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1. Introduction

Turbulent flows play a prominent role in fluid dynamics, meteorology and engineering (e.g. in
combustion phenomena). A very prominent property of turbulent flows is self-organization and
formation of large scale coherent jets and vortices, also on large scales, e.g. Jupiter’s Great Red
Spot [19]. Such turbulences might change some features, e.g. size and brightness, but have kept the
same patterns over a long time. Atmospheric vortices, and likewise ocean eddies, are examples of
strongly stratified, rapidly rotating flows, where the motion is layer-wise, and 2D turbulence models
can be applied to explain the macroscopicly arising vortex structures.

The description of the dynamics of vortices in two space dimensions goes back to Helmholtz, who in
1858 established vortices as the “particles” of fluid mechanics [3,57], paving the way to the application
of methods from statistical mechanics to turbulence theory. As in two space dimensions the vorticity
of each fluid element is conserved in time, it is possible to consider a model in which only a finite
number of particles carry vorticity. We may consider a two dimensional flow involving isolated blobs
of vorticity in an otherwise irrotational fluid, or point vortices, if the vorticity is concentrated in blobs
of infinitesimal radius. In Helmholtz words: “each vortex line remains continually composed of the
same elements of fluid, and swims forward with them in the fluid.” Kirchhoff [1] already showed that
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such vortex blobs obey approximally a Hamiltonian particle dynamics
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∂H

∂x1
i

.

(1.1)

Lin [67, 68] proved in 1941 that the motion of N vortices in a bounded domain is a Hamiltonian
system conserving total kinetic energy, see Section 2. We refer the reader interested in the historical
developments to the excellent survey [41], which contains also a study of Onsager’s unpublished work
on turbulence.

Several strains of research have emerged in the study of turbulence, ranging from incorporating
dynamical systems approaches by setting the vortex dynamics in a complex plane, see e.g. [4], to
methods from partial differential equations and statistical physics. In this work we review the
equilibrium statistical mechanics approach, where the long time behavior of a fluid has been modelled
by a space of fluid configurations endowed with a Gibbs measure, and the configurations were chosen
on a phenomenological ground to mimic coherent vortex structures. The investigation of turbulence in
two-dimensional fluids via point vortex models is deeply influenced by the work of Onsager [85] in
1949, who postulated that the generation of large-scale vortices was a consequence of the inviscid
Euler equations.

Though the distributions of vorticity in the actual flow of normal fluids are continuous, in many
cases a set of discrete vortices provides a reasonable approximation. Therefore, point vortex models,
i.e. systems of N equations of the formẊ j =

∑
k, j γk∇

⊥G(X j, Xk),
X j(0) = x j,

j = 1, 2, . . . ,N, (1.2)

where G is the Green function of the Laplacian, have been studied, in different settings with different
assumptions, over the last decades. In Section 2, we summarize the derivation, existence theory and
approximation property of the point vortex model and discuss its assumptions. In Section 3 we review
some results obtained in the passage to the limit as the number of vortices goes to infinity. One expects
that the vortex positions become independent of one another, so when the field created by the vortices
converges to a mean field, the k-point correlation functions factorize and behave like a product of k
copies of 1-point correlation functions. This decorrelation in the limit is called propagation of chaos,
and holds for deterministic circulations and positive temperature. In the negative temperature case,
correlations may persist and we get a mixture of correlation functions with a certain mixing measure
characterized by the following variational principle: The weak cluster points of the Gibbs measures
(or, more precisely, the correlation functions) are minimizers of a certain functional F , which, in
certain circumstances, can be identified with the free energy functional, see (3.8). The uniqueness of
solutions to the mean-field equation is related to the propagation of chaos: Uniqueness of the mean
field equation means uniqueness of the minimizer of the functional F and then the mixing measure is
a Dirac measure, hence propagation of chaos holds.

Viewing the vortex method as a way to approximate stationary solutions to the Euler Equation, it is
natural to investigate the speed of convergence, leading to Large Deviation Principles, see Section 3.5,
and the behavior of the fluctuations of the empirical measure around the limiting law, see Section 3.4.
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In the 1990s, a generalization of Onsagers ideas to the 2D Euler equations with a continuous
vorticity field, the Miller-Robert-Sommeria theory (MRS theory), has been proposed [78, 93–96]. The
MRS theory includes the previous Onsager theory and determines within which limits the theory will
give relevant predictions and results. In particular it predicts that most microscopic states concentrate
into a single equilibrium macrostate, which is characterized by the maximization of an entropy with
some constraints related to dynamics invariants. We will not review the Miller-Robert-Sommeria
theory here and refer to the above references and the lecture notes [11] for more information, also on
applications of MRS theory, for both the two-dimensional Euler and quasi-geostrophic equations: As
outlined in [11], MRS theory predicts phase transitions in different contexts and was applied as a
model for the Great Red Spot, ocean vortices and jets [12].

Moreover, there is a vast literature on the study of the mean-field equations, which we do not
review in detail here. For example, Bartolucci [6] examines in detail the mean field supercritical
thermodynamics of the vorticity distribution and Bartolucci, Jevnikar, Lee and Yang [7] analyze
bubbling solutions of the mean field equation. In order to take into account variable vortex intensities,
certain non-local elliptic equation which contain an exponential type nonlinearity are studied, see e.g.
Chavanis [20], Ricciardi and Takahashi [90, 92] or the recent work [91].

In the case of three-dimensional fluids, ensembles of vortex filaments have been introduced and
deeply analysed, starting with works of Chorin [22, 23, 25], who proposed an interesting comparison
with the classical Kolmogorov-Obukhov theory. Other ansatzes include almost parallel vortex
filaments, which is relatively close to the 2D setting [70]. The models of vortex filaments proposed by
Chorin are mainly based on probabilistic structures on a 3D lattice, like paths of self-avoiding walk or
percolation clusters, or use a relation with the intersection local time [42]. We review some of the
results in Section 4.

In the last part of this work, we briefly discuss some variations on the theory, namely vortex
dynamics with noise in Section 5 and generalized models, i.e. the system of equationsẊ j =

∑
k, j γk∇

⊥Gm(X j, Xk),
X j(0) = x j,

j = 1, 2, . . . ,N, (1.3)

where Gm is the Green function of the fractional Laplacian (−∆)
m
2 , in Section 6.

2. The point vortex model

In this work we review classical and recent results when methods of statistical mechanics were used
to study Euler and surface-quasigeostrophic flows whenever the vorticity field is a linear combination
of delta functions concentrated in points of the physical space. We start with a sketch of the derivation
of the point vortex equation and discuss its solution and relationship to Euler’s equation.

2.1. Euler’s equations and the point vortex model

Call θ(x, t) the vorticity of a fluid and u = (u1, u2) the velocity. Recall that

θ(x, t) = curl u(x, t) =

(
∂u2

∂x1
−
∂u1

∂x2

)
(x, t). (2.1)
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The Euler equations for the vorticity of a fluid in a bounded flow domain Λ ⊂ R2 read

∂tθ + (u · ∇)θ = 0
curl u = θ

∇ · u = 0
θ(x, 0) = θ0(x)
u · n|∂Λ = 0.

(2.2)

If u decays at infinity, the incompressibility condition allows us to reconstruct the velocity field by
means of the vorticity. In fact, there exists a function ψ, called the stream function, such that u = ∇⊥ψ,
hence

−∆ψ = θ

ψ = 0 on ∂Λ.
(2.3)

If −GΛ(x, y) is the Green’s function of the Laplacian with zero Dirichlet boundary conditions, then

u(x, t) =

∫
k(x − y)θ(y)dy (2.4)

with k = ∇⊥GΛ, which is often called the Biot-Savart law.
The existence theory for the Euler equation has been developed over decades, among the vast

literature we mention only a few results which are of use in the discussion of the point vortex system.
In two dimensions, for bounded domains and when the initial vorticity is bounded, existence,
uniqueness and global regularity of solutions were shown by Wolibner [107] and Yudovich [58]; these
results were extended, in the framework of weak solutions, to the case where the initial vorticity
belongs to Lp with p > 1, see [16], and even for p = 1 when the vorticity is some finite measure [37].
We also point out the exciting developments on non-uniqueness for the Euler equations initiated by
De Lellis and Székelyhidi in [35]. See also Section 5, where solution concepts are discussed in the
framework of vortex dynamics with noise.

2.1.1. The point vortex model

Consider the situation in which the vorticity θ is initially concentrated in N infinitesimal regions of
the physical space Λ ⊂ R2. To fix notation, let each vortex θi have a support concentrated in a point
xi = (x1

i , x
2
i ). For positions xi = xi(0), denote the initial distribution of the vorticity by

θ0(dx) =

N∑
i=1

γiδxi(dx) (2.5)

and we may call the individual component γiδxi(dx) of the measure (2.5) a point vortex. The real
number γi is called the intensity of the point vortex or the circulation of the vortex localized in xi. In
the case that the supports of the vortices are not points, but disjoint sets, one calls

∫
θi(x)dx = γi the net

circulation which the i-th vortex carries. By Kelvin’s theorem about the conservation of circulation,
the intensities γi remain constant in time. As a generalization, several authors consider the intensities
to be independent and identically distributed random variables with respect to some probability law,
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see Sections 3.3, 4.1, 6.2 and 6.3. Combining (2.5) and (2.4), we get that the velocity field for N point
vortices at time zero reads, in the case of Λ = R2

u(x, 0) =

N∑
i=1

γi∇
⊥GΛ(x, xi). (2.6)

We may therefore write the point vortex system as

d
dt

xi(t) = −∇⊥i

N∑
j=1, j,i

γ j GΛ(xi(t) − x j(t))

xi(0) = xi,

(2.7)

or, defining the vector field K : R2 → R2 as K = x⊥
‖x‖

ẋi(t) =

N∑
j=1, j,i

γ j K(xi(t) − x j(t)). (2.8)

Given N initially pairwise disjoint point vortex positions with non-zero circulations, the vortex
dynamics (2.8) is locally well-posed as a Cauchy problem. It has a global solution if the vortices do
not collapse, this will be discussed in Theorem 2.2 below. We remark, first of all, that (2.7) makes
sense only if we assume that a vortex does not move under the action of its own field. We will discuss
this assumption in Section 2.2.1. The fundamental problem, however, is that the function u in (2.6)
becomes singular whenever x tends to xi, and the point vortex model considers precisely this situation
when the mass of the measure is concentrated just on the points xi. So, due to the singularity of GΛ at
the origin, (2.4) makes sense a priori only for absolutely continuous signed measures θ(dx) = θ(x)dx
with density θ(x) ∈ Lp(R2) for some suitable p. A sufficient condition would be L1 ∩ L∞, see [74].

To allow measures with atoms such as (2.5), Delort [36] used a symmetrization trick to tame the
singularity of the Biot-Savart kernel: For a measure-valued initial condition θ0 ∈ H−1(T) such that the
velocity u0 ∈ L2, test the equation against a test function φ ∈ C∞(T), only in terms of θ, to get

〈θt, φ〉 = 〈θ0, φ〉 +

∫ t

0

∫
T

∫
T

K(x − y)(∇φ(x) − ∇φ(y))θs(dx)θs(dy) ds

where K = ∇⊥G, which plays the role of the Biot-Savart kernel. The new kernel K(x−y)(∇φ(x)−∇φ(y))
is bounded and smooth outside the diagonal, but discontinuous along the diagonal.

The existence of a global smooth solution to the point vortex system (2.7) for fixed N and almost
every initial condition is then proved by a regularization of the kernel to deal with the singularity. Such
a regularization of the kernel is equivalent to an approximation by vortex blobs [21], by which one
intends finite blobs of vorticity of diameter approximately ε. We refer to Theorem 2.2 for details.

2.1.2. The point vortex equation as an approximation of the Euler equation

A core question is in which sense the dynamics of a finite number of point vortices can be seen as
an approximation of Euler vortex dynamics. In other words, under which assumptions do empirical
measures of the form

θN
t (dx) =

N∑
i=1

γiδ(xi(t) − x)(dx), (2.9)

AIMS Mathematics Volume 4, Issue 3, 534–575.



539

which are obtained by the vortex motion, satisfy a weak form of the Euler equation?
In some special cases, namely for smooth flows [52] and for bounded initial vorticity [58], when

uniqueness of the solution to the Euler vortex equation is known, positive results are known. In general,
we want to show that if we approximate an initial condition by point vortices (2.5), then the point vortex
measure (2.9) approximates solutions to the Euler equation in a suitable measure sense. As above, to
make sense of the kernel appearing in a weak formulation of the Euler vortex equation, the measures
should be absolutely continuous, which is not the case for (2.9). As a remedy, one can perform a
regularization of the kernel, and prove that if we start at time zero with N vortex blobs located in a ball
of radius R, then these blobs cannot leave a ball of radius R∗ within time T . To obtain compactness
of the regularizing sequence, uniform Lp-bounds of the vorticity are needed, which result in technical
condition on ε. The below theorem illustrates this approach under the assumption that the vortex
intensities are positive and normalized:

Theorem 2.1. [ [76], Theorem 5.3.1.] Let θ0dx be a probability measure on R2 and assume θ0(x) ∈
L1∩ L∞. Let θt be the (weak) solution of the Euler equation with initial data θ0. Let θN as in (2.9) solve

d
dt
θN

t ( f ) = θN
t (u · ∇ f ), (2.10)

where f is a smooth function, θN( f ) =
∫

f (x)θN(dx) and u is given by the right hand side of (2.8).
Let θ0(x) be the initial condition of (2.10) and assume that

∑N
i=1 γ j = 1. Suppose that at time zero

θN
0 −→ θ0 ∈ L∞ ∩ L1(R2) weakly as N → ∞ for bounded and continuous f . Assume the Euler

equation has the property that its solutions are weakly continuous w.r.t. the initial conditions, and
choose appropriately δ such that ε ≈ N−δ.

Then at time t, the distribution of the vortices evolved by the regular Euler equations converges to
the empirical vorticity at time t, in formula

θN
t ( f ) −→ θt weakly as N → ∞. (2.11)

in the sense that for the Wasserstein distance W1 holds

lim
N→∞

sup
t∈[0,T ]

W1(θN
ε (t), θ(t)) = 0 (2.12)

The proof of Theorem 2.1 is done by replacing K by Kε in (2.8), i.e. to smooth the logarithmic
divergence when x ≈ xi and to estimate the Wasserstein distance between θN

ε (t) and θ(t). This means
one considers finite blobs of vorticity of diameter approximately ε instead of point vortices and takes
the simultaneous limit with scaling ε ≈ N−δ. However, due to a possible hyperbolicity of the motion,
the error estimates at time t are quite unsatisfactory, namely not better than N−pC(p)eCt, with p
arbitrarily large and C(p) diverging with p, see [9]. We end with some literature remarks: While we
cited the book [76] as a classical reference, the original result was proven by the same authors in [73]
and an analogous result has been recently proved for m ∈ (2, 3) in [54]. An result similar to Theorem
2.1 holds also for general point vortex systems (1.3) as recently shown in [51], see Section 6.2,
Theorem 6.2 for details.
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2.1.3. Motion of the center of vorticity

Property (2.11) of the vortex flow says that the point vortex model provides a finite-dimensional
approximation for the solutions of the Euler equation in the plane. One may also ask whether we
recover the point vortex system in the limit as ε → 0, if we initialize the continuum Euler model with
an initial condition that contains N distinct blobs of vorticity with radius ε. The answer is only partially
positive: Marchioro and Pulvirenti [76], Theorem 4.4.1. show that the motion of the center of vorticity
of a single vortex blob converges to the motion of a single point vortex. However, the motion of the
center of vorticity is much more regular than the motion of a given fluid particle: in general, it cannot
be inferred that the motion of the fluid particles supporting the vorticity θε converge to a vortex flow,
as indeed the singularity of the kernel K may cause such an irregular flow that the vortex blobs do not
converge at all. Recently, similar results have been obtained for certain generalized models in [51], see
Section 6.2.

2.1.4. Collapse of vortices

The existence theory of solutions to the Hamiltonian system (1.1), which is a system of ordinary
differential equations, is not trivial because of the logarithmic divergence of the Hamiltonian: If two
vortices are at the same point in space, the second equation does not make sense anymore. Whether
such a collapse can happen depends on the sign of the (constant) circulation of the vortices: In the full
plane R2 the case of three vortices is integrable due to conservations of center of vorticity, moment of
inertia and Hamiltonian. If all three vortices have the same sign of circulation, then conservation of
Hamiltonian and rotational invariance exclude the possibility for a collapse. If, however, the
circulations have different signs, a self-similar solution can be constructed which rotates and contracts
at the same time, until all three vortices collapse at the same point, see [76], Chapter 4. Recently, a
similar result was obtained for generalized models in [5].

One may hope that cases of collapse are exceptional, in the sense that the Lebesgue measure of the
set of initial conditions for which collapse can happen is zero. A non-collapse result for almost all
initial conditions can be established under certain conditions on the circulations, see [76] for the Euler
case and [51] for the case of generalized models.

Theorem 2.2. [ [76], Corollary 4.2.2.] Suppose that all N vortices are contained in a circular bounded
domain. Under the assumption that∑

i∈J

γi , 0, for all J ⊂ {1, 2, . . . ,N}, (2.13)

and outside a bounded, measurable set of initial conditions of Lebesgue measure zero, the initial value
problem associated to the point vortex dynamics (1.2) has a global smooth solution.

The result is proven via approximation by vortex blobs. The idea of the proof is to ensure that the
vortices stay at a minimal distance, so there is no collapse of vortices, and to infer the existence of a
smooth solution from it. Recently, this result was extended to generalized models (1.3) in [51]:

Theorem 2.3. [ [51], Theorem 3.1.] Suppose xi move according to the generalized point vortex
dynamics (1.3) with 1 < m < 2 and that (2.13) holds. Then, outside a set of initial conditions of
Lebesgue measure zero, the initial value problem associated to the vortex equation has a global
smooth solution.
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Similar as in 2.2, the main part is to prove that there exists a constant c > 0 independent of ε and on
the initial condition, such that

max
1≤ j≤N

sup
t∈[0,T ]

|xεi (t) − xεi (0)| ≤ c (2.14)

The proof is based on the conservation of the center of pseudo-vorticity
∑N

j=1 γ jx j. The assumption
(2.13) is essential, while it is only required that |∇Gα| goes to zero at infinity. Moreover, Flandoli
and Saal [45] prove that there is a global dynamics if the initial condition is sampled according to an
invariant distribution of vortex positions (this is the case β = 0 in the Gibbs language (3.1)).

2.2. Onsager’s theory of turbulence

In the above section we saw that the point vortex model (1.2) may provide an approximation of the
Euler equation in vorticity form, which describes the Euler flows whenever the vorticity field can be
described as a linear combination of delta functions concentrated in points of the physical space. In
this section we focus our viewpoint and discuss the point-vortex model in the framework of Gibbsian
equilibrium statistical mechanics.

The general assumption is that the elements of the system are in thermodynamical equilibrium
among themselves. This is important, as otherwise it is not possible to assign a temperature to the
system. Moreover, it is assumed that the vortex system is energetically isolated and that the large-time
statistics is a microcanonical equilibrium (by ergodicity of the point vortex dynamics). Moreover, it is
assumed that no point vortices collide, which means that the number of vortices does not change, and
the circulation γ j remains a fixed attribute of the j-th point vortex.

We now present the general setting. Consider a system of N identical point vortices in a smooth,
bounded, connected open domain Λ ⊂ R2 and let the positions of the vortices be denoted by
(x1, . . . xN) ∈ ΛN . Let β ∈ R denote the inverse temperature of the system. The fundamental object in
the point vortex model is a finite-dimensional Hamiltonian H , sometimes called “Kirchhoff

Hamiltonian” [1], representing the fluid kinetic energy. It reads

HΛ(x1, . . . , xN) =
1
2

∑∑
1≤i≤ j≤N

γiγ jGΛ(xi, x j) +

N∑
i=1

γ2
i gΛ(xi). (2.15)

with GΛ(x, y) the Green’s function of the Poisson equation in Λ with Dirichlet boundary conditions, of
which we know that it look as

GΛ(x, y) = −
1

2π
log |x − y| + gΛ(x, y) on Λ × Λ (2.16)

and gΛ : Λ × Λ→ R is symmetric and harmonic in each variable. The gΛ(x) in (2.15) is defined as

gΛ(x) :=
1
2

gΛ(x, x) on Λ, (2.17)

see Section 2.2.1 for details. In the case Λ = R2 or Λ = T ⊂ R2 the flat torus, the term gΛ(xi) is absent
and the Hamiltonian simplifies to the interaction energy

HΛ(x1, . . . , xN) =
1
2

∑∑
1≤i≤ j≤N

γiγ jGΛ(xi, x j) . (2.18)
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A word on the assumptions. The energetic isolation assumption is, in fact, never really strictly
satisfied, as the system looses energy due to viscosity. However, it was observed (see e.g. [77]) that
large vortex structures are only weakly dissipated by viscosity. This tendency for energy to flow and
reside in large scales, as observed in two-dimensional turbulence, is often called the inverse energy
cascade and was predicted by Kraichnan [64].

The vortex model fails to to describe the evolution of vortices in fluids when effects of kinematic
vorticity, such as the diffusion of vorticity, play a role: Indeed, in fluids governed by the Navier-Stokes
equations, the effects of vorticity manifest on time scales proportional to the inverse of the viscosity,
as stated in [40], page 836.

It is generally assumed that a vortex on R2 does not move under the action of its own field. To
justify this, we approximate the point vortices by so-called “vortex blobs”:

Lemma 2.4. Let Λ = R2. Consider a sequence of smooth functions θε ∈ C∞ such that θε → δ in the
weak sense as ε → 0. Assume that θε are spherically symmetric and denote by uε = K ∗ θε the velocity
field generated by θε . Let θε satisfy (2.7). Then, uε(0) = 0.

The proof is straightforward and uses the symmetry of the distribution, see [76], Chapter 4, page
135.

The approximation by vortex blobs is one way around the problem that u becomes singular
whenever x tends to xi. However, also the smoother vortex blob model breaks down as an
approximation to the Euler dynamics once the vortex blobs come too close to each other: In such a
situation, a stronger vortex may stretch a nearby weaker vortex into a long ribbon of vorticity under
the shear of its velocity field, as pointed out by Overman and Zabusky [86].

The point vortex model may avoid such a situation as, recalling Theorem 2.2, as the radius of the
blob goes to zero, the initial conditions for which this stretching may happen have vanishing Liouville
measure.

2.2.1. The self-energy

In Section 2, we discussed the point vortex model on the whole plane R2 or on the torus T ⊂ R2, to
get around the fact that the presence of a boundary creates an effect of self-interaction on point
vortices. In fact, the additional term with

∑N
i=1 γ

2
i gΛ(xi) in the Hamiltonian (2.15) represents the

individual energies of each vortex with the image charges necessary to maintain the boundary
conditions and with an (infinite) self-energy substracted:

gΛ(x) = lim
y→x

1
2

(GΛ(x, y) −G∞(x, y)) (2.19)

This is a consequence of a structure theorem for the Green function, which says that the Green function
GΛ on a bounded domain can be written as

GΛ(x, y) = G(x, y) + gΛ(x, y), (2.20)

with gΛ : Λ×Λ→ R as in (2.15) above. Moreover, using (2.17), we get that gΛ is bounded from above
on Λ and gΛ(x)→ −∞ as dist(x, ∂Λ)→ 0.

The question on self-interaction and self-energy depends on the domain Λ: On the whole plane R2,
Lemma 2.4 argues that a single vortex blob stays almost at rest, implying that the (in principle infinite)
self-interaction of the vortex is negligible.
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This is fundamentally different in the the case of bounded domains: with the same strategy as in
Lemma 2.4, one can argue that limε→0 θε(0) = 1

2∇
⊥gΛ(0), so a single vortex moves just because of the

presence of a boundary.
A heuristic motivation for the self-interaction term can be seen as follows. Consider a single vortex

blob of intensity γ centred at x0 ∈ Λ, for example we may denote θε(x) = γε−2η(x/ε). Assume
moreover that η is radial. The velocity field corresponding to θε is

uε(x) =

∫
Λ

∇⊥x GΛ(x, y)θε(y) dy.

By (2.20), we can write

uε(x0) =

∫
Λ

∇⊥x G(x0, y)θε(y) dy +

∫
Λ

∇⊥gΛ(x0, y)θε(y) dy

The first integral is zero by symmetry, and since θε ⇀ γδ0, the second integral converges,∫
Λ

∇⊥gΛ(x0, y)θε(y) dy −→ γ∇⊥gΛ(x0, x0).

In conclusion uε(x0)→ γ∇⊥gΛ(x0, x0), and γ∇⊥gΛ(x0, x0) can be considered the velocity field generated
by the vortex itself.

This heuristics can also explain how the self-interaction term disappears in the point vortex system
on the torus: By translation invariance, we have that gT(x, y) = gT(x − y) and gT is bounded, and so
γ∇⊥gT(x0, x0) is zero on the torus.

Notice that this heuristic argument strongly depends on the symmetry of the vortex blob. If the blob
shape is not symmetric, then the integrals above may diverge.

The presence or non-presence gΛ(x, y) makes a fundamental difference also in the techniques for
proving limit theorems: For a bounded domain with Dirichlet boundary conditions, the maximum
principle tells us that G(x, y) ≥ 0 and gΛ(x, y) ≥ 1

2π log dist(y, ∂Λ). More precisely, for every fixed
y ∈ Λ we have

−∆xgΛ(x, y) = 0 in Λ

gΛ(·, y) =
1

2π
log | · −y| ≥

1
2π

log dist(x, ∂Λ) on ∂Λ,
(2.21)

hence
gΛ(x) ≥

1
2π

log dist(x, ∂Λ) on Λ. (2.22)

The lower bound (2.22) is very useful when proving bounds on the partition function (3.2): In fact, for
Dirichlet boundary conditions on Λ, the partition function is finite for β ∈ (−8π,∞), as we can apply
(2.22) to get an upper bound on the partition function for all positive inverse temperatures. On the other
hand, in the torus case gΛ(x, y) = 0, and this tool is not available. We refer to Section 3 for details.

From a modelling point of view, the appearance of a self-energy is one of the issues in the study
of turbulence which seem still not to be completely understood. For example, computing the energy
spectrum via the canonical Gibbs measure for a point vortex system, one finds a self-energy of order
k−1 of each point vortex, which is quite unphysical, as noted in [88]. Sufficient regularity of initial data
can solve this dilemma: For an initial vorticity distribution with density in L1 ∩ L∞, Theorem 2.1 states
that the solutions to the point vortex system converge weakly to solutions to the Euler equations, which
says that the self-energy is negligible, at least for short times t.
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2.2.2. Temperature regimes and negative temperatures

In his paper [85], Onsager noticed that the gas of vortices exhibits three different temperature
regimes. First, for positive and large inverse temperature, the vortices are mostly close to the
boundary. Second, for positive but small inverse temperature they will be more or less uniformly
distributed. Third, Onsager argued that negative temperature states exist when the energy of the
system is increased.

Negative absolute temperature is loosely defined as a decrease of the entropy as a function of the
mean energy. The model predicts this to happen once the mean energy exceeds a critical value. A
negative temperature canonical distribution describes the phenomenon that at high energy, the vortices
of the same sign are forced to be close to each other, and indeed the creation of local clusters of
vortices of the same sign has been observed in numerical experiments by Joyce and Montgomery [79].
In addition, Montgomery, Matthaeus, Stribling and Martinez [80] conducted simulations showing that
two-dimensional incompressible flows with high Reynolds number are well described by solutions to
the vortex mean field equation (see e.g. (3.6)) for negative β.

From the mathematical side, it was argued in [13] that the mean field scaling is relevant for the study
of this negative temperature phase, and indeed Eyink and Spohn [40] proved that the microcanonical
ensemble yields negative temperatures for the regularized vortex Hamiltonian in the mean field limit.
The correct scaling limit procedure is crucial, as Fröhlich and Ruelle [47] argued that the negative
temperature regime does not exist in the standard thermodynamical limit.

One may summarize that Onsager’s theory can explain the spontaneous appearance of large-scale
vortices in 2D flows if one accepts that point vortices might yield states of negative absolute
temperature at sufficiently high energy.

3. Gibbs measures

The basic idea of statistical mechanics is that the system’s state should be described by a probability
measure on the state space, which is called Gibbs measure, and it is defined via the Hamiltonian H ,
(2.15), of the system. It reads formally

µβ,N(dXN) =
1

Zβ,N
e−βH(XN )dXN (3.1)

where XN := (x1, . . . , xN) ∈ Λ, are the positions of the point vortices, ZN is the partition function
defined as

Zβ,N =

∫
ΛN

e−βH(XN )dXN (3.2)

and dX refers to a suitable a priori measure on the state space. The precise form of the Gibbs measure
depends on the Hamiltonian, and especially on the shape and boundary conditions on Λ and the
circulations. Therefore we will state the Gibbs measure and partition function for each result we
discuss.

The Gibbs measure (3.1) gives the probability of the system being in a specific state, and their
marginals, the k-point correlation functions or k-particle distribution functions, correspond to the
probability density of finding the first k particles in the positions x1, . . . , xk

ρN
k (x1, . . . , xk) =

∫
µβ,N(x1, . . . , xN) dxk+1 . . . dxN . (3.3)
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The k-point correlation functions will be important tools in the analysis of typical configurations of the
point vortex system.

In this section we will present some important cases where results have been obtained, we will state
the precise Gibbs measure (3.1) in every case. Note that the Hamiltonian (2.15), which it assigns to
each configuration a potential energy, is finite dimensional in case of the point vortex system. While
Hamiltonian and Gibbs measure are also defined for infinite systems it turned out that Gibbs measures
were not a good description for the continuous case, in fact the free fields computed by them were far
from those observed experimentally, see [13, 14] and references therein.

Last, a word on the notation: In the case of constant circulation, the configuration space consists
ony of the position of the vortices, while in case of random circulations, each configuration is a position
- circulation pair (xi, γi), which is often abbreviated by x̃i for the sake of notational simplicity, see e.g.
(3.18).

3.1. Limits of Gibbs measures: the deterministic setting in 2D

Kiessling [59] and, independently, Caglioti, Lions, Marchioro and Pulvirenti [13] investigated the
mean field limit of the point vortex model with constant, positive circulations γ > 0 on a smooth,
bounded, connected open domain Λ ⊂ R2. In this case, the state space consists of the positions of the
vortices. The intensities of the vortices are chosen as γ = 1/N, constant and the same for all vortices,
which means that the Hamiltonian (2.15) depends only on the positions XN := (x1, . . . , xN) ∈ ΛN of the
vortices and therefore reads HΛ(XN) = 1

2

∑∑
1≤i≤ j≤N

GΛ(xi, x j) +
∑N

i=1 gΛ(xi). The Gibbs measure in this

setting reads

µγ,β,N(dXN) =
1

Zγ,β,N
e−βγ

2H(XN )dXN (3.4)

where Zγ,β,N denotes the partition function

Zγ,β,N =

∫
ΛN

e−βγ
2H(XN )dXN . (3.5)

The range of β where the partition function is finite defines the range of (values proportional to the
inverse) temperatures for which the Gibbs measure (3.4) makes sense. In the case of Dirichlet
boundary conditions on Λ, this is true for β ∈

(
− 8π
γ2N ,∞

)
. Recalling γ = 1/N and rescaling the inverse

temperature by 1/N yields β ∈ (−8π,∞). Dirichlet boundary conditions are essential as they ensure
that the interaction G is positive, g(x) is bounded from below in a ball around the origin and diverges
logarithmically when x approaches the boundary of the domain Λ, see (2.22) and the discussion in
section 2.2.1.

We are interested in the asymptotic behavior of the Gibbs measures (3.4) in the limit N → ∞. For
fixed inverse temperature β and constant intensities, µN is a sequence (only) in N. As the elements of
the Gibbs sequence are points in different function spaces, i.e. they are functions defined on different
domains, it is of advantage to define another quantity, the correlation functions, which give the
probability density of finding the first j particles (actually, any particles by symmetry) in the positions
x1, . . . , x j. Taking a mean field type limit, the scope is to prove that the one point correlation functions
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converge in some sense to solutions ρ of a mean field equation

−ρβ(x) =
e−βψ∫

Λ
e−βψdx

−∆ψ = ρβ in Λ

ψ = 0 on ∂Λ

(3.6)

and to study the variational principles associated to (3.6). The reality is more involved, and we will
summarize it in the following. At first, it was shown that, if the empirical distributions of the vortex
system 1

N

∑N
j=1 δx j(dx) are converging, with large probability, weakly to a (smooth) vorticity profile ρ,

any weak limit point of the Gibbs measure (3.4) is an average over infinite product measures:

Proposition 3.1 (Caglioti, Lions, Marchioro and Pulvirenti [13] ). Let ρN
k be the k-particle distribution

function (3.3) associated to the Gibbs measure µβ,N . Then, there exists a limit ρN
k → ρk as N → ∞ and

we have

ρk(x1, . . . , xk) =

∫
ρ⊗kπ(dρ) (3.7)

where π is a Borel probability measure on the spaceM+
1 of all probability measures on Λ.

The proof of Proposition 3.1 uses the De Finetti theorem and therefore needs exchangeability of the
vortices, which fails in the case of random interactions, see Section 3.3. We observe that factorization
of ρk, i.e. ρN

k → ρ⊗k weakly is true only if there is a unique solution to the mean field limit.
A-priori, the one-particle distribution function ρN(x) converges to a superposition of solutions ρ of

the mean field equation, characterized by the measure π, which is a measure on the space of probability
measures. Further information can be drawn from the support of π:

Proposition 3.2. The mixing measure π is concentrated on those solutions ρ ∈ L∞(Λ) of the mean field
equation (3.6) which minimize (for β > 0) or maximize (for β < 0) the free energy

F (ρ) =
1
2

∫
Λ×Λ

ρ(x)GΛ(x − y)ρ(y)dxdy +
1
β

∫
Λ

ρ(x) log[|Λ|ρ(x)] dx (3.8)

with the constraints ρ ≥ 0 and
∫
ρdx = 1.

If there exists a unique solution ρ to (3.6), the full sequence ρN
k converges to ρ⊗k and the mixing

measure π is a Dirac measure; in this case, we say that the weak limit of the Gibbs measures as N → ∞
obeys a propagation of chaos property. Uniqueness holds in the case β > 0, and in some special cases
when β < 0. Before we discuss these, we relate the solution to the mean field equation to solutions of
the Euler equation. This is done via the stream function ψ, defined as (2.3) and we get finally that one-
point distribution functions ρN defined as (3.3) converge to a superposition of solutions of the mean
field equation (3.6). In particular, the one-particle distribution function converges to the unique solution
of the Euler-Lagrange equation for the free energy F , as described in Proposition 3.2, which means
that the limit measures concentrate on very particular stationary solutions of the 2D Euler equation
with velocity field u = (−∂2ψ, ∂1ψ).
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3.1.1. Negative temperatures

For β < 0, uniqueness of solutions to (3.6) is unknown in general. From the above results, we can
conclude a sufficient condition, summarizing what we know about (3.8):

Corollary 3.3 ( [13], Corollary 4.1.). If β < 0 and we assume that there exists a unique ρ ∈ L∞(Λ)
which maximizes (3.8) over all ρ ∈ M+

1 with the constraints ρ ≥ 0 and
∫
ρdx = 1, then ρN

k and ρN
k log ρN

k
converge almost everywhere and in L1(Λk).

We refer to [13] for the proof and note here just that (3.8) is defined and finite for absolutely
continuous ρ with density in Lp(Λ) such that ρ log ρ ∈ L1(Λ).

The general case of negative temperature β < 0 corresponds to the so-called “one species version”
of the mean field equation (3.6), as predicted by [79]. Their mathematical analysis is more delicate:
Roughly, the solution should maximize the energy-entropy functional

G(ψ) = −
1
2

∫
Λ

|∇ψ|2 −
1
β

log
∫

Λ

e−βψ (3.9)

with ψ = −∆−1ρ, see e.g. [13], Proposition 7.2. This works, however, only for β > −8π, due to the
shape of the partition function. Further results for β → −8π are reviewed in [13], they depend on the
exact properties of the domain Λ. For example, in case of the unit disk, the vorticity distribution ρ
takes the explicit form

ρ = −∆ψ =
1 − cβ
π

1
(1 − cβr2)2 (3.10)

with cβ =
β

8π+β
. This solution concentrates at zero when β → −8π and ρ → δ0 weakly in the sense of

measures. In an annulus, there is not a particular point at which radial solutions can concentrate as β→
−8π, so the authors suggest that a unique radial solution can be obtained for all β ∈ R, see [13], Section
7. Similar results are possible for radial solutions in connected domains with rotational symmetry.
Moreover, a non-existence result for star-shaped domains was proven, with β < 0 and its exact value
depends on the boundary of the domain, see [13] Proposition 7.1.

Furthermore, Kiessling [59], Theorem 5, showed that for Λ a ball and β < −4π, the Dirac measure is
a weak solution to the Euler Lagrange equation for the free energy functional. He proposes to use this
result to extend the definition of an equilibrium state to all temperatures, with the following physical
pictures in mind (see [59], page 52): When the inverse temperature approaches the critical value −8π
from above, the thermal motion of the particles cannot prevent the singular attractive interactions from
forcing the system to condense to a point located at the center of the ball (Kraichnan supercondensation
phenomenon, [59] page 52). If the temperature drops below the critical value, the system will stay in
the collapsed state. As the Dirac measure is admissible as an equilibrium measure of a collapsed
system, this could be a possible extension of the definition of equilibrium state. As the free energy
functional is ∞ at the Dirac measure for −4π ≥ β ≥ −8π and −∞ for β < −8π), he classifies this as
an extreme case of a second-order phase transition, i.e. a critical behavior of the canonical free energy
at β = −8π. However, it remains open whether the Dirac measure is also the equilibrium measure for
N < ∞.
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3.2. Gibbs measures for vortices of positive and negative intensities on the torus

We have seen above that a negative value for β complicates significantly the situation. While in
the case of constant positive circulations results can be obtained by assuming β > 0, this advantage
disappears when the intensity of the vortices itself has a sign. Now we discuss a result in this direction
from [9]. Consider the point vortex equation on a two-dimensional flat torus T ⊂ R2. In this case, by
periodicity of u and the circulation theorem, the following neutrality property of the vorticity holds:∫

T

θ(x)dx = 0. (3.11)

The torus case offers several advantages, in particular the fundamental solution to Poisson’s equation
on the torus can be written in Fourier expansion as GT(x, y) = 1

(2π)2

∑
k∈Z2,k,0 k−2eik·(x−y) which gives also

a more explicit expression for the Hamiltonian, which, in the torus case, contains only the interaction
term (2.18). The existence of the Gibbs measure for this system was proven by Fröhlich and Seiler
in [48]. Also in this case, one is interested in proving statements saying, morally, that the solutions to
the point vortex dynamics can be interpreted as generalized solutions of the Euler vortex equations in
the sense of a generalization of Theorem 2.1 for positive and negative vortices [36,42,99]. It turns out
that the limit measure is Gaussian and can be characterized by methods of Quantum Field Theory. In
fact, in this special case, it is known that for β, η > 0 the sum

β

2

∫
T

u2(x)dx +
η

2

∫
T

θ2(x)dx =
1
2
〈θ, (η1 − β∆−1)θ〉 (3.12)

is a quadratic form generating a Gaussian measure

µβ,η(dθ) =
∏

k∈Z2,k,0

exp(−1
2 |θ̂k|

2(η + β/k2))
2π(η + β/k2)−1 dθ̂k (3.13)

These formally invariant measures are, however, not a good tool as they are concentrated on a set
of distribution for which the initial value problem does not easily make sense, in fact the set of all
vorticities θ ∈ L∞(T) has µβ,η-measure zero.

To prove that also in the case of positive and negative intensities on the torus, the Gibbs measures
associated with an interacting system of vortices converges to an equilibrium measure, a regularization
of GT(x, y) was introduced, which smoothes the logarithmic divergence when x ≈ y:

Gε,T(x, y) =
1

(2π)2

∑
k∈Z2,k,0

exp(ik · (x − y)) exp(−εk2)
k2 . (3.14)

Consider a gas of vortices interacting via the regularized Green’s function, let the vortices interact with
strength γi = ±

√
σ, σ > 0, and assume the neutrality condition

N∑
i=1

γi = 0 (3.15)

Using the rescaling σ = 2π2

ηN so that
√
σ→ 0 and Nσ→ const, one obtains the following result:
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Theorem 3.4 (Benfatto, Picco and Pulvirenti [9]). Let the vortices θi have each a small support of
diameter ε centered at xi = (x1

i , x
2
i ), let intensity of the vortices be γi = ±

√
σ and let the neutrality

condition (3.15) hold. Let Then the sequence of canonical Gibbs measures µN,β,σ associated with a
gas of vortex blobs interacting via a two-body interaction (3.14) converges weakly in the simultaneous
limit N → ∞ and ε → 0, with ε ≈ N−δ for some 0 < δ < η

2πβ to the Gaussian measure (3.13), which is
invariant for the two-dimensional Euler Equation.

Therefore, at least in statistical terms as in the situation of Theorem 3.4, a long-time control of the
Euler flow by means of the vortex dynamics can be obtained. A version of this result without cutoff,
read in terms of fluctuations of a mean field limit, has been proved on the disc by [10] and on the torus
by [53].

3.3. Gibbs measures for random intensities

A more general setting is to consider point vortices with random intensities, as studied by Neri
[82, 83], Bodineau and Guionnet [10] and, more recently, by Sawada and Suzuki [98] in 2D, and by
Kiessling and Wang [60] on the 3D sphere. The study of random intensities is a way to provide a
mathematical explanation to certain results in statistical physics. An example is the work of Joyce and
Montgomery on “neutral systems” [79], which are defined by an equal number of vortices of intensity
±1 with probability 1/2.

Limit distributions for a system of point vortices with random intensities were studied by Bodineau
and Guionnet [10], Neri [82] and Sawada and Suzuki [98]. We first sketch the results of [82], which
generalize the approach taken in [13], and return to [10], where also a Central Limit Theorem and
a Large Deviation Principle was shown, in the next sections. Note that the setting in [82] differs
from [98], in which each vortex has a fixed circulation value and the ratio of the number of the vortices
with a certain circulation to the number of whole point vortices are given by a probability measure.

Let (Ω,F ,P) denote a probability space and define by M+
1 (D) the space of probability measures

on a set D. There are now two possibilities to define the Gibbs measure: In the averaged setting, we
define the Gibbs measures on the product spaceM+

1 ((Λ×[−1, 1])N), in the quenched setting, we assume
that the circulations observe a certain ratio of positive and negative signs, and keep γ as a parameter,
defining the Gibbs measure only over ΛN .

A classical setup is to work in the averaged setting , i.e. with the configuration space being the
product space of pairs of positions and intensities (Λ × [−1, 1])N . We use again the short-hand
notation XN = (x1, . . . , xN) for the positions and γN = (γ1, . . . , γN) for the random circulations. The
Hamiltonian, which now depends both positions and intensities, reads

HΛ(XN , γN) =
1
2

∑∑
1≤i≤ j≤N

γiγ jGΛ(xi, x j) +

N∑
i=1

γ2
i gΛ(xi). (3.16)

with GΛ(x, y) the Green’s function of the Poisson equation in Λ with Dirichlet boundary conditions.
The averaged Gibbs measure onM+

1 ((Λ × [1, 1])N) reads

dµβ,N(XN , γN) =
1

Zγ
N(β)

e−
β
NH(XN ,γN )dLN ⊗ dPN (3.17)

with a Borelian probability measure P on [−1, 1].
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Proposition 3.5 ( [82], Corr. 4). Consider an N point vortex system on a bounded domain Λ ⊂ R2 and
assume that the vortices are distributed according to the Lebesgue measureL. Let the vortex intensities
γi be random variables identically distributed w.r.t a Borelian probability measure P on [−1, 1] and
consider a rescaled temperature β/N ∈ (−8π, 8π).

Then we have that the k-point correlation functions ρN
k are bounded in Lp((Λ×[−1, 1])k) for all k and

N large enough and hence, if p > 1, there exists a subsequence ρN j

k ⇀ ρk weakly in Lp((Λ × [−1, 1])k).
The limit ρk is an average of product measures w.r.t. some mixing measure π, which is a Borelian

probability measure supported inside a ball of finite radius of L∞(Λ × [−1, 1]) centered at the origin.

The crucial property here is the exchangeability of the position-circulation pairs, which allows
to apply a Hewitt-Savage theorem and to conclude the existence of a mixing measure π as in the
deterministic case, see Proposition 3.1. Note that in order to obtain the symmetry of ρk, which allows
to define the limit energy in terms of the two-point distribution function, infinite exchangeability is
needed. In this case, one can deduce the following variational principle, where we used the abbreviation
x̃i := (xi, γi) for the position - circulation pair.

Proposition 3.6 ( [82], Theorem 11). The weak cluster points µ∗ = (ρk)k∈N are minimizers of the
functional

F∗(ρ) :=
β

2

∫
(Λ×[1,1])2

H(x̃1, x̃2)ρ2(x̃1, x̃2) dx̃1dx̃2 + lim
k→∞

1
k

∫
(Λ×[1,1])k

ρk log ρk d(x̃1, . . . , x̃k) (3.18)

and the appearing limit is finite for symmetric ρ j which are bounded in L∞((Λ × [1, 1])k).

Without the symmetry of ρk, which is a consequence of the infinite exchangeability, a representation
of the energy part in (3.18) as a two-marginal is not possible, This makes the analysis of the quenched
case much harder. In [10], where a functional similar to the energy-entropy functional (3.18) with a
general energy term

E(ν) =

∫ ∫
γγ′GΛ(x, y)dν(x, γ)dν(y, γ′) (3.19)

appears as a good rate function, new techniques are used: for example, entropic inequalities are used
to control the logarithmic singularity of the energy by the relative entropy, in order to achieve lower
semicontinuity of the energy-entropy functional. Furthermore, it is used that for any probability
measure ν with finite entropy, the energy (3.19) coincides with a modified energy Ê where
Hamiltonian is not integrated across the diagonal x = y, and that this nicer modified energy is
quasi-continuous, see [10], Section 3.2. for details.

To return to the discussion of the mean field limit of Gibbs measures with random intensities,
Neri showed that for each weak cluster point µ∗ of the Gibbs measure, there exists a mixing measure
π∗ ∈ M

+
1 (Λ × [−1, 1]). Moreover, the 1-point distribution function on Λ can be associated to some

solutions of a non-linear Poisson equation, more precisely:

Theorem 3.7 ( [82], Th. 16). For π-almost every µ ∈ supp π, its potential u is in C∞ and satisfies the
following mean field equation

−∆u(x) =

(∫
Λ

∫ 1

−1
e−βγ

′u(y)dyP(dγ′)
)−1 ∫ 1

−1
γe−βγu(x)P(dγ) ∀x ∈ Λ

u(x) = 0 ∀x ∈ ∂Λ

(3.20)
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This result is consistent with the analysis for constant circulations of intensity one, in fact setting
P = δ1, we recover the mean field equation of [13] and [59].

Note that the mean fields are essentially Newton potentials associated with minima of an energy-
entropy functional G, as the deterministic case (3.9), and the mean-field equation is the Euler-Lagrange
equation associated to this functional. The functional acts on the potentials and reads

G(u) =
1
2
‖∇u‖2L2 +

1
β

log
(
e−βρu(x1)dx̃1

)
(3.21)

Note that G is not equal to the energy-entropy functional (3.18), but related: Neri shows the existence
of minimizers for G using the sharp form of Moser-Trudinger inequality, and that G preserves the
minimizers of F in the sense that the potential u of a minimizer µ of (3.18) is a minimizer of G. For
positive inverse temperature β > 0, the functional G is convex, implying the uniqueness of solutions to
the mean field equation (3.20). For −8π < β < 0, every minimizing sequence of G is bounded. Last,
note that zero is a solution of (3.20) in the case that the vortices are uniformly distributed on Λ, i.e.∫ 1

−1
γ1P(dγ1) = 0. In the case that Λ = [0, 1]2, the trivial zero solution is not a physical one, in the sense

that zero is not a minimizer of G, see [82], Chapter 10.

3.4. Law of Large Numbers and Central Limit Theorem

We have seen in Sections 3.1, 3.2 and 3.3 that if there exists a unique solution ρ∗ to the variational
problem, the propagation of chaos property holds. Consider now a situation when the propagation of
chaos property holds and additionally γi ≡ 1. In this case there is a Law of Large Numbers for the
empirical vorticity distribution (2.9) in the sense that θN ⇀ ρ∗ weakly for any f ∈ Cb(Λ) and any ε > 0,
we have ∣∣∣∣ ∫

Λ

f (x)θN(x)dx −
∫

Λ

f (x)ρ∗(x)dx
∣∣∣∣ < ε (3.22)

with probability going to one as N → ∞.
The connection between the propagation of chaos property and the Law of Large Numbers becomes

even more plain in the study of the microcanonical ensemble, see [69], p. 51:

Lemma 3.8 ( [69], Lemma 5.1.). Let Λ ⊂ R2 bounded, smooth, open and connected and meas(Λ) = 1.
Let β > −8π and ρ ∈ L1(Λ) such that ρ ≥ 0 and

∫
Λ
ρdx = 1. Then the following assertions are

equivalent:

1. For all φ ∈ C(Λ̄) ∫
Λ

∣∣∣∣∣∣∣ 1
N

N∑
i=1

φ(xi) −
∫

Λ

φρdx

∣∣∣∣∣∣∣
2

dµβ,N −→ 0 as N → ∞. (3.23)

2. For all φ ∈ C(Λ̄)∫
Λ

sup
‖φ‖W1,∞(Λ)≤1

∣∣∣∣∣∣∣ 1
N

N∑
i=1

φ(xi) −
∫

Λ

φρdx

∣∣∣∣∣∣∣
2

dµβ,N −→ 0 as N → ∞. (3.24)

3. ρN
k −→

∏k
i=1 ρ(xi) weakly in the sense of measures for all k ≥ 1.
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4. ρN
k −→

∏k
i=1 ρ(xi) weakly in the sense of measures for k = 1 and k = 2.

We will investigate further the microcanonical case in this work, but just mention that in this
framework, the microcanonical variational principle corresponds to the minimization of the entropy at
fixed energy, while in the discussion above it was based on the (free energy) functional, which is the
sum of (minus the) entropy and the energy. The free energy functional was defined for all ρ satisfying
the conditions mentioned in the above Lemma, plus the condition that ρ log ρ ∈ L1(Λ).

A unique minimizer and therefore propagation of chaos are fundamental prerequisites for a Law
of Large Numbers, and are sufficient, in case of bounded interaction, as e.g. when working with
a regularization as in [9], also for negative inverse temperature β (at least when β small enough in
absolute value).

Indeed, Neri [82] proves that in the neutral case,L×ν is not a minimizer when β is negative and large
enough in absolute value. In conclusion, there seems to be no way to study the negative temperature
case β < 0, for β sufficiently large and negative, in view of a Law of Large Numbers or a Central Limit
Theorem.

For positive temperature, it is possible to derive a quenched Law of Large Numbers and Central
Limit Theorem in case that the total intensity satisfies the neutrality condition (3.15): For this one
considers the empirical measure θN = 1

N

∑N
i=1 δxi,γi and concludes, thanks to the propagation of chaos

property, that the rescaled empirical measure converges, as N → ∞, to a limiting law ρ∗(dx, dγ).
The Central Limit Theorem then asks the question: what is the behavior of the fluctuations of the

empirical measure θN around the limiting law ρ∗(dx, dγ)?
To prove such a Central Limit Theorem is extremely difficult due to the strong interactions between

the particles. Bodineau-Guionnet [10] investigate fluctuations of the empirical measure for positive
inverse temperature β > 0 in the case of Λ a disk, and neutral gas. In this case, the empirical measure
converges towards ρ∗(dx, dγ) = L(dx) ⊗ P(dγ).

To fix notation, we define the operator Ξ ∈ L2(ρ∗) with kernel GΛ(x, y)γγ′ and denote by I the
identity on L2(ρ∗). Note that Ξ is a non-negative operator, and consequently (I+βΞ)−1 is non-degenerate
at positive temperature. In [10], the following result is obtained:

Theorem 3.9 (Central Limit Theorem for neutral gases). Let β > 0 and Λ a circular disk.
1) quenched case: Assume | card{i : γi = 1} − card{i : γi = −1}| = o(N3/4). Then, for any function

f ∈ L ⊂ L2(ρ∗), we have that

1
√

N

N∑
i=1

(
f (xiγi) −

∫
f (x, γ)dρ∗(x, γ)

)
(3.25)

converges in law under the quenched Gibbs measure µ
γ
β,N towards a centered Gaussian random

variable with covariance ∫ (
f − f̄

)
(I + βΞ)−1

(
f − f̄

)
dρ∗ (3.26)

where we denoted f̄ :=
∫

f dρ∗.
2) averaged case: Assume the intensities are symmetrically Bernoulli distributed, i.e.

P = 1
2 (δ1 + δ−1). Then (3.25) converges in law under the averaged Gibbs measure µβ,N towards a

centered Gaussian random variable with covariance (3.26).
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The investigation of the Law of Large Numbers and Central Limit Theorem is particularly difficult
due to the logarithmic singularity of the interaction and the missing control of the boundary term of
GΛ. To deal with the logarithmic singularity of the interaction, the paper [10] employs techniques
developed in [8] for strongly interacting random variables, which allow to study fluctuations as soon
as the empirical measure converges. To use this approach, it is necessary to restrict the test functions f
to a subsetU ⊂ L2(ρ∗), more precisely

U =
{
f ∈ L2(ρ∗) | f (x, γ) = (I + βΞ

(
λ−1
γ ∇ · (λγg)

)
, g ∈ C1(Λ), g|∂Λ = 0

}
(3.27)

where λγ(x) =
ρ∗(dx,dγ)

dL(x)dP(γ) .
Moreover, good controls of the partition function are necessary: The authors of [10] can show for

neutral gases at positive inverse temperature β > 0 and Λ a disk that

lim sup N−1/2 log ZN,β = 0. (3.28)

The upper bound is implied by an estimate that the partition function grows at most polynomially in
N. For the lower bound, in the quenched setting we get

log Zγ
N,β ≥ −β

∑
i< j

γiγ j

∫
GΛ(x, y)dL(x)dL(y) (3.29)

and the right hand side of (3.29) is of order o(
√

N) if it can be assured that
∑N

i=1 γi = o(N3/4), which
explains the assumption on γi in Theorem 3.9. The problem of the Central Limit Theorem has been
recently reconsidered in [53].

In the negative temperature regime it is not clear which is the range of validity of the Law of Large
Numbers and of the Central Limit Theorem. To fix ideas, consider a dilute gas of point vortices on
the torus. For positive β the limit of measures (3.17), for N ↑ ∞, is ` ⊗ P, where ` is the normalized
measure on the torus and P is the prior distribution on vortex intensities. The same holds for small
negative values of β,see [69], up to a critical value βc ∈ (−8π, 0). For values of β ≤ βc the measure
` ⊗ P is not anymore a minimizer of the free energy, although is still a critical point and thus a solution
of the mean field equation. It is an open problem to prove any kind of fluctuations result for the negative
regime. We do not know if the Gaussian CLT holds up to βc. We notice that if we look at the candidate
limit covariance, the same given in 3.9, we immediately realise that the candidate covariance is positive
definite up to the value βc. Based on this, we conjecture that the CLT holds up to βc.

3.5. Large Deviations

Viewing the vortex method as a way to approximate stationary solutions to the Euler equation,
it is natural to investigate the speed of convergence. This leads to the question of Large Deviation
Principles. Large Deviation Principles state that for any ε > 0 and f ∈ Cb(Λ)

µN

({∣∣∣∣ ∫
Λ

f (x)θN(x)dx −
∫

Λ

f (x)ρ∗(x)dx
∣∣∣∣ ≥ ε}) ≤ e−N·∆ (3.30)

where ∆ is the difference between the maximum entropy S (ρ∗) and the maximum of the entropy S (ρ)
under the constraint that |ρ( f ) − ρ∗( f )| ≥ ε. A Large Deviation upper bound in case of bounded
potentials (including the boundary term) was proved in [40].
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In case of an a bounded domain Λ ⊂ R2 and the logarithmic potential GΛ (2.16) with Dirichlet
boundary conditions, a Large Deviation principle was proven for neutral gases by
Bodineau-Guionnet [10] and, more recently, by Leble, Serfaty and Zeitouni [65]. We describe their
results in the following.

Let, as in Section 3.3, (Ω,F ,P) denote a probability space and M+
1 (Λ × {−1, 1}) the space of

probability measures on the product space Λ × {−1, 1} of position and intensity. Let the vortices be
distributed according to the Lebesgue measure L and the circulations be identically distributed with
Bernoulli law P. Denote MP :=

{
ν ∈ M+

1 (Λ × {−1, 1}) : π2 ◦ ν = P
}

the set of probability measures
with intensity marginal P.

We consider the energy functional

E(ν) =

∫ ∫
γγ′GΛ(x, y)dν(x, γ)dν(y, γ′) ∀ν ∈ M+

1 (Λ × {−1, 1}) (3.31)

and the lower-semicontinuous mixed energy-entropy functional

Fβ(ν) = H(ν|L ⊗ P) +
β

2
E(ν)M+

1 (Λ × {−1, 1}) (3.32)

where H(ν|L ⊗ P) is the relative entropy of ν w.r.t. the product measure L ⊗ P.
The quenched setting refers to a fixed ratio of ±1-valued intensities γi, which do not satisfy the

neutrality condition (3.15). Abbreviate, as always, XN = (x1, . . . , xN). The quenched Gibbs measures
reads

dµγβ,N(XN) =
1

Zγ
N(β)

e−
β
NH(XN ,γ)dLN(XN) (3.33)

Theorem 3.10 (Quenched Large Deviation Principle). For any β ∈ (−8π,∞), if for some measure P
holds 1

N

∑N
i=1 δγi −→ P then the law of the empirical measure θN = 1

N

∑N
i=1 δxi,γi under the quenched

Gibbs measure µγβ,N satisfies a Large Deviation Principle with rate function

Gq(µ) := Fβ(µ) − inf
µ∈MP

Fβ if µ ∈ MP (3.34)

and Gq(µ) = ∞ otherwise.

Note that, thanks to the property that there are roughly as many positive vortices as negative vortices,
the limit of the empirical measure ρ∗(dx, dγ) = L(dx) ⊗ P(dγ) is a minimum of Gq. Therefore, for not
too negative temperatures, the positive and negative vortices are both uniformly distributed over Λ.

Note that the convexity of the rate function is not clear at all in the negative temperature case.
The averaged setting. As already mentioned in 3.3, the averaged setting is preferable due to the

possibility to obtain a mixing measure by applying a Hewitt-Savage type theorem. The averaged setting
deals with i.i.d. Bernoulli distributed random intensities, and we denote the occurring Bernoulli law
by PN = P⊗N . Define furthermore byMP the set of probability measures with marginal P. We recall
the averaged Gibbs measure from (3.17), this time onM+

1 ((Λ × {−1, 1})N).
Due to the singularity of the interaction, there is not enough control on the partition function to

ensure exponential tightness for large values of β. Therefore, we either need to restrict to only positive
circulations γi = 1 or, in case of positive and negative circulations, to a temperature range which is
symmetric around zero.
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Theorem 3.11 (Averaged Large Deviation Principle). For any β ∈ (−8π, 8π), if for some measure P
holds 1

N

∑N
i=1 δγi −→ P, then the law of the empirical measure θN = 1

N

∑N
i=1 δxi,γi under the averaged

Gibbs measure µβ,N satisfies a Large Deviation Principle with rate function

Ga(µ) := Fβ(µ) − inf
µ∈M+

1 (Λ×{−1,1})
Fβ (3.35)

The proof of the Large Deviation Principle is done by controlling the singularities of the
Hamiltonian (3.16). For this, it is shown that the energy functional (3.31) is quasi-continuous for
probability measures with finite entropy. The main difficulty comes from the logarithmic singularity
of the interaction and the missing control of the boundary term of GΛ. To control the partition
function, it is necessary to restrict to the case of a disk, yet the analysis is extremely delicate.

3.5.1. Large Deviation Principle for two-component plasma in a box

Leble, Serfaty and Zeitouni [65] derive a Large Deviations Principle for the case of a
two-dimensional two-component plasma in a box. This case is different from the model considered
above due to the different scaling of β: While in [10] β scales as 1/N, [65] consider the
thermodynamical limit with constant β in a box of finite size, with particles living in Λ. Also the
techniques needed to handle this situation are completely different, and we will sketch them briefly
here.

By two-component plasma we call an ensemble with 2N particles, of which N particles of positive
charge and N particles of negative charge, which interact logarithmically. Call XN = (x1, . . . , xN) the
points in the unit cube Λ = [0, 1]2 carrying a positive charge +1, and YN = (y1, . . . , yN) the points in
Λ carrying a negative charge −1 . The Gibbs measures associated to the two-component plasma in the
plane reads

dµβ,N(XN ,YN) =
1

ZN,β
e−β/2wN(XN ,YN)dXNdYN (3.36)

with dXNdYN the Lebesgue measure on Λ2N , the partition function

ZN,β :=
∫

Λ2N
e−β/2wN(XN ,YN)dXNdYN (3.37)

and the logarithmic interaction

wN(XN ,YN) :=
∑

1≤i, j≤N

− log |xi − x j| − log |yi − y j| + 2
∑

1≤i, j≤N

log |xi − yi| . (3.38)

Due to a different choice of constants in the interaction, the critical case is now not |β| = 8π but β = 2.
The neutral case is more difficult than the case of only positive circulations, as the interaction energy

is no longer bounded from below. In [65] the authors worked with “dipoles” of pairs of particles with
opposite sign, matched by nearest neighbour pairing, and express the interaction energy via a electric
potential generated by the system of charges. We will summarize this setup in the following:

Let X be the set of locally finite signed point configurations with the topology of local convergence
and let P(X) denote the set of probability measures on X. Let τλ denotes the action of translation
by a vector λ ∈ R2. We may identify the pair of N-tuples of points (XN ,YN) in the square Λ as an
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element of the space X by associating to XN and resp. YN the point configuration ν+
N =

∑N
i=1 δxi and

ν−N =
∑N

i=1 δyi . Then we rescale the finite signed configurations by a factor of
√

N to get ν̂+
N =

∑N
i=1 δ

√
Nxi

and ν̂−N =
∑N

i=1 δ
√

Nyi
. We define the map

iN : (R2)N × (R2)N −→ P(Λ × X)

(XN ,YN) 7→ P(XN ,YN ) :=
∫

δ(x,τ√Nx·(v̂
+
N−v̂−N ))dx

(3.39)

The variable x is a “tag” that keeps track of the point x ∈ Λ around which the configuration was blown
up, and in this way we build from any signed point configuration the law P(XN ,YN ) of a tagged signed
point process. We denote by Pinv,1(Λ × X) the set of stationary laws P of signed point processes such
that P has total intensity 1, i.e. there is, on average, one point of each sign per unit volume. On
Pinv,1(Λ × X) we define the sum of the interaction energyW and the specific relative entropy

Fβ(P) =
β

2
W(P) + Ent(P) if Ent(P) < ∞ (3.40)

and infinity otherwise. The interaction energy is defined as the infinite volume limit of the logarithmic
interaction in the system of charges described by the signed configurations. For tagged particles, it is
simply evaluated at the corresponding distintegration measure Px and integrated over P. The specific
relative entropy for tagged particles is defined in the same manner:

Ent(P) :=
∫

Λ

Ent(Px)dx =

∫
Λ

lim
R→∞

1
R2 Ent(PR|(Π1 ⊗ Π1)R) (3.41)

where the subscript R denotes the restriction of a measure to the cube CR = [−R/2,R/2], Π1 ⊗ Π1 is
the law of two Poisson point processes of intensity 1 and Ent(µ|ν) =

∫
log dµ

dνdµ is the usual relative
entropy.

The specific relative entropy of the law of a signed point process is therefore the infinite-volume
limit of the usual relative entropy with respect to a reference measure. It favors disorder and thus tends
to separate the dipole points, so it can be used to control the partition function for small β, when this
term dominates. The interaction term competes with the entropy term, it gets stronger as β gets larger
and favors signed configurations which minimize the logarithmic interaction. The interesting point is
now that these two terms are bounded from below for β < 2, enabling us to say that, at the microscopic
level, the point process induced by the Gibbs measure has a typical behavior:

Theorem 3.12 ( [65], Theorem 1 and 2). Consider inverse temperatures 0 < β < 2 and Λ = [0, 1]2

the unit cube in R2. Let x1, . . . , xN be the point charges carrying a positive charge of intensity 1 and
y1, . . . , yN be the point charges carrying a negative charge of intensity −1. Let X be the set of locally
finite signed point configurations with the topology of local convergence. Denote the measure µ̃βN as
the push-forward of the Gibbs measure µβN by the map iN defined in (3.39).

Then sequence of probability measures µ̃βN satisfies a Large Deviation Principle at speed N with
good rate function given by

F sc
β − inf

Pinv,1(Λ×X)
Fβ (3.42)

where F sc
β is the lower semicontinuous envelope of Fβ.
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Moreover, the sequence of empirical measures associated to the positive and negative charges

(
θ+

N , θ
−
N
)

N :=

 1
N

N∑
i=1

δxi ,
1
N

N∑
i=1

δyi


N

(3.43)

converges µβN- almost surely to LΛ ⊗ LΛ, where LΛ is the uniform probability measure on Λ.

The result is derived using that the law of a special tagged signed point process is tight, and any
accumulation point as N → ∞ is a stationary probability measure. Note that it is proven that both
empirical measures θ+

N and θ−N converge a.s. to the uniform measure on Λ, meaning that they have the
same limit. But, in contrast to the one-component case, the optimal macroscopic distribution of the
points cannot be deduced so easily.

4. The 3D case

Onsager’s theory aimed in explaining two-dimensional flows. Two-dimensional flows or quasi-
two-dimensional flows are an important subject of study, as they appear in nature as atmospheric or
geostrophic turbulence, they are useful as a theoretical toy model and more easily allow for numerical
simulations. Despite this, of a major aim in turbulence theory is the analysis of the 3D case. The 3D
case is much more complex than the 2D case, starting from the simple observation that the vorticity
θ = curl u is no longer a scalar-valued object, but a three-dimensional vector. Moreover, in 3D, there
exist scale-invariant, turbulent cascade states.

We discuss here two approaches to the 3D case, namely the generalization of Onsager’s theory to
two-dimensional smooth manifolds, and the study of vortex filaments as equilibrium models of these 3-
dimensional cascade states. We can note first that the Euler equations for inviscid, incompressible fluid
flow on the sphere form an infinite-dimensional Hamilton system, just as in the 2D case. In analogy to
the 2D case, the maximum entropy state is constrained by the conserved energy, angular momentum,
and the Casimir integrals. The conservation of the Casimirs is equivalent to the preservation of the
vorticity value distribution of the (piecewise) continuous initial vorticity.

It is a challenging problem to classify such generally turbulent Euler flows. One possible scenario,
suggested by numerical integrations of the incompressible Euler equations for two-dimensional fluid
flows with more general, piecewise continuous and sparsely distributed initial vorticity, which show a
tendency of the vorticity field to become more and more filamentary, is that the solutions might in the
long run converge weakly to some stationary vorticity field.

4.1. Random circulations on the sphere

Kiessling and Wang [60] investigated how Onsager’s theory generalizes to two-dimensional
smooth manifolds, in particular the sphere S2 ⊂ R3, which is of potential relevance to meteorology
and planetary science. Note first that, as the Euler equations on S2 form a Hamiltonian system,
stationary solutions of these Euler equations and solutions that are stationary in a rigidly corotating
frame are exceptional, and so Euler flows on S2 that are launched by regular initial data will typically
remain genuinely dynamical forever, never approaching a stationary state in the C1,α- topology. In the
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case of the sphere S we have the mean-zero property∫
S2

G(x − y)dy = 0. (4.1)

As the vorticity distribution is preserved, see above, the question is whether the weak limit of the
vorticity field as t becomes large can be anticipated based on its initial data.

The authors in [60] showed in parts analogous results as in the 2D case, i.e. that the normalized
empirical vorticity converges in the limit as N → ∞, and the limit, the “typical point vortex
distributions”, are special solutions of the Euler equations of incompressible, inviscid fluid flow on the
sphere S2.

In particular, the typical states maximize a “negative 2-entropy” under some constraints, in analogy
to the characterization in 2D as minimizer of an energy-entropy functional. The authors note that on
the sphere, it is in general not true that the typical vorticities characterized by the limit of the point
vortex system are stationary solutions of Euler’s equation, but their level sets coincide, see [60], page
904.

4.2. Gibbs measures and vortex filaments

To the authors’ best knowledge, the study of 3D turbulence based on equilibrium statistical
mechanics started in the 1980s. Chorin [24] proposed several novel heuristic models [22, 23, 25] for
collections of three-dimensional vortex filaments. The basis of these models are experiments which
seem to suggest that the vorticity is concentrated in filament-like structures that dominate the small
scale evolution, see e.g. the books [24, 46]. Mathematically rigorous treaties appeared since 2000,
notably initiated by P-L Lions and Majda [70] and Flandoli [42], on the other hand. They differ in the
precise modelling of the vortex filaments:

Lions and Majda [70] use an asymptotic theory to simplify the interaction of the vortices and to
describe the filaments as functions on R2, after an appropriate parametrization. The parametrization is
performed over the center curve of the filament, which are asymptotically close to lines parallel to the
x3-axis, explaining the name “nearly parallel vortex filaments”. The work is based on the restriction
that the filaments cannot fold, while folding is a major feature of general vortex filaments, necessary
to prevent energy increase as a consequence of vortex stretching (see [24], Ch. 5). Flandoli [42] aimed
in a model which allows for vortex folding. He used a generalization of the approach of Chorin, who
modeled vortex filaments by trajectories of stochastic processes.

The ansatzes differ in several aspects, for example in the restrictions on the inverse temperature β.
While in the approach of [70] only positive temperatures are admissible, both positive and negative β,
up to a lower bound, similar to the Onsager 2D theory, have been considered. Moreover, in the
approximation of [70] the definition of energy and Gibbs measures is not difficult, the aim is to reach
a mean field result and several effective characterizations of the mean field distribution. Considering a
model of vortex filaments based on 3D Brownian paths as [42] poses the challenge that the naive
definition of the energy H of a Brownian filaments leads to an infinite quantity, and one has first to
find the correct definition to show exponential integrability of the energy with respect to the Wiener
measure, in order to show the existence of a Gibbs measure, as done in [44]. In the following
subsections, we will briefly sketch both approaches.
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4.2.1. Nearly parallel vortex filaments

Nearly parallel vortex filaments are filaments concentrated near a curve that is nearly parallel to the
x3-axis. They can be described by a function xi(σ, t) ∈ R2 where σ ∈ R parametrizes the asymptotic
center curve of the filament. The family xi(σ, t) ∈ R2 evolves according to the 2N coupled system of
equations

γ j
∂x j

∂t
= J

α jγ
2
j
∂2x j

∂σ2 +
1
2

N∑
i, j

γiγ j
xi − x j

|xi − x j|
2

 (4.2)

where α j ∈ R denotes the vortex core structure and J is the 2x2 matrix J = (0,−1; 1, 0). In the limit
when the core structures α j go to zero, xi(σ, t) can be treated as point vortices in two dimensions for
each value of the parameter σ: Roughly speaking, for each horizontal slice σ, we get N point vortices
moving in the plane independently from those in the other slices. Similarly, when the core structures
α j go to +∞, each filament becomes a straight line, i.e. x j(σ) becomes a constant point in R2, and all
the horizontal slices of these lines yield the same system of N point vortices in two dimensions.

The simplified asymptotic equations (4.2) have been derived by Klein, Majda and Damodaran [63]
and are valid as long as the Reynolds number is very large and the separation distance of the filaments
is much larger than the core thickness of each filament. Moreover, the wavelength of the nearly parallel
filament perturbations has to be much longer than the separation distance between the filaments.

The term involving ∂2 x j

∂σ2 arises from the linearized self-induction of the individual filaments, which
is a purely three-dimensional effect not present in the two-dimensional point vortex dynamics. In fact,
special solutions without σ-dependence coincide with solutions to the 2D point vortex equations.

The equilibrium statistical mechanics of nearly parallel vortex filaments was studied in [70] in the
case of positive inverse temperature β > 0, constant positive circulations γ j = 1, filaments which are
periodic in σ with period L and equal cores α j = α.

Thanks to these assumptions, the Hamiltonian can be written as

H3D =

N∑
j=1

α

2

∫ L

0

∣∣∣∣∣∣∂x j

∂σ

∣∣∣∣∣∣2 dσ −
1
2

N∑
i, j

∫ L

0
log |x j(σ) − xi(σ)|dσ. (4.3)

In contrast to the 2D case, the Gibbs measure in the 3D case is much more involved and is defined via
additional conserved quantities, it involves function space intergrals w.r.t. to a discounted conditional
Wiener measure. To define the Gibbs measure more precisely, some notation is needed: Let ΩN =

(ω1, . . . , ωN) denote periodic continuous paths with ω j ∈ C([0, 1],R2) and ω j(0) = ω j(1) for all 1 ≤
j ≤ N. Let νβ be the Wiener measure on (R2)N with diffusion constant 1/β conditioned on periodic
paths. We may write νβ as νβx,xdx where νβx,x is the conditional Wiener measure conditioned on paths
such that ω(0) = ω(1) = x ∈ R2. Note that

∫
dνβ = ∞, so νβ is not a bounded measure on the Banach

space
(
ΩN ,maxi,t∈[0,1] |ωi(t)|

)
. Moreover, νβx,x is not a probability measure as

∫
dνβx,x = 1

2πβt , and so
the rigorous construction of νβx,x goes via the explicit statement of its marginals through its action on
bounded continuous function, which we will skip here due to the heavy notation involved. The Gibbs
measure reads

µ3D
β =

1
ZN,β

exp

−∫ 1

0
dσ

[
βL2

αA22

]
+

N∑
j=1

λ1 · ω j(σ) + λ2

N∑
j=1

|ω j(σ)|2
 dνβx,x(Ω)dx (4.4)
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with 1
ZN,β

the partition function associated to µ3D
β , A the amplitude of the curves, λ1 ∈ R

2 a dilation factor,
λ2 constants. For special cases, see [70], page 85, the Gibbs measure is the law of a “quantum oscillator
process”, and under its law, the process Ω(t) is Gaussian and ω1(t), . . . , ωN(t) are independent.

In the broken path models, the continuous paths ω j(σ) are approximated by discrete curves, the so-
called broken path discretization in σ. This is done by discretizing the Hamiltonian and the conserved
quantities, i.e. we consider broken chains

xσj , 1 ≤ j ≤ N, 0 ≤ σ ≤ M , Mδ = 1 , (4.5)

with the periodicity condition xM
j = x0

j and replace in the definition of the Hamiltonian the term
log |x j(σ) − xi(σ)| by

∑M−1
σ=0 δ log |xσj − xσi |.

The broken path discretization is conceptually good as one recovers in the case of the extremely
coarse broken path with one single element the Gibbs measure for the 2D point vortex theory, and also
the 2D moment of inertia instead of the respective discrete conserved quantity in 3D. and the Gibbs
measure for the continuum 3D problem in the infinitely fine discretization case.

The analogue to the empirical measure in the three-dimensional vortex filament case is the empirical
distribution of the filament curves, for which Lions and Majda can characterize the mean field limit:

First, the empirical distribution of the filament curves converges to a probability density ρ(x) on R2

which is independent of σ. In formula (set the period L = 1, i.e. the vortices are 1-periodic)

Pµ3D

 lim
N→∞

1
N

N∑
i=1

δxi(σ) = ρ(x) for each σ

 = 1. (4.6)

Moreover, the probability density ρ(x) is given by

ρ(x) =
p(x, x, 1)∫
R2 p(x, x, 1)

(4.7)

where p satisfies the following mean field PDE:

∂p
∂t
−

1
2β

∆p + aβ
[(
−

1
2π

log |x|
)
∗ ρ

]
p + µ|x|2 p = 0 in R2 × (0, 1)

p|t=0 = δy(x)
(4.8)

with inverse temperature β, µ derived from a conserved quantity, and a a constant. It is worth noting
that the mean field limit for the broken path approximations, which is derived along the lines of [13]
and [69], converges to the continuum mean field equation (4.7) and (4.8).

4.2.2. Vorticity fields based on stochastic processes

Under the assumption that the vorticity field is concentrated along a curve Θ(t), t ∈ [0,T ], the
vorticity field θ(x) = curl u(x) is formally defined as

θ(x) = γ

∫ T

0
δ(x − Θ(t))Θ̇(t) dt (4.9)

where γ is the circulation, used here as a parameter.
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Now, recall that we can write, under suitable regularity and decay assumptions, the kinetic energy
H(u) = 1

2

∫
R3 |u(x)|2dx in terms of the vorticity field as

H =
1

8π

∫
R3

∫
R3

θ(x) · θ(y)
|x − y|

dxdy. (4.10)

Using (4.9), the kinetic energy (4.10) for vorticity fields on curves Θ(t) can be reformulated as

H =
γ2

8π

∫ T

0

∫ T

0

Θ̇(t) · Θ̇(s)
|Θ(t) − Θ(s)|

dtds. (4.11)

The problem is, however, that the energy of a smooth curve is infinite, due to the non-integrable
divergence along the diagonal. The first hope was that for fractal curves like a Brownian trajectory,
the foldings of the curve would have reduced its energy sufficiently, in the sense that |Θ(t) − Θ(s)|
could be less divergent and very fast changes in direction may produce cancellations in Θ̇(t) · Θ̇(s).
That hope was not rigorously confirmed, in part due to problems arising with the very frequent
self-intersections of non-smooth curves.

The cut-off necessary to get a finite energy can be obtained via lattice approximation. Indeed,
inspired by the lattice vortex filaments introduced in [23], Flandoli [42] introduced a filament-like
vortex structure based on a 3D Brownian path: Let the vorticity fields be concentrated over sets of the
form

CA = {x + Wt, x ∈ A, t ∈ [0,T ]} (4.12)

for Wt Brownian Motion in R3 andA ⊂ R3 a compact set supporting a probability measure ρ such that∫
A

∫
A

1
|x − y|

ρ(dx)ρ(dy) < ∞. (4.13)

Flandoli [42] prove that under the assumption (4.13), the total energy of the vortex structure is indeed
finite, though the interaction energy Hxy, defined formally as

Hxy =
γ2

8π

∫ T

0

∫ T

0

1
|x + Wt − (y + Ws)|

◦ dWs ◦ dWt (4.14)

gives an infinite contribution to the energy on the diagonal. This is done by showing that Hxy behaves
like 1

|x−y| up to lower order terms, which are, in fact, just logarithmic corrections. Thanks to these
scaling properties of the interaction energy when |x− y| → 0, it can be shown that the kinetic energy of
the vortex structure (CA, ρ) is a well defined real valued random variable with finite moments of every
order.

5. Vortex dynamics with random initial condition

Another viewpoint on the point vortex model is coming from the study of the weak vorticity
formulation of the 2D Euler equations with white noise initial condition. To introduce the weak
vorticity formulation, recall from Section 2 the classical results on the torus T = R2/Z2:
Wolibner [107] and Yudovich [58] showed that for initial data θ0 ∈ L∞(T), there exists a unique weak
solution of class L∞([0,T ] × T) ∩C([0,T ]; Lp(T)) for every p ∈ [1,∞), satisfying

〈θt, φ〉 = 〈θ0, φ〉 +

∫ t

0
〈θs, us · ∇φ〉 ds (5.1)
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for every φ ∈ C∞(T). If instead the initial data θ0 ∈ Lp(T) for some p ∈ [1,∞), there exists a global
weak solution of class C([0,T ]; Lp(T)), but uniqueness is an open problem.

In a search for weaker and weaker concepts of solutions, Delort [36], see also [38, 99], could prove
that for a measure-valued initial condition θ0 ∈ H−1(T) such that the velocity u0 ∈ L2, there is a
global solution measure-valued solution of class L∞([0,T ];M(T) ∩ H−1(T)), which satisfies for every
φ ∈ C∞(T)

〈θt, φ〉 = 〈θ0, φ〉 +

∫ t

0

∫
T

∫
T

Kφ(x, y)θs(dx)θs(dy) ds (5.2)

where
Kφ(x, y) = K(x − y)(∇φ(x) − ∇φ(y)) (5.3)

with K the Biot-Savart Kernel on the torus. Here M(T) denotes the space of finite signed measures.
Note that in Kφ(x, y) the singularity of the Biot-Savart kernel has been removed, Kφ(x, y) is bounded
and smooth outside the diagonal, but discontinuous along the diagonal. For this result, with a much
weaker solution concept, it was crucial to analyze precisely the concentration of vorticity along the
diagonal of the kernel Kφ(x, y).

Interpreting the Euler equations in weak vorticity form (5.2), Albeverio and Cruzeiro [2] showed
that Euler equations in weak vorticity form have a stochastic solution which is a stationary process
with time marginal given by white noise on the two-dimensional torus T.

While Albeverio and Cruzeiro used a Fourier formulation, Flandoli [43] recently proved the
existence of a solution as a limit of random point vortices, in the sense of a random version of the
classical existence result of a measure-valued solution, as outlined in the above chapters and e.g.
in [76]: Given an initial condition of point vortex form θ0(dx) =

∑
i γiδxi

0
, with real-valued intensities

γ1, . . . , γN and the vector of initial positions (x1
0, . . . , x

N
0 ) belonging to a set of full Lebesgue measures

in TN , there exists a unique measure-valued solution of the form θt(dx) =
∑

i γiδxi
t
fulfilling (5.2).

The point vortex approximation therefore interprets the white noise solution of Albeverio and
Cruzeiro as a limit of randomly distributed vortices with positive and negative random vorticities.
Moreover, the point vortex approximation gives an intuition why the white noise distribution solutions
do not concentrate on the diagonal, as it was discussed in the deterministic case, e.g. by Delort [36],
Schochet [99], Poupaud [87] and Di Perna and Majda [38]: at every instance in time, the point
vortices are distributed at random uniformly in space, independently from one another.

We outline the setting and results in the following. Consider N point vortices with positions Xi,N
t on

the torus with random intensities γ1, . . . , γN . Denote the rescaled point vortex system

ẋi,N
t =

N∑
j=1

1
√

N
γ jK

(
xi,N

t − x j,N
t

)
i = 1, . . . ,N (5.4)

with initial positions away from the generalized diagonal on the torus

∆N =
{
(x1, . . . xN) ∈ (T2)N : xi = x j for some i , j, i, j = 1 . . .N

}
(5.5)

This corresponds to the time evolution of the measure-valued vorticity field

θN
t =

1
√

N

N∑
n=1

γnδXn
t
. (5.6)
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By the results of Section 2, independently of the sign of γ1, . . . , γN , for ⊗N LebT - almost all initial
condition with values on the tous, the positions

(
x1,N

t , . . . , xN,N
t

)
remain different for all times.

Moreover, the measure ⊗N LebT is invariant, in the sense that for an initial condition which is a
random variable with distribution ⊗N LebT, the stochastic process

(
x1,N

t , . . . , xN,N
t

)
is stationary, with

invariant marginal law ⊗N LebT.
Let now (Ξ,F ,P) be a probability space, the intensities (γn) be an i.i.d. sequence of N(0, 1) random

variables and let the initial positions (Xn
0) be an i.i.d. sequence of torus-valued random variables,

independent of the intensity sequence and uniformly distributed. Note that under these conditions, the
random vector

(
(γ1, X1

0), . . . (γN , XN
0 )

)
has the law

λ0
N := ⊗N(N(0, 1) ⊗ LebT) (5.7)

The initial random distribution θN
0 is centered, as γn and 〈δXn

0
, ϕ〉 are independent and γn is centered,

and so E[γn〈δXn
0
, ϕ〉] = 0. Moreover, θN

0 has the same covariance as white noise, but it is not Gaussian.
By a Hilbert space-values version of the Central Limit Theorem, we have

Proposition 5.1 ( [43], Proposition 21). Let ωWN denote white noise. Then the initial random
distribution converges in law

θN
0 −→ ωWN (5.8)

and the convergence is in H−1−δ for every δ > 0.

Denote now by µ the law of White Noise. Then the following reformulation of Albeverio-Cruzeiro
holds:

Theorem 5.2 ( [43], Theorem 24). There exists a probability space (Ξ,F ,P) with the following
properties:

1. There exists a measurable map θ. : Ξ × [0,T ] → C∞(T)′ such that θ. is a time-stationary white
noise solution of Euler equations.

2. On (Ξ,F ,P) one can define the random point vortex system (5.4); it has a subsequence which
converges P-a.s. to the solution of point (1) in C

(
[0,T ]; H−1−(T)

)
Note that the solution of part (1) may not be unique. In fact, as remarked in [43], Section 4.1., a
statement of uniqueness in law is an open problem, as straties to prove it are usually based on the
uniqueness of the 1-dimensional marginals, which is again not known.

6. Generalized models

To study more turbulence phenomena, a more general set of models were introduced. These models
deal with generalized Euler equations, where the velocity is again given by (2.4) but with G the Greens
function of the fractional Laplacian (−∆)m/2, namely∂tθ + ∇·(uθ) = 0,

u = km ? θ,
(6.1)

where km = ∇⊥Gm and Gm is the Green function of the fractional Laplacian (−∆)m/2. The case of the
Euler equations corresponds to m = 2, and the case m = 1 is the so-called inviscid surface
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quasi-geostrophic equation (SQG). The inviscid SQG has been derived in meteorology to model
frontogenesis, namely the production of fronts due to tightening of temperature gradients [28, 55, 56]
(see also [32, 97] for the first mathematical and geophysical studies about strong fronts).

The equations (6.1) are often called generalized surface quasi-geostrophic equations, as
they bridge the cases of Euler and SQG and share a series of common physical features, such as the

emergence of inverse cascades [100, 104–106], and universal invariance properties.
In the geophysical literature, equations of the form (6.1) are often called α-models, as they

correspond to the Biot-Savart law
u := ∇⊥(−∆)−1+αθ, (6.2)

with α = 1
2 the SQG case and α = 0 the 2D Euler case.

6.1. Existence of solutions for generalized SQG equations

Generalized models share the same difficulties as the SQG. Existence of weak solutions to the SQG
equation in L2 is known since [89], see also [72] for solutions in Lp with p > 4/3. Weak solutions in
L2 on the torus for m < 1 were obtained in [17].

The SQG equation was first rigorously studied in [28] and shows, mathematically, interesting
analogies with the 3D Euler equation, nurturing the hope that the study of the regularity of the SQG
model could provide hints for the formation of singularities in the 3D Euler equation. Considerable
effort has been taken in this direction, for example in [28] a closing saddle scenario for a finite time
singularity has been suggested, but ruled out by Cordoba [30] and Cordoba and Fefferman [31].
Moreover, there are numerical results that if the SQG equations are singular, the formation of
singularities must be self-similar, e.g. [101, 102].

For initial data with sufficient smoothness, a local existence result is known [17], giving unique
solutions with the same regularity of the initial condition. Unlike the Euler equation, it is not known if
the inviscid SQG (as well as its generalized version) has a global solution. Actually, there is numerical
evidence, see [33], of emergence of singularities in the generalized SQG, for m ∈ [1, 2). Furthermore,
a numerical study by Ohkitani [84] shows that there is a value m ∈ [0, 2] for which the solutions behave
in the most singular manner.

Further results have been obtained for the evolution of vortex patches, namely solutions of SQG that
take only two values, and where the main interest is about the evolution of the interface. For example,
Cordoba, Fontelos, Mancho and Rodrigo [33] studied the patch problem for the SQG equation and
suggested a finite time singularity, and recently [62] proved finite-time blow up for for any sufficiently
small α > 0 for the modified SQG patch equation. See also [17, 34] for relevant results.

The stability of SQG vortices was investigated, among others, by Carton [26], Dritschel [39] and
many others, see e.g. [29] for references.

Generalized models, interpolating between the 2D Euler and the SQG case, have been studied
widely both in the mathematical (e.g. [27, 71]) and in the geophysical literature, see the above
references. The question of global regularity for these models with smooth initial data has been open
for all models except the 2D Euler case. However, interestingly, for the generalized models there are
no examples of solutions with unbounded growth of derivatives in time known, despite that these
models are more singular than the Euler case. In fact, [61] showed that high Sobolev norms are
arbitrary bounded on finite time intervals. Moreover, [34] find classes of global solutions and [18]
presents a regularity criterion for classical solutions.
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For existence of weak solution for the generalized SQG model one can see [17]. In [51] the
following result is given.

Theorem 6.1. [ [51], Th. 2.6.] Let θ0 ∈ L1(R2) ∩ L∞(R2), then there is a solution θ in distributions of
(6.1) on [0,∞) with initial condition θ0. Moreover

‖θ(t)‖Lp ≤ ‖θ0‖Lp ,

for every p ∈ [1,∞] and all t > 0.

Global flows of weak solution with a (formal) invariant measure, corresponding to the measure

µβ,α(dθ) =
1

Zβ,α
ε
−β‖(−∆)−

m
4 θ‖2−α‖θ(t)‖2

L2 dθ, (6.3)

with β = 0, as initial condition has been provided in [81].
For collapse and non-collapse results by [5] and [51], which are similar in spirit to the Euler case,

we refer to the results already described in Section 2.

6.2. The point vortex evolution

In analogy to (1.2), generalized point vortex models were recently defined and studied [45, 50, 51].
They describe the evolution of vortex positions according to the system of equationsẊ j =

∑
k, j γk∇

⊥Gm(X j, Xk),
X j(0) = x j,

j = 1, 2, . . . ,N, (6.4)

where Gm is the Green function of the operator (−∆)
m
2 . The equations (6.4) form a Hamiltonian

system with Hamiltonian HN(γN , XN) = 1
2

∑
j,k γ jγkGm(X j, Xk), where XN = (X1, X2, . . . , XN) and

γN = (γ1, γ2, . . . , γN). A natural invariant distribution for the Hamiltonian dynamics (6.4) should be
the measure

µN
β (dXN) =

1
ZN
β

e−βHN (XN ,γN ) d`⊗N , (6.5)

where we denoted by ` the normalized Lebesgue measure. In general, (6.5) does not make sense
anymore in the case m < 2 as the singularity of the Green function of the fractional Laplacian is
too strong. Nevertheless, the program developed in [10, 13, 14, 69] for point vortices for the Euler
equations can be performed, at the level of a regularized problem on the torus, i.e. for a regularization
of the Green function, also in the case β > 0 and m < 2, see Section 6.3.

Generalized point vortex models interpolate the Euler and the SQG point vortex models. SQG point
vortices have been studied e.g. by Lim and Majda [66], Taylor and Llewellyn Smith [103] and Badin
and Barry [5].

In [51] the validity of the point vortex system for the model (6.1) on the whole plane R2 was
investigated. It turns out that for the generalized models (6.1) the point vortex system provides a good
approximation, as already known for the case m = 2, see Section 2, Theorem 2.1. For technical reasons
one needs to work with a regularized vortex dynamics, i.e. the evolution

ẊN
ε, j =

N∑
k=1

γN
k kεm(XN

ε, j − XN
ε,k), (6.6)
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with initial conditions xN
1 , x

N
2 , . . . , x

N
N . This is a vortex system analogous to (6.4), but with the kernel

km = ∇⊥Gm replaced by a regularized version kεm. We can then define the empirical measure

θN
ε (t) =

N∑
j=1

γN
j δXN

ε, j(t)
, t ≥ 0.

and state the result:

Theorem 6.2. [ [51], Theorem 3.2.] Let m ∈ (1, 2), θ0 ∈ L1(R2)∩ L∞(R2) be non-negative and of mass
one, and let θ be a weak solution of (6.1) with initial condition θ0. Assume that θN

0 weakly converges
(in the sense of measures) to θ0 as N ↑ ∞, where

θN
0 =

N∑
j=1

γN
j δxN

j
,

for suitable γN
1 , . . . , γ

N
N ∈ R and xN

1 , . . . , X
N
N ∈ R

2. Then there is a sequence (εN)N≥1 such that θN,εN (t)
weakly converges to θ(t), uniformly in t in bounded sets.

Here we have simplified the statement of Theorem 6.2 for the sake of clarity. A part from the need
of a regularized dynamics, another issues made the proof of Theorem 6.2 more involved and technical
than in the Euler case: As uniqueness for initial conditions in L1(R2)∩ L∞(R2) is not known for m < 2,
a limit along a sequence of regularizations had to be taken. We refer to [51] for details.

Conversely it could be shown in can prove that solutions of (6.1) approximating point vortices
at time t = 0 converge to the point vortex evolution, at least for values of the parameter m not too
different from 2. A specific regularized setting is necessary, which we illustrate here for the simple
case of radially symmetric vortex blobs, and refer the interested reader to [51] for details.

Fix N ≥ 1, γ1, γ2, . . . , γN ∈ R, and N points x0
1, x

0
2, . . . , x

0
N ∈ R

2. Given a function η ∈ C∞c (R2) such
that η ≥ 0, η has support in B1(0) and

∫
R2 η(x) dx = 1, for every ε > 0 define the following vortex blobs

θε0,1 = ε−2η((x − x0
1)/ε), . . . , θε0,N = ε−2η((x − x0

N)/ε). Define

θε(0, x) =

N∑
j=1

γ jθ
ε
0, j(x), (6.7)

where γ1, . . . , γN are the intensities of each vortex blob, x0
1, . . . , x

0
N are the centers, and ε is small enough

that the balls (Bε(x0
j)) j=1,...,N are disjoint.

Theorem 6.3 ( [51], Th. 3.6.). Assume
√

3 < m < 2 and denote by θε a solution of (6.1), according to
Theorem 6.1, with initial condition θε(0) given by (6.7). Then for all T > 0,

lim
ε→0
〈θε(t), φ〉 =

N∑
j=1

φ(Xi(t)), t ∈ [0,T ],

where (Xi)i=1,...,N is the solution of the vortex evolution (6.4) with vortex intensities γ1, γ2 . . . , γN and
with initial conditions (x0

1, x
0
2, . . . , x

0
N).
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Note that it has been assumed that the vortex evolution (6.4) with initial condition (x0
1, x

0
2, . . . , x

0
N)

has a global solution. According to Theorem 2.3, if the intensities fulfill (2.13), global existence is true
for a.e. choice of (x0

1, x
0
2, . . . , x

0
N).

A corollary of the proof of Theorem 6.3 is the so-called localization property , which holds also
in the Euler case [75]: The evolution of (6.4) started on a vortex blob stays around the center of
pseudovorticity. We refer to [51], Proposition 3.8., for the precise statement. See also [15, 49].

6.3. Limit theorems for the invariant distribution

As mentioned above, the results on limit distributions developed in [10,13,14,69] for point vortices
for the Euler equations cannot be easily transferred to generalized point vortices, as in general, (6.5)
does not make sense for m < 2.

Nevertheless, some results in this direction were obtained in [50], using a regularization to deal with
the singularity of the Green function of the fractional Laplacian, which is in general too strong. The
original problem is recovered in the limit of infinite vortices, choosing the regularization parameter
ε so that it goes at the same time to 0 as N goes to infinity. However, the speed of convergence of
ε = ε(N) must be at least logarithmically slow in terms of N.

In this section, we describe the setting in [50] and the obtained results.
Let us consider (6.1) on the torus with periodic boundary conditions and zero spatial average. Recall

that the measure

µN
β (dXN , dγN) =

1
ZN
β

ε−βHN (XN ,γN )d`⊗N dν⊗N .

is well defined when the intensities are all positive. When intensities are allowed to be negative, the
singularity of the Green function is too strong and the exponential is not integrable. Writing the Green
function in terms of the eigenvectors of the fractional Laplacian, a regularization of the Green function
can be defined as

Gm,ε(x) =

∞∑
k=1

λ
−m

2
k ε−ελkek(x)ek(y), (6.8)

so the fractional operator was regularized to reads (−∆)m/2e−ε∆ and has eigenvalues λm/2eε |k|
2
.

Likewise we define a regularized Hamiltonian HN
ε by replacing the Greens function with G with the

regularized Greens function (6.8). The regularized motion is still Hamiltonian with the Hamiltionian
HN
ε .

Let ν be a probability measure on the real line with support on a compact set Kν ⊂ R. In other
words, assume that intensities are bounded in size by a deterministic constant. We denote the prior
distribution on vortex intensities by the measure ν. A natural invariant distribution for the regularized
Hamiltonian dynamics with random intensities then reads

µN
β,ε(dγ

N , dXN) =
1

ZN
β,ε

ε−
β
N Hε

N (γN ,XN ) d`⊗N dν⊗N , (6.9)

where ` is the normalized Lebesgue measure on the torus T ⊂ R2 and ZN
β,ε is the normalization factor.

Under the conditions β > 0 and α < 2, and when ε(N) ↓ 0, propagation of chaos can be shown,
namely vortices decorrelate and in the limit are independent.
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Theorem 6.4 (Convergence of finite dimensional distributions). Assume m < 2 and β > 0, and fix a
sequence ε = ε(N) ↓ 0 so that

ε(N) ↓ 0 as N ↑ ∞, ε(N) ≥ C(log N)−
2

2−m (6.10)

with C large enough (depending on ν and β). Then, as N → ∞, the k-finite dimensional marginals of
µN
β,ε converge to (ν ⊗ `)⊗k. In particular, propagation of chaos holds.

Note that the above theorem as well as the other results are asymptotic both in the number of
vortices and the regularization parameter ε, and thus they capture the behaviour of the original system.
However, the results hold, only if ε is allowed to go to zero with a speed which is at least logarithmically
slow with respect to the number of vortices.

Next, also a Law of Large Numbers for the joint empirical distribution holds:

Theorem 6.5 (Law of Large Numbers, [50] Theorem 3.2.). Consider a system of N point vortices
at equilibrium, with equilibrium measure (6.9), described by the N pairs (γN

1 , X
N
1 ), . . . , (γN

N , X
N
N ) of

intensity and position. Assume m < 2 and β > 0, and define the joint empirical distribution

ηN =
1
N

N∑
j=1

δ(γN
j ,X

N
j )

of intensity and position of point vortices. Choose ε = ε(N) as in the previous theorem. Then

ηN ⇀ ν ⊗ `, in probability

as N ↑ ∞.

In terms of θ, the limit is a stationary solution of the original equation. The Law of Large Numbers
for ηN implies a Law of Large Numbers for the empirical pseudo-vorticity

θN =
1
N

N∑
j=1

γN
j δXN

j
. (6.11)

Indeed, convergence of ηN to ` ⊗ ν implies immediately the convergence of θN to ν(γ)`, with ν(γ) =∫
γ ν(dγ).
Likewise, a Central Limit Theorem holds. The limit Gaussian distribution for the θ variable turns

out to be a statistically stationary solution of the equations.
Furthermore, one can analyze fluctuations with respect to the limit stated in the previous theorem,

namely the limit of the measures
ζN =

√
N(ηN − ν ⊗ `)

to a Gaussian distribution.
To state properly the covariance, we define the operators E , G as

G φ(x) :=
∫
T

Gm(x, y)φ(y) `(dy),

E φ(γ, x) := γ

∫
Kν

∫
T

γ′Gm(x, y)φ(γ′, y) ν(dγ′)`(dy).
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The operator G provides the solution to the problem (−∆)
m
2 Φ = φ with periodic boundary conditions

and zero spatial average, and extends naturally to functions depending on both variables γ, x by acting
on the spatial variable only.

Theorem 6.6 (Central limit Theorem, [50] Theorem 3.4.). Assume β > 0 and choose ε = ε(N) as
in (6.10). Then (ζN)N≥1 converges, as N ↑ ∞, to a Gaussian distribution with covariance I − β(I +

βΓ∞G )−1E , in the sense that for every test function ψ ∈ L2(ν ⊗ `), 〈ψ, ζN〉 converges in law to a real
centred Gaussian random variable with variance

σ∞(ψ)2 := 〈I − β(I + βΓ∞G )−1E (ψ − ψ̄), (ψ − ψ̄)〉,

where ψ̄ = (ν ⊗ `)(ψ) and Γ∞ = ν(γ2).

Note furthermore that
√

N(θN − ν(γ)`) converges to a Gaussian distribution with covariance Γ∞(I +

βΓ∞G )−1, in the sense that for every test function ψ ∈ L2(`), 〈
√

N(θN − ν(γ)`), ψ〉 converges in law to a
real centred Gaussian random variable with variance

σ̃∞(ψ)2 = Γ∞〈(I + βΓ∞G )−1(ψ − ψ̄), (ψ − ψ̄)〉.

The Gaussian measure obtained corresponds to the invariant measure (6.3) of the original system (6.1),
when one takes α = 1/Γ∞. This yields a central limit theorem for the empirical pseudo-vorticity θN

(6.11).
Note that the above results hold also in a quenched version, namely if intensities are non-random

but given at every N. For the central limit theorem, some concentration condition on the convergence
of the intensities needs to be assumed.

The above results were performed on a two-dimensional torus, where, because of the periodic
boundary conditions, the Green function contains no boundary term and satisfies a zero mean
property (4.1), as already mentioned in the case of m = 2. Limit theorems on a general bounded
domain, as in [13] or [82], where Dirichlet boundary conditions are used, are much more involved and
are subject of an on-going research.

6.4. Velocity statistics for turbulent flows

Another difference between the Euler case m = 2 and the case m , 2 is on the level of a
thermodynamical limit, i.e. for N → ∞, together with an infinite volume limit such that the density of
vortices is constant. In the the Euler case m = 2 the thermodynamical limit does not exist due to the
logarithmic divergence with the number of vortices.

In the case m , 2, however, it is possible to consider a proper thermodynamical limit and
consequently resuls are independent of the number of point vortices in the domain considered, but
depend on the value of m.

In [29] an analytical form of the probability density distribution of the velocity fluctuations for
different degrees of locality is shown in the case of a neutral system with randomly distributed,
uncorrelated vortices with uniform probability on a disk of (in the thermodynamical limit diverging)
radius. It is shown moreover that the central region of the distribution is not Gaussian, in contrast to
the case of 2D turbulence, but can be approximated with a Gaussian function in the small velocity
limit. The tails of the distribution exhibit a power law behavior, withe the exponent depending on m,
and self similarity in terms of the density variable.
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