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Abstract. We show that a planar BV homeomorphism can be approximated in the area strict

sense, together with its inverse, with smooth or piecewise affine homeomorphisms.

1. Introduction

The problem of approximating homeomorphisms with diffeomorphisms is well-studied and

much is known. In particular, in the last years, it was deeply investigated how to approximate

Sobolev or bi-Sobolev homeomorphisms in the plane. It is now known that any W 1,p homeo-

morphism defined on some open set Ω ⊆ R2 can be approximated in the strong W 1,p sense by

diffeomorphisms (for a proof see [9, 8], but also [3, 15]). What remains open is then to consider

the case of bi-Sobolev homeomorphisms, that is, Sobolev homeomorphisms whose inverse is also

a Sobolev function. Beside its general interest, this question is of primary importance in the

study of non-linear elasticity. Up to now, it is only known that an approximation in the strong

bi-W 1,p sense holds if one considers bi-Lipschitz homeomorphisms (see [5]), or for the special

case p = 1 (see [13]).

In this paper, we give an approximation result for the case of BV homeomorphisms, that is,

we show that any BV homeomorphism u in the plane can be approximated by a sequence {uj}
of diffeomorphisms (or of piecewise affine homeomorphisms, which is known to be equivalent

thanks to [12]). It is important to specify in which sense the sequence converges to the original

function: indeed, apart from the case when the BV function is actually in W 1,1, it is of course

impossible to obtain a strong BV convergence, so one has to look for a weak one. There are two

notions of weak convergence in BV which are normally used, namely, the weak* convergence and

the strict one, which is stronger. We will prove our result by using the “area strict” convergence,

introduced in the 1990’s by Delladio [6] and recently used by Kristensen, Rindler and Shaw in

some papers, see [10, 11, 16]; even if this convergence is less used than the other two weak ones,

it is extremely reasonable. In particular, since area strict convergence is even stronger than the

strict one, the convergence in particular holds also in both the strict and the weak* sense. The

formal definition and a thorough discussion about the area strict convervence are in Section 2,

but the idea is very simple; namely, the sequence uj area strict converges to u if it converges

strictly, and a part of Duj strongly converges in L1 to the absolutely continuous part of Du.

Before stating our main result, a couple of comments are useful. First of all, it is known

that the inverse of a BV homeomorphism is also BV ([7], see also [4, Theorem 1.3]). And in fact,

in our construction not only the sequence {uj} area strict converges to u, but also the sequence

{u−1
j } area strict converges to u−1. Hence, our result is somehow in the framework of the open

question for bi-Sobolev homeomorphisms.

Moreover, for simplicity, in our result we only claim the existence of a sequence of piecewise

affine homeomorphisms which converges to u; as said above, this automatically implies also the

existence of a converging sequence of diffeomorphisms, thanks to [12].
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Finally, in our result we will say that each function uj “uniformly coincides with u on ∂Ω”

and is “finitely piecewise affine where possible”. The formal definitions of these notions are given

in Section 1.1, however they are not really needed to understand the result. Roughly speaking,

saying that uj uniformly coincides with u on ∂Ω simply means that the error |uj − u| goes

to 0 arbitrarily fast when approching the boundary, while saying that uj is finitely piecewise

affine where possible means that it is finitely piecewise affine, instead of simply piecewise affine,

whenever it makes sense, for instance if Ω is a polygon and u is piecewise linear on ∂Ω.

We can now state our result.

Theorem A (Area strict approximation in bi-BV). Let Ω ⊆ R2 be an open set, and let u : Ω→ ∆

be a BV homeomorphism. Then, there exists a sequence {uj} of countably piecewise affine

BV homeomorphisms between Ω and ∆, uniformly coinciding with u on ∂Ω in the sense of

Definition 1.1 and finitely piecewise affine where possible in the sense of Definition 1.2, so that

{uj} and {u−1
j } converge uniformly and in the area strict sense to u and u−1.

The plan of the paper is the following. In Section 1.1 below we list some basic notation that

we are going to use; in Section 2 we present and discuss the notion of area strict convergence in

BV; in Section 3 we list several results which have been recently proved and that we are going

to use; in Section 4 we define the “Lebesgue squares” and we prove their main properties, and

finally in Section 5 we present our construction.

1.1. Notation. Here we briefly list the main notation we are going to use through the paper.

Whenever u is a BV(Ω) function, we will decompose Du = ∇u + Dsu, where ∇u is the

absolutely continuous part of Du, while Dsu is the singular part. We will use the symbol ∇u
also to denote the density of the measure ∇u with respect to the Lebesgue measure, thus having

∇u ∈ L1(Ω): this is a slight abuse of notation, but it simplifies the notation and does not lead to

misunderstandings through the paper. Note that, since we work only with BV homeomorphisms,

then in particular there is no jump part of Du, so Dsu is entirely of Cantor type. In particular,

Dsu(S) = 0 for every segment S.

Whenever c ∈ R2 and r > 0, we will denote by Q(c, r) the square with side 2r, sides parallel

to the coordinate axes, and centered at c.

A function u : Ω→ R2 is said to be piecewise affine if Ω can be decomposed as a countable

but locally finite union of triangles, on each of which u is affine. The function is said finitely

piecewise affine if the above decomposition is a finite one (in particular, Ω must be a polygon).

A Jordan curve Γ : S1 → R2 is said piecewise linear if Γ is a finite union of segments, and given

such a curve a function g : Γ→ R2 is said piecewise linear if Γ is a finite union of segments on

each of which g is linear.

The following two definitions are also used in the paper.

Definition 1.1 (Uniform coincidence at the boundary). Let Ω be an open set, and fix any

continuous, strictly increasing function δ 7→ η(δ) with η(0) = 0. Given two homeomorphisms

u, v : Ω → R2, we say that u and v uniformly coincide at ∂Ω if, whenever x ∈ Ω has distance

less than δ from R2 \ Ω, one has |u(x)− v(x)| < η(δ).

Notice that, if both u and v belong to some Sobolev space W 1,p, the above definition is

stronger than saying that u − v ∈ W 1,p
0 ; in particular, not only the traces of u and v coincide

on ∂Ω but also, if both the functions are continuous and one of the two is continuous up to the

boundary, then so is also the other one (and the values on the boundary coincide).
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Definition 1.2 (Finitely piecewise affine where possible). Let u be a given BV homeomorphism

between two open sets Ω and ∆ in R2, and let v be another BV homeomorphism, which uniformly

coincides with u on ∂Ω. We say that v is finitely piecewise affine where possible if the following

holds. Assume that Γ is a piecewise linear Jordan curve, contained in ∂Ω and with positive

distance to ∂Ω \ Γ, such that u is continuous up to Γ and piecewise linear there. Then, there

exists a neighborhood of Γ on which v is finitely piecewise affine.

Notice that, if Ω is a polygon and u is finitely piecewise linear on ∂Ω, then a piecewise affine

function v, uniformly coinciding with u on ∂Ω and “finitely piecewise affine where possible” is

actually finitely piecewise affine.

2. The area strict convergences

In this section we recall the well-known definitions of strong, weak* and strict convergence,

and then we present and discuss the notion of the area strict convergence. Let u ∈ BV(Ω) be

given, and let {uj}j∈N ⊆ BV(Ω) be a sequence which strongly converges to u in L1(Ω). We say

that uj strongly converges to u, or simply uj → u, if the measures Duj strongly converge to

Du, that is, |Duj − Du|(Ω) → 0. This is the standard convergence related to the BV norm.

We say that uj weakly* converges to u, or uj
∗ u, if the measures Duj weakly* converge to

Du with respect to the duality with the continuous and bounded functions, that is, for every

continuous and bounded function φ : Ω → R one has
∫

Ω φdDuj →
∫

Ω φdDu. We say that

uj strict converges to u if it weakly* converges, and in addition the total variations |Duj |(Ω)

converge to the total variation |Du|(Ω).

In order to introduce the area strict convergence, it is useful to keep in mind that it is always

important to have density of the smooth functions. However, smooth functions are clearly not

strongly dense in BV(Ω): indeed, if v is any smooth function, then for sure |Dv − Du|(Ω) ≥
|Dsu|(Ω), so the density is obviously false unless u is actually W 1,1. This is one of the main

reasons why one uses the weak* or the strict convergence, since in fact smooth functions are

dense in BV in the strict sense. However, notice that if uj is a sequence of smooth functions,

the norm convergence of Duj to Du is only prevented by the presence of the singular part Dsu,

while ∇u is an L1 function, so it can clearly be an L1 limit of smooth functions. This motivates

us to give the following definition.

Definition 2.1 (Area strict convergence). Let Ω ⊆ R2 be an open set, let u ∈ BV(Ω,R2), and

let {uj} ∈ BV(Ω,R2) be a sequence converging to u in L1(Ω). We say that {uj} converges

in the area strict sense to u, or uj
area

u, if it is possible to decompose Duj = µj + νj with

|µj −∇u|(Ω)→ 0 and |νj |(Ω)→ |Dsu|(Ω).

It is clear that this convergence is weaker than the strong one, but stronger than the strict

one, and simple examples show that it does not coincide with neither of the two. This notion

of convergence was introduced by Delladio in [6], and recently used in [10, 11, 16], who are only

concerned with the case of a bounded domain Ω; their definition is actually quite different, at a

first glance: more precisely, for every function u ∈ BV(Ω) and a set A ⊆ Ω they introduce the

functional

F(u,A) :=

∫
A

»
1 + |∇u(x)|2 dx+ |Dsu|(A) ,

and they say that uj area strict converges to u if uj strongly converges to u in L1 and F(uj ,Ω)→
F(u,Ω). Observe that this definition perfectly justifies the use of the word “area”. It is clear that



4 A. PRATELLI AND E. RADICI

this approach is meaningful only if Ω has finite measure, since otherwise F(u,Ω) is constantly

+∞; on the other hand, for sets of finite measure our definition is equivalent to their one,

as we show in a moment in Lemma 2.3 below. An interesting link between L1 convergence

and convergence of functionals of the above form is also in the paper [2]. Observe that, since

t ≤
√

1 + t2 ≤ t+1 for every t, then for any two BV functions u and v on Ω, and for any A ⊆ Ω,

we have

|Du|(A) ≤ F(u,A) ≤ |Du|(A) + |A| , |Dv|(A) ≤ F(v,A) ≤ |Dv|(A) + |A| ,

and as a consequence

|F(u,A)−F(v,A)| ≤
∣∣∣|Du|(A)− |Dv|(A)

∣∣∣+ |A| ∀A ⊆ Ω . (2.1)

A standard property, which we prove just for the sake of completeness, is the following.

Lemma 2.2. Let {fj} ∈ L1(Ω) be a sequence of positive functions which weakly* converges to

f ∈ L1(Ω), with some set Ω of finite measure. Then∫
Ω

»
1 + f2 ≤ lim inf

∫
Ω

√
1 + f2

j (2.2)

and, if
∫

Ω

»
1 + f2

j →
∫

Ω

√
1 + f2, then fj → f strongly in L1(Ω).

Proof. Since t 7→
√

1 + t2 is convex, for every x, y ∈ R we have»
1 + (x+ y)2 ≥

√
1 + x2 + y

x√
1 + x2

+ y2 1

2(1 + x2)3/2
≥
√

1 + x2 + y
x√

1 + x2
.

As a first consequence, we have∫
Ω

√
1 + f2

j ≥
∫

Ω

»
1 + f2 +

∫
Ω

(fj − f)
f√

1 + f2
,

and, since the latter integral converges to 0 because fj
∗ f in L1 while f/(1 + f2)1/2 ∈ L∞, we

deduce (2.2).

Suppose now that
∫
Ω

»
1 + f2

j →
∫

Ω

√
1 + f2. Let ε > 0 be fixed, and let M � 1 be such

that, calling AM = {f > M}, one has ‖f‖L1(AM ) + |AM |/2M < ε. We have then∫
Ω

√
1 + f2

j ≥
∫

Ω

»
1 + f2 +

∫
Ω

(fj − f)
f√

1 + f2
+

∫
Ω\AM

(fj − f)2 1

2(1 + f2)3/2
,

and the assumption that
∫
Ω

»
1 + f2

j →
∫
Ω

√
1 + f2, together with the fact that (1 + f2)−3/2 is

bounded from below in Ω \ AM , implies that fj − f strongly converges to 0 in L2(Ω \ AM ), so

in particular fj → f in L1(Ω \AM ). On the other hand, we can also estimate∫
Ω

√
1 + f2

j ≥
∫

Ω\AM

»
1 + f2 +

∫
Ω\AM

(fj − f)
f√

1 + f2
+ ‖fj‖L1(AM )

≥
∫

Ω

»
1 + f2 +

∫
Ω\AM

(fj − f)
f√

1 + f2
+ ‖fj‖L1(AM ) − ‖f‖L1(AM ) −

1

2M
|AM | .

Since the last integral converges to 0 because the restriction of f/(1 + f2)1/2 to Ω \ AM is still

a L∞ function, we obtain

lim sup ‖fj‖L1(AM ) ≤ ‖f‖L1(AM ) +
1

2M
|AM | < ε .

Together with the fact that fj → f strongly in L1(Ω\AM ), this gives lim sup ‖fj−f‖L1(Ω) < 2ε.

Since ε was arbitrary, we have concluded. �
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Lemma 2.3. Let Ω be a set of finite measure, and let uj ∈ BV(Ω) be a sequence which converges

in the L1 sense to u ∈ BV(Ω). Then F(u,Ω) ≤ lim inf F(uj ,Ω), and uj converges in the area

strict sense to u if and only if F(uj ,Ω)→ F(u,Ω).

Proof. We divide the proof in three short steps.

Step I. The area strict convergence implies the convergence of the functional.

First of all, let us assume that uj
area

u and let µj and νj be as in Definition 2.1. Then, let

ε > 0 be given, and let δ ≤ ε be such that ‖∇u‖L1(B) < ε for every set B with measure |B| < δ.

Let then Aδ be an open set on which Dsu is concentrated, with |Aδ| < δ, so that

‖∇u‖L1(Aδ) < ε , |µj |(Aδ) < 2ε , (2.3)

where the second inequality holds for every j � 1, since µj → ∇u in the sense of measures.

Since Duj is bounded in measure and uj
L1

−→ u, we have that uj
∗ u, hence νj

∗ Dsu in the

sense of measures. Thus, being Ω \Aδ closed, we have

0 = |Dsu|(Ω \Aδ) ≥ lim sup |νj |(Ω \Aδ) ,

from which we obtain

|νj |(Ω \Aδ) < ε (2.4)

for j � 1. Then

|Duj −Du|(Ω \Aδ) ≤ |µj −∇u|(Ω \Aδ) + |νj |(Ω \Aδ) < 2ε (2.5)

as soon as j � 1, again keeping in mind that µj → ∇u in the sense of measures. Recalling that

t 7→
√

1 + t2 is 1-Lipschitz, for j � 1 and by (2.1), (2.5), (2.3) and (2.4), we can then evaluate

|F(u,Ω)−F(uj ,Ω)| ≤ |F(u,Ω \Aδ)−F(uj ,Ω \Aδ)|+ |F(u,Aδ)−F(uj , Aδ)|

≤ |Duj −Du|(Ω \Aδ) +
∣∣∣|Du|(Aδ)− |Duj |(Aδ)∣∣∣+ |Aδ|

≤ 3ε+
∣∣∣|Dsu|(Ω)− |νj |(Ω)

∣∣∣+ ‖∇u‖L1(Aδ) + |µj |(Aδ) + |νj |(Ω \Aδ)

≤ 7ε+
∣∣∣|Dsu|(Ω)− |νj |(Ω)

∣∣∣ ≤ 8ε ,

where the last inequality holds for j � 1 by area strict convergence. Hence, F(uj ,Ω)→ F(u,Ω).

Step II. Lower semicontinuity of F .

Let us show that F(u,Ω) ≤ lim inf F(uj ,Ω). There is nothing to prove if the liminf is +∞,

so we can assume without loss of generality, and up to a subsequence, that F(uj ,Ω) is bounded,

hence that the measures Duj are bounded. Let for a moment ε > 0 be fixed, and let C ⊂⊂ Ω

be a compact, negligible set such that |Dsu|(Ω \C) < ε. Let also δ = δ(ε) < ε be chosen in such

a way that the open set Aε = {x ∈ Ω : dist(x,C) < δ} satisfies

|Du|(∂Aε) = |Duj |(∂Aε) = 0 ∀ j ∈ N , |Aε| < ε , ‖∇u‖L1(Aε) < ε . (2.6)

Let us then call µεj = Duj (Ω \Aε) and νεj = Duj Aε = Duj −µεj . Since the sequences µεj and

νεj are bounded, up to a subsequence we have that µεj
∗ µε and νεj

∗ νε with µε + νε = Du.

Since Aε and Ω \Aε are open sets, one has

|µε|(Aε) ≤ lim inf |µεj |(Aε) = 0 , |νε|(Ω \Aε) ≤ lim inf |νεj |(Ω \Aε) = 0 . (2.7)
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Let us now call Hξ = {x ∈ Ω : δ − ξ < dist(x,C) < δ + ξ}. Since Hξ is open, as well as Ω \Hξ,

we have

|µε|(∂C) ≤ |µε|(Hξ) ≤ lim inf
j→∞

|Duj |(Hξ \Aε) ≤ lim sup
j→∞

|Duj |(Hξ) ≤ |Du|(Hξ) ,

and since the latter goes to 0 for ξ ↘ 0 we deduce that µε(∂C) = 0. From (2.7) and (2.6) we

derive then

µε = Du (Ω \Aε) , νε = Du Aε .

Notice that, by (2.6) and since |Dsu|(Ω \Aε) < ε, if ε↘ 0, then µε and νε strongly converge to

∇u and Dsu respectively. As a consequence, with a standard triangular argument, we can call

µ′j = µ
εj
j and ν ′j = ν

εj
j for a suitable sequence εj , going to 0 slowly enough so that

µ′j
∗ ∇u , ν ′j

∗ Dsu .

Finally, let us call αj the singular part of µ′j and let

µj = µ′j − αj , νj = ν ′j + αj .

Notice that αj strongly converges to 0, so also µj and νj weak* converge to ∇u and Dsu.

However, µj ∈ L1(Ω). Observe that

F(uj ,Ω) = F(uj ,Ω \Aεj ) + F(uj , Aεj ) =

∫
Ω\Aεj

»
1 + |µj |2 + |αj |(Ω) + F(uj , Aεj )

≥
∫

Ω\Aεj

»
1 + |µj |2 + |αj |(Ω) + |ν ′j |(Ω) =

∫
Ω

»
1 + |µj |2 + |νj |(Ω)− |Aεj |

By Lemma 2.2 we can then evaluate

F(u,Ω) =

∫
Ω

»
1 + |∇u|2 + |Dsu|(Ω) ≤ lim inf

∫
Ω

»
1 + |µj |2 + lim inf |νj |(Ω)

≤ lim inf

∫
Ω

»
1 + |µj |2 + |νj |(Ω) ≤ lim inf F(uj ,Ω) .

(2.8)

The lower semicontinuity of F is then obtained.

Step III. The convergence of the functional implies the area strict convergence.

To conclude, let us assume that F(uj ,Ω) → F(u,Ω). We define the sequences {µj} and

{νj} as in Step II, so that the inequality (2.8) holds true, and it must actually be an equality.

This implies at once that |νj |(Ω) → |Dsu|(Ω), and that
∫

Ω

»
1 + |µj |2 →

∫
Ω

»
1 + |∇u|2, which

in turn gives µj → ∇u strongly in L1(Ω) by Lemma 2.2. �

We conclude this section with a known technical result, which represents a link between the

directional derivatives of a BV function and the derivatives of the one-dimensional sections, and

with a final remark.

Lemma 2.4 ([1], Theorem 3.103). Let Q be a square, and let u ∈ BV(Q). Then, for almost every

y the function uy(x) = u(x, y) is a BV one-dimensional function, and moreover D1u = Duy dy,

where Duy is the derivative of the BV function uy.

Remark 2.5. Let us notice that, in the proof of the Lemma 2.3, we did not really use the

fact that the integrand is precisely
√

1 + t2, but only that it is a strictly convex function linear at
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infinity (so, in particular, Lipschitz). Therefore, the very same proof actually shows that the area

strict convergence on sets with finite measure is equivalent to the convergence of the functional

Fφ(v,A) :=

∫
A
φ(|∇v(x)|) dx+ φ∞|Dsv|(A) ∀ v ∈ BV(Ω), A ⊆ Ω

for any positive, strictly convex function φ with recession φ∞ = limt→∞ φ(t)/t <∞.

3. Preliminaries

This section is devoted to present several known results, which have been proved in the last

few years, and which we will need later. We start with two geometrical facts taken from [8]: the

first one is a simplified version of [8, Proposition 4.18], and the second one is [8, Theorem 3.1].

Lemma 3.1. Let Γ = ∪Pj=1Sj be a finite union of segments in the interior of Ω, and let Γ0 be

a collection of some of these segments. Moreover, let ξ > 0 be a fixed constant, and g : Γ→ R2

be a given injective function. Then, inside each segment Sj there are finitely many essentially

disjoint subsegments Sij, each of which with length at most ξ, such that the following holds.

Every segment Sij lies entirely within a distance ξ from Γ0, so in particular if Sj has distance

larger than ξ from Γ0 there is no segment Sij; on the other hand, if Sj ∈ Γ0 then the union of

the segments Sij is the whole Sj. Moreover, defining ϕ : Γ → R2 the function which is linear

on each segment Sij, coinciding with g on the two endpoints of Sij, and which coincides with g

outside the union of the segments Sji , we have that ϕ is still injective.

Theorem 3.2. There exist two purely geometric positive constants ε̄ and K such that, if Q is a

square of side 2r, ϕ : ∂Q→ R2 is a piecewise linear and injective function, M is a matrix with

detM = 0, and

|Dϕ−M · τ |(∂Q) ≤ r‖M‖ε̄ ,
where τ denotes the tangent direction on ∂Q, then there exists a finitely piecewise affine extension

v : Q→ R2 of ϕ such that ∫
Q
|Dv −M | ≤ Kr|Dϕ−M · τ |(∂Q) . (3.1)

Let us now recall some useful results about planar homeomorphisms of bounded variations.

The first one generalizes to the BV setting the simple identity ‖Du‖L1(Ω) = ‖Du−1‖L1(u(Ω)) that

holds for planar bi-Sobolev homeomorphisms, and it was proved in [4, Theorem 1.3].

Theorem 3.3. Let Ω, ∆ ⊆ R2 be open and suppose that u : Ω→ ∆ is a homeomorphism. Then

u ∈ BV(Ω, R2) if and only if u−1 ∈ BV(∆, R2). Moreover, for every A ⊆ Ω one has

|Du|(A) =
∣∣∣Du−1

∣∣∣Äu(A)
ä
.

We present now some results contained in the paper [14], which is appearing contemporarely

to this one. Let R be a rectangle with the sides parallel to the coordinate axes, and let ∂R be

its boundary. For every Jordan curve ϕ : ∂R → R2, we will call P = P(ϕ) the internal part

of this curve, that is, the closed, bounded, connected component of R2 \ ϕ(∂R); since we will

almost always consider piecewise linear maps ϕ, the sets P will usually be polygons. We define

the “minimal energy of ϕ” as follows.

Definition 3.4. Let R = [a−, a+] × [b−, b+] be a rectangle, and let ϕ : ∂R → R2 and P be a

Jordan curve and its internal part. For every x, y ∈ P, we call dP(x, y) the geodesic distance
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in P between x and y, that is, the length of the shortest path connecting x and y inside P. The

minimal energy of ϕ is the number

Ψ(ϕ) =

∫ a+

a−
dP
Ä
ϕ(t, b−), ϕ(t, b+)

ä
dt+

∫ b+

b−
dP
Ä
ϕ(a−, t), ϕ(a+, t)

ä
dt .

The reason for the name comes from the following simple result (actually much more is true,

namely, the “minimal energy” is really the minimal one, without multiplicative constants, as

soon as one considers the Manhattan distance instead of the Euclidean one, see [14, Theorem A]).

Lemma 3.5. Let u : Ω→ ∆ be a BV homeomorphism, let R ⊂⊂ Ω be a rectangle, and let ϕ be

the restriction of u to ∂R. Then |Du|(R) ≥
√

2
2 Ψ(ϕ).

Proof. For simplicity of notation, we assume that R = [0, 1]2 is the unit square. Keep in mind

that, if S ⊆ R2 is a segment and ψ : S → R2 is a continuous BV curve, then the total variation

|Dψ|(S) is greater than or equal to the length of the curve; in particular, by Lemma 2.4, for

almost every 0 ≤ t ≤ 1, if we call St the horizontal segment {(s, t), 0 ≤ s ≤ 1} and ψ the

restriction of u to St, we get

|D1u|(St) = |Dψ|(St) ≥ dP
Ä
ϕ(0, t), ϕ(1, t)

ä
,

where the last inequality is due to the fact that ψ is a curve contained in P(ϕ) and connecting

ϕ(0, t) with ϕ(1, t). Similarly, calling St the vertical segment {(t, s), 0 ≤ s ≤ 1}, we have

|D2u|(St) ≥ dP
Ä
ϕ(t, 0), ϕ(t, 1)

ä
.

Finally, just by integrating, directly by Definition 3.4 we get

√
2|Du|(R) ≥ |D1u|(R) + |D2u|(R) =

∫ 1

t=0
|D1u|(St) +

∫ 1

t=0
|D2u|(St) ≥ Ψ(ϕ) ,

which concludes the proof. �

We now see how the function Ψ varies if we slightly modify the boundary value ϕ. More

precisely, we will consider the following variations of a boundary value.

Definition 3.6 (η-linearization of a Jordan curve). Let g : ∂R → R2 be a given Jordan curve, let

S1, S2, . . . , SP be finitely many essentially disjoint segments in ∂R. We define the continuous

curve ϕ : ∂R → R2 as the function which coincides with g on ∂R \ ⋃Pi=1 Si, and which is the

segment connecting the images under g of the two endpoints with constant speed in each Si. We

say that ϕ is an η-linearization of g, for η > 0 much smaller than the diameter of g(∂R), if ϕ

is injective and, for every 1 ≤ i ≤ P , the curve g on Si has length smaller than η and intersects

ϕ only within the segment ϕ(Si) (but not necessarily only at the endpoints of this segment).

The next three results are taken from [14], in particular the first one is [14, Corollary 4.3],

the second is an obvious consequence of [14, Theorem A], and the third one is [14, Theorem 1.4

and Remark 4.4]. Notice that, also by Theorem 3.3, the last result is exactly the same as our

Theorem A, except that the area strict convergence is replaced by the (weaker) strict conver-

gence.

Lemma 3.7. Let g : ∂R → R2 be a Jordan curve and let ϕ be an η-linearization. Then

Ψ(ϕ) ≤ Ψ(g) + ηH 1(∂R) .
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Proposition 3.8. Let R be a rectangle, and let ϕ : ∂R → R2 be a continuous injective function.

Then, there exists a piecewise affine homeomorphism v : R → R2 such that v = ϕ on ∂R and∫
R
|Dv| ≤ Ψ(ϕ) .

Moreover, if ϕ is piecewise linear then the function v can be taken finitely piecewise affine.

Theorem 3.9. Let Ω ⊆ R2 be an open set, and let u : Ω→ ∆ be a BV homeomorphism. Then,

there exists a sequence {uj} of countably piecewise affine BV homeomorphisms between Ω and

∆, uniformly coinciding with u on ∂Ω in the sense of Definition 1.1 and finitely piecewise affine

where possible in the sense of Definition 1.2, such that {uj} and {u−1
j } converge uniformly and

strictly to u and u−1.

4. Definition and properties of the Lebesgue squares

This section is devoted to the definition and the study of the “Lebesgue squares”, which are,

roughly speaking, squares inside the domain where the function is sufficiently close to an affine

mapping. The same concept has been already successfully used several times in the last years

(see for instance [5, 13, 8]), but always in the framework of Sobolev or bi-Sobolev functions.

As a consequence, we need now to give a more general definition, to cover also the case of BV

homeomorphisms.

Definition 4.1 (Lebesgue squares). Let u ∈ BV(Ω,R2) be a homeomorphism, and let c ∈ Ω

and r > 0 be such that Q(c, 3r) ⊂⊂ Ω. We say that Q(c, r) is a Lebesgue square corresponding

to the matrix M ∈ R2×2 and to the constant δ ≤ 1 if∣∣∣Du−M ∣∣∣ÄQ(c, 3r)
ä
< r2 δ .

The main utility of the Lebesgue squares comes from the following simple fact, which ensures

that in such a square the function u is uniformly close to an affine function ω with Dω = M .

The very same result has been already noticed and used several times for Sobolev functions, see

for instance [8, Lemma 4.3]; the proof in the more general framework of BV functions is also

very similar, one only has to be careful that Du is a measure instead of an L1 function.

Lemma 4.2. Let Q = Q(c, r) be a Lebesgue square with matrix M and constant δ. For every

ε > 0 there exists δ̄ = δ̄(ε, ‖M‖)� ε such that if δ ≤ δ̄, then

‖u− ω‖L∞(Q(c, 2r)) ≤ εr (4.1)

where ω : R2 → R2 is a suitable affine function satisfying Dω = M . If in addition detM > 0,

then, provided δ ≤ δ̄′(ε, ‖M‖, detM),

ω
Ä
Q(c, (1− ε)r)

ä
⊆ u
Ä
Q(c, (1− 2

3ε)r)
ä
⊆ w
Ä
Q(c, (1− ε

3)r)
ä
⊆ u(Q) ⊆ ω

Ä
Q(c, (1 + ε)r)

ä
. (4.2)

Proof. Without loss of generality, we can assume that Q is centered at the origin. By Lemma 2.4

we decompose D1u = Duy dy and D2u = Dux dx, where, for almost every x, y, Duy and Dux

are the derivatives of the BV functions uy and ux, being uy(t) = u(t, y) and ux(t) = u(x, t).

Let then R be a large constant, to be specified later: we define

A =
{
x ∈ (−3r, 3r) : |Dux −M2|(−3r, 3r) ≤ Rδr

}
,

B =
{
y ∈ (−3r, 3r) : |Duy −M1|(−3r, 3r) ≤ Rδr

}
,
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where M1 and M2 are the two rows of the matrix M , and we notice that by the definition of

Lebesgue square we have∣∣∣(−3r, 3r) \A
∣∣∣ < r

R
,

∣∣∣(−3r, 3r) \B
∣∣∣ < r

R
, (4.3)

Let us now select a point a = (a1, a2) such that a1 ∈ A, a2 ∈ B, and let us define the auxiliary

BV functions ω(z) = M(z − a) + u(a), and ψ(z) = u(z)− ω(z). For every x ∈ A, y ∈ (−3r, 3r),

then, since ψ(a) = 0 we have

|ψ(x, y)| ≤
∣∣∣ψ(x, y)− ψ(x, a2)

∣∣∣+ ∣∣∣ψ(x, a2)− ψ(a1, a2)
∣∣∣

≤ |Dux −M2|(a2, y) + |Dua2 −M1|(x, a1) ≤ 2Rδr ,
(4.4)

and the obvious modification of the argument implies that the estimate holds true also for

x ∈ (−3r, 3r), y ∈ B.

Let now (x, y) be any point in Q(c, 2r); thanks to (4.3) we can select x− < x < x+ and

y− < y < y+ such that x± ∈ A, y± ∈ B, and |x+ − x−| < r/R, |y+ − y−| < r/R. Let us call

for a moment R the rectangle with vertices (x±, y±). The curve ω(∂R) is a small parallelogram

around ω(x, y), with diameter at most
√

2r‖M‖/R; moreover, (4.4) holds for every point of ∂R,

thus ψ = u − ω is uniformly bounded by 2Rδr on ∂R; therefore, the curve u(∂R) is entirely

contained within distance 2Rδr+
√

2r‖M‖/R from ω(x, y). Since u is a homeomorphism, u(x, y)

is inside this curve, hence we get

|ψ(x, y)| = |u(x, y)− ω(x, y)| ≤ 2Rδr +
√

2
r

R
‖M‖ < εr ,

where the last inequality holds as soon as R has been chosen large enough, depending on ε and

on ‖M‖, and then δ̄ has been chosen small enough, depending on ε and R, so ultimately on ε

and ‖M‖. Since (x, y) ∈ Q(c, 2r) was an arbitrary point, we obtain (4.1).

To conclude, let us assume that detM > 0. Then, observe that the validity of all the

inclusions (4.2) holds true as soon as we have the uniform bound

‖u− ω‖L∞(Q(c,2r)) < νε r ,

for a geometrical constant ν > 0 only depending on ‖M‖ and on detM . Notice that this estimate

has the same form as (4.1); therefore, to get it we can simply modify the definition of R and of δ̄

done before, in fact one has just to choose R′ = R/ν and δ̄′ ≤ ν2δ̄. As a consequence, the proof is

concluded by replacing the constant δ̄(ε, ‖M‖) with the smaller constant δ̄′(ε, ‖M‖,detM). �

From the above calculations on the Lebesgue squares, we can derive the following useful

property about the energy.

Corollary 4.3. Let Q(c, r) be a Lebesgue square corresponding to the matrix M and the constant

δ. Then, one has

F(u,Q) ≥
Ä
4
»
‖M‖2 + 1− δ

ä
r2 , F

Ä
u−1, u(Q)

ä
≥ |Du|(Q) , (4.5)

and, if ε > 0 is given, detM 6= 0, and δ ≤ δ̄′(ε, ‖M‖,detM), it is also

F
Ä
u−1, u(Q)

ä
≥ |u(Q)|

Ä»
1 + ‖M−1‖2 − α

ä
, (4.6)

where α = α(ε, ‖M‖, detM) is an explicitely computable constant, which converges to 0 if ε↘ 0

while ‖M‖ and 1/detM remain bounded from above.
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Proof. Since Q = Q(c, r) is a Lebesgue square, and since the function t 7→
√

1 + t2 is 1-Lipschitz,

then ∣∣∣∣F(u,Q)−
∫
Q

»
‖M‖2 + 1

∣∣∣∣ ≤ |Du−M |(Q) < δr2 ,

from which the first estimate in (4.5) holds. Moreover, by Theorem 3.3 and the fact that√
1 + t2 ≥ t we have

F(u−1, u(Q)) ≥ |Du−1|(u(Q)) = |Du|(Q) ,

hence also the second estimate in (4.5) is established.

Concerning (4.6), let us fix a constant ε > 0, and assume that detM 6= 0 and δ ≤
δ̄′(ε, ‖M‖, detM). Let ω be the affine function given by Lemma 4.2, and consider the par-

allelogram T = ω
Ä
Q(c, (1−ε)r)

ä
, which is contained in u(Q) by (4.2). Since Dω = M , for every

a, b ∈ R2 one has

|ω(a)− ω(b)| ≥ detM

‖M‖
|a− b| .

Hence, for any z ∈ T , calling z̃ = ω−1(z) and ẑ = u−1(z), by (4.1) we have

rε ≥ |ω(ẑ)− u(ẑ)| = |ω(ẑ)− ω(z̃)| ≥ detM

‖M‖
|ẑ − z̃| ,

which can be rewritten as

|u−1(z)− ω−1(z)| ≤
√

2

6

rε‖M‖
detM

. (4.7)

Let then R ⊆ T be a rectangle, with sides having lengths `1 and `2, and directions µ, ν ∈ S1

respectively. If x and y are two points belonging to the two opposite sides of length `1, with

y − x parallel to ν, (4.7) applied to x and y gives

|u−1(x)− u−1(y)| ≥ |ω−1(x)− ω−1(y)| − 2
rε‖M‖
detM

= `2M
−1(ν)− 2

rε‖M‖
detM

.

Arguing in the same way for all such couples x and y, by integrating we get

|Dνu
−1|(R) ≥ `1`2M−1(ν)− 2`1

rε‖M‖
detM

= |R|
Ç
M−1(ν)− 2rε‖M‖

`2 detM

å
.

Arguing in the same way for points on the two opposite sides of length `2, we obtain

|Dµu
−1|(R) ≥ |R|

Ç
M−1(µ)− 2rε‖M‖

`1 detM

å
.

By an easy geometrical argument, there are two perpendicular vectors µ, ν ∈ S1 so that, for

every d ≤ r detM/‖M‖, there are finitely many essentially disjoint rectangles Rj , with sides

parallel to µ and ν, all having sides bigger than d, so that the union S := ∪jRj ⊆ T satisfies

|T \ S| ≤ 2‖M‖rd .

In particular, we fix d = r
√
εdetM/‖M‖, so that also by (4.2)

|S| ≥ |T | − 2r2√εdetM =
Ä
4(1− ε)2 − 2

√
ε
ä
r2 detM ≥ (1− ε)2 −

√
ε

(1 + ε)2
|u(Q)| , (4.8)

and from the above estimates we obtain

|Dνu
−1|(S) ≥ |S|

Ç
M−1(ν)− 2

√
ε‖M‖2

(detM)2

å
, |Dµu

−1|(S) ≥ |S|
Ç
M−1(µ)− 2

√
ε‖M‖2

(detM)2

å
.
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Let us now decompose Dµu
−1 = ∇µu−1 + Ds

µu
−1 and Dνu

−1 = ∇νu−1 + Ds
νu
−1, with ∇µu−1

and ∇νu−1 in L1 and Ds
µu
−1 and Ds

νu
−1 singular measures. Since u(Q) ⊇ T ⊇ S, Jensen’s

inequality, the above estimate and (4.8) give

F(u−1, u(Q)) ≥ F(u−1, S) =

∫
S

»
1 + |∇u−1|2 + |Dsu−1|(S)

≥

√
|S|2 +

Å∫
S
|∇u−1|

ã2

+ |Dsu−1|(S) ≥
»
|S|2 + |Du−1|(S)2

≥
»
|S|2 + |Dνu−1|(S)2 + |Dµu−1|(S)2 ≥ |S|

√
1 + ‖M−1‖2 − 8

√
ε‖M‖3

(detM)3

≥ (1− ε)2 −
√
ε

(1 + ε)2
|u(Q)|

√
1 + ‖M−1‖2 − 8

√
ε‖M‖3

(detM)3
,

from which (4.6) follows. The proof is then concluded. �

The following simple result shows that small squares around Lebesgue points for ∇u are

always Lebesgue squares: the same result is well-known for the case of Sobolev mappings, see

for instance [13, Lemma 2.2].

Lemma 4.4. Let x ∈ Ω be a point of approximate differentiability for u, and let ε > 0 and

δ < δ̄(ε, ∇u(x)) be as in Lemma 4.2. There is then r̄ = r̄(x, δ) > 0 such that, for every r < r̄

and c ∈ Q(x, r), the square Q(c, r) is a Lebesgue square with matrix ∇u(x) and constant δ.

Proof. Since x ∈ Ω is a point of approximate differentiability for u, there exists r̄ = r̄(x, δ) such

that for every r < r̄ one has Q(x, 4r) ⊂⊂ Ω and

|Du−∇u(x)|(Q(x, 4r)) < r2δ .

Hence, for any c in Q(x, r) we have

|Du−∇u(x)|
Ä
Q(c, 3r)

ä
≤ |Du−∇u(x)|

Ä
Q(x, 4r)

ä
< r2δ ,

thus the thesis is concluded. �

Lemma 4.5. Let Ω,∆ ⊆ R2 be two bounded open sets, u ∈ BV(Ω; ∆) a homeomorphism, and

ε� 1 fixed. There exists H = H(u, ε) such that for every δ � 1/H there exists r̄ = r̄(δ,H) with

the property that, for every r < r̄, there are essentially disjoint squares {Qi}i=1, ... , N , all with

side 2r, each being a Lebesgue square corresponding to a matrix Mi and the constant δ, and so

that
∣∣∣Ω \ ∪Ni=1Qi

∣∣∣ < ε and for every 1 ≤ i ≤ N one has that either Mi = 0 or 1/H < ‖Mi‖ < H,

and either detMi = 0 or 1/H < detMi < H.

Proof. For each H > 0 we define the set

AH :=
¶
x ∈ Ω : ‖∇u(x)‖ ∈ (0, 1/H) ∪ (H,+∞) or det(∇u(x)) ∈ (0, 1/H) ∪ (H,+∞)

©
.

Since AH ⊆ AH′ whenever H > H ′ and ∩H>0AH = ∅, there is a suitable H = H(u, ε)� 1 with

|AH | < ε/3. Let us now fix any δ � 1/H: for almost any x ∈ Ω, we have the constant r̄(x, δ)

from Lemma 4.4; hence, we can find r̄ � 1 such that also the set

BH :=
¶
x ∈ Ω \AH : r̄(x, δ) ≤ r̄

©
has measure less than ε/3. Up to decrease the constant r̄ if necessary, only depending on Ω, for

every r < r̄ we can find finitely many essentially disjoint squares {Qj}j=1, ... , P , all with side 2r



APPROXIMATION OF PLANAR BV HOMEOMORPHISMS BY DIFFEOMORPHISMS 13

and centered at points cj ∈ Ω, such that every square Q(cj , 3r) is compactly contained in Ω and

the measure of Ω \ ∪Pj=1Qj is less than ε/3.

Up to renumbering, we have some N ≤ P such that the square Qj contains at least a point

xj ∈ Ω \ (AH ∪ BH) if and only if j ≤ N . By construction, Ω \ ∪Nj=1Qj has at most measure

ε; moreover, by Lemma 4.4 each Qj with 1 ≤ j ≤ N is a Lebesgue square with constant δ and

matrix ∇u(xj), so by the definition of AH the proof is concluded. �

5. Proof of the main result

This section is devoted to show our main result, Theorem A. The main step of the construc-

tion is the lemma below, showing how to modify a function, slightly in the area strict sense, so

to become piecewise affine in a big portion of Ω.

Lemma 5.1. Let Ω, ∆ ⊆ R2 be two bounded, open sets and u ∈ BV(Ω; ∆) be a homeomorphism.

For every ε > 0 there exists a homeomorphism v ∈ BV(Ω; ∆), finitely piecewise affine on a

polygon P ⊂⊂ Ω with |Ω \ P | < ε, such that {v 6= u} ⊂⊂ Ω, and satisfying

‖v − u‖L∞(Ω) + ‖v−1 − u−1‖L∞(∆) + F(v−1)−F(u−1) + |F(v)−F(u)| < ε . (5.1)

Since the construction is quite involved, we single out the main steps in separate lemmas.

Lemma 5.2. Let ε� 1 be given, let Q = Q(c, r) ⊂⊂ Ω be a Lebesgue square, corresponding to

a matrix M and a constant δ ≤ δ̄(ε, ‖M‖), with δ ≤ δ̄′(ε, ‖M‖, detM) if detM > 0. Then,

|Du|
Ä
Q(c, r) \Q(c, (1− ε)r)

ä
≤ (16‖M‖+ 10)εr2 (5.2)

Proof. By definition of Lebesgue squares, we have

|D1u|(Q) ≤ |D1u−M(e1)|(Q) + 4|M(e1)|r2 ≤
Ä
4|M(e1)|+ δ

ä
r2 . (5.3)

On the other hand, let us take any −(1−ε)r < t < (1−ε)r, and call xt = (c1−(1−ε)r, c2+t) and

yt = (c1 + (1− ε)r, c2 + t) two points on the boundary of Q(c, (1− ε)r). The L∞ estimate (4.1)

ensures that ∣∣∣|u(xt)− u(yt)| − 2(1− ε)r|M(e1)|
∣∣∣ ≤ 2rε ,

hence

|D1u|(xtyt) ≥ |u(xt)− u(yt)| ≥ 2(1− ε)r|M(e1)| − 2rε .

Integrating in t, we obtain

|D1u|
Ä
Q(c, (1− ε)r)

ä
=

∫ (1−ε)r

t=−(1−ε)r
|D1u|(xtyt) ≥ 4(1− ε)2r2|M(e1)| − 4r2ε ,

which together with (5.3) gives

|D1u|
Ä
Q(c, r) \Q(c, (1− ε)r)

ä
≤
Ä
(8‖M‖+ 4)ε+ δ

ä
r2 ≤ (8‖M‖+ 5)εr2 .

Since the very same estimate holds clearly with D2u in place of D1u, we have obtained (5.2). �

Lemma 5.3. Let ε, Q = Q(c, r), M and δ be as in Lemma 5.2, and assume that detM 6= 0.

Then there exists a piecewise affine homeomorphism v : Q → R2, finitely piecewise affine on a

polygon P ⊂⊂ Q with area at least (4− 8ε)r2, with v = u on ∂Q and

|Du−Dv|(Q) ≤ 42(1 + ‖M‖)εr2 , (5.4)

F
Ä
v−1, u(Q)

ä
≤ F

Ä
u−1, u(Q)

ä
+ α|u(Q)|+ (23‖M‖+ 31 + 16 detM)εr2 , (5.5)

where α = α(ε, ‖M‖,detM) is the constant given in Corollary 4.3.
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Proof. By construction, we can apply Lemma 4.2, hence we have an affine function ω : R2 ×R2

with Dω = M such that (4.1) and (4.2) hold. We can then define v = ω on the square

P = Q(c, (1−ε)r), so v is in fact affine on the polygon P , which has area 4(1−ε)2r2 ≥ (4−8ε)r2.

Notice that for every x ∈ ∂Q(c, (1−ε)r) the point v(x) is in the interior of u(Q) by (4.2). Let us

now subdivide C = Q(c, r)\Q(c, (1−ε)r) in four rectangles Rj , 1 ≤ j ≤ 4, each with two sides of

length εr and two sides of length (2− ε)r. We want to define v on ∂Rj for each j. Notice that,

since v has been already defined on Q(c, (1−ε)r), and we have to define also v = u on ∂Q, it only

remains to specify v on four short segments of length εr. The definition is the following: given

any of these short segments, call it S, let S′ ⊆ S be the shortest segment having one endpoint

in ∂Q, and the other one in u−1(ω(Q(c, (1− ε
3)r))), which is possible by (4.2). Then, we let v be

the function coinciding with u on S′ and linear on S \S′. Let us take any rectangle Rj , and call

P and P ′ the internal parts of the Jordan curves u(∂Rj) and v(∂Rj); let moreover x and y be

two points on two opposite sides ∂Rj having one of the two coordinates equal. By construction,

thanks to our definition of v on ∂Rj and recalling (4.1), a simple geometric estimate shows that

dP ′(x, y) ≤ dP(x, y) + 2εr ,

so that by integration

Ψ(v ∂Rj) ≤ Ψ(u ∂Rj) + 4εr2 .

Hence, by Proposition 3.8 we can extend v to the interior of Rj as a homeomorphism, satisfying∫
Rj
|Dv| ≤ Ψ(v ∂Rj) ≤ Ψ(u ∂Rj) + 4εr2 ≤

√
2|Du|(Rj) + 4εr2 ,

where we have also taken Lemma 3.5 in account. Adding this inequality for the four rectangles

and keeping in mind Lemma 5.2 we obtain∫
C
|Dv| ≤

√
2|Du|(C) + 16εr2 ≤ (23‖M‖+ 31)εr2 . (5.6)

In the smaller square P , instead, we have

|Du−Dv|(P ) = |Du−M |(P ) ≤ δr2 < εr2 .

Putting the last two estimates together we get

|Du−Dv|(Q) ≤ εr2 + |Du|(C) + |Dv|(C) ≤ (39‖M‖+ 42)εr2 ,

which is stronger than (5.4). We have then now to prove (5.5).

First of all, since v = ω on P , we have

F(v−1, v(P )) =
»

1 + ‖M−1‖2 |v(P )| . (5.7)

Moreover, by (4.2) we have

v(P ) = ω
Ä
Q(c, (1− ε)r)

ä
, v(Q) = u(Q) ⊆ ω

Ä
Q(c, (1 + ε)r)

ä
,

so that ∣∣∣v(Q) \ v(P )
∣∣∣ = |v(Q)| − |v(P )| ≤ 16εr2 detM .

As a consequence, since
√

1 + t2 ≤ 1 + t and by Theorem 3.3 and (5.6) we have

F
Ä
v−1, v(Q) \ v(P )

ä
≤ |Dv−1|(v(Q) \ v(P )) + |v(Q) \ v(P )| ≤ |Dv|(C) + 16εr2 detM

≤ (23‖M‖+ 31 + 16 detM)εr2 .

Putting this estimate together with (5.7) and with (4.6) from Corollary 4.3, we get (5.5). �
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Lemma 5.4. Let ε, Q = Q(c, r), M and δ be as in Lemma 5.2, and assume that M = 0. Then

there exists a piecewise affine homeomorphism v : Q→ R2, finitely piecewise affine on a polygon

P ⊂⊂ Q with area at least (4− 8ε)r2, with v = u on ∂Q and

|Du−Dv|(Q) ≤ 3εr2 , (5.8)

F
Ä
v−1, u(Q)

ä
≤ F

Ä
u−1, u(Q)

ä
+ 2εr2 . (5.9)

Proof. Let 0 < t < ε be a number, to be specified in a moment. Similarly to the previous lemma,

we call P = Q(c, (1− t)r) a square slightly smaller than Q, which has of course area larger than

(4− 8ε)r2, and we subdivide C = Q \ P in four rectangles Rj , 1 ≤ j ≤ 4. Let us now call Γ the

union of the boundaries of the square P and of the rectangles Rj , and Γ0 the boundary of P .

We can assume that the restriction of u to Γ \ ∂Q belongs to W 1,1, since this is true for every

choice of t outside a negligible subset of the interval (0, ε). As a consequence, for every η > 0

there exists ξ < tr such that every segment xy contained in Γ \ ∂Q with length smaller than ξ

has image, under u, with length less than η.

Let then η � 1 be a constant, to be chosen in a moment, and let ξ > 0 be the corresponding

constant. Applying Lemma 3.1 with our choice of Γ, Γ0 and ξ, and being g the restriction of u

to Γ, we obtain an injective function ϕ : Γ→ R2. Since ξ < tr, we have that ϕ = u on ∂Q, and

on the other hand ϕ is piecewise linear on ∂P . By construction, ϕ is a η-linearization of g on

each of the four rectangles ∂Rj as well as on ∂P , according to Definition 3.6. As a consequence,

by Lemma 3.7 we have

Ψ(ϕ ∂Rj) ≤ Ψ(u ∂Rj) + 4ηr ∀ 1 ≤ j ≤ 4 , Ψ(ϕ ∂P ) ≤ Ψ(u ∂P ) + 8ηr .

Thanks to Proposition 3.8, we can find a piecewise affine extension v of ϕ on each Rj and on P

in such a way that, also by Lemma 3.5,∫
Q
|Dv| =

∫
P
|Dv|+

4∑
j=1

∫
Rj
|Dv| ≤ Ψ(ϕ ∂P ) +

4∑
j=1

Ψ(ϕ ∂Rj)

≤ Ψ(u ∂P ) +
4∑
j=1

Ψ(u ∂Rj) + 24ηr ≤
√

2|Du|(Q) + 24ηr .

Notice that v = u on ∂Q, and that v is finitely piecewise affine on P since ϕ is piecewise

linear on ∂P . Then we have only to take care of (5.8) and (5.9). Since Q is a Lebesgue square

corresponding to M = 0, by definition we have |Du|(Q) < δr2 < εr2, hence

|Du−Dv|(Q) ≤ |Du|(Q) + |Dv|(Q) ≤ (1 +
√

2)|Du|(Q) + 24ηr ≤ 3εr2 ,

where the last inequality is true up to have chosen η small enough. We have then proved (5.8).

Recall now that, by (4.1) of Lemma 4.2 and since M = 0, the set u(Q) has area less than

πε2r2. As a consequence, since
√

1 + t2 ≤ 1 + t and by Theorem 3.3 we have

F
Ä
v−1, u(Q)

ä
−F
Ä
u−1, u(Q)

ä
≤ F

Ä
v−1, u(Q)

ä
≤ |Dv−1|(v(Q)) + |u(Q)|

≤ |Dv|(Q) + πε2r2 ≤
√

2εr2 + 24ηr + πε2r2 ,

from which also (5.9) follows if η is chosen small enough. The proof is then complete. �

Lemma 5.5. Let ε, Q = Q(c, r), M and δ be as in Lemma 5.2, and assume that detM = 0 but

M 6= 0. Calling ε̄ and K the constants of Theorem 3.2, assume in addition that δ < ‖M‖εε̄.
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Then there exists a piecewise affine homeomorphism v : Q → R2, finitely piecewise affine on a

polygon P ⊂⊂ Q with area at least (4− 8ε)r2, with v = u on ∂Q and

|Du−Dv|(Q) ≤ 39

Å
1 +K

δ

ε2

ã
(1 + ‖M‖)εr2 , (5.10)

F
Ä
v−1, u(Q)

ä
≤ F

Ä
u−1, u(Q)

ä
+ 43

Å
1 +K

δ

ε2

ã
(1 + ‖M‖)εr2 . (5.11)

Proof. Let 0 < t < ε be a number, to be fixed in a moment. We will call again P = Q(c, (1− t)r)
the slightly smaller square, and we will again subdivide C = Q \ P in four rectangles Rj ,
1 ≤ j ≤ 4. Moreover, we call again Γ0 the boundary of P and Γ the union of the boundaries

of P and of the rectangles Rj . As already noticed, the restriction of u to Γ \ ∂Q belongs to

W 1,1 for all t except those contained in a negligible subset of (0, ε). Moreover, if we call St the

boundary of P , by Fubini Theorem we have

δr2 > |Du−M |(C) = r

∫ ε

t=0
|Du−M |(St) dt ,

hence we can select some 0 < t < ε such that not only u belongs to W 1,1(Γ \ ∂Q), but also

|Du−M |(∂P ) ≤ δ

ε
r . (5.12)

Let again η � 1 be a small constant, to be chosen in a moment, and let ξ < tr such that every

segment xy contained in Γ \ ∂Q with length smaller than ξ has image, under u, with length

less than η. Applying Lemma 3.1, with g being the restriction of u to Γ, we obtain an injective

function ϕ : Γ → R2, and by construction ϕ = u on ∂Q and ϕ is a η-linearization of g on the

boundary of every Rj . As in the previous lemma, then, we have

Ψ(ϕ ∂Rj) ≤ Ψ(u ∂Rj) + 4ηr ∀ 1 ≤ j ≤ 4 ,

hence Proposition 3.8 provides us with a piecewise affine extension v of ϕ inside each Rj which,

by Lemma 3.5, satisfies

|Dv|(C) ≤
4∑
j=1

Ψ(ϕ ∂Rj) ≤
4∑
j=1

Ψ(u ∂Rj) + 16ηr ≤
√

2|Du|(C) + 16ηr . (5.13)

Concerning the square P we need to argue in a different way: more precisely, ϕ is piecewise

linear on ∂P , and since ϕ is a linearization of g, then by (5.12)

|Dϕ−M · τ |(∂P ) ≤ |Dg −M · τ |(∂P ) ≤ |Du−M |(∂P ) ≤ δ

ε
r . (5.14)

Notice that the first inequality is true because, for each segment xy ⊆ ∂P for which ϕ is

linear on xy and coincides with g on x and on y, the vector Dϕ−M is constant and coincides

with the average of the vector Dg − M , thus by concavity of the distance we clearly have

|Dϕ−M · τ |(xy) ≤ |Dg −M · τ |(xy).

Since δr/ε < ‖M‖ε̄r, by (5.14) we can apply Theorem 3.2, which provides us with a finitely

piecewise extension v of ϕ on P satisfying

|Dv −M |(P ) ≤ K δ

ε
r2 .

The function v on the whole Q is then a BV extension of u on ∂Q, which is finitely piecewise

affine on the polygon P , having area at least (4 − 8ε)r2. Moreover, putting together the last
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estimate and (5.13), also by Lemma 5.2 and the definition of Lebesgue squares we obtain

|Dv −Du|(Q) ≤ |Dv|(C) + |Du|(C) + |Dv −M |(P ) + |Du−M |(P )

≤ (39‖M‖+ 25)εr2 + 16ηr +K
δ

ε
r2 + εr2 ,

which is stronger than (5.10) up to have chosen η small enough, depending on ε.

To conclude, recall that by Lemma 4.2 there exists an affine function ω with Dω = M

such that ‖u − ω‖L∞(Q) ≤ εr. Since ω(Q) is a segment with length ‖M‖r, we deduce that

|u(Q)| ≤ 4(‖M‖+ 1)εr2, thus

F
Ä
v−1, u(Q)

ä
−F
Ä
u−1, u(Q)

ä
≤ |Dv−1|(u(Q)) + |u(Q)| − |Du−1|(u(Q))

≤ |Dv|(Q)− |Du|(Q) + 4(‖M‖+ 1)εr2 ,

hence (5.11) follows from (5.10) and the proof is concluded. �

We are now ready to prove Lemma 5.1.

Proof (of Lemma 5.1). First of all, we apply Lemma 4.5 with the constant ε1 = ε/(1 + 2|Ω|),
thus finding the constant H � 1. Then, we define ε2 = ε2(u, ε,H)� ε1 with the property that

α(ε2, ‖M‖,detM) <
ε

8|∆|
∀M ∈ R2×2 : (‖M‖, detM) ∈ (1/H,H)2 , (5.15)

and that

22 (1 + 2H)ε2|Ω| <
ε

8
. (5.16)

Moreover, calling ε̄ and K the constants of Theorem 3.2, let δ = δ(ε2, H)� 1/H be such that

δ < δ̄(ε2, ‖M‖) ∀M ∈ R2×2 : ‖M‖ ∈ {0} ∪ (1/H,H) ,

δ < δ̄′(ε2, ‖M‖, detM) ∀M ∈ R2×2 : (‖M‖, detM) ∈ (1/H,H)2 ,
(5.17)

and

δ < min

®
ε2ε̄

H
,
ε2

2

K

´
. (5.18)

We use now our choice of δ to apply Lemma 4.5, finding the constant r̄ = r̄(δ,H) = r̄(u, ε,H).

Then, we pick some r < r̄ such that

|u(x)− u(y)| < ε

4
∀x, y ∈ Ω : |y − x| < 2

√
2r , r <

ε

16

√
2 , (5.19)

and we finally use this r in Lemma 4.5 to get the squares {Qi}i=1, ... , N and the corresponding

matrices Mi; keep in mind that, by construction,∣∣∣Ω \ ∪Ni=1Qi
∣∣∣ < ε1 =

ε

1 + 2|Ω|
. (5.20)

By (5.17) and (5.18) to every square Qi, with constants ε2 and δ and matrix Mi, we can apply

either Lemma 5.3, or Lemma 5.4, or Lemma 5.5, respectively if detMi 6= 0, or Mi = 0, or

detMi = 0 6= ‖Mi‖, thus finding the functions vi : Qi → R2. We let v ∈ BV(Ω; ∆) be the

function coinciding with vi on every Qi, while v = u outside of the union of the squares.

It is true by construction that v is a homeomorphism and that {v 6= u} ⊆ ∪Ni=1Qi ⊂⊂ Ω.

Moreover, every square Qi contains a polygon Pi with |Qi \ Pi| < 2ε2|Qi| on which vi is finitely

piecewise affine, hence v is finitely piecewise affine on the polygon P = ∪Ni=1Pi, and by (5.20)

|Ω \ P | =
∣∣∣Ω \ ∪Ni=1Qi

∣∣∣+ N∑
i=1

|Qi \ Pi| <
ε

1 + 2|Ω|
+ 2ε2

∣∣∣ ∪Ni=1 Qi
∣∣∣ < ε .
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To conclude, we have then only to show (5.1).

First of all, notice that for every square Qi we have v = u on ∂Qi, hence for every x ∈ Qi
it must be |v(x)− u(x)| < diam(u(Qi)) < ε/4 by the first property in (5.19), so we deduce

‖v − u‖L∞(Ω) <
ε

4
. (5.21)

Analogously, for every 1 ≤ i ≤ N and for every z ∈ u(Qi), we have that both u−1(z) and v−1(z)

belong to Qi, hence their distance is at most 2
√

2 r, so the second property in (5.19) gives

‖v−1 − u−1‖L∞(∆) <
ε

4
. (5.22)

Concerning F(v−1)−F(u−1), up to renumbering we can assume that detMi 6= 0 if and only if

i ≤ N1 for some N1 ≤ N . Then, in every square Qi we can use either (5.5), or (5.9), or (5.11),

which also keeping in mind (5.15), (5.16) and (5.18) gives

F(v−1)−F(u−1) =
N∑
i=1

F(v−1
i , u(Qi))−F(u−1, u(Qi))

≤
N1∑
i=1

α(ε2, ‖Mi‖,detMi)|u(Qi)|+
N∑
i=1

43(1 + ‖Mi‖+ detMi)

Ç
1 +

Kδ

ε2
2

å
ε2r

2

≤ ε

8
+ 11(1 + 2H)

Ç
1 +

Kδ

ε2
2

å
ε2|Ω| <

ε

4
.

(5.23)

Finally, concerning F(v) − F(u), since t 7→
√

1 + t2 is 1-Lipschitz we can use (5.4), (5.8)

and (5.10), together with (5.16) and (5.18), to get

|F(v)−F(u)| =
N∑
i=1

|F(vi, Qi)−F(u,Qi)| ≤
N∑
i=1

|Dvi −Du|(Qi) <
ε

4
.

This inequality, together with (5.21), (5.22) and (5.23), gives (5.1), thus concluding the proof. �

We can now conclude the paper by showing our main result, which can be obtained applying

twice Lemma 5.1 if Ω is bounded, while the general case needs an approximation argument.

Proof (of Theorem A). We divide the proof in two steps.

Step I. The case when Ω and ∆ are bounded.

Let us first assume that Ω and ∆ are bounded. In this case, let j ∈ N be fixed, and

let ε = 1/j. We apply Lemma 5.1 to u, finding a polygon P1 ⊂⊂ Ω and a homeomorphism

ϕ1 : Ω → R2, finitely piecewise affine on P1, such that {ϕ1 6= u} ⊂⊂ Ω, |Ω \ P1| < ε, and (5.1)

holds. Let us now apply again Lemma 5.1 to the restriction of ϕ−1
1 to ∆ \ ϕ1(P1), finding

another BV homeomorphism ϕ2 : ∆ \ ϕ1(P1) → R2, finitely piecewise affine on some polygon

P2 ⊂⊂ ∆ \ ϕ1(P1) with ∆ \ (ϕ1(P1) ∪ P2) < ε and {ϕ2 6= ϕ−1
1 } ⊂⊂ ∆ \ ϕ1(P1), and again such

that (5.1) holds. Let us now define ϕ3 : Ω→ ∆ the function which coincides with ϕ−1
2 on Ω \P1

and with ϕ1 on P1; by construction, it is a homeomorphism which satisfies

‖ϕ3 − u‖L∞(Ω) + ‖ϕ−1
3 − u

−1‖L∞(∆) + F(ϕ−1
3 )−F(u−1) + F(ϕ3)−F(u) < 2ε , (5.24)

and which is finitely piecewise affine on the polygon P = P1 ∪ ϕ−1
2 (P2). By construction,

|Ω \ P | < ε , |∆ \ ϕ3(P )| < ε . (5.25)

Keep in mind that P ⊂⊂ Ω, and that ϕ3 is piecewise linear on ∂P . Then, calling Ω− = Ω \ P
and ∆− = ∆ \ϕ3(P ) for brevity, we apply Theorem 3.9 to the restriction of ϕ3 to Ω−, finding a
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countably piecewise affine homeomorphism ϕ4 : Ω− → ∆− which coincides with ϕ3 on ∂P and

which is finitely piecewise affine on a neighborhood of ∂P , and such that

‖ϕ4 − ϕ3‖L∞(Ω−) < ε , ‖ϕ−1
4 − ϕ

−1
3 ‖L∞(∆−) < ε ,∣∣∣|Dϕ4|(Ω−)− |Dϕ3|(Ω−)

∣∣∣ < ε ,
∣∣∣|Dϕ−1

4 |(∆−)− |Dϕ−1
3 |(∆−)

∣∣∣ < ε .
(5.26)

Finally, define vj : Ω → ∆ the function which coincides with ϕ3 on P and with ϕ4 on Ω−. By

construction, this is a countably piecewise affine BV homeomorphism, uniformly coinciding with

u on ∂Ω and finitely piecewise affine where possible. Notice that

‖vj − u‖L∞(Ω) < 3ε , ‖v−1
j − u

−1‖L∞(∆) < 3ε , (5.27)

and moreover by (5.25) and (5.26), also recalling (2.1), we have

F(vj) = F(ϕ3, P ) + F(ϕ4,Ω
−) = F(ϕ3,Ω) + F(ϕ4,Ω

−)−F(ϕ3,Ω
−) ≤ F(ϕ3,Ω) + 2ε .

In the very same way,

F(v−1
j ) ≤ F(ϕ−1

3 ,∆) + 2ε ,

hence by (5.24) we deduce

F(vj) + F(v−1
j ) ≤ F(u) + F(u−1) +

6

j
. (5.28)

In particular, {vj} and {v−1
j } are bounded in BV, thus by (5.27) they converge weakly* to u and

u−1 respectively. Since, as noticed with Lemma 2.3, the functional F is lower semicontinuous

with respect to the weak* convergence, (5.28) implies that F(vj) and F(v−1
j ) converge to F(u)

and F(u−1) respectively, hence they converge in the area strict sense since Ω and ∆ are bounded.

The proof is then concluded in this case.

Step II. The general case.

Let us now give the proof in the general case, when Ω and ∆ might be unbounded. Let

j ∈ N be fixed, and let Ωj ⊂⊂ Ω be an open, smooth set such that

|Du|(Ω \ Ωj) < ε , (5.29)

where again we write for brevity ε = 1/j. Calling ∆j = u(Ωj), we can applying the result of

Step I to the function u on the set Ωj , finding a sequence of functions {ϕj,n}n∈N ⊆ BV(Ωj ,∆j),

which converge uniformly and in the area strict sense to u and whose inverses converge uniformly

and in the area strict sense to u−1. By Lemma 2.3, we can find n = n(j) such that, writing

ϕj = ϕj,n(j), one has

‖ϕj − u‖L1(Ωj) + ‖ϕj − u‖L∞(Ωj) + ‖ϕ−1
j − u

−1‖L1(∆j) + ‖ϕ−1
j − u

−1‖L∞(∆j) < ε , (5.30)

and moreover one can write Dϕj = µ′ + ν ′ so that

|µ′ −∇u|(Ωj) < ε ,
∣∣∣|ν ′|(Ωj)− |Dsu|(Ωj)

∣∣∣ < ε . (5.31)

Let now P ⊂⊂ Ωj be a polygon such that

|Du|(Ωj \ P ) + |Dϕj |(Ωj \ P ) < ε , (5.32)

and call Ω− = Ω \ P and ∆− = ∆ \ ϕj(P ). Let then v : Ω− → ∆− be the function which

coincides with ϕj on Ωj \ P , and with u on Ω \Ωj . By construction, (5.29) and (5.32), this is a

BV homeomorphism with

|Dv|(Ω−) < 2ε , (5.33)
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and it is continuous up to ∂P , being piecewise linear there. We can then apply Theorem 3.9 to

v, finding a BV homeomorphism ṽ : Ω− → ∆− such that

‖ṽ − v‖L1(Ω−) + ‖ṽ − v‖L∞(Ω−) + ‖ṽ−1 − v−1‖L1(∆−) + ‖ṽ−1 − v−1‖L∞(∆−) < ε , (5.34)

and with

|Dṽ|(Ω−) ≤ |Dv|(Ω−) + ε < 3ε , (5.35)

where we have also used (5.33). Let us finally define vj : Ω → ∆ the function which coincides

with ϕj on P , and with ṽ on Ω−. By construction, this is a piecewise affine BV homeomor-

phism, uniformly coinciding with u on ∂Ω and finitely piecewise affine where possible. By (5.30)

and (5.34), we have that vj and v−1
j converge uniformly and in L1 to u and u−1 respectively.

Since |Dvj |(Ωj) and |Dvj |(Ω−) are bounded by (5.31) and (5.35), then also by Theorem 3.3 vj
and v−1

j are bounded in BV, so they weak* converge to u and u−1. Finally, let us call νj = ν ′ P ,

and µj = Dvj − νj , so we have decomposed Dvj = µj + νj . We have

|νj − ν ′|(Ω) = |ν ′|(Ωj \ P ) ≤ |Dϕj |(Ωj \ P ) < ε (5.36)

by (5.32), hence by (5.29) and (5.31)∣∣∣|νj |(Ω)− |Dsu|(Ω)
∣∣∣ ≤ ∣∣∣|ν ′|(Ω)− |Dsu|(Ω)

∣∣∣+ ε ≤
∣∣∣|ν ′|(Ωj)− |Dsu|(Ωj)

∣∣∣+ 2ε < 3ε . (5.37)

Moreover, we have

µj −∇u = Dvj − νj −∇u = Dϕj P +Dṽ − ν ′ − (νj − ν ′)−∇u Ωj −∇u (Ω \ Ωj)

= Dϕj −Dϕj (Ωj \ P ) +Dṽ − ν ′ − (νj − ν ′)−∇u Ωj −∇u (Ω \ Ωj)

= µ′ −∇u Ωj −Dϕj (Ωj \ P ) +Dṽ − (νj − ν ′)−∇u (Ω \ Ωj) ,

so by (5.31), (5.32), (5.35), (5.36) and (5.29) we get

|µj −∇u|(Ω) < 7ε .

This equation, together with (5.37), ensures that vj
area

u, hence the proof is concluded. �

References

[1] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford

University Press (2000).

[2] H. Brezis, Convergence in D1 and in L1 under strict convexity, in Boundary value problems for partial

differential equations and applications, dedicated to E. Magenes, (C. Baiocchi and J.L. Lions eds.), Masson,

1993, 43–52.

[3] D. Campbell, Diffeomorphic approximation of Planar Sobolev Homeomorphisms in Orlicz-Sobolev spaces,

preprint (2016).

[4] L. D’Onofrio & R. Schiattarella, On the total variations for the inverse of a BV-homeomorphism, Adv. Calc.

Var. 6 (2013), 321–328.

[5] S. Daneri & A. Pratelli, Smooth approximation of bi-Lipschitz orientation-preserving homeomorphisms, Ann.
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