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Abstract

The aim of this paper is the analysis of a potential mission scenario that could be used to perform an in-situ test of
the Electric Solar Wind Sail. Such an advanced propulsive system works only outside the Earth’s magnetosphere,
so a translunar mission (where the spacecraft is supposed to be inserted as a secondary “piggyback” payload) is
hypothesized, in which at least a part of the spacecraft trajectory is around or beyond the Moon’s orbit. The
analysis of possible selenocentric trajectories is conducted with a three-dimensional generalization of the classical
patched conic approximation. In particular, two cases are considered: a closed selenocentric orbit, and a Moon
flyby that inserts the spacecraft on a post-flyby geocentric orbit with at least some branches outside the Earth’s
magnetosphere.
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1. Introduction

The Electric Solar Wind Sail (E-sail) is an innovative propulsion system concept, originally proposed by
Pekka Janhunen in 2004 [1], see Fig. 1. This thruster exploits the interaction between the solar wind ions
and a number of positively charged tethers to generate a propulsive acceleration without any propellant
consumption, see Fig. 2(a). As a propellantless propulsion system, the E-sail concept is a good candidate for
envisaging new mission scenarios that could be difficult or even impossible to achieve with more conventional
(either chemical or electric) propulsion systems, including non-Keplerian orbits [2, 3], outer Solar System
exploration [4, 5], planetary [6] or cometary [7] rendezvous, and even some exotic hypothetical applications
in an interstellar travel [8]. The propulsive acceleration generated by an E-sail is a function of the inverse
Sun-spacecraft distance, the sail design parameters and its attitude [9], under the hypothesis of perfectly flat
sail. However, even if the latter assumption is removed, the effects on the tether inflection on the generated
thrust is negligible [10, 11].

A first validation test of the E-sail working principle was tried in 2013 with the ESTCube-1 satellite [12],
but a failure occurred, probably due to vibrational loads during the launch phase. The lack of experimental
data should hopefully be overcome by the Finnish Aalto-1 satellite [13, 14]. Note that the E-sail technological
tests so far conceived involve a single charged tether that interacts with the ionized atmosphere to obtain a
small braking force on the spacecraft, the so called “plasma brake effect” [15], see Fig. 2(b), which could be
useful for spacecraft deorbiting from low Earth orbits [16, 17, 18].

A problem that could arise during in-situ measurements lies in the use of a low-Earth orbit for the
experimental test, as it happens for the Aalto-1 satellite, since in that case the flux of ions is significantly
shielded by the Earth’s magnetic field. For these reasons the aim of this paper is to define a mission scenario
in which the spacecraft moves outside the Earth’s magnetosphere for a time interval sufficient to complete
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Figure 1: Artistic rendering of an Electric Solar Wind Sail. Courtesy of Alexandre Szames, Antigravité (Paris).

some significant in-situ measurements of the propulsive acceleration, using the actual solar wind flux. In this
context, the possibility of obtaining an effective and low-cost test mission of an E-sail could raise the interest
of space community on this innovative propulsion system. A possible target for such a testing mission is the
Moon, which can be exploited with a gravity assist, after which the spacecraft reaches the boundary of the
Earth’s magnetosphere. This mission target could be also achieved with a closed selenocentric orbit, since the
Moon is largely outside the Earth’s magnetosphere when it is between the Earth and the Sun [19]. In both
cases the spacecraft eventually covers a trajectory with some arcs being outside the Earth’s magnetosphere.

The analysis of a translunar trajectory is one of the most studied subjects in spaceflight mechanics. In
a preliminary analysis, the problem is addressed with a planar approach [20], using the concept of sphere
of influence and a patched conic method in which the Earth-Moon transfer is assumed to be a Keplerian
geocentric trajectory until the spacecraft enters into the Moon’s sphere of influence. In particular, this
work generalizes the classical patched conic method by accounting for the 3D nature of the problem. The
obtained results are still in an analytical (and approximate) form, but are more accurate than those reported
in Ref. [20] in terms of selenocentric and post-flyby trajectory determination, especially when the transfer
trajectory and the Moon’s geocentric orbit have different inclinations. The closed form solution of the
results is useful for investigating a number of different mission scenarios with a substantial reduction of
computational time with respect to a numerical integration of the equations of motion. In particular, such
a simple analytical method to analyze translunar trajectories could constitute a useful tool for planning an
E-sail in-situ test. In fact, although the simulations need a modest computational time, they are accurate
enough for a preliminary mission design phase. As a result, the most promising trajectories can easily be
identified and prepared for an in-depth analysis, which usually requires more complex and computationally-
expensive tools.

The proposed mission strategy consists of exploiting a primary lunar mission to minimize the launch costs
by inserting a piggyback spacecraft into a classical translunar trajectory. In this context, the preliminary
analysis of potential mission scenarios is based on available data of future planned lunar missions. The
possible selenocentric trajectories, which differ in launch date, initial conditions, and geometric conditions
at the entrance in the Moon’s sphere of influence, are analyzed with the 3D patched conic approximation,
in order to identify the most promising ones. The proposed approach is tested with a hypothetical mission
scenario in which the spacecraft is the secondary load of the Chinese lunar mission Chang’e-5 [21], whose
launch was initially scheduled for November 2017 (and the simulations refer to this date). Although the
launch date of Chang’e 5 has been delayed, the main objective of the numerical simulations is to prove the
effectiveness of the proposed algorithm in finding the more promising translunar trajectories, which require
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Figure 2: Conceptual sketch of an Electric Solar Wind Sail and Plasma Brake.

more complex simulations in the succeeding phases of the mission design. The results presented in this
paper show both the feasibility of an E-sail testing translunar mission, and the good performance of the
3D approximate method in a preliminary mission design phase, where a number of different trajectories are
considered.

2. Translunar missions: 3D mathematical model

Consider a launch vehicle covering a geocentric circular parking orbit with radius r0 at time t0, see Fig. 3.
After a certain (given) coasting angle ψc is swept, an impulsive maneuver inserts the payload (spacecraft)
into a coplanar translunar orbit with an initial velocity v0 and a flight path angle φ0.

The classical approach for the analysis of a translunar trajectory discussed in Ref. [20], based on the
patched conic method and the sphere of influence approximation, is purely two-dimensional. In particular,
the Earth-Moon transfer is assumed to be dominated by the Earth’s gravity until the intercept (the point
where the spacecraft enters into the Moon’s sphere of influence). The 2D method is based on the fundamental
assumption that the spacecraft transfer orbit, the Moon’s geocentric orbit, and (consequently) the spacecraft
selenocentric trajectory all lie on the same plane. Since the inclination of the Moon’s orbit varies between
18.2 deg and 28.5 deg, the transfer orbit inclination must be comprised in this range if the classical approach
is used. Clearly, this is a rough assumption, since possibly the intercept conditions of the mission scenario
require a significantly different orbital inclination of the transfer trajectory.
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Figure 3: Translunar trajectory sketch, adapted from Ref. [20].

Given all the previous considerations, the introduction of an analytical approximated method that ac-
counts for the 3D nature of the problem could provide an important tool for preliminary translunar trajectory
analysis. The approach used in this work is based on less restrictive hypotheses compared to those intro-
duced in Ref. [20], that is, the Moon’s center of mass at intercept lies on the transfer orbit plane, and the
transfer orbit is still coplanar with the parking orbit (it is assumed that the engines of the launch vehicle
are capable of providing any required plane change before the insertion on the parking orbit). Under these
assumptions, the analysis of the geocentric phase is analogous to the one made with a 2D approach. The
radius of the Moon’s sphere of influence is determined with the well-known formula RSOI ' D1 (µ$/µ⊕)

0.4
,

where D1 is the Earth-Moon distance (given by lunar ephemeris) at the intercept time t1, µ$ (or µ⊕) is the
Moon (or Earth) gravitational parameter. Taking into account that the semimajor axis aT and eccentricity
eT of the spacecraft transfer orbit (subscript T ) are [20]

aT =
µ⊕ r0

2µ⊕ − r0 v20
(1)

eT =

√
1 +

r20 v
2
0 cos2 φ0
µ⊕ aT

(2)

the conditions, in terms of Earth-spacecraft distance (r1) and velocity (v1) at intercept point (subscript 1)
are

r1 =
√
R2

SOI +D2
1 − 2RSOID1 cosλ1 (3)

v1 =

√
µ⊕

r1

(
2− r1

aT

)
(4)

φ1 = arccos

(
r0 v0 cosφ0

r1 v1

)
(5)

γ1 = arcsin

(
RSOI

r1
sinλ1

)
(6)

where the angles {φ1, γ1, λ1} are defined in Fig. 3. Note that retrograde transfer orbits (and trajectories
where the intercept is in the descending phase) are neglected in this analysis, in order to reduce the propellant
cost and the transfer time. Hence, the extraction of the inverse cosine in Eq. (5) is straightforward.

The transfer time ∆tT can be calculated as

∆tT =

√
a3T
µ⊕

(E1 − eT sinE1 − E0 + eT sinE0) (7)
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where E is the eccentric anomaly, which is written as a function of the true anomaly ν as

ν{0,1} = arccos

[
aT (1− e2T )

eT r{0,1}
− 1

eT

]
(8)

E{0,1} = 2 arctan

(√
1− eT
1 + eT

tan
ν{0,1}

2

)
(9)

Since the parking orbit is circular, the flight time ∆tc of the coasting phase is

∆tc =

√
r30
µ⊕

ψc (10)

Finally, neglecting the time between launch and parking orbit insertion, the total transfer time ∆t (and so
the launch date t0) can be calculated as

∆t = ∆tc + ∆tT , t0 = t1 −∆t (11)

2.1. Intercept analysis

The velocity of the spacecraft with respect to the Moon is calculated as a vectorial difference between
the geocentric velocity v1 and the Moon’s orbital velocity v$ at intercept (the latter is evaluated through
an ephemeris calculation):

v2 = v1 − v$ (12)

where the subscript 2 identifies the selenocentric quantity. Equation (12) can be more easily applied if a
suitable reference frame T$(M ;x, y, z) is introduced: the origin M coincides with the position of the Moon’s
center of mass at intercept, the y-axis is parallel to the vector v$, the z-axis is orthogonal to the Moon’s
orbital plane, and the x-axis completes the right-handed reference frame. The components of the vector v1

in such a reference frame depend of the angle θ ∈ [−π, π] formed by the transfer orbit plane and the Moon’s
geocentric orbit plane, which can be evaluated as the difference between the spacecraft azimuth β1 and the
Moon’s azimuth β$ at intercept, see Fig. 4.
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Figure 4: Sketch of the geometric quantities involved in the intercept parameters determination.
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Note that the azimuth β is the angle between the local meridian on the celestial sphere and the velocity
of the object [20]. Using spherical geometry considerations, the angles {β1, β$, θ} are calculated as functions
of ψ

ψ = ψc + ν1 − ν0 (13)

β1 = arccos

(
sin δ1 cosψ − sin δ0

cos δ1 sinψ

)
(14)

β$ = arctan

(
sin ∆α$

sin δ1 cos ∆α$ − cos δ1 tan δ0$

)
(15)

θ = β$ − β1 (16)

where ∆α$ is the difference in Moon’s right ascension between the intercept and the launch date, δ0$ is the
Moon’s declination at launch, and δ1 is the Moon’s declination at intercept evaluated through an ephemeris
calculation.

When θ is known, the vectorial difference of Eq. (12) can be determined if a suitable assumption is intro-
duced, that is, being the Moon’s orbital eccentricity very small [20], the Moon’s geocentric velocity is nearly
orthogonal to the Earth-Moon vector, which implies that the x-axis of the reference frame T$(M ;x, y, z)
coincides with the Earth-Moon direction, pointing towards the Moon. Therefore, the vectors involved in
Eq. (12) are written in T$(M ;x, y, z) as

v1 =

 v1 sin (φ1 − γ1)
v1 cos (φ1 − γ1) cos θ
v1 cos (φ1 − γ1) sin θ

 v$ =

 0
v$

0

 v2 =

 v1 sin (φ1 − γ1)
v1 cos (φ1 − γ1) cos θ − v$

v1 cos (φ1 − γ1) sin θ

 (17)

With similar geometric considerations, the spacecraft position vector r2 at intercept has the following com-
ponents in T$(M ;x, y, z)

r2 =

 −RSOI cosλ1
RSOI sinλ1 cos θ
RSOI sinλ1 sin θ

 (18)

The vectors r2 and v2 define the orbital plane of the Keplerian selenocentric trajectory (subscript M), whose
semimajor axis aM and eccentricity eM are obtained as [20]

aM =
µ$ r2

2µ$ − r2 v22
(19)

eM =

√
1 +

r22 v
2
2 sin ε2
µ$ aM

(20)

where ε2 is the angle between r2 and v2 given by

ε2 =
arccos (r2 · v2)

‖r2‖ ‖v2‖
(21)

Note that the angle ε2 is conceptually analogue to the one presented in Ref. [20], but it accounts for a 3D
spacecraft-Moon encounter. The calculation of the periselenium radius rp and velocity vp is straightforward

rp = aM (1− eM ) , vp =

√
µ$

rp

(
2− rp

aM

)
(22)

Alternatively, one could focus on the post-flyby characteristic quantities, that is, the hyperbolic excess
velocity v∞ and the turn angle χ

v∞ =

√
µ$

RSOI

(
2− RSOI

aM

)
, χ = 2 arcsin

(
1

eM

)
(23)
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2.2. Feasible trajectory selection

The feasible translunar trajectories can be selected following a procedure that is conceptually similar to
the one presented in Ref. [20]. First, the launch site must be fixed, in terms of latitude δ0 and longitude λ0.
Usually, every launch site has specific safety limitations concerning the allowable launch azimuth β0 that
can be expressed by imposing a minimum value βmin and a maximum value βmax. Hence, if the selected
mission scenario requires a launch azimuth β0 ∈ [βmin, βmax], the translunar trajectory meets the safety rules
of the chosen launch site. In order to determine β0, one should calculate the total angle ψ swept during the
transfer phase

ψ = ψc + ν1 − ν0 (24)

where ν0 and ν1 are given by Eq. (8). The flight azimuth at launch can be expressed as [20]

β0 = arccos

(
sin δ1 − sin δ0 cosψ

cos δ0 sinψ

)
(25)

where δ1 is the declination of both the spacecraft and the Moon at intercept time t1, see Fig. 4.
When the intercept time t1 is known, it is possible to evaluate the difference ∆α in right ascension

between the intercept and the launch site (see Fig. 4), using the basic concepts of spherical geometry in
analogy with Ref. [20]

∆α = arccos

(
cosψ − sin δ0 sin δ1

cos δ0 cos δ1

)
(26)

The angle ∆α can also be calculated as the difference between the Moon’s right ascension at intercept α1

and the launch site right ascension at launch

∆α = α1 − λg − λ0 (27)

where λg0 is the launch site Greenwich Sidereal Time at launch and α1 is given by lunar ephemeris. The
selected mission scenario is feasible only if, comparing the two values of ∆α given by Eqs. (26) and (27),
the (absolute) difference is less than 1 deg [20]. If the difference is larger, some input parameters must be
adjusted (for example, the coasting angle, the launch date, or the angle λ1), in order to obtain a physically
acceptable translunar trajectory.

3. Mission application

The 3D method presented in the previous Section is tested with a potential mission scenario in which a
spacecraft equipped with an E-sail tether is a secondary payload (piggyback) of one of the launches of the
planned Chinese lunar program. In particular, the starting date is selected in November 2017 [21], corre-
sponding to the initially hypothesized launch window for the Chang’e-5 mission, later delayed at December
2019. The launch site is Wenchang, China, and the launch vehicle is a Long March CZ-5 launcher. The
characteristics of the launch site and the initial conditions used for the simulations, mainly based on the
available data about the launch site and launch vehicle, are listed in Table 1.

Launch site Initial conditions
δ0 [ deg] λ0 [ deg] βmin [ deg] βmax [ deg] r0 [ km] ψc [ deg] v0 [ km/s] φ0 [ deg]

19.6 111.0 0.0 180.0 6573.1 42.9 11.0 0.0

Table 1: Launch site data and initial conditions used for the translunar trajectories simulations.

The remaining two input parameters for the translunar trajectory simulations, that is, the intercept time
t1 and the angle λ1, are varied in order to analyze a number of possible feasible trajectories. In particular,
the value of λ1 is varied for each intercept time from 0 to 90 deg with a step size of 5 deg. The intercept time
is varied within the month of November 2017, with a time-step of 1 hour between two successive simulations.
The feasible scenarios are simulated with an orbital propagator that numerically integrates the equations of
motion. The most promising scenarios, in terms of small discrepancies between the numerical propagator
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and the 3D method, are investigated in order to identify the best option for the E-sail testing mission. The
waiting times required for exiting the Earth’s magnetosphere are calculated using a simplified (analytical)
magnetosphere model that consists of the superposition of a constant magnetic field and a dipole magnetic
field [22], where the free parameters required to fully define the model are selected to make the magnitude
of the interplanetary magnetic inductance vector in the vicinity of the Earth coincident with the mean value
of 6 nT, in accordance with Ref. [23].

The first scenario involves a circularizing maneuver at the periselenium, that allows the spacecraft to
remain around the Moon, allowing a time out of the magnetosphere of about 15 days, largely sufficient to
perform the tether experiment and to communicate the results to the ground station. Clearly, the Earth-
spacecraft distance does not grow excessively, so that the communications with the ground station does not
require a large antenna. However, an engine is required for the circularizing impulse. The chosen scenario
involves a launch from Wenchang on 1 November 2017 at 11:42, and an intercept with λ1 = 30 deg, on 3
November 2017 at 3:00. The characteristics of the selected selenocentric orbit, calculated with the classical
2D approach, the 3D method presented in the previous Section, and the orbital propagator, are listed in
Table 2.

rp [ km] vp [ km/s] ∆v [ km/s]
2D 3462 2.29 1.11
3D 33895 1.65 1.27

num. 26662 1.87 1.44

Table 2: Periselenium conditions and circularizing ∆v for the selected closed selenocentric scenario, evaluated with the 2D
method, the 3D method, and the orbital propagator.

The second possibility consists in exploiting the Moon’s mass with a gravity assist maneuver that inserts
the spacecraft on a geocentric hyperbolic trajectory capable of quickly going out of the magnetosphere.
Such an approach does not involve any propellant consumption, but the geocentric distance soon becomes
large, so that the experiment must be performed within a few days, otherwise the communications of the
data would be impossible. The selected orbit starts from Wenchang on 27 November 2017 at 9:30, and
it arrives at intercept on 29 November 2017 at 4:00 with an angle λ1 = 40 deg. Table 3 summarizes the
characteristics of the selected mission scenario. Note that, in this approximate simulation, the spacecraft
exits the magnetosphere within 10 hours from the launch (before the lunar intercept), and so the experiment
could realistically be performed on the translunar trajectory, or during the Moon’s flyby, when the Earth-
spacecraft distance is not too large.

v∞ [ km/s] χ [ deg] tw [ hrs]
2D 1.54 13.9 NA
3D 1.54 9.3 NA

num. 1.81 7.0 10.0

Table 3: Flyby parameters and time required to exit the magnetosphere for the selected open selenocentric scenario, evaluated
with the 2D method, the 3D method, and the orbital propagator.

According to the presented results, the open selenocentric orbit scenario seems the most promising one,
because an onboard engine is not required for the spacecraft and the waiting time for the experiment is
small. A sketch of the 3D trajectory for this mission scenario is presented in Fig. 5.

4. Conclusions

A generalization of the patched conic method for the analysis of a translunar trajectory is presented. Such
an analytical approach uses the classical sphere of influence concept, but it accounts for a three-dimensional
spacecraft-Moon encounter, and is capable of predicting the selenocentric orbit parameters with a higher
accuracy with respect to a two-dimensional method.
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Figure 5: 3D sketch of the transfer and post-flyby trajectories for the selected scenario.

The 3D patched conic approach is used to analyze the possible translunar trajectories of an Electric Sail,
an innovative propellantless propulsive system that requires a plasma stream (i.e. the solar wind) to produce
thrust. In particular, the method is useful for testing the Electric Sail outside the Earth’s magnetosphere.
The spacecraft equipped with an E-sail tether should possibly be inserted as a secondary payload of a primary
lunar mission, in order to minimize the launch costs. The simulations performed in the current work are
based on the Chinese lunar mission Chang’e-5, whose launch was initially planned for November 2017. The
preliminary results suggest the feasibility of such a mission scenario, presenting two possible alternatives: a
closed selenocentric orbit obtained with a circularizing impulse, and a lunar flyby that eventually allows the
spacecraft to reach the boundary of the Earth’s magnetosphere. The preliminary results suggest that the
latter could be the best option for the chosen mission scenario.
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