ostwald ripening. This phenomenon can be defined as:
“the process of disappearance of small particles or droplets by dissolution and deposition on the larger
particles or droplets. The driving force for Ostwald ripening is the difference in solubility between the
small and the large particles. The smaller particles (with higher radius of curvature) are more soluble
than the larger ones (with lower radius of curvature). With time, the smaller particles or droplets
dissolve, and their molecules diffuse in the bulk and deposit on the larger ones. This results in a shift
of the particle or droplet size distribution to larger values” [19]. It is a thermodynamic process, being
larger particles energetically favoured over the smaller ones.

Since the aqueous solubility of the oily droplets strongly influences the occurrence of this
phenomenon, a suitable solution could be the addition of non-polar compounds that condition
positively the distribution of the droplets in the oily phase. Some of the most used “ripening inhibitors”
are medium-chain triglycerides (MCT), corn oil and sunflower oil [20–22].

Concluding, some of the most influential parameters on the NE stability are:
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(i) The SOR and relative concentrations; they influence the interfacial tension. It is not possible to
stabilize a fixed relationship between these parameters because they are strictly related to the
nature of the compounds that confer unique properties to the systems, which, in turn, differ from
each other.

(ii) The ionic strength of the dispersion medium; it affects the repulsive forces between the droplets
of the dispersed phase. As the ionic strength increases, the repulsive forces decrease and the
systems will be prone to instability.

(iii) The solubility of the dispersed phase; it allows droplets to move towards the continuous phase
with the appearance of Ostwald ripening.

(iv) The temperature; it affects the solubility with the above-mentioned consequences. Moreover, it
influences the energy balance of the system as well.

1.2. Applications

Thanks to the previously mentioned advantages, such nanosystems have been widely exploited
in different fields as a tool for oil recovery, fuel and reaction medium in chemical applications [23–25].
However, in this section we are going to focus the attention on their applications in food, agrochemical,
cosmetic and pharmaceutical fields.

About the food area, they have been developed to improve and extend the use of low water-soluble
compounds or food-derived bioactive compounds with poor bioavailability. Such delivery nanosystems
seem to be a suitable tool to solve this kind of problems. A significant example has been reported by
Yu and Huang [26]. They demonstrated that curcumin showed a 9-fold increase in oral bioavailability
when encapsulated into NEs. Moreover, it was faster digested as well, through lipolysis, respect to
the unformulated compound. In the last years, NEs have been considered as a fundamental tool for
the delivery of functional substances in functional foods or fortified beverages such as fatty acids,
polyphenols, vitamins, micronutrients, antioxidants and others [27]. For example, O/W NE was
exploited in order to encapsulate and deliver Omega-3 fatty acids in yoghurts [28].

Being extremely stable in a wide range of pH, MEs and NEs are very useful for encapsulating
nutrients and protecting them from environmental conditions such as temperature or light-mediated
oxidation and from possible transformation by means of enzymatic reactions and hydrolysis [29]. They
formulated a valid solution to maintain suitable organoleptic properties of foods and beverages. In
fact, MEs and NEs can encapsulate volatile molecules and control the release of flavours. Moreover,
they can be used to prevent contamination of products and to prolong their shelf-life, both directly,
for example by adding a preservative NE inside food, or indirectly, by functionalizing the packaging
system in the same way [30,31]. Besides these advantages, MEs and NEs in food chain show some
limitations, due to the nature of the components. For examples, in a food product the oily phase should
be a triglyceride. Since the solubilization of a long chain triglyceride (LCT) is hard to obtain, it should
be preferable to choose between a medium and short chain triglyceride [32].

Actually, the real limiting step in food grade nanosystem formulation is related to surfactant,
because many of them are not allowed for human consumption or just at very low concentrations.
Some of the admitted ones are sugar esters, monoglycerides, lecithins, glycolipids, fatty alcohols and
fatty acids [33]. This issue is, nowadays, a great object of study. A large number of authors in fact,
through the building of pseudoternary phase diagram of food grade components, tried to find suitable
and stable formulations based only on food-grade compounds [32].

Regarding the pharmaceutical field, modern technology is progressing toward developing efficient
drug delivery tools, with particular attention to an increase of bioavailability, a controlled release of
the drug, a targeted biological effect and good storage stability over time. All these goals could be
pursued by the exploitation of MEs and NEs. Being composed of hydrophilic and lipophilic domains,
they are versatile systems able to incorporate and solubilise drugs of both natures. Araya et al. proved
that MEs enhanced the oral bioavailability of poor water soluble drugs, as Ibuprofen and Ketoprofen,
increasing their solubility and their plasma concentration from 60 to 20,000 times [34].
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Since MEs/NEs can raise the bioavailability, the administered dose of drugs could be reduced
minimizing possible side effects. These formulations behave as controlled release tools, both in O/W
and W/O systems. In fact, in the first case, the oily phase acts as reservoir of active compounds,
while when the oil is the external phase limits the diffusion [35]. However, the rate of drug release
is influenced by the composition of the environment, such as pH and ionic strength, and features
of the nanosystems, i.e., droplet dimension, type of MEs or NEs, nature of the drug and route of
administration. Moreover, a limiting step is represented by the ability of the drug to cross the biological
barrier, such as mucosa cells or skin [36].

Oral delivery of such nanosystems should be very useful to carry on poor water-soluble drugs,
since they allow to overcome the dissolution issue on gastric fluids, which generally is strictly related
to bioavailability. Moreover, they reduce the hepatic first-pass metabolism favouring the passage of
the drugs in the bloodstream [35]. The small size of the internal phase and the presence of surfactants
improve the drug absorption in the gastrointestinal (GI) tract, in the first case, enhancing the permeability
of biological barriers, and, in the second case, promoting a wide and deep distribution [3,37].

Yin et al. showed how a ME, composed by Capryol 90 (oil), Cremophor EL (surfactant) and
Transcutol (cosurfactant), increased the bioavailability of docetaxel, as compared to the related
commercial product, after oral administration in rats. This result was obtained through the cumulative
effect of enhanced drug solubility, improved permeability and inhibition of P-glycoprotein (P-gp)
efflux [38]. Thanks to their low viscosity and possibility to be sterilised by filtration, MEs and NEs
are very favourable in parenteral administration as well [4]. Moreover, they showed an appreciable
physical stability in plasma [39].

Both O/W and W/O systems are suitable for parenteral formulations. Generally, O/W systems
are used to deliver lipophilic compounds in order to obtain a controlled release of the drugs. Thus,
they are administered by the intravenous, intramuscular or subcutaneous routes. On the contrary,
W/O systems, applied as subcutaneous or intramuscular administration, are suitable to encapsulate
hydrophilic drugs in order to obtain prolonged release delivery systems [4].

Dordevic et al. optimised a risperidone-based NE and monitored the pharmacokinetic parameters
of the active ingredient. After intraperitoneal administration in rats, they obtained a 1.2–1.5-fold
increase of bioavailability, 1.1–1.8-fold decrease in liver distribution, and 1.3-fold increase of brain
uptake of risperidone as compared to the drug solution [40]. MEs and NEs are widely studied and used
for topical, ocular and nasal administration as well [13,41]. The topical route has been investigated
mainly in the cosmetic field, exploiting these systems in order to obtain a better penetration of the
active molecules through the skin barrier [42].

Intranasal route should be exploited to deliver active molecules directly on the brain. Vyas et al.
developed a mucoadhesive clonazepam-based ME for the epilepsy treatment. The concentration of this
molecule in the brain was found to be 2-fold higher when compared with intravenous administration,
indicating an enhanced distribution and bioavailability of the active ingredient in the site of action [43].

As in other nanosystems, functionalisation of MEs and NEs allows to build up targeted drug
delivery systems, which are able to address the activity mainly in a desired target site.

Shiokawa et al. reported the formulation of aclainomycin A, a lipophilic antitumour-antibiotic
drug, through a ME linked to folate molecules. They showed that, the use of folate, helpfully modified
with PEG molecules, can be considered as an effective strategy to target MEs on tumour cells [44].

Another interesting field of application of nanosystems is the agricultural one. In particular,
nanotechnology is starting to revolutionise the pest management, providing innovative tools, i.e.,
nanoemulsions, nanoparticles and nanocapsules for the delivery of pesticide compounds (Figure 2).
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Among several nanodelivery systems, MEs and NEs are the easiest ones to handling and formulate.
In particular, they are necessary in the presence of compounds with low water solubility that require a
delivery system for their application in the field [46]. Du et al. carried out a systematic study about the
formation of O/W NE based on methyl laurate as oil phase and alkyl polyglycoside and polyoxyethylene
3-lauryl ether as surfactants [47]. Moreover, they evaluated the effect of β-cypermethrin on the stability
and physicochemical properties of the system.

The encapsulation process improves the physicochemical stability of pesticides and prevents the
degradation of active agents [48]. Song et al. (2009) proved that the encapsulation of triazophos—an
organophosphorus insecticide—is able to prevent the hydrolysis of the active compound [49]. In terms
of bioactivity, these compounds result to be more effective. Nanosystems are able to ensuring their
release to the target site, also providing a controlled release of the molecules at the site of action and
thus reducing the required concentration of applied pesticides [2,49]. Moreover, thanks to the small
size of the dispersed phase, the active compounds could improve their spreading, deposition and
permeation on the target site.

2. Green Micro- and Nanoemulsions

In the last years, the growing interest of the global community on the planet fate is leading towards
a more responsible and sustainable exploitation of natural resources. In particular, the worth of plants,
as primary sources of ingredients for the realisation of a great variety of products, has been revaluated.
In fact, some plant-based materials offer superior performance characteristics as compared to the
synthetic ones. Nowadays, they have started to be applied in several fields such as pharmaceuticals,
nutraceuticals, cosmetics and agrochemicals. Relying also on longstanding uses in the traditional
medicine systems, they are generally employed as essential oils (EOs) and extracts, acting as flavouring
agents, dyes, fortifying agents in functional foods or actual active ingredients [50].

EOs are mixtures of volatile and lipophilic molecules (mainly terpenoids and phenylpropanoids),
produced in secretory structures of aromatic plants, in particular those belonging to angiosperms, such
as Apiaceae, Asteraceae, Geraniaceae, Lamiaceae, Lauraceae, Myrtaceae and Verbenaceae, as products
of their secondary metabolism [51].

EOs have been widely employed in the flavour and fragrance industry. They also find industrial
application in foodstuffs (e.g., soft drinks, food and packaging) and cosmetics (e.g., perfumes, skin and
hair care products). Regarding their medical properties, EOs are mainly used as antimicrobial agents.

Recent studies have attested pesticide properties of several EOs, natural pure compounds and
extracts. The use of plant sources in crop protection dates back to 2000 years ago [52]. However, in the
20th century a wide spread of synthetic pesticides started to take hold. They were favourable thanks
to a high and long-lasting efficacy. If, on the one hand, they increased crop yield, on the other hand,
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their overuse led to toxic effects on humans and the environment with occurrence of resistance in
pests [53–55].

The current limitations of their use are pushing discovery and development of less harmful
products. One of the most promising solutions is the exploitation of plant-based pesticides. In fact,
if the synthetic pesticide market is expected to decline by 1.5% per year, biopesticides have been
estimated to reach the 20% of the pesticide market by 2025 [56,57].

The oldest and most widely used biopesticide is pyrethrum, a pure compound derived from the
dried flowers of Tanacetum cinerariifolium (Trevir.) Sch.Bip. (Asteraceae) [58]. Actually, it has taken
around 80% of the biopesticide market [59]. By virtue of its low toxicity against both mammals and
environment, it presents a high safety profile [60]. However, its synthetic derivatives, also known as
pyrethroids, have been designed to emulate the activity of the natural molecule. Despite their efficacy,
they showed to be hazardous for the environment because of their long-lasting effects and high toxicity
against non-target organisms [61].

Nicotine and the other alkaloids of tobacco represent another class of botanical pesticides. They act
on the nervous system of pest, mimicking the neurotransmitter acetylcholine. Their use is now declined
for their proved toxicity on human beings. The same problem has been observed for rotenone, isolated
from Derris elliptica (Wall.) Benth. roots. Even though it is one of the most effective biopesticides, its
high toxicity towards aquatic organisms and mammals deeply limited its use [62].

Neem (Azadirachta indica A. Juss.) is source of a very interesting compound, azadirachtin, a
limonoid with considerable pesticide activity. It has shown bactericidal, fungicidal, and insecticidal
properties, acting as a feeding and oviposition deterrent and as a growth inhibitor [63]. A fundamental
aspect is its safety profile: no persistence in soil, no adverse effects on water or groundwater organisms,
no toxicity to mammals [64,65].

Eco-friendly alternatives in biopesticides include the wide group of EOs. One of the most
promising aspects in the exploitation of EOs is their lack of toxicity on mammals; they are generally
harmless for the environment when compared with synthetic pesticides [66]. Their safety profile is
guaranteed by the fact that most of EOs have been recognised as Generally Recognised As Safe (GRAS)
substances by the Food and Drug Administration (FDA) and by the Environmental Protection Agency
(EPA) of the United States [67]. For these reasons, a possible residue of EO-based pesticides on crop
does not constitute a risk for human health.

It has been reported that EOs, such as thymol-containing EOs or EOs compounds, such as eugenol
or α-terpineol, showed LC90 values two or three order of magnitude higher as compared to synthetic
commercial products, such as endosulfan, against Juvenile Rainbow Trouts [68]. Pavela et al. reported
that Apiaceae EOs have no toxicity against non-target organisms, as adult microcrustaceans D. magna
and adult earthworms E. fetida, unlike α-cypermethrin that, even in much lower concentrations, caused
almost 100% mortality [69].

Beyond the proofs about their safety, in the last years several studies have been carried out on the
pesticide efficacy of EOs. Results showed that such substances exert a marked activity against pests,
both in direct and indirect way. They act as chemosterilant, fumigant, ovicidal and repellent agents,
altering growth, development and feeding behaviour [70–73]. In a recent review, Pavela collected
the results published about the pesticide activity of EOs deriving from around 122 different species.
Their efficacy could be expressed by an exciting data: 77 EOs showed LC50 < 50 ppm [74]. Their
bioactivity is strictly linked to the presence of different compounds present in the mixture of each EO,
monoterpene and sesquiterpene hydrocarbons, phenolic monoterpenes, oxygen containing mono- and
sesquiterpenes and phenylpropanoids [75].

The main mechanism of action is linked to the ability of EOs to interfere with the cell membrane.
Their accumulation leads to the disruption of the cell wall, leakage of the cellular contents and
perturbation of homeostasis [76,77]. All these alterations lead to cell death. It has been reported that
several EO constituents act in this manner [78,79]. Nevertheless, EOs, as well as plant extracts, are able
to interfere with the nervous system of pests and vectors, inducing even death [80].
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For example plant extracts, in particular alkaloids, can act at different levels of the pest nervous
system [81]. They can function as competitive inhibitors of the acetylcholinesterase (AChE) enzyme,
with consequent accumulation of the neurotransmitter in the synapses, followed by a state of permanent
stimulation of the postsynaptic membrane [82]. Moreover they could be antagonist of GABA receptors
as well, causing hyperexcitation, convulsion and death of the pest due to reduction of neuronal
inhibition [83]. However, the most important target site of EOs is the octopaminergic system [80,84].
Octopamine is a neuromodulator and the absence of octopamine receptors in mammals is the factor
that determines the distinction between target and non-target organisms. Acting on the octopaminergic
system, the active compounds will be harmless for non-target organisms [72,85].

In addition to the above-mentioned advantages on the exploitation of EOs as biopesticides, a
fundamental aspect is their synergistic effect. Synergism occurs in EOs since they are a mixture of 20–60
compounds, where all the components cooperate to enhance the bioactivity [86,87]. This results in a
high efficacy since they act with different and complementary mechanisms of action and the combined
effect is usually higher than those of the single components, allowing the reduction of the effective
dose. Moreover, the mutual synergism represents a suitable tool to fight the development of resistance
phenomenon, which is common with synthetic pesticides, that normally have only a target site [75].

Since EOs showed to be among the best candidates as botanical pesticides, we can ask why its
commercial spread is still limited. The reason is strictly linked to their physicochemical properties,
such as lipophilic nature and thus poor water solubility, scarce stability, high volatility, thermal
decomposition and oxidative degradation [88]. These aspects translate into reduced efficacy and
handling difficulties [72,85]. Moreover, being volatile compounds, EOs show low persistence in the
environment and a scarce accumulation in soil and water [89].

All these reasons are encouraging researchers to find out suitable solutions to protect and deliver
EOs. Currently, the selected strategy is the encapsulation method. Encapsulation is a process through
which an active compound is coated or entrapped into a matrix. In this way, the bioactive molecule is
isolated and protected by the matrix from the surrounding environment and its release depends on the
external conditions and the matrix nature as well [88].

In this respect, in the last years nanotechnology revealed to be the best approach for the exploitation
of EOs, allowing to overcome the limitations related to their use [48,90–95]. Although nanotechnology
represents an innovative tool able to revolutionise pest management science, it remains a big, but
exciting, challenge. An example of EOs stabilisation has been reported by Cespi et al. [96]. They found
a suitable solution allowing the use of Smyrnium olusatrum L. EO, an oil difficult to handle for stability
problems related to the high concentrations of its main constituent, isofuranodiene, which easily
undergoes crystallisation. After a systematic study based on an experimental design, they found the
best ME capable of encapsulating and protecting EO thanks to the presence of ethyl oleate that avoids
the crystallisation issue. Moreover, this formulation proved to be stable over one year and maintained
unchanged the bioactivity of EO. Pavela et al. used the same strategy to vehiculate isofuranodiene, the
main active compound of S. olusatrum EOs [97]. Isofuranodiene-based ME (0.75%) has been tested
against Culex quinquefasciatus Say showing potent larvicidal effects, with LC50 value of 17.7 mL·L−1.

The advantage of MEs and NEs to deliver EOs is not only related to the enhancement of the
physicochemical stability but also to the improvement of bioavailability [2,49]. For this reason, the
bioactivity of EO-based nanosystems is often higher than those of free EOs. Osman Mohamed Ali et al.
carried out a study on the encapsulation of neem and citronella EOs in O/W NEs, to exploit their pest
control properties. Stunning in vivo results were obtained towards phytopathogenic fungi Rhizoctonia
solani (Cooke) Wint. and Athelia rolfsii (Curzi) C.C. Tu & Kimbr.; EO-based NEs showed exceptional
effectiveness, which was higher than those of free EOs [98]. The higher activity of EO-based MEs
compared to free EOs (Trachyspermum ammi (L.) Sprague ex Turrill, Pimpinella anisum L. and Crithmum
maritimum L.) has been also demonstrated by Pavoni et al. on different species of bacteria and fungi [99].
Moreover, Liang et al. tested the antibacterial activity of peppermint EO NE and the relative free EO
on Listeria monocytogenes and Staphyloccoccus aureus [100]. Although they showed comparable MIC
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values, the surprising difference was related to the long-term inhibition growth given by NE. Such
formulation, by increasing the stability and solubility of EO, was capable of establishing a sustained
release. The dispersed phase in fact acts as a nanotank releasing active ingredient over time [21].

Furthermore, the small size of the internal phase improves mobility and penetration with an
increase of the activity, and the high surface area of the oily drops enhances the efficacy [101].
Salvia-Trujillo et al. demonstrated the advantageous bioactivity of EO-based nanosystem as compared
to the related coarse emulsion [102]. In this case, the difference has been made by the size of the oily
droplets, highlighting once again the great advantages generated by such nanosystems.

More explicative examples of EO-based MEs/NEs as biopesticides will be reported in-depth in the
following sections.

3. Green Micro- and Nanoemulsions as Insecticides

3.1. Hemiptera

Hemiptera is an order of insects comprising ~68,000 species. Some of them, including many
aphids, are important agricultural pests, damaging crops by the direct action of sucking sap, but also
harming them indirectly by being the vectors of bacteria, phytoplasmas, spiroplasmas and viruses.
They often produce copious amounts of honeydew which encourages the growth of sooty mould.
Significant pests include the cottony cushion scale, a pest of citrus fruit trees, the green peach aphid
and other aphids which attack crops worldwide and transmit plant diseases. Although several studies
have been reported on the activity of EOs against Hemiptera species, only few authors investigated
their effectiveness on the same target when encapsulated into MEs or NEs [103–106].

Among the few examples available, Fernandes et al. developed an insecticidal NE based on
Manilkara subsericea (Mart.) Dubard extract [107]. The efficacy of hexane-soluble fraction from
ethanolic extract of M. subsericea on Dysdercus peruvianus has been previously reported by the same
authors [108]. D. peruvianus is an Hemiptera species (Pyrrhocoridae) that acts on cotton crops causing
huge harvest losses [109]. Since the apolar fraction of the extract is water insoluble, the exploitation
of NE technology seemed to be a favourable strategy. After a wide screening on the suitable HLB
value of surfactants and the mean droplet size, the following NE composition has been chosen: 5%
of M. subsericea extract solubilised in 5% octyldodecyl myristate (oil phase) and 5% of surfactants
(sorbitan monooleate/polysorbate 80). This NE, characterised by mean droplet size of 155 nm and
PDI value of 0.15, proved to be a good insecticide. In fact, it showed its activity since the first day of
treatment (12% of mortality), that was sustained over time, with a mortality index of 66% of the insect
population after 30 days. Moreover, the safety of this NE was confirmed noting the lack of effects
against acetylcholinesterase as well as no acute toxicity on mice.

As said before, aphids represent ones of the world’s major insect pests, causing serious economic
damage to a range of temperate and tropical crops. This ranges from grain crops and brassicas to
potato, cotton, vegetable and fruit crops. For this reason, the investigation on botanical remedies
to manage these pests gained great importance and generated several studies on a wide number
of EOs and aphids species [110]. Santana et al. (2012) tested the activity of Thymus vulgaris L. and
Lavandula latifolia Medik. on different aphid species, namely Rhopalosiphum padi (L.) and Myzus persicae
Sulzer [111]. Isman (2000) evaluated the fumigant toxicity of four EOs on Aphis gossypii Glover, the
pest that affects mainly cotton crops, as well as a variety of plants such as citrus, coffee, cocoa, pepper,
potato and many ornamental plants [85,112]. On the same target Kalaitzaki et al. tested a formulation
of natural pyrethrins, a combination of six esters extracted from the flowers of T. cinerariifolium [113].
They solubilised pyrethrins in lemon oil obtaining, initially a W/O ME that was suddenly diluted in
water, leading to the formation of an O/W NE. Results about insecticidal activity showed lower LC50

and LC90 values of pyrethrin-based NE as compared to those of pyrethrum commercial products (761.8
vs. 965.5 mg/mL and 4011.2 vs. 5224.0 mg/mL, respectively).
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Pascual-Villalobos et al. performed a wide screening of the repellence activity of 10 EOs and 18
pure compounds against R. padi, the major pest of cereal crops on a world scale [114,115]. To face
the volatility issue related to the nature of EOs, authors encapsulated the most active ones in NEs, in
particular aniseed and peppermint EOs, as well as geraniol, cis-jasmone and farnesol. The effectiveness
of NEs were evaluated in terms of repellence (RD50 and RD90) and mortality after 24 h. Interestingly,
some results showed that the smaller were the oil droplets the higher was the repellence activity. In
particular, citral-based NE at 2%, having a particle size of 99 nm, showed a repellence index of 66,
while the same formulation with larger particles (816 nm) exerted low activity.

3.2. Mosquitoes

Mosquitoes are the vectors of pathogens and parasites of medical and veterinary importance
leading to the spread of diseases such as malaria, filariasis, dengue, yellow fever, Japanese encephalitis
and Zika virus, just to cite the most important, some of them are lethal, especially in developing
countries [116]. Thus, the effective management of these vector populations is a worthy challenge. At
the moment, the main approaches to control their spread are: (1) killing adult species through the use
of insecticides, (2) reduction of adults population interfering with their fecundity and oviposition or
(3) killing mosquito young instars [74].

Although several pesticide products are available on the market, their dangerous effects on the
environment along with the development of resistance bring to the need of new sustainable and
eco-friendly tools. In the last years, research focused the attention on those EOs suitable as active
ingredients in botanical larvicides. Pavela reported, from the literature, the activity of 122 EOs as
mosquito larvicides [74]. Interestingly, 77 of them showed LC50 value < 50 ppm. Moreover, Pavela
assessed the acute toxicity of 30 aromatic compounds of EOs against C. quinquefasciatus [87], which
is the main vector of the lymphatic filariasis and has been investigated as a vector of Zika virus as
well [117,118]. For this reason, several authors investigated the effect of different EOs encapsulated
into MEs/NEs against this target.

Oliveira et al. improved the water solubility of Pterodon emarginatus Vogel oleoresin through
its dispersion in a polisorbate 80/sorbitan monooleate NE, at 1:1 oil–surfactant ratio [119]. This
formulation caused the death of around 100% of C. quinquefasciatus larvae after an exposure time
of 48 h at the concentrations of 100 and 200 mg/L, probably due to morphological alterations on
the final abdomen segment of the larvae. Since the P. emarginatus-based NE did not exert any
toxicity on the green algae Chlorella vulgaris Beijerinck, it can be considered an eco-friendly botanical
product. The effect of EOs formulations on non-target organisms have been investigated in depth
by Pavela et al. on the microcrustacean Daphnia magna Straus, the aquatic worm Tubifex tubifex
(Müller) as well as the earthworm Eisenia fetida (Savigny) [69,97]. Moreover, they proved the larvicidal
activity of MEs based on Apiaceae EOs, as those of T. ammi, C. maritimum and P. anisum, and on
isofuranodiene, the major volatile compound of S. olusatrum EO, evaluating the chronic and acute
toxicity on C. quinquefasciatus. These formulations showed remarkable efficacy, with LC50 values of
1.57, 2.23, 4.01 and 17.7 mL/L, respectively.

Several studies have been conducted on the effectiveness of OEs-based MEs and NEs against
Aedes aegypti L. larvae, the major vector of dengue and yellow fever. In particular, Rosmarinus officinalis
L. and Ocimum basilicum L.-based NEs showed evident efficacy on larval mortality, in a time and
dose-dependent manner [120,121]. Interestingly, several authors reported how the exploitation of
nanotechnology in pest management could be useful to enhance, not only the stability of EOs, but also
their efficacy as pesticide agents.

Balasubramani et al. [122] reported a study based on the larvicidal activity of Vitex negundo L. EO
on A. aegypti. The encapsulated EO showed higher toxicity as compared to the free one, with lower
LC50 and LC90 values. MEs and NEs, in fact, providing a higher dispersion of the lipophilic phase
into an aqueous one, could increase the concentration of active ingredients dispersed at the interface
leading to direct improvement of the interaction with the target [123].
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An important parameter related to the EOs activity is the size of the oily droplets. In fact,
Anjali et al. [124] observed that the smaller was the droplets size, the higher was the formulation
efficacy. In particular, neem oil NE with a medium diameter of 31 nm caused the mortality of 86% of C.
quinquefasciatus larvae after 24 h, while NEs of 93 and 251 nm showed a percentage of mortality of 73%
and 48%, respectively.

Sugumar et al. [125] compared the activity of Eucalyptus globulus Labill. EO encapsulated both
in NE and bulk emulsion against C. quinquefasciatus. It was observed that, at the concentration of
250 ppm, NE caused 100% of mortality after only 4 h, while the bulk emulsion obtained the same result
after 24 h. It is possible to suppose that the size reduction of oil droplets, and thus the increment of
the surface area, lead to a better interaction and penetration of the active ingredients into the target
organisms [126].

3.3. Stored Product Beetles

Cereal crops can be still considered a main food source for mankind [127]. However, their yield
could be compromised by pest infestations during storage. This leads to an extensive loss of crops
in term of quality and quantities. In fact pests, not only reduce the amount of grains, but also create
suitable environmental conditions for the growth of moulds [128]. The most widespread insect of
stored products is Tribolium castaneum Herbst, also known as the red flour beetle, which is able to
release carcinogenic substances [129].

Botanical research found out several EOs able to fight stored product pests, in particular
T. castaneum, acting through contact, fumigant, growth inhibitory, antifeedant and repellent actions [130].
Starting from this knowledge, several authors worked on the development of suitable formulation of
EOs for their real application. Hashem et al. encapsulated P. anisum EO, known to be effective against
T. castaneum, into a NE, in order to enhance its physicochemical properties [131]. 10% EO-based NE
showed a mortality index of 81.33% after 12 days of exposure. Moreover, such system was able to
significantly affect the development of progeny and reduce the grain weight loss (%). Morphological
and histological evaluations showed that the EO-based NE adhered to several body parts and penetrated
through the cuticle, causing cellular necrosis. On the same target, other authors tested EOs obtained
from three species of Achillea, A. biebersteinii Afan., A. santolina Falk and A. millefolium E.Mey. [130].
They showed how the EO bioactivity depends on the kind of exposure and thus, the mechanism of
action. In fact, fumigant toxicity proved to be more effective respect to the topical and contact ones.
In particular, the EO-based NE showed significant higher fumigant toxicity as compared to the free
EOs, with almost one order of magnitude lower LD95 values. Moreover, authors proved that these
nanosystems were more effective, in terms of mortality, on adults as compared to larvae, although they
strongly affected their growth and development.

Interestingly, Pant et al. added a new ingredient to EO-based NEs that was proven to enhance
the effectiveness of the system [132]. They formulated 10% eucalyptus EO NE to test against
T. castaneum, using karanja and jatropha aqueous filtrates (at increasing concentration from 20% to
60%) in place of water. Such filtrates, obtained from the de-oiled seed cakes, showed to possess
insecticidal properties [133,134]. This study reported how the presence of aqueous filtrates improves
the physicochemical properties of the formulations, reducing the medium size of the dispersed phase
and the PDI value. Moreover, they enhanced the shelf-life of EO for long periods of time reducing its
volatility. In fact, after two months, in presence of filtrates, the concentration of EO active ingredients
remained unchanged, while in presence of water it decreased to 5%.

Eucalyptus globulus-based NE has been investigated against the species Sitophilus granarius L., as
well [135]. This formulation showed higher efficacy on this pest when compared with free EO. In
addition, such NE showed to be safe, since it did not show mortality and did not cause biochemical
alterations in rats.

Choupanian et al. investigated the activity of neem oil NEs against T. castaneum and Sitophilus
oryzae L., also known as the rice weevil [136]. Authors underlined as the effectiveness of a system could
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depend, not only on the presence and amount of active ingredients, but rather on the formulation
parameters. In this case, the choice of the surfactant was carefully evaluated. In fact, polysorbate and
alkylpolyglucoside have been compared. NEs obtained with polysorbate showed smaller droplets
size and enhanced stability as compared to those containing the other surfactant. Moreover, by their
reduced size, they showed higher activity since the active ingredient could penetrate the insect cuticle
and come in contact with the target. Moreover, the study reported higher pest mortality of NEs as
compared to commercial products and the crude oil extract. These results could be ascribed again to
the reduced droplets size of the NEs that caused 100% of mortality in both species after 48 h. Although
the previous mentioned species are the most common pests that affect stored products, researchers
investigated EO-based NEs against other species as well, obtaining encouraging results about the
effectiveness of such nanosystems on the preservation of cereal crops from the infestation of several
different pests species [130].

4. Green Micro- and Nanoemulsions as Insect and Tick Repellents

As detailed in the paragraph above, hematophagous insects act as main vectors of several diseases,
such as Zika virus, dengue, malaria and yellow fever, causing more than one million deaths per
year [137,138]. There is need of new specific drugs or vaccines to treat or prevent such diseases;
however, one possible approach to control them is represented by reliable vector control tools, with
proven epidemiological impact. One of the simpler ways to deal with this is the employ of repellent
products. Repellents are chemical molecules able to prevent the arthropod landing on the skin and the
consequent bite [139]. They act through a topical action forming a vapour layer having an intolerable
odour for a given arthropod species, preventing its contact with human skin. It is desirable that such
molecules do not penetrate in the bloodstream but, rather remain in the stratum corneum [140].

The ideal arthropod repellent should possess some key features: (i) broad spectrum of activity,
(ii) long-lasting effect (>8 h), (iii) no toxicity for human being and environment, no skin irritation and
low penetration, (iv) odourless to humans and unbearable to arthropods [139]. Generally, repellents
are lipophilic volatile molecules, thus they need a suitable vehicle or formulation to be administered.

Now only five/six compounds have been recognised and approved by the Environment Protection
Agency (EPA) and the Center for Disease Control and Prevention (CDC) as active repellent ingredients.
They have been admitted for skin products thanks to their low toxicity [138]. Three of them are
synthetic compounds. The most known and used, since 1957, is N,N-diethyl-3-methylbenzamide
(DEET). Despite its high efficacy and long-lasting effect, several studies proved its toxicity due to
high skin absorption [141,142]. Its overuse may cause encephalopathy, dermal toxicity, cardiovascular
diseases and psychosis and hence, its use has been now restricted and forbidden for pregnant women
and children [143]. Other recognised synthetic compounds are ethyl butylacetylaminopropionate
(IR3535) and picaridin. The first one is not harmful if ingested, inhaled, or used onto the skin and
thus, it can be accepted for human use. Picaridin can be compared to DEET in terms of efficacy and
long-lasting effect but it showed only slow toxicity [138,139].

Given the toxicity and resistance issues related to synthetic repellents, one of the biggest challenges
for the scientific community is the identification of new efficient and safe compounds [142]. Since
ancient times human being has used plants as means to protect himself from insects and pests, by
burning or bruising them or by applying their extracts directly on the skin [144,145]. In fact, plants can
produce some by-products properly to defend themselves against bloodsucking arthropods. Generally
they act binding the odorant-binding proteins in the arthropod’s antennae for cuing, preventing their
approach [145].

At present, research is focused on the exploitation of EOs to find out new effective natural
repellents [146]. Their activity seems to be related to the presence of isoprenoid molecules. In
particular, the combination of monoterpenes and sesquiterpenes in the mixture of EOs is considered
to be responsible for their repellent activity [147]. Several studies reported that monoterpenes as
citronellol, limonene, camphor and thymol showed effective repellent activity [148–150]. Citronellal
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and eucalyptus EOs have been recognised as skin treatments by EPA while PMD (p-menthane-3,8-diol),
a compound of Corymbia citriodora (Hook.) K.D.Hill & L.A.S.Johnson. EOs, is the only natural repellent
recommended by CDC, showing no adverse effects on human health [146]. Although EOs efficacy and
safety have been widely proved, their use is still restricted due to some drawbacks related to their
physicochemical properties. In fact, they showed rapid evaporation and a short action. Moreover, the
application of pure EOs on the human skin could cause irritation [139].

To overcome these limitations the best strategy could be the encapsulation of such active ingredients
to develop suitable formulations able to protect and control the release of EOs. The main systems
developed for the formulation of repellent EOs are micro-/nanocapsules, MEs/NEs, liposomes, solid
lipid nanoparticles and polymeric micelles [139]. Containing oily and water insoluble substances, MEs
and NEs could be considered among the best choices as EOs vehicle.

Nowadays the classical repellent formulations on the market are spray solutions and lotions. The
first ones require a high amount of alcohol to solubilise the active ingredients while the second ones
are emulsions with low stability. On the contrary, NEs and MEs are able to overcome these issues. In
fact, they are highly stable, low viscous to be easily spread on the skin and physiologically acceptable
in terms of composition [139].

Nuchuchua et al. carried out a study on NEs based on citronella (Cymbopogon citratus (DC.)
Stapf), hairy basil (Ocimum americanum L.) and vetiver (Vetiveria zizanioides (L.) Nash) EOs [151]. They
evaluated their physicochemical properties, the in vitro release, the in vivo efficacy on Ae. aegypti
and the toxicity against normal human foreskin fibroblast (NHF) cells. They compared the different
formulations before and after high-pressure homogenisation. After this high-energy process, smaller
oily droplets, in the range of 150 to 160 nm, were obtained. They resulted to have a better stability,
expressed as zeta potential values, after 2 months. Moreover, the small size of the oily droplets
showed to play an important role in the formulation efficacy. In fact, NEs showed a higher release rate,
based on a diffusion mechanism, and longer repellent activity. Authors supposed that formulations
having smaller size should be able to form a whole film on the skin to prolong the activity. The best
formulation was the NE composed of 10% citronella, 5% hairy basil and 5% vetiver EOs, in terms of
size, stability and efficacy (4.7 h of protection). Also, Sakuluku et al. investigated the effects of high
pressure homogenisation, concentration of surfactant and presence of glycerol on the physicochemical
properties and mosquito repellent activity of 20% citronella EO NEs [152]. The best conditions to
obtain effective NEs were as follows: concentration of surfactant at 2.5% and water:glycerol at 0:100
ratio. In fact, they demonstrated to influence the kinetic release and the activity against Ae. aegypti, as
well as the droplet size and the long-term stability. The high amount of glycerol, and thus the high
viscosity of the system, delayed the release of EOs, resulting in a prolonged repellent activity on time.

Drapeau et al. formulated PMD based-MEs to evaluate against Ae. aegypti [138]. They compared
a “surfactantless” ME, composed of water, propanol and PMD and a classical ME, obtained through
the construction of a ternary phase diagram. The presence of surfactants led to a prolonged activity,
that increased from 315 min of the “surfactantless” ME to 385 min of the classical ME, as well as the
reduction of the amount of propanol. The selected formulation was composed of: 46% of H2O, 20%
(w/w) of PMD, 25% of PrOH, 2% of Cremophor RH40 (surfactant), 3% of Texapon N70 (surfactant), 1%
of 2-ethylhexane-1,3-diol (cosurfactant) and 3% of ethyl (−)-(S)-lactate (cosolvent). The addition of
these two additives seemed to increase the activity of PMD. The cosurfactant has been selected for its
repellent properties, while ethyl (−)-(S)-lactate could act as lactic acid competitor on human skin, a
good attractant for mosquitos [153–155].

Lastly, Navayan et al. showed how MEs could be a suitable tool to prolong the repellent activity
of EOs [156]. In fact, 5%, 10% and 15% eucalyptus EO-based MEs showed a protection time against
Culicidae of 82, 135 and 170 min, respectively, while free EO at the same concentrations showed lower
time of activity, i.e., 34, 47 and 59 min, respectively. The results obtained through the encapsulation
of EO were similar to those of DEET at the same concentrations. Notably, this work outlined how
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nanosystems could be a desirable tool to increase EOs protection, reduce their volatility, promote their
release and prolong the activity on time.

5. Green Micro- and Nanoemulsions as Acaricides

Mite control is economically important for assuring the survival of several vegetables and
ornamental plants in greenhouses. For this purpose, conventional pesticides have been widely applied.
They include organotin compounds, mitochondrial electron transport inhibitor-acaricides (fenazaquin,
fenpyroximate, pyridaben and tebufenpyrad) and pyrethroids. Although they resulted to be very
effective, their use has been limited due to the development of pest resistance and the non-target,
environmental and human toxicity. These issues have highlighted the need to find out new alternatives
for pest management. Botanical pesticides seem to be a valid alternative to the synthetic ones, and are
in the field of acaricides products as well. In particular, EOs showed to be the most important natural
sources of compounds with acaricidal activity [157–160].

Choi et al. tested the activity of fifty-three EOs against eggs and adults of Tetranychus urticae Koch
as well as adults of the biocontrol agent Phytoseiulus persimilis Athias-Henriot [161]. This study revealed
that the most active EOs were: caraway (Carum carvi L.) seed, citronella java (Cymbopogon winterianus
Jowitt), lemon eucalyptus (C. citriodora), pennyroyal (Mentha pulegium L.), and peppermint (M. x piperita
L.) EOs showed >90% of toxicity against adults of both mite species. From the obtained results, authors
supposed that EOs were delivered and acted on the vapour phase, affecting the respiratory system
of mites.

Although their safety and effectiveness, EOs showed a short lasting effect related to their rapid
volatilisation and/or degradation [125]. Thus, their encapsulation in liquid sprayable MEs and NEs
could be a suitable solution.

Concerning mite species of public health importance, Xu et al. investigated the acaricidal activity
of neem oil against Sarcoptes scabiei expressed as the speed of kill (min) [162]. Authors compared the
effectiveness of pure EO, the EO-based emulsion and the EO-based ME. Neem EO-ME demonstrated
the highest acaricidal activity with a lethal time of 192 min followed by 212 min of EO-emulsion and
337 min of pure EO. As expected, the encapsulation process and the small size of the dispersed phase
enhanced the activity of EOs and the interaction with target organisms. Moreover, the study reported
that ME without active ingredient showed the ability to kill mites. It has been supposed that it could
be due to the presence of sodium dodecyl benzene sulfonate (SDBS) in the mixture of surfactants. In
fact, given its activity, it has been used to enhance the efficacy of the active ingredients [162].

Research aimed to the effective management of tick species has also been carried out. Chaisri et al.
tested the activity of citronella EO on Rhipicephalus microplus (Canestrini) [163]. In this study, results
have been expressed as larval and adult mortality. ME showed higher acaricidal efficacy compared
with the pure citronella EO. In particular, larval mortality after 24 h occurred at the concentration of
0.78% EO-based ME in respect to the concentration of 3.125% of free EO. Also in this case, it could
be supposed that the small size of oily droplets, <50 nm, and the presence of surfactants, Tween
20/propylene glycol 3:1, gave a synergistic effect. In particular, surfactants could interfere with the
lipids of mites epicuticle, favouring the penetration of active ingredients [153,164].

dos Santos et al. proved the use of cinnamon (Cinnamomum verum J. Presl) EO as efficient tool to
control ticks on cattle [165]. Indeed, this EO was evaluated against R. microplus through both in vitro
and in vivo tests, the latter performed on infested dairy cows. Authors also formulated nanocapsules
and NEs. They resulted to be very useful for the exploitation of cinnamon EO acaricidal activity. In
fact, nanoencapsulated EO showed to be effective at low concentration (0.5%), ten times lower than
that of pure EO (5%). Thus, such nanosystems at 0.5% were able to reduce infestation, oviposition
and fertility of R. microplus. In fact, the encapsulation of EOs produced an improvement of the active
ingredient stability and of its protection and guaranteed sustained release over time.

Nevertheless, the advantages of nanotechnology cannot be ever observed. Galli et al. investigated
the activity of E. globulus EO [166]. For the purpose, they used the same formulation, concentrations,
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target and procedures of those previously reported. In this case, pure EO showed to be effective
decreasing the reproduction of ticks. On the contrary EO-based nanocapsules and NEs exerted low
efficacy. However, it is possible to find an explanation of this result on the short exposure time (30 s) of
the pests to nanosystems. This time should be not sufficient for the release of EO [167].

Mossa et al. recently investigated the acaricidal activity of emulsion and NE based on garlic
(Allium sativum L.) EO on two eriophyid olive mites: Aceria oleae (Nalepa) and Tegolophus hassani
(Keifer) [168]. After several stability studies, they found out a suitable and stable formulation, respect
to the classical emulsion giving phase separation after two days. It was composed of 5% of garlic EOs,
oil/Tween20 at 1:1.2 ratio and it was obtained through a sonication process for 35 min. Beyond the
stability issue, garlic EO-based NE was demonstrated to be more effective than the respective emulsion.
In fact, NE showed LC50 values of 298.22 and 309.634 µg/mL on A. oleae and T. hassani, respectively,
over to 584.878 and 677.830 µg/mL of the emulsion. Moreover, they proved to be safe for mammal
administration as they did not produce toxicity in rats.

Badawy et al. formulated four different NEs based on two EOs—Callistemon viminalis (Sol. ex
Gaertn.) G.Don and Origanum vulgare L.—and two monoterpenes—R-limonene and pulegone [169].
They investigated the activity of 10% concentrated NEs on T. urticae in terms of contact toxicity,
fumigant toxicity and on bean plants under greenhouse conditions. Although all the formulations
showed high efficacy, the monoterpene-based NEs proved to be more toxic against the target organism
and with a more rapid outbreak of the activity. Moreover, the fumigant toxicity was more pronounced
than contact toxicity. As mentioned above, this could be explained by the fact that such compounds
are delivered on vapour phase and act mainly on the respiratory system [161].

6. Green Micro- and Nanoemulsions for Developing Antiparasitic Drugs

Micro- and nanoemulsions can also be useful tools to boost the bioactivity and increase the stability
of antiparasitic drugs [170]. In the following paragraphs, we will outline the major achievements in
the development of green micro- and nanoemulsions targeting both protozoan and helminth parasites.

6.1. Parasitic Protozoa

6.1.1. Toxoplasma gondii

The apicomplexan Toxoplasma gondii (Nicolle & Manceaux) infects approximately two billion
people worldwide [171]; however, seroprevalence is declining in Western Countries [172].

New drugs are needed for the treatment of toxoplasmosis, particularly in immunocompromised
patients or in congenitally infected subjects [173]. Among the new possible drugs, atovaquone is under
evaluation for its ability to suppress protozoan parasites with a broad-spectrum activity. However, the
use of this drug is limited by its extremely low water solubility and bioavailability. NEs prepared with
atovaquone, based on grape seed oil using spontaneous emulsification method, showed increased
bioavailability and efficacy for treatment of toxoplasmosis. In fact, in vitro this NE resulted active
against T. gondii, using both RH and another strain (namely, the so-called Tehran strains), cultured on
HeLa cells. Such results were confirmed in in vivo studies in mice treated orally; these resulted with a
lower number of tissue cysts compared to animals treated with the standard preparation, by virtue of
better bioavailability [174].

6.1.2. Leishmania spp.

They are vector-borne parasites belonging to Leishmania genus, order Trypanosomatida. They
cause diseases with different clinical pictures: cutaneous (CL), mucocutaneous (MCL) and visceral
(VL) [175].

Studies have been carried out on the effects of aromatic/heterocyclic sulphonamides, in the low
nanomolar range, on the β-carbonic anhydrase (CA, EC 4.2.1.1) of Leishmania spp., which resulted
effectively inhibited, without, however, any effect on parasite viability. The same drugs, formulated as
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NEs in clove oil, inhibited the growth of either Leishmania infantum Nicolle or Leishmania amazonensis
Lainson & Shaw, being less cytotoxic than the widely used antifungal amphotericin B, as revealed by
haemolytic assay [176].

NEs as a delivery system for copaiba (Copaifera sp. Linnaeu) and andiroba (Carapa guianensis
Aublet) oils (nanocopa and nanoandiroba with an average particle size of 76.1 and 88.1 nm, respectively)
were tested on L. infantum (VL) and L. amazonensis (CL). Nanocopa and nanoandiroba resulted toxic to
promastigotes of both Leishmania species. In particular, ultrastructural analyses by scanning electron
microscopy showed a shift of the parasite to oval shape and the retraction of flagella, as early as 1 h
after treatment, with concentrations near the IC50 values. Furthermore, the treatment with such NEs
reduced infectivity of the two species in macrophage cultures. Beneficial results were obtained also in
mice experimentally infected with L. amazonensis or L. infantum (i.e., reduction in lesion size, parasite
burden and inflammation). Animals affected by CL treated for eight weeks with NEs showed delay in
lesion development. In VL model, around 50% reduction in parasite burden in liver and spleen of mice
treated with nanocopa and nanoandiroba was found as compared with control untreated animals [177].

Nanotechnology has allowed the advancement of photodynamic therapy (PDT). In fact, many
photosensitisers (PS), insoluble in water, need a nanocarrier as a physiologically acceptable carrier.
NEs are efficient in solubilising liposoluble drugs, like the PS, in water. A zinc phthalocyanine (PS)
oil-in-water NE, essential clove oil and polymeric surfactant (Pluronic® F127) for the formulation of a
topical delivery system for use in PDT was used against L. amazonensis and L. infantum. The toxicity in
the dark and the photobiological activity of the formulations were evaluated in vitro on Leishmania and
macrophages. The zinc phthalocyanine NE was effective in PDT against Leishmania spp. with several
advantages compared to other topical treatments like paromomycin and amphotericin B. These drugs
have many disadvantages like local side effects and a very high cost, often limiting their use [178].

The antiparasitic activity of nanoemulsionated EO of a Lavanudula species was tested against
Leishmania major, a species responsible for CL. In particular, NE with EO of L. angustifolia Mill. (where
1,8-cineol and linalool were the major components), as well as of Rosmarinus officinalis L., induced
significant mortality of the parasite [179]. The NE of L. angustifolia and R. officinalis EOs showed
antiparasitic effects that were much more significant than those obtained with the nonemulsioned EO
of R. officinalis [180].

A taxonomically related parasite to Leishmania is Trypanosoma evansi Steel, the etiological agent of
the disease known as “Surra” and “Mal das Cadeiras” which affects horses in Brazil, and sometimes
also humans. The in vitro trypanocidal activity of the nanoemulsified Schinus molle L. EO was tested;
this NE reduced the number of living parasites even totally, when the highest concentration was used
(1%) contrary to the non-emulsified EO, which gave only 68% of mortality as a maximum [181].

6.1.3. Plasmodium spp.

Plasmodium parasites cause malaria, a disease which represents one of the major public health
problem at global level with 219 million cases of malaria and 435,000 deaths estimated in 2017,
particularly concentrated in Africa [182].

NEs loaded with arteether (ART), a semisynthetic derivative of artemisinin, by virtue of their
solubility and consequently bioavailability, enhanced efficacy against Plasmodium yoelii nigeriensis,
in a mouse model of experimental malaria. The in vitro release profile of the ART-NEs showed 62%
drug release within 12 h; no significant effect on cell viability was observed. The authors focused the
attention on a particular NE, loaded with ART (ART-NE), ART-NE-V, which showed a significantly
enhanced bioavailability. This NE was well tolerated in the experimentally infected mice with no
abnormality in behaviour, food/water consumption and general activity of the animals throughout
the treatment and post treatment period. ART-NE-V, administered orally, had an 80% curative rate in
comparison to the 100% cure rate achieved by intramuscular route at the same dose and to the 30%
curative rate obtained in mice treated with ART in ground nut oil [183].
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6.2. Helminths

Echinococcus granulosus

This parasite is the aetiological agent of cystic echinococcosis (CE), a zoonotic infection with
economic and public health importance worldwide distributed. CE can result in a substantial human
disease burden and have a relevant economic impact on animal productivity [184,185].

EOs from Zataria multiflora Boiss. were tested on the cestode Echinococcus granulosus sensu lato [186].
The effect was tested on the protoscoleces, isolated in liver hydatid cysts collected from naturally
infected sheep. NEs at different concentrations (1–2 mg/mL) induced mortality levels up to 100%
after 20 and 10 min, respectively, a scolicidal activity significantly higher than that obtained with
nonemulsified oil [187]. In vivo studies in infected mice showed that the largest cysts were significantly
reduced in size, as well as their total number, in animals treated with NE, compared to those treated
with nonemulsified oil [186].

The in vitro and ex vivo activity of Melaleuca alternifolia (Maiden & Betche) Cheel oil (tea tree oil
(TTO)), its NE formulation (NE-TTO) and its major component (terpinen-4-ol) were evaluated for their
effects against Echinococcus ortleppi (another Echinococcus species, also known as G5 and clearly closely
related to the genotypes of E. canadensis). This Echinococcus species infects cattle, which represents
the principal intermediate host, mainly distributed in Europe, Africa, some areas of Asia and South
America [188]. In ex-vivo studies the TTO, NE-TTO and the terpinen-4-ol were directly injected in
the cysts isolated from cattle. The protoscolicidal action of the TTO major compound, terpinen-4-ol,
resulted very promising. In fact, just after 5 min of exposure, non-viable E. ortleppi protoscoleces were
obtained, at the concentration of 2 mg/mL. The results obtained in this study showed protoscolicidal
effect at all tested formulations and concentrations. However, the effects of TTO were higher than those
of NE-TTO but this latter had the ability to reduce the volatilisation of the compound and consequently
to increase the protoscolicidal effect at the action site [189].

7. Green Formulations against Nematodes Attacking Plants

Meloidogyne spp.

The root-knot nematodes (Meloidogyne spp.) are key pests threating several crops of economic
importance. Their control is mainly based on the use of chemical nematicides. However, following the
withdrawal of several synthetic nematicides because of their detrimental effects on soil biodiversity,
natural products of botanical origin have been investigated for their possible use against these
agricultural pests. Indeed, besides effectiveness for nematode control, botanicals assure beneficial
effects on structure and residual life (e.g., microorganisms) of the soil. Among the most promising
natural substances with nematicidal activity, glucosinolates, isothiocyanates, aliphatic acids (e.g., acetic,
butyric, hexanoic and decanoic acids), alkaloids, piperamides, flavonoids (e.g., quercetin-7-glucoside),
limonoids (azadirachtin, meliacins), quassinoids (e.g., chaparrinone, glaucarubolone, klaineanone,
samaderines B and E), saponins and triterpene acids (e.g., 11-oxo triterpenic, pomolic, lantanolic, lantoic,
camarin, lantacin, camarinin and ursolic acids), cyanogenic glycosides, polyacetylenes, phenolic acids
(e.g., salicylic, gallic, p-hydroxybenzoic, vanillic, caffeic, and ferulic acids), fatty acids (e.g., linoleic and
oleic acids) and volatile compounds (e.g., ascaridole, 2-undecanone, furfural, benzaldehyde, thymol,
geraniol, eugenol, linalool, decenal and decadienal) are the most important ones [190–193]. Among
them, isothiocyanates and neem azadirachtin have been encapsulated in marketed formulations
effective against the growth and development of Meloidogyne spp. with limited effects on soil
biodiversity [193,194]. Also, the EOs from Foeniculum vulgare Mill., Pimpinella anisum L., Eucalyptus
melliodora A Cunn ex Schauer, Origanum vulgare L., O. dictamnus L., Mentha pulegium L. and Melissa
officinalis L. were effective against M. incognita (Kof. & White) Chitwood showing EC50 values of 0.2, 0.3,
0.8, 1.6, 1.7, 3.2 and 6.2 µL·mL−1, respectively [194,195]. Among their main constituents, benzaldehyde,
γ–eudesmol, methyl chavicol, carvone, pulegone and (E)-anethole were ideal candidate ingredients for
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nematicidal formulations [194,195]. On the other hand, efforts about formulating these botanical active
ingredients in micro- and nanoemulsions remain limited, outlining the urgent need of future research.

8. Green Micro- and Nanoemulsions in the Real World

As reported above, researchers in entomology and parasitology are making great efforts for the
improvement of pest control in terms of efficacy and safety for environment and human being. The
potential of EOs and plant extracts as biopesticides and their exploitation through nanoencapsulation
opened new challenging strategies for Integrated Pest/Vector Management (IPM/IVM). From the
literature analysis (Scopus database, 27 June 2019), it can be observed that in the last 20 years
approximately 100 documents were published concerning the employment of MEs and NEs for
the vehiculation of pesticides (Figure 3). Interestingly, MEs were firstly studied and the maximum
interest was reached around 2010. On the contrary, the use of NEs as pesticide formulations was
more recent, reaching the highest attention in the last 2–3 years. Another aspect to be highlighted is
represented by the nature of active ingredients employed as pesticide. Regarding MEs, the use of
botanical and synthetic pesticides is almost the same along the years, while for NEs there is always a
stronger prevalence (~70%) of studies on natural pesticides. These results seem to highlight a temporal
correlation between the diffusion of biopesticides and the development of NEs for their application.
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Even though literature reported several studies with effective results, in the real world the
exploitation of EO-based MEs and NEs is still limited. Currently, the pronounced effectiveness of
chemical pesticides is still predominant respect to the eco-friendly advantages of the botanical ones.
However, the common awareness about the need of a more sustainable world will likely lead towards
a radical change in favour of the exploitation of green solutions in the near future.

Although some patents reported the nanoformulation of chemical pesticides or the
nanoencapsulation of EOs [196,197], only few of them describe EO-based MEs or NEs as biopesticides.
Enan et al. patented MEs as tool for the encapsulation and delivery of two or more EOs for pest
control [198]. In particular, they used unsaturated C12-C26 fatty acids and/or salts and saturated
C6-C14 fatty acids and/or salts as surfactants to enhance the activity of the ingredients, resulting in an
improvement of the pesticide efficacy. According to the authors, this approach brings to a reduction of
the active ingredient amount required to obtain an effective pest control.

Since scientific studies showed promising results, in the last years some botanical pesticides
started to be available on the market. For example, Prev-Am® Plus is a fungicide and insecticide, based
on orange (Citrus x aurantium L.) EO, that acts for direct contact. Since Prev-Am® Plus biodegrades
rapidly and does not have a high environmental persistence, it is an excellent product for the Integrated
Pest Management (IPM) programs, helping in the management of resistance and ensuring a minimal
impact on beneficial insects. It can be used on a wide range of crops such as olive trees, vines and
citrus fruits and it is allowed in organic agriculture.

Given the well-known repellent activity of EOs, a personal repellent based on EOs has been
commercialised. Repel® is a spray containing 30% of lemon eucalyptus EO. It was proven to be able to
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repel mosquitoes, in particular the vectors of Zika, West Nile, Dengue and Chikungunya viruses, for
up to six hours.

Also, Bayer® launched on the market Requiem® EC, an emulsifiable concentrated formulation
based on terpenes originally discovered in an insecticidal plant—Dysphamia ambrosioides (L.) Mosyakin
& Clemants. It is a contact insecticide/acaricide for use in the control or suppression of many
foliar-feeding species, including aphids, thrips, plant-feeding mites, whiteflies, mealy bugs, leafminers,
Lygus bugs, leafhoppers and moths attacking crops such as citrus, grapes, potatoes and others. Its low
toxicity on mammalian and non-target organisms makes it a reduced-risk insecticide.

9. Regulatory Remarks

The EU regulates the botanical products used for the control of parasites, arthropod pests and
vectors through two different regulations, the EC No. 1107/2009 and the EU No. 528/2012. The first one
regards the plant protection products, addressing their risk evaluation and regulating the authorisation
of commercialisation in the crop protection field. The second one, named Biocidal Products Regulation
(BPR), takes into account “any substance or mixture exerting a controlling effect on any harmful
organism by any means other than mere physical or mechanical action”.

Interestingly, while EC No. 1107/2009 does not mention nanomaterials at all, the BPR poses
specific issue, stating that “where nanomaterials are used in that product, the risk to human health,
animal health and the environment has been assessed separately”. For this reason, BPR excludes the
possibility of “simplified authorisation procedure” followed for “low-risk” products, in the case of
biocide containing nanomaterials. Moreover, the BPR highlights the necessity of a proper methodology
for the risk evaluation for nanomaterials.

Although nanotechnology showed to be a great opportunity to achieve a more rational Integrated
Pest Management (IPM), the lack of knowledge on the fate and effects on humans and environment of
nanomaterials represents, nowadays, an important limitation on their widespread exploitation. It is
needed an increased regulatory oversight to ensure their appropriate identification and risk assessment
evaluation. In this direction, the European Community is addressing innovative methodologies able
to evaluate the risk of nanopesticides and nanomaterials in general. In particular, the European
Chemicals Agency (ECHA) is starting to define the guidelines for the monitoring and the evaluation of
nanomaterials in the environment, and for the support about their registration procedure (four
appendices for nanomaterials applicable to Chapters R.6, R.7a, R.7b and R.7c of the IR&CSA
guidance) [199].

Among the different risk assessment procedures, the Quantitative Structure-Activity
Relationship/Quantitative Structure-Property Relationship (QSAR/QSPR) appears one of the most
promising tools for chemicals. In this regard, the scientific community is moving towards an
innovative tool, nano-QSAR/QSPR, introducing the computational approach in the risk assessment
of nanomaterials. Several studies focused on how nano-QSAR/QSPR should be supported by the
development of new interpretative descriptors for the nanosystems. Moreover, they highlighted the
need to model different classes of nanomaterials, given their wide variability in the molecular structure
and mechanism of toxicity [200,201].

Currently, the most studied nanomaterials through nano-QSAR/QSPR for risk evaluation are
metal oxide and carbon nanoparticles [202–204].

Although nano-QSAR/QSPR is showing to be a useful approach on the risk assessment on
nanomaterials, it should be improved by increasing the experimental data on the toxicity of all the
different nanomaterials classes, that are still restricted, allowing nano-QSAR/QSPR to be a real tool for
the prediction of nanomaterials fate.

Even though much progress has been made, the efforts that are underway to improve the risk
assessment procedures of nanomaterials should continue. A pragmatic and internationally accepted
nanomaterial decision framework is necessary in order to clarify all the potential toxicological issues,
opening to a large-scale diffusion of all the nano-based products.
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10. Conclusions and Key Challenges for Future Research

Control of pests and vectors is a highly current issue since they are known to affect the health of
the planet. Acting as vectors of devastating pathogens, many pests constitute a threat for the health and
survival of living beings, as plants, animals and, above all, human beings. Although in the last decades
chemical pesticides have been considered the solution to this problem, nowadays we are becoming
aware that they are nothing more than a palliative. In fact, their efficacy has been overshadowed by two
main drawbacks, the environmental hazards and the resistance development, linked to their overuse.

Nowadays, a possible solution has been found on the exploitation of botanical compounds, in
particular EOs, which showed to possess antiparasitic, insecticidal, larvicidal, acaricidal, ovicidal,
fumigant, repellent and chemosterilant effects among other biological properties. They could ensure
a sustainable and eco-friendly way to control parasite and pest spreading. In this direction, several
efforts have been done in the scientific research fields. For example, several botanical species have
been deeply investigated to find out a high number of new active compounds. Anyway, suitable
and innovative solutions could be reached only through a multidisciplinary approach. In fact, the
physicochemical limits of biological compounds could be overcome only thanks to the development of
suitable formulations. For this reason, technological research could offer the real solution to exploit the
great advantages and the effectiveness of botanical compounds. Besides insecticides and acaricides,
this is also true also for the development of new nematicides, as well as to develop drugs against
parasites of public health importance.

In this scenario, nanotechnologies represent the tool of choice. Since they can encapsulate the
active compound in a suitable way to protect them and, at the same time, to exalt their efficacy, botanical
compound-based nanosystems could represent the turning point in the pest management. Among
the different nanosystems available, the MEs and NEs proved to be the most suitable as vehicles for
botanicals when those are characterised by high lipophilicity.

Although promising results have been reported in the literature, a strong gap between the
theoretical research and the practical application still persists. In this direction, in the near future
it is necessary to improve and examine in-depth different aspects of green nanotechnologies; in
particular, (i) industrialisation of botanical species plantation in order to increase the amount and the
yield of active ingredients, (ii) standardisation of products in terms of quali-quantitative composition,
(iii) optimisation of the formulation process to enhance the stability and efficacy of nanosystems,
(iv) reduction of the costs of production, (v) evaluation of the real long-term effects of the new products
on the environment and non-target organisms and (vi) definition of a clear normative framework able
to facilitate the commercial authorisation of botanical compound-based nanosystems.
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