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Abstract

In this paper, we describe how to approximate numerically the eigenvalues of a Sturm-Liouville

problem defined on a semi-infinite interval. The key idea is to transform the problem in such a way

as to compress the semi-infinite interval in a finite interval by applying a suitable change of the

independent variable. Then, we approximate each derivative in the Sturm-Liouville equation thus

obtained with finite difference schemes. Consequently, we convert the Sturm-Liouville problem into

an algebraic eigenvalue problem. The numerical results of the experiments show that the proposed

approach is promising.
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1. Introduction

We focus our study on a classical one-dimensional Sturm-Liouville equation

− (p(x)y′(x))
′
+ q(x)y(x) = λω(x)y(x) (1)

defined on the semi-infinite interval (0,∞) and subject to Dirichlet boundary conditions

y(0) = y(∞) = 0. (2)

Here the set of Sturm-Liouville coefficients {p, q, ω} has to satisfy the following minimal conditions:

(i) p, q, ω : (0,∞) −→ R, (ii) p−1, q, ω ∈ L1
loc(0,∞), (iii) p and ω are positive almost everywhere,5
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cfr. [1]. The problem of finding a complex number λ such that the boundary value problem (1)-

(2) has a non-trivial solution is called Sturm-Liouville problem (SLP). The value λ is called an

eigenvalue and the corresponding solution y is called an eigenfunction.

The analytical treatment of this problem is in general very difficult. For this reason, numerical

treatments and therefore the choice of good numerical approximation methods are essential. To10

deal with this problem numerically, we must first deal with its semi-infinite interval and transform

it into a finite interval. Many of the numerical techniques available in the literature are based on the

so-called regularization. In this context, this means truncating the interval and solving the resulting

problem. In [2] the interval (0,∞) is replaced by the finite interval [ε, b∗] where ε is strictly positive

and small and b∗ is large. The considered SLP is then transformed into a regular problem posed on15

the finite interval (ε, b∗) with boundary conditions y(ε) = y(b∗) = 0. The accuracy of the computed

eigenvalues strongly depends on the choice of the cutoff points ε and b∗. Concerning the choice

of b∗, a generalization of the so-called WKB-approximation was proposed in [2]. In the case of a

problem whose potential has a Coulomb-like tail, the authors proposed to impose suitably adapted

boundary conditions at the right endpoint b∗ which allowed a noticeable reduction of the size of b∗.20

In [3] the problem is first converted to one on a finite interval (a, b) by an appropriate change of

variables, or bilinear or homographic transformation if necessary (these transformations leave the

spectrum of the problem unchanged). Otherwise, placing the interval [aT , bT ] instead of (a, b) such

that aT , bT ∈ (a, b) be close enough to a and b respectively, allows the problem to be a regular,

and it is expected to approximate the given problem on (a, b). After that, the problem on [aT , bT ]25

is converted with change of variables by Prüfer transformation from the unknowns y, py′ to new

unknowns ρ, θ. And after calculating an initial approximation of the eigenvalue, that is obtained

by the so called JWKB formula is shown in [4], where the interval of integration in JWKB formula

is defined by part of (a, b) for which the integrand is real, a special method presented also in [4]

gives an appropriate equation and initial conditions satisfactory for that initial approximation, to30

determine the function θ, and thus to determine a truncated endpoints aT and bT .

In [5] and [6] a change of variable implicitly converts the interval (0,∞) into a finite interval (a, b).

Two initial points a0 > a and b0 < b are chosen, so the problem on a regular interval [a0, b0] is a

truncated problem with some of artificial boundary conditions at x = a0 and x = b0 are imposed.

The choice of a0 and b0 will generally depend on the index of the eigenvalue requested. The interval35

[a0, b0] is covered by a uniform mesh and an initial approximation of the eigenvalue is computed by
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Pruess piecewise-constant approximation on [a0, b0]. The author after that add to [a0, b0] additional

intervals [a1, a0] and [b0, b1] such that a1 is obtained by stepping from a0 towards a and similarly

for b1, and an additional eigenvalue approximation is computed on [a1, b1]. This process is repeated

until some eigenvalue approximations agree with the tolerance specified by the user.40

In [7], an initial mesh is constructed by equidistribution process depended on the coefficient functions

p, q and w that is described in [8], the infinite endpoint corresponding to the last initial mesh

subinterval is transformed to zero by the change of variable t = −1/x, and subsequent using

midpoint interpolation to the first subinterval of the mesh in terms of x and to the last subinterval

of the mesh in terms of t for truncating the interval at that midpoints and replacing the coefficient45

functions by step function approximations corresponding to this initial mesh is done to regularize

the problem. This mesh is then bisected, which means united with its midpoints, to produce a

new mesh, and these truncation points move closer to the singular endpoints every time the mesh

is bisected. However, the boundary conditions are applied at the original endpoints, except at the

infinite endpoint, it is replaced by a large number.50

Another technique is presented in [9]. In this case, the interval (0,∞) is divided into two

intervals (0, 1] and [1,∞) and this second interval is transformed into (0, 1] by a suitable change

of the independent variable, namely x → 1/x. The original problem in the semi-infinite interval

(0,∞) is then transformed into a problem posed on the interval (0, 1) but of double dimension. In

fact, the first equation derives from the original problem defined on (0, 1) while the second equation55

derives from the original problem on (1,∞) after changing the variable x → 1/x. The boundary

conditions must obviously also take into account the matching condition for the solution at x = 1.

The technique of changing the variable is efficient and applicable even in the case of Sturm-Liouville

problems with other boundary conditions on (0,∞), as shown in [10, 11]. However, doubling the size

of the problem numerically leads to double the computational cost. To overcome this problem in60

[12, 13] for the numerical treatment of the radial Schrödinger eigenproblems two change of variable

have been proposed which compress the interval (0,∞) directly to (0, 1). They are described by the

two functions

t1(x) = x/(x+ α), α > 0, t2(x) = 1− (1 + x)−β , β > 0.

A good choice of the parameters α and β allows a good approximation of the solutions.

65
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In this paper we propose a change of the independent variable for the transformation of the

original Sturm-Liouville problem (1)-(2) on a finite domain. This is presented in Section 2. The

remaining part of the paper is organized as follows. In Section 3 we describe the numerical schemes

used for discretizing the continuous problem thus obtained and we analyze the order of accuracy

of the eigenvalues estimates that these schemes provide. Section 4 contains the numerical results70

obtained on several examples considered. Finally, some conclusions are drawn is Section 5.

2. Reformulation of the problem on the interval (0, 1)

Our goal in this section is to identify a function that by modifying the independent variable can

transform equation (1) into an equation with new coefficients, but which has the same eigenvalues

over a finite interval. For this purpose, consider the function u defined by75

u(x) =
2

π
arctan(φx), x ∈ [0,∞), (3)

where φ is a positive real parameter. Setting x̃ = u(x), it is immediate to derive that y(x) =

y(u−1(x̃)). Then, by posing z(x̃) := y(x) we can rewrite the equation (1) as

− d

dx

(
p(x)

d

dx
u(x)

d

dx̃
z(x̃)

)
+ q(x)z(x̃) = λω(x)z(x̃). (4)

Consequently, since x = u−1(x̃), we obtain

− d

dx̃

(
1

d
dx̃u
−1(x̃)

p(u−1(x̃))
d

dx̃
z(x̃)

)
+

d

dx̃
u−1(x̃)q(u−1(x̃))z(x̃) = λ

d

dx̃
u−1(x̃)ω(u−1(x̃))z(x̃). (5)

Now, recalling that x̃ = u(x), from (3) we deduce that

x =
1

φ
tan

(π
2
x̃
)
.

Finally, by using this relation in (5) we get the Sturm-Liouville equation transformed as follows80

− d

dx̃

(
p̃(x̃)

d

dx̃
z(x̃)

)
+ q̃(x̃)z(x̃) = λω̃(x̃)z(x̃), (6)

where

p̃(x̃) =
2φ

π
cos2

(π
2
x̃
)
p

(
1

φ
tan

(π
2
x̃
))

, (7)

q̃(x̃) =
π

2φ
sec2

(π
2
x̃
)
q

(
1

φ
tan

(π
2
x̃
))

, (8)

ω̃(x̃) =
π

2φ
sec2

(π
2
x̃
)
ω

(
1

φ
tan

(π
2
x̃
))

. (9)
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In this context, the boundary conditions (2) are transformed to

z(0) = z(1) = 0. (10)

Obviously, the problem (6)–(10) is a Sturm-Liouville problem with singularity at one or two end-

points. Nevertheless, there are numerical methods that can handle this kind of problems. However,

it is worth mentioning that there are some shooting approximation methods which cannot be used85

for dealing with our transformed problem. This is because these methods are constructed only to

deal with equations in Liouville normal form, that is achieved via the Liouville’s transformation,

see [14, 15] for more details, which in general is not our case.

3. High order finite difference schemes

In this section we describe the main feature of the finite difference schemes we have used for90

solving the SLP reformulated on the finite interval (0, 1). Before that, we write the problem (6)–(10)

in the following form:

a2(x̃)z′′(x̃) + a1(x̃)z′(x̃) + a0(x̃)z(x̃) = λz(x̃), (11)

z(0) = z(1) = 0, (12)

where

a2 = − p̃
ω̃
, a1 = − p̃

′

ω̃
, a0 =

q̃

ω̃
(13)

and suppose that it admits a unique solution z(x̃) for x̃ ∈ [0, 1]. Then, we introduce an equispaced

grid95

x̃i = ih, i = 0, 1, . . . , N + 1, h =
1

N + 1
(14)

for the interval [0, 1]. The methods that we will consider allow us to discretize directly the problem in

its second order formulation. They have been introduced in [16] and already used for the numerical

solution of SLPs in [12, 13, 17]. The idea on which they are based is to approximate the first and

second derivative at the inner grid points by applying suitable (2k)-step finite difference schemes.

In more details, for i = k, k + 1, . . . , N + 1− k,100

z(ν)(x̃i) ≈
1

hν

2k∑
j=0

δ
(ν)
k,j zi+j−k, ν = 1, 2, (15)
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where zi ≈ z(x̃i) and, for each fixed value of ν, the coefficients {δ(ν)k,j }2kj=0 are uniquely determined

by requiring the formula to have maximum order of consistency, i.e. 2k. For k ≥ 2, these formulas

should be used together with the following formulas which provide approximations of the derivatives

in the initial and final points of the mesh and are called initial and final schemes. In particular, for

i = 1, 2, . . . , k − 1,105

z(ν)(x̃i) ≈
1

hν

2k+ν−1∑
j=0

δ
(ν)
i,j zj , ν = 1, 2, (16)

while, for i = N + 2− k, . . . , N,

z(ν)(x̃i) ≈
1

hν

2k+ν−1∑
j=0

δ
(ν)
i−s,jzj+s+1−ν , ν = 1, 2, s = N + 1− 2k. (17)

The coefficients occurring in (16) and (17) are determined by imposing the formulas to be of

consistency order 2k.

By applying the discretizations (15), (16) and (17) to the equation (11), we obtain the following

algebraic eigenvalue system:110

(A2∆2 +A1∆1 +A0∆0)Ẑ = λẐ.

Here, for µ = 0, 1, 2, Aµ denotes the diagonal matrix of size N whose non zero entries are given by

(Aµ)ii = aµ(x̃i), i = 1, 2, . . . , N (see (13)), ∆µ are real matrices of size N × (N + 2) which contain

the coefficients δ
(µ)
i,j /h

µ and Ẑ = (z0, z1, . . . , zN , zN+1)T ≡ (z0, Z
T , zN+1)T .

To deal with the singularities at x̃0 = 0 and x̃N+1 = 1, it is sufficient to use the boundary

conditions z(x̃0) = 0 and z(x̃N+1) = 0. Consequently, we should eliminate the first and last column115

of the matrices ∆ν thus obtaining matrices ∆̂ν of size N and the well-defined eigenvalue problem

R̂Z := (A2∆̂2 +A1∆̂1 +A0)Z = λZ. (18)

Therefore, the eigenvalues of (11) are computed by the eigenvalues of the sparse banded matrix R̂,

see [17] for more details.

Before to conclude this section we explain how the coefficients δ
(ν)
i,j /h

ν in (15), (16) and (17)

can be computed. For symmetry reasons, we only need to consider the first k formulas, i.e. i =120

1, 2, . . . , k. Therefore, we focus on the first grid points x̃j , j = 0, 1, . . . , r, with r > k. For any integer

`, setting Ω`(x̃) =
∏`
s=0(x̃− x̃s), we denote by

Fr,j(x̃) =
Ωr(x̃)

Ω′r(x̃j)(x̃− x̃j)
(19)
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the jth polynomial in the Lagrange basis. As it is well-known, Fr,j(x̃i) takes the value 0 at i 6= j

and 1 at i = j. Then, the Lagrange interpolation polynomial based on the first r+1 function values

z(x̃j) becomes125

ρ(x̃) =

r∑
j=0

Fr,j(x̃)z(x̃j). (20)

Therefore, by approximating the function z by the polynomial ρ we get the following relations

dν

dx̃ν
z(x̃) ≈ dν

dx̃ν
ρ(x̃) =

r∑
j=0

dν

dx̃ν
Fr,j(x̃)z(x̃j), ν = 1, 2. (21)

The equation (19) implies the recursion relations

Fr,j(x̃) =
x̃− x̃r
x̃j − x̃r

Fr−1,j(x̃), j = 0, 1, . . . , r − 1,

Fr,r(x̃) =
Ωr−2(x̃r−1)

Ωr−1(x̃r)
(x̃− x̃r−1)Fr−1,r−1(x̃).

We differentiate all the above relations and evaluate them at x̃ = x̃i, i = 1, 2, . . . , k. Denoting by

δ
(ν)
i,j,r =

dν

dx̃ν
Fr,j(x̃i), ν = 1, 2, (22)

they can be written as follows130

δ
(ν)
i,j,r =

1

x̃j − x̃r

(
ν δ

(ν−1)
i,j,r−1 + (x̃i − x̃r) δ(ν)i,j,r−1

)
, j = 0, 1, . . . , r − 1, (23)

δ
(ν)
i,r,r =

Ωr−2(x̃r−1)

Ωr−1(x̃r)

(
ν δ

(ν−1)
i,r−1,r−1 + (x̃i − x̃r−1) δ

(ν)
i,r−1,r−1

)
. (24)

Considering that δ
(2)
i,j,1 = 0 for each positive integer i, given the initial coefficients δ

(1)
i,j,1 these recur-

sion relations allow to determine all the coefficients {δ(ν)i,j,r}rj=0.

The recursion relations (23)-(24) constitute the algorithm proposed by Fornberg in [18, 19]. Al-

though these coefficients of the considered numerical schemes can be computed also by solving

Vandermonde linear systems, due to the ill-conditioning here we have preferred to use the Fornberg135

algorithm which is numerically short, fast and stable, cf. [20]. Furthermore, we note that this

algorithm is also valid for irregular grid spacing.

From (21) and (22) we have that the coefficients in (15) are obtained when we set r = 2k and

i = k in (23)-(24), namely

1

hν
δ
(ν)
k,j := δ

(ν)
k,j,2k, j = 0, 1, . . . , 2k.
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Instead, for i = 1, 2, . . . , k − 1, the coefficients characterizing formulas (16) are obtained by fixing140

r = 2k + ν − 1, i.e.
1

hν
δ
(ν)
i,j := δ

(ν)
i,j,2k+ν−1, j = 0, 1, . . . , 2k + ν − 1.

3.1. Convergence analysis

As just showed, we replace the SLP (11)-(12) by a matrix eigenvalue problem

R̂Z = λZ,

(see (18)). Defining by z the vector of values of z at the meshpoints, i.e.,145

(z)j = z(jh), j = 1, 2, . . . , N,

we can define the local truncation error τ by

τ = R̂ z− λ z.

When R̂ is symmetric, as pointed out by Keller in [21, Theorem 1], the quality of the eigenvalue

approximations will be proportional to the local truncation error. However, when we use (2k)-step

finite difference schemes with k ≥ 2, the matrix R̂ loses its symmetry structure and therefore, this

result cannot be applied. Anyway, considering that in these cases R̂ can be read as a symmet-150

ric matrix plus a low rank matrix whose norm is independent of N and that R̂ is a consistent

discretization of the SLP having simple eigenvalues, it seems reasonable to assume that R̂ is diago-

nalizable. Following the analysis carried out in [22] a basic result on approximating the eigenvalues

of (11)-(12) by those of (18) can now be stated as

Theorem 1. Let U be the matrix of eigenvectors of R̂ normalized to be of unit length. Let τ be the155

local truncation error as above and λ∗ the eigenvalue corresponding to the eigenfunction z. Then

|λ∗ − λ| = inf
µ∈σ(R̂)

|λ∗ − µ| 6 cond(U)
‖τ‖
‖z‖

, (25)

where σ(R̂) denotes the spectrum of R̂ and cond(U) is the condition number of U.

This result shows that if the condition number of U can be bounded independently of h, then any

eigenvalue of the SLP (11)-(12) will be approximated with an error which depends on the local

8



truncation error associated to the numerical scheme used and with the exact eigenfunction. In160

practice, it is rather difficult to prove a priori bounds on cond(U), but if one is interested in some

fixed finite h, cond(U) can then be estimated numerically. Consequently, from Theorem 1 it follows

that there exists a constant C independent of h and of the index i of the eigenvalue such that

|λ∗i − λi| 6 C
‖τi‖2
‖zi‖2

.

Here zi is the projection of the ith eigenfunction over the uniform mesh and τi is the corresponding

local truncation error. The reader may object that this result is not usable because it involves the165

vector zi of values in the meshpoints of the unknown eigenfunction. However, although a rough

approximation can be given by the right eigenvector of R̂ corresponding to λi (see [22, Remark

2] for further details), from [23, Lemma 2.1] we know that when the Sturm-Liouville eigenvalue

problem reduces to the study of the canonical Liouville normal form the ith eigenfunction satisfies

zi(x̃) = sin(iπx̃) + e(πx̃)

where e(`)(πx̃) ∼ O(i`−1), ` = 0, 1, 2, . . . (here the superscript denotes the `th order differentiation170

w.r.t. x̃). In particular, this implies that ‖
√
hzi‖2 ∼ O(1). In addition, it allows to study the

behavior of the associated local truncation error. In fact, in this context the jth component of τi

satisfies

|τj | ≤ |γj | (iπ)ρ+1hρ−1| cos(iπξj)|+O(iρhρ−1), j = 1, 2, . . . , N, (26)

where ρ = 2k and γj is the principal error coefficient of the jth formula. The vector τi can be split

as τi = τ
(a)
i + τ

(m)
i , with τ

(a)
i = (τ1, . . . , τk−1, 0, . . . , 0, τN−k+2, . . . , τN )T . By considering that the175

number of nonzero entries of such vector is independent of N (or, equivalently, of h), one has

‖
√
hτi‖2 ≤ ‖

√
hτ

(a)
i ‖2 + ‖

√
hτ

(m)
i ‖2 ∼ O

(
iρ+1hρ−1/2

)
+O

(
iρ+1hρ−1

)
.

The above considerations can be summarized in the following result.

Theorem 2. Let λ∗i the ith exact eigenvalue of the SLP in Liouville normal form and λi be the

corresponding numerical eigenvalue provided by the (2k)-step finite difference scheme (15)–(17),

with k ≥ 1. Moreover, let U be as in Theorem 1. If cond(U) is bounded independently of N in180

Euclidean norm, and if (ih) is sufficiently small, then

|λi − λ∗i | ∼ O
(
iρ+1hρ−1/2

)
+O

(
iρ+1hρ−1

)
, ρ = 2k. (27)

9



For any fixed i, the eigenvalue λ∗i can be approximated to arbitrary accuracy by taking h sufficiently

small. In practice, however, this can be computationally demanding when the index i becomes large.

In these cases, the matrix approach we have proposed can be used to generate a set of eigenvalues

with moderate accuracy which serves as starting values for well-established codes for the solution185

of SLPs as, for example, the MATLAB code bvpsuite based on a collocation method on adaptive

meshes with reliable error control [24, 25]. Alternatively, to improve the efficiency of the proposed

matrix approach, an adaptive step-size selection strategy could be implemented, but this will not

be considered in this paper.

4. Numerical tests190

To examine the performance of the proposed approach we now consider four examples of SLPs

defined on a semi-infinite interval and with Dirichlet boundary conditions.

In all our experiments we have fixed the parameter φ in (3) depending on the index of the

eigenvalues i

φ = 0.6 (i+ 1)−0.7, i ∈ N,

and we have computed the eigenvalues using the Matlab function eig.195

Example 1 Consider the Whittaker differential equation,

−y′′(x) +

(
1

4
+
κ2 − 1

x2

)
y(x) = λ

1

x
y(x), x ∈ (0,∞) (28)

where the parameter κ ≥ 1. When it is combined with boundary conditions y(0) = y(∞) = 0, the

eigenvalues are explicitly given by

λ∗i = i+
κ+ 1

2
, i ∈ N. (29)

This differential problem is selected from [26] and studied in [27].200

Applying the change of variable (3) to the equation (28) we get

−4φ

π2
cos4(

π

2
x̃) tan(

π

2
x̃)z′′(x̃)+

4φ

π
cos3(

π

2
x̃) sin(

π

2
x̃) tan(

π

2
x̃)z′(x̃)+

(
1

4φ
tan(

π

2
x̃) +

φ(κ2 − 1)

tan(π2 x̃)

)
z(x̃) = λz(x̃),

(30)

for all x̃ ∈ (0, 1).

We solve the corresponding SLP subject to Dirichlet boundary conditions using 2k-step finite

difference schemes for k = 1, 2, 3, 4 (of order 2, 4, 6, 8, respectively), as explained in Section 3.
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Table 1 lists the approximations of the eigenvalues λ∗i , i = 0, 1, 2, 13 of the Whittaker problem205

for κ = 1 obtained for different values of N. In addition, the relative error is also reported for each

case.

The most remarkable advantage of the proposed approach is the high accuracy: the higher order

method and the small constant stepsize allow to compute more accurate solutions.

210

Example 2 Let us now consider the Half-range anharmonic oscillator equation,

−y′′(x) + xαy(x) = λy(x), x ∈ (0,∞). (31)

This differential equation is studied in [28] and when the parameter α = 2 the exact eigenvalues

are known to be

λ∗i = 4i+ 3, i ∈ N. (32)

This is an alternate eigenvalues of harmonic oscillator. Instead, for others value of α in our tests

we consider as exact values the one reported in [1]. In particular,215

• for α = 3 :

λ∗0 = 3.4505626899; λ∗24 = 228.52088139; (33)

• for α = 4 :

λ∗0 = 3.7996730298; λ∗24 = 397.14132678; (34)

• for α = 5 :

λ∗0 = 4.0891593149; λ∗24 = 588.17824969. (35)

In Table 2 the eigenvalue approximations computed with the method of order 8 have been listed

and compared to those obtained by Matslise 2.0, which is an well-established Matlab software220

package for the numerical solution of Sturm-Liouville problems [29, 30]. In Table 3 the eigenvalue

approximations computed with the method of order 8 have been compared to those reported in [1].

In all cases, the relative errors has been also calculated.

The analysis of the results presented in Tables 2-3 shows that, in order to obtain good approxi-

mations, the method of order 8 is effective especially for small values of i, and their effectiveness is225

reduced for large values of i. As result, minimizing the constant stepsize addresses that.
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α = 2

i λ∗i N λi rel. err. Matslise rel. err.

0 3 150 2.9999999999992308 2.5639e-13 3.000000015191716 5.0639e-09

1 7 150 6.9999999999960423 5.6539e-13 6.999999999940737 8.4663e-12

2 11 150 10.999999999834149 1.5077e-11 10.999999994212841 5.2580e-10

3 15 200 14.999999999761719 1.5885e-11 14.999999998937918 7.0805e-11

4 19 200 18.9999999984874 7.9611e-11 18.999999992592333 3.8988e-10

5 23 200 22.999999997234017 1.2026e-10 23.000000008609277 3.7432e-10

6 27 300 26.99999999802748 7.3056e-11 26.999999994713050 1.9584e-10

7 31 300 30.999999995128078 1.5716e-10 31.000000011928531 3.8479e-10

8 35 400 34.999999997116319 8.2391e-11 34.999999995608334 1.2548e-10

16 67 900 66.999999997183579 4.2036e-11 66.999999996702115 4.9167e-11

24 99 1700 98.999999998071857 1.9476e-11 99.000000002403709 2.4280e-11

Table 2: Comparison of computed eigenvalues for Example 2 using the method of order 8 for sufficient values of N.

α = 3

i N λi λ∗i

0 300 3.4505626896 3.4505626899

24 1400 228.52088121 228.52088139

α = 4

0 300 3.7996730291 3.7996730298

24 800 397.14057994 397.14132678

α = 5

0 300 4.0891608366 4.0891593149

24 900 588.18981517 588.17824969

Table 3: Computed eigenvalues for Example 2, using the method of order 8 for several values of N.
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Figure 1: Relative errors in the computed eigenvalues for Example 3 versus N.

Example 3 In this example we focus on the Coulomb potential equation,

−y′′(x)− 1

x
y(x) = λy(x), x ∈ (0,∞). (36)

From [1] we know that the exact eigenvalues are

λ∗i = − 1

4(i+ 1)2
, i ∈ N. (37)

Figure 1 shows the relative errors in the computed eigenvalues λ0, λ1, λ2, λ3, λ6 and λ11 of the230

Coulomb potential problem versus N. The analysis of the results presented in Figure 1 confirms

the results indicated in the previous examples: the approximate eigenvalues converge faster to the

exact eigenvalues whenever the order of the method is greater. On the other hand, the use of a

finer mesh is mandatory in order to have more accurate approximations of the greater eigenvalues.

14



Figure 2: Absolute errors in the approximations of λi for Example 4 with N = 500.

Example 4 In this last example we consider the SLP (1) with235

p(x) =
π

2φ
((xφ)2 + 1), q(x) = 1, ω(x) =

1

p(x)
.

By using the substitution given in (3) we obtain the following problem in Liouville normal form:

−z′′(x̃) +
π

2φ
sec2

(π
2
x̃
)
z(x̃) = λz(x̃), z(0) = z(1) = 0.

Since the exact eigenvalues λi of this problem are not know in closed form, we consider as ’exact’

the eigenvalues provided using the method of order 12 defined on the uniform mesh with N = 2000.

In Figure 2 the errors in the eigenvalue estimates are reported. These results refer to methods of

order ρ = 2, 4, 6, 8, 10 with N = 500. As one can see, the higher the order of the method the longer240

is the string of eigenvalues obtained with a certain accuracy. This is in perfect agreement with the

result of Theorem 2, also in consideration of the fact that we have experimentally verified that the

condition number of U is independent of N (e.g. cond(U) ≈ 5 when ρ = 4).

15



5. Conclusions

In this paper we have proposed a technique to efficiently solve the Sturm-Liouville problems245

defined on semi-infinite intervals. This technique consists of a change of variable that transforms

the problem defined on a semi-finite interval into one over a finite interval. Using finite difference

schemes on the resulting problem we get an algebraic eigenvalue problem. The numerical results

shown the effectiveness of the proposed approach.

It is worth to mention that this technique is also applicable to the standard boundary value250

problems for ordinary differential equations posed on semi-infinite interval.

The future of this research is concerned with the generalization of this approach in order to

manage problems defined over an infinite interval.
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