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Diabetic retinopathy (DR) is a common complication of diabetes and constitutes a major

cause of vision impairment and blindness in the world. DR has long been described

exclusively as a microvascular disease of the eye. However, in recent years, a growing

interest has been focused on the contribution of neuroretinal degeneration to the

pathogenesis of the disease, and there are observations suggesting that neuronal death

in the early phases of DR may favor the development of microvascular abnormalities,

followed by the full manifestation of the disease. However, the mediators that are involved

in the crosslink between neurodegeneration and vascular changes have not yet been

identified. According to our hypothesis, vascular endothelial growth factor (VEGF) could

probably be the most important connecting link between the death of retinal neurons

and the occurrence of microvascular lesions. Indeed, VEGF is known to play important

neuroprotective actions; therefore, in the early phases of DR, it may be released in

response to neuronal suffering, and it would act as a double-edged weapon inducing

both neuroprotective and vasoactive effects. If this hypothesis is correct, then any retinal

stress causing neuronal damage should be accompanied by VEGF upregulation and by

vascular changes. Similarly, any compound with neuroprotective properties should also

induce VEGF downregulation and amelioration of the vascular lesions. In this review,

we searched for a correlation between neurodegeneration and vasculopathy in animal

models of retinal diseases, examining the effects of different neuroprotective substances,

ranging from nutraceuticals to antioxidants to neuropeptides and others and showing

that reducing neuronal suffering also prevents overexpression of VEGF and vascular

complications. Taken together, the reviewed evidence highlights the crucial role played

by mediators such as VEGF in the relationship between retinal neuronal damage and

vascular alterations and suggests that the use of neuroprotective substances could be

an efficient strategy to prevent the onset or to retard the development of DR.
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INTRODUCTION

Diabetes is a disease affecting a growing number of people worldwide. It is expected to increase to
a little <700 million by 2045, with almost half of diabetics suffering from the slowly progressive
type 2 diabetes, which in many cases remains undiagnosed (Cho et al., 2018). Type 2 diabetes is the
main cause of diabetes in the population aged 40–74 years, although there is an increasing number
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of people aged <40 suffering from this form of the disease
(Pantalone et al., 2015). Untreated or poorly controlled
diabetes may lead to the appearance of serious complications,
including diabetic retinopathy (DR). DR is the most common
complication of diabetes and the leading cause of preventable
visual impairment in the working age population in developed
countries. It is also one of the main causes of blindness
worldwide. In 2010, it has been estimated that about 95 million
people suffered from a form of DR (Leasher et al., 2016). Due to
the increasing number of diabetic people and the increased life
expectancy, these numbers are expected to rise in the near future.

DR is a multifactorial progressive disease characterized by
an extremely complex pathogenesis involving different factors
and a variety of pathophysiologic mechanisms. Hyperglycemia
represents a link between diabetes andDR complications. Indeed,
prolonged high glucose levels damage the retina, inducing
metabolic changes that result in dysregulation of a number
of mediators, including growth factors, neurotrophic factors,
cytokines/chemokines, vasoactive agents, and inflammatory and
adhesion molecules. The altered retinal microenvironment is
responsible for the appearance and the progression of extended
vascular lesions and cell death (Qian and Ripps, 2011; Ola et al.,
2012; Tarr et al., 2013; Abcouwer and Gardner, 2014).

DR has often been regarded as a purely vascular disorder
of the retina. Clinically, it is classified as non-proliferative,
characterized by microvascular damage, including blood-retina
barrier (BRB) breakdown, basement membrane thickening,
leukocyte adhesion, occurrence of acellular capillaries,
capillary degeneration, pericyte loss; or proliferative, where
neoangiogenesis phenomena are observed and new blood vessels
are formed. These neovessels may generate a mechanic traction,
causing retinal detachment and consequent blindness (Stitt et al.,
2013). The key factor involved in pathologic vascular changes,
from microvascular damage to neoangiogenesis, is vascular
endothelial growth factor (VEGF). Consequently, DR treatments
aremainly based on intraocular delivery of anti-VEGFmolecules;
however, the intravitreal administration of anti-VEGF drugs
has several drawbacks, not the least of which is the fact that,
due to the short half-life of the drug, frequent intraocular
injections are necessary, generating different side effects, such

Abbreviations:ACE, Angiotensin-converting enzyme; ADNP, Activity-dependent

neurotrophic protein; AGE, Advanced glycation end products; AngI, Angiotensin
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type A receptor; ETRB, ET type B receptor; GLP-1, Glucagon-like peptide-

1; HIF, Hypoxia-inducible factor; HIF-1α, α subunit of HIF-1; ICAM-1,

Intercellular adhesion molecule-1; IL-1β, Interleukin-1β; IL-6, Interleukin-6; NF-

κB, Nuclear factor kappa-light-chain-enhancer of activated B cells; Nrf2, Nuclear

factor erythroid-2-related factor 2; PACAP, Pituitary adenylate cyclase-activating
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receptor α; RAS, Renin-angiotensin system; SRIF, Somatotropin release inhibiting
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peptide type 1 receptor; VPAC2, Vasoactive intestinal peptide type 2 receptor;
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as endophthalmitis and cataracts (Simo et al., 2014; Duh et al.,
2017; Zhao and Singh, 2018). In addition, anti-VEGF drugs are
used in mid to late stages of DR—when the vascular phenotype
becomes evident, the disease is well-established, and vision has
been significantly affected. Therefore, new alternative approaches
to the current standard are urgently required to develop effective
and early treatment options that may counteract the progression
of DR at stages preceding the appearance of an evident vessel
damage or vessel proliferation.

In addition to, and in contrast with, the view of DR
as a purely vascular pathology, several investigations have
studied the involvement and the role of retinal neurons in
the disease. Indeed, since neurons are the most fragile and
demanding cellular elements in the retina, it is conceivable
that they are the first to be affected by damage when
the microenvironment composition is drastically changed.
Consistent with this hypothesis, a large amount of data has been
collected in recent years, confirming that considerable damage of
retinal neurons is present in early stages of DR (Antonetti et al.,
2006; Hernandez and Simo, 2012; Zhang et al., 2013; Jindal, 2015;
Simo and Hernandez, 2015; Hernandez et al., 2016b) and that
DR may be considered a neurodegenerative disease of the retina
(Barber, 2003).

Summarizing the evidence, one can say that both retinal
neurons and vessels are affected in DR; therefore, the question
is what kind of relationship, if any, exists between neuronal and
vascular damage in DR. A first possibility is that there is no
relationship and that neurons on one side and vascular elements
on the other independently respond to the alterations caused by
high glucose. Only at late stages of the disease, when proliferating
vessels cause retinal detachment, the vascular pathology would
affect neuronal function and survival. This hypothesis seems
unlikely because neuronal, glial, and vascular cells are known to
be intimately connected in the neurovascular unit, and recently
reviewed evidence indicates that glial, neural, and microvascular
dysfunctions are interdependent and intimately involved in the
development of DR (Hammes, 2018; Simo et al., 2018). In this
line, the American Diabetes Association has defined DR as a
tissue-specific neurovascular complication involving progressive
disruption of the interdependence between multiple cell types
in the retina (Solomon et al., 2017; Simo et al., 2018). In
particular, the function of the neurovascular unit is precociously
affected in DR often before microvascular complications can
be appreciated (see Simo and Hernandez, 2015, for references).
Therefore, we favor the hypothesis that in DR, retinal neurons are
primarily affected and their reaction to stress induces the vascular
complications. Supporting this hypothesis, there are observations
suggesting that brain damage, together with the activation of
death pathways, also stimulates protective mechanisms mediated
by chemical signals derived from the injured brain itself (Iadecola
and Anrather, 2011). In the case of DR, one of these signals is
likely to be represented by VEGF, which would be released by
the retina in the early phases of the disease as an immediate
response to neuronal stress. Indeed, this growth factor not only
is a powerful inducer of vascular responses but is also known
to exert important neuroprotective actions in the retina (Azzouz
et al., 2004; Saint-Geniez et al., 2008; Romano et al., 2012;
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FIGURE 1 | Hypothetic cascade of events occurring in the retina during

diabetes and leading to the development of DR. Hyperglycemia induces

metabolic changes in the retinal milieu, leading to oxidative stress and

inflammation. Oxidative and inflammatory processes cause damages to

neuron and glial cells both directly and indirectly by inducing alterations in the

production and release of neurotrophic factors. As a consequence,

neurodegenerative processes are activated. In an attempt to protect

themselves, suffering neurons would trigger production and release of VEGF,

mainly by Müller cells, that may act as a neuroprotectant, thus counteracting

neurodegeneration (blue arrow). However, if in the early phases of DR VEGF

may act as a neuroprotective factor, its prolonged release triggers vascular

damages (which, in turn, may reinforce in a different fashion inflammation and

retinal damage), ultimately leading to new vessel proliferation. If untreated,

neurodegenerative and neovascular processes concur to visual dysfunction,

finally leading to vision loss.

Beazley-Long et al., 2013; Foxton et al., 2013; Casini et al., 2014;
Hombrebueno et al., 2015; Amato et al., 2016). Consistent with
this view, glutamate excitotoxicity, one of the major causes of
retinal neuronal death in DR, has been reported to upregulate
VEGF production in diabetic retinas (Cervantes-Villagrana et al.,
2010), while inhibition of NMDA receptors resulted in decreased
vitreoretinal VEGF in diabetic rats (Kusari et al., 2010). In
general, it is interesting to note that in studies analyzing
VEGF in DR models after treatment with neuroprotectants,
a decrease in apoptotic markers is often associated with a
decrease in VEGF expression and/or release (see for instance
Amato et al., 2016, 2018b).

In summary, our hypothesis is that, in early DR, VEGF
is expressed and released to protect retinal neurons. In this
phase, VEGF would not act as a proangiogenic but as a
prosurvival factor. Then, a prolonged upregulation of VEGF
would lead to microvascular lesions and, further on, to the
full manifestation of the pathology (Figure 1). If our hypothesis
is correct, then any retinal stress causing neuronal damage
should be accompanied by increased VEGF expression and/or
release and by vascular changes. Similarly, any compound
with neuroprotective properties should also induce VEGF
downregulation and amelioration of the vascular lesions. The
present review examined a variety of studies in models of DR
and of other retinal diseases to highlight the co-occurrence of
neuronal damage and VEGF upregulation (with the appearance
of vascular lesions) as well as the concomitant neuroprotection
and VEGF downregulation (with the amelioration of vascular
lesions) in response to neuroprotective treatments.

METHODOLOGY AND DEFINITIONS

We considered different compounds belonging to different
molecular classes but sharing the characteristic of protecting
retinal neurons from a variety of stressing conditions. For
each compound, a possible correlation between neuroprotective
effects and the effects on VEGF expression/release or on
vasculopathy has been considered. For the sake of simplicity,
only in vivo and ex vivo studies have been reviewed. A
compound was considered “neuroprotective” when it induced
a decrease of oxidative stress, inflammation, or apoptotic
markers or if it induced an amelioration of retinal function
as evaluated, for instance, with electroretinogram (ERG).
It was considered “vasoprotective” when it reduced VEGF
expression/release, BRB leakage, or vascular lesions (including
basement membrane thickening, leukocyte adhesion, occurrence
of acellular capillaries, capillary degeneration, pericyte loss). For
each compound, papers are first reviewed that documented
either neuroprotective or vasoprotective effects of the compound.
Then, we considered the papers in which both neuroprotective
and vasoprotective effects were documented in the same
experimental samples.

NUTRACEUTICALS

The term “nutraceutical” indicates a food (or part of a food)
that can provide health benefits, including the prevention
and/or treatment of a disease (Brower, 1998). Nutraceuticals are
effective antioxidants since they may act as direct scavengers of
reactive oxygen species or they may induce the expression of
antioxidant enzymes (Milatovic et al., 2016). They may also exert
anti-inflammatory effects by inhibiting pathways linked to the
production of inflammatory mediators, including those activated
by the nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) (Aggarwal et al., 2009). These compounds can be
used as natural dietary supplements and therefore can be easily
administered, are readily available, and are not likely to induce
collateral side effects (Chauhan et al., 2013). Nutraceuticals are
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known to display neuroprotective effects due to their antioxidant
and anti-inflammatory properties and to protect the retina from
the vascular damage typical of DR (Rossino and Casini, 2019).

Curcumin
Curcumin is a yellowish polyphenolic substance constituting the
major active compound of Curcuma longa. It is largely known for
its antioxidant and anti-inflammatory properties (Hewlings and
Kalman, 2017), and it may have therapeutic potential for retinal
diseases (Wang et al., 2013).

Some studies reported beneficial effects of curcumin on
the side of retinal neuroprotection. For instance, in rats with
streptozotocin (STZ)-induced diabetes (a model of type 1
diabetes), curcumin inhibited retinal oxidative stress, protected
Müller cells, and prevented the downregulation of glutamine
synthetase, the enzyme involved in glutamate detoxification and
recycling, thus protecting the retinal neurons from glutamate
excitotoxicity (Zuo et al., 2013). On the other hand, there are
data documenting an inhibitory effect of curcumin on diabetes-
induced VEGF upregulation in diabetic rat retinas (Mrudula
et al., 2007).

Other studies investigated the neuroprotective actions of
curcumin together with its effects on VEGF expression and/or
retinal vascular lesions. In particular, in STZ diabetic rats, oral
curcumin administrations significantly reduced retinal oxidative
stress, inflammation, thinning of the retina, and apoptosis,
inhibiting, at the same time, VEGF upregulation and thickening
of retinal capillary basement membrane (Kowluru and Kanwar,
2007; Gupta et al., 2011; Yang et al., 2018). Similarly, in a rat
model of retinal ischemia-reperfusion, curcumin administered
with the food inhibited NF-κB activation, with a consequent
decrease of pro-inflammatory cytokines, and protected retinal
neurons from apoptosis, while it also reduced the retinal capillary
degeneration induced by the ischemic treatment (Wang L. et al.,
2011).

Resveratrol
Resveratrol is a polyphenol found in different plants, such as
grapes, peanuts, and berries. Similar to curcumin, it possesses
important antioxidant properties (Gerszon et al., 2014).

There are studies reporting neuroprotective effects, while
other investigations describe vasoprotective actions of resveratrol
in retinal diseases. Indeed, orally administered resveratrol has
been reported to decrease oxidative stress, NF-κB activation, and
apoptosis in diabetic rat or mouse retinas (Kim et al., 2010; Soufi
et al., 2012). On the other hand, additional studies in mice with
STZ-induced diabetes documented the efficacy of resveratrol in
decreasing diabetes-induced retinal VEGF upregulation, pericyte
loss, and BRB breakdown (Kim et al., 2012).

Different studies have reported concomitant protective effects
of resveratrol against diabetes-induced retinal inflammation or
apoptosis of retinal cells on one side and VEGF overexpression,
BRB leakage, or leukocyte adhesion on the other (Kubota et al.,
2011; Sohn et al., 2016; Chen Y. et al., 2019). Similarly, in a
mouse model of endotoxin-induced uveitis, resveratrol led to
significant and dose-dependent suppression of oxidative stress,
NF-κB activation, and leukocyte adhesion (Kubota et al., 2009).

Carotenoids
The carotenoids lutein and zeaxantin are themain constituents of
oranges, yellow fruits, and dark green leafy vegetables. Together
withmeso-zeaxanthin, they form themacular pigment of primate
eyes and prevent oxidative damage to the retina (Jia et al., 2017).

Likely due to its antioxidant properties, lutein is a recognized
protective agent in the retina. In particular, in models of DR
or of light-induced retinal degeneration, lutein was reported to
preserve neurotrophin levels, protect retinal cells from apoptosis,
and prevent both the oxidative stress and functional visual
impairment caused by the disease (Sasaki et al., 2010, 2012; Hu
et al., 2012; Ozawa et al., 2012).

Several papers have reported an effect of lutein and zeaxantin
favoring both retinal cell protection and retinal function on
one hand and inhibition of VEGF increase and vascular
lesions on the other. Indeed, in retinas of STZ rats, zeaxantin
inhibited the diabetes-induced oxidative stress as well as the
upregulation of VEGF and intercellular adhesion molecule-
1 (ICAM-1), an indicator of leukocyte adhesion (Kowluru
et al., 2008). In addition, in the rat STZ model, a nutritional
supplement containing lutein, zeaxantin, and other nutrients
preserved retinal function, as evaluated with ERG, and at
the same time reduced the diabetes-induced increase of NF-
κB activation and interleukin-1β (IL-1β) expression, while it
decreased VEGF and capillary degeneration (Kowluru et al.,
2014). Similarly, in an obesity-induced high-fat diet rat model,
lutein and zeaxantin, or meso-zeaxantin, reduced oxidative
stress by promoting the expression of antioxidant enzymes and
inhibited NF-κB activation, while they also inhibited VEGF and
ICAM-1 upregulation and vascular pathology (Orhan et al., 2016;
Tuzcu et al., 2017).

Catechins
Green tea is a popular beverage rich in catechin, epicatechin,
epigallocatechin, epicatechin gallate, and epigallocatechin gallate.
Among these, epigallocatechin gallate is the most abundant
catechin in green tea and possesses antioxidant and anti-
inflammatory activities (Chu et al., 2017).

Catechins have been shown to exert powerful anti-
inflammatory effects in the retinas of STZ rats by decreasing
NF-κB activation and the production of inflammatory factors,
such as tumor necrosis factor α (TNFα), IL-6, and IL-1β (Wang
N. et al., 2018). In addition, epicatechin has been shown to
exert neuroprotective effects in retinas of diabetic rats likely by
reducing the production of the precursor form of nerve growth
factor (Al-Gayyar et al., 2011). On the vascular side, recent
observations reported an effect of epigallocatechin-3-gallate in
reducing vascular leakage and permeability in an in vivo model
of VEGF-induced BRB breakdown (Lee et al., 2014).

There is evidence of concomitant neuroprotective and
vasoprotective effects of catechins in rat models of DR. In
particular, orally administered green tea was observed to protect
the diabetic retina against oxidative stress and promote glutamate
uptake by Müller cells. It also preserved retina functionality, as
demonstrated by ERG responses, and reduced BRB permeability,
as demonstrated by reduced downregulation of occludin, a tight
junction protein of the BRB (Silva et al., 2013). In addition,

Frontiers in Neuroscience | www.frontiersin.org 4 November 2019 | Volume 13 | Article 1172

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Rossino et al. Neurovascular Crosslink in Diabetic Retinopathy

green tea was observed to prevent not only the diabetes-induced
decrease of antioxidant enzymes and the increase of TNFα but
also VEGF upregulation and the increase of retinal capillary
basement membrane thickness (Kumar et al., 2012a).

Hesperetin
Hesperetin is a flavonoid polyphenol that is commonly present in
citrus fruits and has been reported to exert antioxidant effects in
diabetic retinas (Rossino and Casini, 2019).

In rodent models of retinal ischemia-reperfusion, hesperetin
displayed potent neuroprotective actions as it prevented
oxidative stress and apoptosis and preserved retinal layer
thickness (Kara et al., 2014; Shimouchi et al., 2016). In addition,
in retinas of STZ-treated rats, hesperetin administrations
significantly reduced VEGF overexpression, BRB leakage, and
pathologic vascular changes (Kumar et al., 2012b).

There is only one report in the literature concerning
neuroprotective and vasoprotective effects of hesperetin in the
same experimental material. In retinas of STZ-induced diabetic
rats, orally administered hesperetin was effective in promoting
antioxidant enzyme expression and preventing the increase of the
pro-inflammatory cytokines TNFα and IL-1β and of apoptotic
markers, while a protective effect of limiting the increase of
basement membrane thickness was also reported (Kumar et al.,
2013).

Other Nutraceuticals
There are a number of additional nutraceuticals that have
been sporadically reported to exert both neuroprotective and
vasoprotective effects, mostly in models of DR.

Quercetin, a common flavonoid polyphenol found in
vegetables and fruits, has been reported to protect the diabetic
retina from oxidative stress, inflammation, and histopathologic
changes (Kumar et al., 2014; Ola et al., 2017) probably by
promoting the expression of neurotrophic factors (Ola et al.,
2017). Notably, quercetin has also been reported to prevent
diabetes-induced retinal VEGF upregulation (Chen B. et al.,
2017). Chrysin, another natural flavonoid, is found in herbs
and honeycomb. It may exert neuroprotective effects since it
has been shown recently to protect retinal photoreceptors by
maintaining valid retinoid visual cycle-related components in the
retinal pigment epithelium of diabetic rats (Kang et al., 2018).
It has also been observed to inhibit VEGF upregulation, BRB
leakage, and vascular lesions in the retinas of diabetic db/db
mice (Kang et al., 2016). Anthocyanins constitute a further class
of flavonoids, which are responsible for the red or blue color
of plants, fruits, and flowers. Blueberry anthocyanins have been
observed to protect diabetic rat retinas from oxidative stress and
decrease VEGF levels in these same retinas (Song et al., 2016),
while a Vaccinium myrtillus extract, containing large amounts
of anthocyanins, reduced VEGF expression and preserved BRB
integrity in retinas of STZ rats (Kim et al., 2015).

Different compounds have been described to exert at the same
time neuroprotective and vasoprotective effects. For instance,
eriodictyol, one of the most abundant dietary flavonoids,
administered to STZ rats inhibited the retinal expression of
the pro-inflammatory cytokine TNFα, while it also decreased

the retinal levels of VEGF and of ICAM-1 and suppressed
BRB breakdown (Bucolo et al., 2012). In both an ex vivo
mouse model of retinal oxidative stress and the in vivo STZ rat
model, Lisosan G, a fermented powder obtained from organic
whole grains, has been described recently to exert powerful
antioxidant, antiapoptotic, and anti-inflammatory actions. It also
preserved retinal function, as evaluated with ERG. Concurrently,
it inhibited upregulation of retinal VEGF and prevented BRB
breakdown (Amato et al., 2018b). Similarly, an ethanolic extract
of Morus alba leaves displaying high free radical scavenging
activity reduced oxidative stress, inflammation, apoptosis, and
VEGF expression in retinas of STZ rats (Mahmoud et al., 2017).
Also, the traditional Chinese prescription Tang Wang Ming Mu
granule has been found to protect diabetic rat retinas from
oxidative stress and inflammation reducing at the same time
retinal VEGF levels and vascular changes (Chen M. et al., 2017).
Finally, kaempferol, a flavonol found in tea, broccoli, apples,
strawberries, and beans, protected rat retinas from sodium
iodate-induced retinal degeneration by reducing histopathologic
changes and apoptosis, while it also reduced the upregulated
VEGF protein expression (Du et al., 2018).

Taken together, these studies with nutraceuticals documented
an action of these compounds that was at the same time both
neuroprotective and vasoprotective. Indeed, the data, prevalently
obtained in rodent models of DR, revealed that nutraceuticals,
acting as antioxidant and/or as anti-inflammatory agents, not
only are effective in reducing retinal neurodegeneration but also
prevent the deleterious increase of VEGF levels and consequent
vascular lesions.

ANTIOXIDANTS

The nutraceuticals discussed above display important
antioxidant capabilities, but other antioxidant compounds
have been also described, which may act in retinal diseases and
protect both retinal neurons and vessels.

Calcium Dobesilate
Calcium dobesilate (CaD) is an oxygen free radical scavenger
(Brunet et al., 1998; Szabo et al., 2001). It is considered a
vasoprotective drug, and it has been approved for the treatment
of DR in several countries for many years (Tejerina and Ruiz,
1998; Berthet et al., 1999); however, it has not been widely used
in clinical practice. In effect, CaD exerts multifaceted actions
contrasting neurovascular unit impairment, and therefore, it can
be considered a good candidate drug for targeting the early stages
of DR. In particular, the effects of CaD in DR have been recently
reviewed, and they include (i) reduction of capillary permeability
and consequent BRB leakage; (ii) inhibition of endothelial
cell apoptosis; (iii) antioxidant activity and protection against
reactive oxygen species; and (iv) inhibition of the expression of
VEGF and ICAM-1 (Zhang et al., 2015).

In retinas of db/db mice (a model of type 2 diabetes) and
in retinas of STZ rats, CaD significantly reduced biomarkers of
oxidative stress and NF-κB activation with consequent decrease
of pro-inflammatory cytokines, such as TNFα, IL-1β, IL-6, and
IL-8 (Bogdanov et al., 2017; Voabil et al., 2017). In addition, in
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STZ rats, CaD reduced vascular leakage and VEGF expression
(Rota et al., 2004). Both neuroprotective and vasoprotective
effects of CaD have been described in diabetic retinas. Indeed,
in retinas of STZ rats, in addition to protective effects against
oxidative stress, inflammation, and retinal thinning, CaD has
been reported to exert inhibitory effects against diabetes-
induced BRB breakdown, downregulation of tight junction
protein expression, increasedVEGF and ICAM-1 expression, and
leukocyte adhesion (Leal et al., 2010). In retinas of db/db diabetic
mice, CaD significantly decreased diabetes-induced oxidative
stress and retinal cell apoptosis. In addition, it reduced glutamate
extracellular concentration, by preventing glutamate transporter
downregulation, and improved ERG responses. At the same
time, CaD inhibited VEGF upregulation and vascular leakage
(Sola-Adell et al., 2017).

Other Antioxidants
It is clear that suppression of antioxidant defenses is deleterious
to the retina. For this reason, recent studies have focused on the
ability of some antioxidant compounds to regulate antioxidant
gene expression, such as the nuclear factor erythroid-2-related
factor 2 (Nrf2) activator dh404 and a DNA methyltransferase
(DNMT) inhibitor.

Nrf2 is a redox-sensitive transcription factor that is kept in a
latent state until an increase in free radical concentration releases
Nrf2, which enters the cell nucleus and initiates the transcription
of antioxidant genes (Di Marco et al., 2015). Boosting Nrf2 with a
specific activator increases the transcription of antioxidant genes
and therefore may protect tissues from oxidative damage. In
retinas of STZ rats, the Nrf2 activator dh404 has been reported
not only to decrease oxidative stress and the expression of
inflammatory mediators but also to prevent VEGF upregulation
and vascular leakage (Deliyanti et al., 2018).

It has been observed that DNA methylation may be involved
in the regulation of gene expression in the retina during the
progression of DR (Kowluru et al., 2015; Mishra and Kowluru,
2016, 2019). In particular, DNMT inhibitors may favor the
expression of antioxidant genes. Indeed, in diabetic rat retinas,
DNMT inhibition restored antioxidant enzyme expression and,
in parallel, also prevented the diabetes-induced increase of VEGF
and of ICAM-1 expression (Xie et al., 2019).

These observations on the effects of antioxidant compounds
in models of DR indicate that reduction of oxidative stress is
accompanied by positive effects on the vascular pathology and
therefore favors both neuroprotective and vasoprotective actions.

NEUROPEPTIDES

Neuropeptides are short to medium amino acid chains, which
function primarily as complementary signals to “classic”
neurotransmitters to fine-tune neurotransmission (Hokfelt et al.,
2003). Some of them have been found to be important for the
regulation of cell death/survival in different neuronal systems,
where they express important neuroprotective properties
(Catalani et al., 2017; Reglodi et al., 2017; Chen X.Y. et al.,
2019). Neuropeptides and their receptors are widely expressed
in mammalian retinas, where they exert multifaceted functions

both during development and in the mature animal (Bagnoli
et al., 2003). In particular, some of them may exert important
roles in retinal diseases (Gabriel, 2013; Cervia et al., 2019).

Glucagon-Like Peptide-1
Glucagon-like peptide-1 (GLP-1) is known as a hormone secreted
by the gastrointestinal tract in response to food, stimulating
insulin and inhibiting glucagon secretion (Drucker and Nauck,
2006). GLP-1 has also been recognized as a neuropeptide. Indeed,
GLP-1 and its receptor GLP-1R are expressed in the brain,
where they influence multiple neural circuits modulating feeding
behavior and reward (Smith et al., 2019). Both GLP-1 and GLP-
1R are expressed inmammalian retinas (Zhang et al., 2009; Zhang
Y. et al., 2011; Hernandez et al., 2016a; Cai et al., 2017; Hebsgaard
et al., 2018).

Neuroprotective effects of GLP-1R activation have been
demonstrated in a rat model of optic nerve crush, where
intravitreal implants of beads with genetically modified cells
producing GLP-1 decreased apoptosis and promoted survival of
retinal ganglion cells (Zhang R. et al., 2011), and in diabetic
rats, where exendin-4, an analog of GLP-1, protected from
oxidative stress from apoptotic cell death and ameliorated retinal
function as assessed with ERG (Zhang et al., 2009; Zhang Y.
et al., 2011; Fan et al., 2014b; Zeng et al., 2016; Cai et al., 2017;
Cervia et al., 2019). Most importantly, both neuroprotective and
vasoprotective effects of GLP-1 agonists have been described in
models of retinal diseases. For instance, in a rat model of retinal
ischemia-reperfusion, exendin-4 suppressed inflammatory gene
expression and reduced BRB permeability (Goncalves et al.,
2016). Strong evidence for a double action of GLP-1 as a
neuroprotectant and vasoprotectant also comes from studies
in models of DR. Indeed, recent studies in rodent retinas
have reported that GLP-1 or GLP-1R agonists may exert a
neuroprotective action since they improved retinal function,
as assessed with ERG, protected retinal cells from death,
reduced oxidative stress and IL-1β expression, and inhibited
the increase of extracellular glutamate. At the same time, these
compounds induced vasoprotection since they decreased VEGF
levels, preserved the expression of tight junction proteins of the
BRB, reduced BRB leakage, and inhibited the increase of ICAM-1
levels (Fan et al., 2014a; Hernandez et al., 2016a; Sampedro et al.,
2019).

Similar to GLP-1R agonists, inhibitors of dipeptidyl peptidase
4 (DPP4, the GLP-1 degrading enzyme) have been tested for
their potential use in DR treatments. The data of different
studies indicated that DPP4 inhibitors, such as linagliptin,
saxagliptin, or sitagliptin, efficiently increase retinal GLP-1 levels
and that this increase, in rodent models of DR, is correlated
with reduced oxidative stress, inflammation (as assessed by IL-
1β levels), extracellular glutamate levels and neuronal apoptosis
and with preservation of retinal function. At the same time,
DPP4 inhibitors induced amelioration of different vascular
features, including diabetes-induced changes in the subcellular
distribution of the tight junction proteins occludin, claudin-5,
and zonula occludens-1; BRB breakdown; ICAM-1 upregulation;
pericyte loss; and formation of acellular capillaries (Goncalves
et al., 2012, 2014; Dietrich et al., 2016; Hernandez et al., 2017).
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Somatostatin
Somatostatin (somatotropin release inhibiting factor, SRIF) is
expressed in the retina, together with its five receptor subtypes
(named sst1-5), where they express important physiological
functions (Casini et al., 2005; Cervia et al., 2008a). Low vitreous
levels and low intraocular production of SRIF have been found
in patients with diabetic macular edema, chronic uveitis macular
edema, and quiescent intraocular inflammation (Simo et al.,
2007; Fonollosa et al., 2012), suggesting that SRIF alterations
may be directly involved in the pathogenesis of these conditions.
In addition, a variety of experimental observations suggested
that SRIF may exert powerful neuroprotective effects in different
retinal diseases (Cervia et al., 2008a; Cervia and Casini, 2013;
Hernandez et al., 2014; Wang et al., 2017).

The SRIF analog pasireotide and SRIF receptor agonists
targeting the sst2 or sst5 receptors were found to significantly
protect rat retinal neurons in in vivo models of AMPA
excitotoxicity (Kiagiadaki and Thermos, 2008; Kiagiadaki et al.,
2010; Kokona et al., 2012). In addition, in a retinal ischemia-
reperfusion mouse model, SRIF mediated the neuroprotective
and anti-inflammatory effects of capsaicin, a selective agonist for
transient receptor potential vanilloid type-1, a ligand-gated non-
selective cation channel (Wang et al., 2017). Moreover, in retinas
of STZ rats, topical SRIF administrations prevented glutamate
accumulation, apoptosis, and ERG abnormalities (Hernandez
et al., 2013). Similarly, studies in ex vivo ischemic retinas of
mice or rats reported that SRIF, its analogs, or the constitutive
activation of the sst2 receptor significantly preserved retinal
neurons from ischemia-induced morphological changes and
apoptosis (Catalani et al., 2007; Cervia et al., 2008b; Kokona
et al., 2012). Moreover, in retinal explants in which hypoxic
conditions induced the expression of apoptotic markers, the sst2-
preferring SRIF analog octreotide reduced apoptotic signals (Dal
Monte et al., 2012). Finally, in ex vivo explants of mouse retinas
treated with high glucose, octreotide prevented apoptosis of
retinal neurons, likely stimulating an increase of the autophagic
flux (Amato et al., 2018a). Interestingly, a study in ex vivo
ischemic mouse retinas reported that acute ischemia induces a
sudden increase in VEGF release from neurons, suggesting that
VEGF may represent a stress signal released by retinal neurons
when their integrity is threatened. Supporting this view, the
neuroprotective SRIF analog octreotide reduced VEGF release
from ischemic retinas (Cervia et al., 2012).

Some studies reported concomitant effects of SRIF, or its
analogs, on neuroprotection and vasoprotection. For instance,
in a mouse model of retinal ischemia-reperfusion, octreotide has
been reported to protect from oxidative stress, inflammation (as
assessed by NF-κB activation), and neuronal death, while it also
significantly reduced ICAM-1 expression, indicating decreased
leukocyte adhesion (Wang et al., 2015). In ex vivo ischemicmouse
retinas, octreotide inhibited the ischemia-induced increase
of oxidative stress, glutamate levels, apoptosis, and VEGF
expression (D’alessandro et al., 2014). Similar observations were
reported in ex vivo mouse retinal explants challenged with high
glucose, oxidative stress, or advanced glycation end products
(AGE), toxic products that accumulate under hyperglycemic

conditions and that are likely to play an important role in
the pathogenesis of DR. In particular, these studies showed
that protecting retinal neurons from diabetic stress also reduces
VEGF expression and release, while inhibiting VEGF leads to
exacerbation of apoptosis (Amato et al., 2016). Therefore, the
retina in early DR may release VEGF as a prosurvival factor,
and a neuroprotective agent such as octreotide may decrease the
need of VEGF production by the retina, therefore limiting the
vasculopathy associated with VEGF upregulation.

Angiotensin
The renin-angiotensin system (RAS) is involved in the regulation
of blood pressure. Angiotensin I (AngI) is generated from the
proteolytic cleavage of angiotensinogen, a reaction catalyzed by
the enzyme renin. AngI is further processed by angiotensin-
converting enzyme (ACE) and ACE2 to angiotensin II (AngII),
the main effector of the RAS, acting at the angiotensin type 1
and type 2 receptors (AT1R and AT2R) (Fletcher et al., 2010).
A local RAS is present in the retina, where RAS components
have been localized to different retinal cell types, including retinal
neurons andMüller cells (Wilkinson-Berka et al., 2012). A variety
of studies have shown that reduction of AngII expression or
blockade of AT1R on the one hand, or stimulation of ACE2 on
the other, may reduce the retinal damage occurring in retinal
pathologies, such as glaucoma, retinal ischemia, autoimmune
uveitis, or DR (Cervia et al., 2019).

Several investigations have provided evidence for a
neuroprotective role exerted by AT1R inhibitors in different
models of retinal diseases. For instance, inhibitors like valsartan,
losartan, or candesartan were effective in attenuating light-
induced retinal damage in mice by reducing oxidative stress and
improving ERG responses (Narimatsu et al., 2014). Similarly,
candesartan prevented ganglion cell loss, thinning of the retina,
and ERG deficits in a retinal excitotoxicity mouse model (Semba
et al., 2014). In mice with increased intraocular pressure, used
as models of glaucoma or ischemia-reperfusion, AT1R blockade
reduced oxidative stress, inhibited the increase of extracellular
glutamate, and mitigated ganglion cell loss (Yang et al., 2009;
Fujita et al., 2012; Liu et al., 2012; Quigley et al., 2015). In rats or
mice with STZ-induced diabetes, blockers of AT1R, in addition
to protecting the retina from oxidative stress, apoptotic cell
death, and histopathologic damage (Silva et al., 2009; Ola et al.,
2013; Thangaraju et al., 2014), also preserved mitochondrial
integrity, increased the expression of neurotrophic factors,
and improved functional ERG responses (Silva et al., 2009;
Ozawa et al., 2011; Ola et al., 2013). In experimental models of
mouse autoimmune uveitis or endotoxin-induced uveitis, the
delivery of different formulations of ACE2 and/or its product
Ang(1-7) or the administration of an ACE2 activator reduced
retinal inflammation (Qiu et al., 2014, 2016; Shil et al., 2014)
and prevented histologic damage as well as ERG abnormalities
(Qiu et al., 2016). Similarly, both in an experimental glaucoma
model and in STZ rats, retinal ganglion cells were protected from
apoptotic cell death by the administration of an ACE2 activator
(Foureaux et al., 2013, 2015). On the vascular side, in retinas of
STZ rats evidence was provided of an inhibitory effect on VEGF
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expression and on leukocyte adhesion exerted by a prorenin
receptor blocker (Satofuka et al., 2009).

There are a few studies documenting concomitant effects of
the Ang system both on the side of neuroprotection and on
that of vasoprotection. One study reported that in diabetic rats,
increased plasma prorenin levels exacerbated the expression of
inflammatory cytokines, retinal apoptotic cell death, as well as
the formation of acellular capillaries, while a prorenin receptor
blocker significantly reduced these effects (Batenburg et al.,
2014). Similarly, adeno-associated virus-mediated gene delivery
of ACE2 or Ang(1-7) significantly reduced diabetes-induced
oxidative damage, inflammation, retinal vascular leakage, and
formation of acellular capillaries in both diabetic mice and rats
(Verma et al., 2012).

These data support the possibility that the documented
neuroprotective actions of AngII blockade or ACE2 stimulation
also influence the vascular pathology and induce an amelioration
of the vascular traits (VEGF upregulation, acellular capillaries,
leukocyte adhesion, BRB breakdown) especially in models of DR.

Pituitary Adenylate Cyclase-Activating
Polypeptide and Vasoactive Intestinal
Peptide
Pituitary adenylate cyclase-activating polypeptide (PACAP) and
vasoactive intestinal peptide (VIP) belong to the same peptide
superfamily, which also includes secretin and glucagon. The
PACAP receptors can be classified into two groups: PACAP
receptor 1 (PAC1), which binds PACAP with higher affinity than
VIP, and vasoactive intestinal polypeptide receptors (VPAC1 and
VPAC2), which bind PACAP and VIP with similar affinities
(Vaudry et al., 2009).

PACAP and PAC1R have been detected in the retina, where
they are involved in neurotransmission, neuromodulation, and,
mostly, neuroprotective functions (Nakamachi et al., 2012).
VPAC2 expression has also been reported in the mouse retina
(Harmar et al., 2004). The retinoprotective effects of PACAP
have been the subject of a variety of studies, and these data
have been excellently reviewed (Atlasz et al., 2010; Nakamachi
et al., 2012; Shioda et al., 2016). Further evidence has been
provided bymore recent studies. Indeed, PACAP has been shown
to inhibit apoptosis and promote survival of retinal ganglion
cells in different models of retinal injury (Lakk et al., 2015; Ye
et al., 2019). In addition, intravitreal or topical administrations of
PACAP or a PAC1 agonist to ischemic retinas in vivo ameliorated
ERG responses, prevented inflammation, and reduced the
thinning of retinal layers and the loss of cells in the ganglion cell
layer (Danyadi et al., 2014; Vaczy et al., 2016; Werling et al., 2017;
Atlasz et al., 2018). Similarly, PACAP intraocular delivery in rats
with STZ-induced diabetes protected the retina from apoptosis
and maintained retinal synaptic integrity (Szabadfi et al., 2014,
2016). PACAP was also demonstrated to contrast the diabetes-
induced modifications of the expression of hypoxia-inducible
factors (HIFs), among which HIF-1 is the main regulator of
VEGF expression (D’amico et al., 2015).

Both neuroprotective and vasoprotective effects of PACAP
have been documented in retinas of STZ rats and in ischemic

retinas in vivo, where PACAP reduced thinning of retinal layers
and prevented the expression of both inflammatory cytokines
and VEGF (Werling et al., 2016; D’amico et al., 2017b). In
addition, in an ex vivo model of retinal ischemia, PACAP
effectively decreased oxidative stress, glutamate accumulation,
inflammatory mediators, and apoptosis. At the same time, it
also decreased VEGF expression, which was upregulated in the
ischemic retina (D’alessandro et al., 2014). Finally, in ex vivo
retinal explants stressed with high glucose, oxidative stress, or
AGE, the strong PACAP antiapoptotic effects were paralleled by
inhibition of the stress-induced increase of VEGF expression and
release (Amato et al., 2016).

VIP is expressed in the retina in a population of amacrine
cells (Perez De Sevilla Muller et al., 2019). It has been reported
to reduce retinal neurodegeneration caused by ischemia-
reperfusion injury, promoting an antioxidant effect (Tuncel et al.,
1996). The neuroprotective effects of VIP may be mediated
by activity-dependent neurotrophic protein (ADNP) (Bassan
et al., 1999; Zusev and Gozes, 2004; Giladi et al., 2007). Indeed,
both ADNP and an 8-amino acid peptide derived from ADNP
(referred to as NAP) display important neuroprotective activities
(Magen and Gozes, 2014). Interestingly, NAP seems to exert
protective effects against both the neural and the vascular
pathology induced by DR, as it reduced inflammation (D’amico
et al., 2019) and apoptosis (Scuderi et al., 2014) as well as the
levels of the α subunit of HIF-1 (HIF-1α) and VEGF in retinas
of rats with STZ-induced diabetes (D’amico et al., 2017a).

Other Peptides
α-Melanocyte-stimulating hormone (α-MSH) is a widely-
distributed 13-amino acid peptide derived from proteolytic
cleavage of proopiomelanocortin (Wardlaw, 2011). It acts at
five subtypes of G protein-coupled receptors designated MC1R
to MC5R (Yang, 2011). α-MSH protected the rat retina from
both functional and structural damage induced by ischemia-
reperfusion (Varga et al., 2013), suppressed inflammation and
maintained retinal structure in a mouse model of experimental
autoimmune uveitis (Edling et al., 2011), and protected
photoreceptors from degeneration in a rat model of retinal
dystrophy (Naveh, 2003). In a rat model of STZ-induced
diabetes, intravitreal injections of α-MSH reduced oxidative
stress, inflammation, and apoptosis, while they also inhibited the
expression of ICAM-1 (Zhang et al., 2014), indicating reduced
leukostasis. In early diabetic retinas, α-MSH also reduced
inflammation, ameliorated ERG responses, and reduced retinal
thinning, while it inhibited BRB breakdown and vascular leakage,
likely acting at MC4R (Cai et al., 2018).

Endothelin (ET) is a potent vasoconstrictor composed of three
isoforms designated ET-1, ET-2, and ET-3, whose actions are
mediated by the ET type A receptor (ETRA) and ET type B
receptor (ETRB) (Davenport et al., 2016). There are indications
that ET activity may be involved in DR, and evidence has been
provided that ET inhibition may ameliorate the pathologic signs
of DR. Indeed, an ETRA antagonist has been reported to block
the diabetes-induced upregulation of both VEGF and ICAM-
1 in retinas of STZ rats (Masuzawa et al., 2006), while other
observations have described positive effects of ETR inhibition on
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both neuronal and vascular changes seen in DR. For instance,
ETRA and/or ETRB inhibitors reduced retinal thinning, the
number of apoptotic cells, and the levels of the pro-inflammatory
cytokine TNFα in diabetic rat retinas, and at the same time
they also reduced pericyte loss, capillary degeneration, vascular
leakage, and the levels of both VEGF and ICAM-1 (Chou et al.,
2014; Alrashdi et al., 2018; Bogdanov et al., 2018).

Erythropoietin (EPO) stimulates erythroid progenitor cell and
early erythroblast maturation and is mainly used in anemia
treatment (Jelkmann, 2013). EPO is expressed in the retina
(Hernandez et al., 2006; Fu et al., 2008), where it exerts
well-documented neuroprotective functions (Kilic et al., 2005;
Chung et al., 2009; Colella et al., 2011; Chang et al., 2013).
Both neuroprotective and vasoprotective actions of EPO have
been described. Indeed, in retinas of STZ rats, EPO was
reported to significantly decrease oxidative stress, apoptotic
neurodegeneration, and retinal thinning on one hand, and
VEGF upregulation, BRB breakdown, and pericyte loss on the
other (Zhang et al., 2008; Wang et al., 2010; Wang Q. et al.,
2011). Similarly, carbamylated erythropoietin, an EPO derivative,
protected diabetic rat retinas from retinal thinning, neuron
apoptosis, and functional deficits as evaluated with ERG, while it
also reduced VEGF upregulation and vascular leakage (Liu et al.,
2015).

In addition to the peptides cited above, some evidence
exists for an effect of a few other peptides that is both
neuroprotective and vasoprotective. Indeed, antioxidative, anti-
inflammatory, and/or antiapoptotic actions together with effects
preventing VEGF upregulation and/or BRB breakdown have
been described for the peptides growth hormone-releasing
hormone (Thounaojam et al., 2017), insulin (Rong et al., 2018),
melatonin (Djordjevic et al., 2018), substance P (D’alessandro
et al., 2014), and vasoinhibins (Garcia et al., 2008; Arredondo
Zamarripa et al., 2014).

Together, these data demonstrate that, similar to the
nutraceuticals and antioxidants reviewed above, the powerful
neuroprotective effects exerted by different classes of
neuropeptides also result in VEGF downregulation and
attenuation of the vascular damage in various models of
retinal disease.

OTHER FACTORS

The urokinase-type plasminogen activator (uPA) receptor
(uPAR) is a glycosylphosphatidylinositol-anchored receptor
activated by uPA. uPAR lacks a transmembrane domain, however,
it can activate intracellular signaling pathways through lateral
interactions with other cell surface receptors, including integrins,
G-protein–coupled receptors, and receptor tyrosine kinases, thus
forming a system that is involved in many pathological processes,
including retinal diseases (Cammalleri et al., 2019b). Recently,
the inhibition of the uPAR system has been found to be effective
in slowing down cone degeneration and visual dysfunction in a
mouse model of retinitis pigmentosa (Cammalleri et al., 2019a).
Of interest for this review, in two different models of DR, the
STZ rat model mimicking type 1 diabetes (Navaratna et al., 2008;

Cammalleri et al., 2017b) and the Torii rat model mimicking
type 2 diabetes (Cammalleri et al., 2017a), inhibiting the uPAR
system not only ameliorated diabetes-induced ERG dysfunction
and reduced inflammation and apoptosis but also resulted in
inhibition of VEGF upregulation and BRB breakdown.

Brimonidine is an α2 adrenergic agonist with extensively
documented neuroprotective effects in a variety of models of
retinal disease (see for instance Guo et al., 2015; Marangoz et al.,
2018). In addition, in retinas of rats with STZ-induced diabetes,
it has been reported to induce a significant decrease of VEGF
expression and of BRB breakdown to levels similar to those
observed in control rats (Kusari et al., 2010). Furthermore, in
a mouse model of ischemic optic neuropathy, topically applied
brimonidine not only reduced oxidative stress and ganglion
cell loss but also decreased HIF-1α and VEGF expression
(Goldenberg-Cohen et al., 2009).

Peroxisome proliferator-activated receptor α (PPARα), a
hormone-activated nuclear receptor, is known as an important
modulator of lipid metabolism (Pyper et al., 2010), which
also possesses anti-inflammatory and antioxidant properties
(Li et al., 2005; Simo and Hernandez, 2009). The PPARα

agonist fenofibrate has been used clinically as a triglyceride-
lowering drug. However, it seems that downregulation of
PPARα in the retina plays a major role in the pathogenesis
of DR (Hu et al., 2013), and two independent perspective
clinical trials demonstrated that fenofibrate had unprecedented
therapeutic effects in DR (Keech et al., 2007; Chew et al., 2010).
Emerging evidence suggests that fenofibrate exerts a broad range
of beneficial effects on diabetic complications acting against
oxidative stress, inflammation, cell death, and angiogenesis
(Noonan et al., 2013). In particular, in rodent models of DR,
different studies documented the protective effects of fenofibrate
or another PPARα agonist against oxidative stress, inflammation,
retinal cell death, and decreased retinal function on one hand,
and VEGF upregulation, vascular leakage, thickening of capillary
basement membrane, ICAM-1 expression, and leukostasis on the
other (Chen et al., 2013; Deng et al., 2017; Li et al., 2018; Liu et al.,
2018, 2019; Wang N. et al., 2018; Qiu et al., 2019).

Acetaldehyde dehydrogenase 2 is a rate-limiting enzyme
for alcohol metabolism, which has been shown to exert
neuroprotective effects (Deza-Ponzio et al., 2018). In retinas of
STZ rats, it has been reported to promote antioxidant enzyme
activity, reduce the expression of proinflammatory cytokines,
ameliorate ERG, and significantly reduce VEGF expression (He
et al., 2018).

The last example, in this review, of a neuroprotective factor
that also ameliorates vascular changes in retinal disease is not
concerned with a compound but involves a procedure. Indeed, it
is known that ischemic conditioning can be considered a form
of protection against ischemic injury through the initiation of
endogenous protective mechanisms (Heusch, 2013; Li et al.,
2017). As expected, in retinas of STZ rats, ischemic conditioning
produced anti-inflammatory and antioxidant effects, and
it also protected ganglion cells from death. Interestingly,
diabetic retinas treated with ischemic conditioning also
showed a significantly downregulated VEGF protein expression
(Ren et al., 2018).
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TABLE 1 | Summary of the neuroprotective and vasoprotective effects of different compounds in models of retinal disease.

Neuroprotection Vasoprotection References

Compound OS* IF* APO* FUNC* VASC* BRB VEGF

Curcumin Zuo et al., 2013

Mrudula et al., 2007

Kowluru and Kanwar,

2007

Wang L. et al., 2011

Gupta et al., 2011

Yang et al., 2018

Resveratrol Kim et al., 2010

Soufi et al., 2012

Kim et al., 2012

Kubota et al., 2009

Kubota et al., 2011

Sohn et al., 2016

Chen Y. et al., 2019

Carotenoids Sasaki et al., 2010

Hu et al., 2012

Ozawa et al., 2012

Sasaki et al., 2012

Kowluru et al., 2008

Kowluru et al., 2014

Orhan et al., 2016; Tuzcu

et al., 2017

Catechins Al-Gayyar et al., 2011

Wang W. et al., 2018

Lee et al., 2014

Kumar et al., 2012a

Silva et al., 2013

Hesperetin Kara et al., 2014

Shimouchi et al., 2016

Kumar et al., 2012b

Kumar et al., 2013

Quercetin Kumar et al., 2014

Ola et al., 2017

Chen B. et al., 2017

Chrysin Kang et al., 2018

Kang et al., 2016

Anthocyanins Kim et al., 2015

Song et al., 2016

Eriodictyol Bucolo et al., 2012

Lisosan G Amato et al., 2018b

Morus alba Mahmoud et al., 2017

Tang Wang

Ming Mu

Chen M. et al., 2017

Kaempferol Du et al., 2018

Antioxidants Calcium

dobesilate

Bogdanov et al., 2017;

Voabil et al., 2017

Rota et al., 2004

Leal et al., 2010

Sola-Adell et al., 2017

Nrf2 activator Deliyanti et al., 2018

(Continued)
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TABLE 1 | Continued

Neuroprotection Vasoprotection References

Compound OS* IF* APO* FUNC* VASC* BRB VEGF

DNMT

inhibitor

Xie et al., 2019

Neuropeptides GLP-1 Zhang et al., 2009; Zhang

Y. et al., 2011; Fan et al.,

2014b

Zhang R. et al., 2011

Zeng et al., 2016

Cai et al., 2017

Goncalves et al., 2012

Fan et al., 2014a

Goncalves et al., 2014

Dietrich et al., 2016

Goncalves et al., 2016

Hernandez et al., 2016a

Hernandez et al., 2017

Sampedro et al., 2019

SRIF Catalani et al., 2007;

Cervia et al., 2008b;

Kiagiadaki and Thermos,

2008; Kiagiadaki et al.,

2010; Dal Monte et al.,

2012; Kokona et al.,

2012; Amato et al., 2018a

Hernandez et al., 2013

Wang et al., 2017

Cervia et al., 2012

D’alessandro et al., 2014;

Amato et al., 2016

Wang et al., 2015

Ang Silva et al., 2009; Fujita

et al., 2012; Ola et al.,

2013

Yang et al., 2009; Liu

et al., 2012; Foureaux

et al., 2013, 2015;

Thangaraju et al., 2014;

Quigley et al., 2015

Narimatsu et al., 2014

Semba et al., 2014

Qiu et al., 2014; Shil et al.,

2014

Qiu et al., 2016

Satofuka et al., 2009

Verma et al., 2012

Batenburg et al., 2014

PACAP Danyadi et al., 2014

Szabadfi et al., 2014

Vaczy et al., 2016

Lakk et al., 2015; Szabadfi

et al., 2016; Werling et al.,

2017; Atlasz et al., 2018;

Ye et al., 2019

D’alessandro et al., 2014

(Continued)

Frontiers in Neuroscience | www.frontiersin.org 11 November 2019 | Volume 13 | Article 1172

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Rossino et al. Neurovascular Crosslink in Diabetic Retinopathy

TABLE 1 | Continued

Neuroprotection Vasoprotection References

Compound OS* IF* APO* FUNC* VASC* BRB VEGF

Amato et al., 2016;

Werling et al., 2016

D’amico et al., 2017b

VIP Tuncel et al., 1996

VIP/NAP Scuderi et al., 2014

D’amico et al., 2019

D’amico et al., 2017a

α-MSH Naveh, 2003

Edling et al., 2011

Varga et al., 2013

Zhang et al., 2014

Cai et al., 2018

ET Masuzawa et al., 2006

Chou et al., 2014

Alrashdi et al., 2018

Bogdanov et al., 2018

Erythropoietin Zhang et al., 2008

Wang et al., 2010

Wang Q. et al., 2011

Liu et al., 2015

GHRH* Thounaojam et al., 2017

Insulin Rong et al., 2018

Melatonin Djordjevic et al., 2018

Substance P D’alessandro et al., 2014

Vasoinhibins Garcia et al., 2008

Arredondo Zamarripa

et al., 2014

Other factors uPAR Cammalleri et al., 2019a

Navaratna et al., 2008

Cammalleri et al., 2017a

Cammalleri et al., 2017b

Brimonidine Kusari et al., 2010

Guo et al., 2015;

Marangoz et al., 2018

Goldenberg-Cohen et al.,

2009

PPARα

agonists

Chen et al., 2013

Deng et al., 2017

Li et al., 2018

Liu et al., 2018

Wang N. et al., 2018

Liu et al., 2019

Qiu et al., 2019

ALDH2* He et al., 2018

LRIC* Ren et al., 2018

The data indicated with “ ” are from papers documenting either neuroprotective or vasoprotective effects; those indicated with “ ” are from papers documenting both neuroprotective

and vasoprotective effects in the same experimental samples. *ALDH2, acetaldehyde dehydrogenase 2; APO, apoptosis; FUNC, retinal function; GHRH, growth hormone-releasing

hormone; IF, inflammation; LRIC, remote ischemic conditioning; OS, oxidative stress; VASC, vasculopathy. See “Abbreviations” for the other abbreviations.
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CONCLUSION

The experimental data summarized in this review of the literature
clearly indicate that, in a variety of experimental models of
retinal disease, a neuroprotective treatment is efficacious in
preventing the vascular changes that are usually associated
with the disease (see Table 1 for a comprehensive summary
of the data). Although the participation of VEGF is crucial in
the early stages of DR, we cannot exclude the participation
of some other important molecules, such as the neuronal
guidance cues, including ephrins, netrin, and semaphorins,
which are also released early by damaged neurons and may
promote or attenuate the development of DR (Moran et al.,
2016). These molecules are highly expressed in the retina and
vitreous of patients with advanced DR (Umeda et al., 2004; Liu
et al., 2011; Cerani et al., 2013; Dejda et al., 2014), and their
inhibition, like that of VEGF, could reveal an efficient method
to reduce aberrant growth of retinal vessels. The possibility
exists that treatments with neuroprotectants, in addition to
reducing VEGF expression/release, also limit the release of these
molecules, thereby exerting a multitarget effect that results in
efficient protection from microvascular damage and subsequent
development of advanced stages of DR.

The fact that neuroprotection may limit vascular pathology
could be explained assuming that the reviewed compounds
may trigger two types of independent, parallel responses:
one finalized to neuroprotection and the other affecting the

mechanisms regulating VEGF expression and/or release. This
might be the case, for instance, for SRIF. Indeed, for the
SRIF analog octreotide, there is evidence of an effect, reducing
oxidative stress and glutamate release (Dal Monte et al.,
2003; D’alessandro et al., 2014), and of a regulatory action
on the intracellular mechanisms for VEGF expression (Dal
Monte et al., 2009, 2010; Mei et al., 2012). However, most
compounds listed in this review are primarily antioxidant and
anti-inflammatory substances, which are likely to exert their
primary effects on retinal neurons. Therefore, it appears that
protecting retinal neurons from stress reduces the probability
of VEGF upregulation and the consequent vascular damage.
This evidence indicates that treatments with natural substances
(nutraceuticals or neuropeptides) during early phases of DR may
represent the basis for efficacious therapies of DR that do not
impact on the patients’ quality of life and that may have only little
or no side effects.
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