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Abstract

This paper deals with the problem of determining the requirements for the maintenance of circular, displaced,
non-Keplerian orbits around the Sun by means of a magnetic sail-based spacecraft. The magnetic sail is an
exotic propellantless propulsion system that gains thrust from the magnetostatic interaction between the solar
wind and an artificial magnetic field, which is generated on board by an electrical current flowing through a loop
of conducting material. The propulsive requirements are given in terms of characteristic acceleration and thrust
(cone) angle. The analysis is performed using a recent mathematical model in which the magnetic sail thrust
vector is expressed as a function of the Sun-spacecraft distance and the sail attitude. Moreover, a linear stability
analysis is carried out to identify the (marginally) stable displaced orbits when an error in the orbital insertion is
assumed.
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Nomenclature

a = propulsive acceleration vector (with a , ‖a‖), [ mm/s2]
ac = characteristic acceleration, [ mm/s2]
aij = coefficients of the linearized dynamics, see Eqs. (39)–(42)
{b, c} = coefficients of the characteristic equation, see Eqs. (45)-(46)
{CD, CL} = dimensionless function, see Eqs. (4)-(5)
d = Earth-spacecraft distance, [ au]
f = auxiliary function; see Eq. (34)
{h0, h1, k0, k1} = best fit coefficients

îr = radial unit vector

îν = transverse unit vector

{̂iρ, îθ, îz} = unit vectors of TC(ρ, θ, z)
m̂ = dipole moment unit vector
O = Sun’s center of mass
O′ = displaced orbit center

r = Sun-spacecraft position vector (with r , ‖r‖), [ au]
r⊕ = reference distance, [ au]
RSOI = radius of the sphere of influence, [ au]
s = complex variable [ 1/s]
S = spacecraft center of mass
t = time, [ years]
T�(O; x, y, z) = heliocentric-ecliptic reference frame
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TC(O; ρ, θ, z) = rotating cylindrical reference frame
α = thrust cone angle, [ rad]
δρ = error in the orbit radius
δz = error in the orbit displacement
η = thrust coefficient
θ = spacecraft azimuthal angle, [ rad]
λ = real number
µ� = Sun’s gravitational parameter, [ km3/s2]
ρ = orbit radius, [ m]
τ = switching parameter
φ = angle of attack, [ rad]
ψ = elevation angle, [ rad]
ω = angular velocity, [ rad/s]

ω̄ = reference angular velocity (with ω̄ ,
√
µ�/r3), [ rad/s]

Subscripts

max = maximum
0 = nominal, initial
⊕ = referred to Earth

Superscripts

∧ = unit vector
? = required
∼ = dimensionless
′ = derivative with respect to t̃
· = time derivative

1. Introduction

The development of continuous-thrust and propellantless propulsion systems has allowed new mission
scenarios to be investigated [1, 2, 3, 4, 5]. Among them, closed displaced non-Keplerian orbits (DNKOs)
represent a promising option for many applications, as discussed in the survey paper by McKay et al. [6].
The concept of DNKOs has much attracted the scientific interest in the last two decades. For example,
Ceriotti et al. [7, 8] analyzed the pole-sitter mission concept, whose aim is to place a spacecraft above one of
the Earth’s poles for observation purposes. MacDonald et al. [9] discussed a novel concept for an Earth-Mars
interplanetary communication relay and a solar storm warning mission by means of high-specific-impulse
low-thrust propulsion systems, while Heiligers et al. [10, 11] proposed to design new geostationary orbits by
means of a hybrid propulsion system, which combines a solar sail with a solar electric thruster.

Although a DNKO can be approximated with a sequence of Keplerian arcs connected through impulsive
maneuvers [12, 13], DNKOs usually require a continuous thrust to be maintained, since their motion plane
does not contain the center of mass of the primary body [14]. However, the use of a reaction mass for
orbit maintenance limits the mission length and so its scientific return. The use of propellantless propulsion
systems, such as solar sails [15], electric solar wind sails [16, 17, 18], or magnetic sails [19, 20, 21, 22, 23], is
therefore an attractive choice due to the opportunity they offer to obtain long-lived missions. In this context,
McInnes and Bookless [15, 24] suggested the use of solar sail propulsion to generate families of displaced
periodic orbits at planetary bodies, Gong et al. [25, 26] investigated the possibility of maintaining elliptic
DNKOs by means of solar sails for planetary polar observation and studied the relative orbit design and
control methods for formation flying around displaced solar orbits, while Song et al. [27] analyzed solar sail
displaced orbits in the Hill’s restricted three-body problem. The stability and control of DNKOs generated
by low-thrust propulsion systems is studied in Refs. [28, 29]. The relative motion of two spacecraft that track
highly non-Keplerian orbits has been discussed by Wang et al. [30]. More recently, Niccolai et al. [31, 32]
dealt with both circular and elliptic DNKOs maintained by an electric solar wind sail-based spacecraft.

The aim of this paper is to investigate the problem of generating circular DNKOs by means of a magnetic
sail (Magsail), a propellantless propulsion system that was first suggested by Andrews and Zubrin [19, 20,
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Figure 1: Magsail conceptual scheme.

21, 22, 23]. A Magsail-based spacecraft is essentially constituted by a large coil of superconducting material
carrying an electrical current, which generates an artificial magnetic field. The payload is placed at the
center of the coil and is connected to it by some support tethers, as is schematically illustrated in Fig. 1.
The interaction of ions from the solar wind with the artificial magnetosphere induces a momentum exchange
and generates a thrust that is nearly aligned along the Sun-spacecraft direction. Moreover, a transverse
thrust component of modest magnitude can be obtained by inclining the plane of the coil. In the last
few years, a number of experiments and simulations [33, 34, 35, 36, 37, 38, 39, 40, 41, 42] have given
important information about the Magsail performance, and Quarta et al. [43] collected those results to
obtain a mathematical model of the Magsail thrust vector suitable for a preliminary mission analysis and
design. Such a model is used in this paper for the study of circular DNKOs around the Sun and for analyzing
their linear stability.

The paper is organized as follows. Section 2 summarizes the mathematical model presented in Ref. [43],
section 3 deals with the requirements to be met, in terms of characteristic acceleration and thrust cone angle,
for the maintenance of DNKOs. Section 4 addresses the problem of analyzing the linear stability regions
and, finally, some concluding remarks are given in the last section.

2. Thrust vector model

This section summarizes and extends the mathematical thrust model discussed by Quarta et al. [43], who
collected the available numerical and experimental data from Refs. [39, 40] to determine an analytical cor-
relation between the sail attitude and the thrust vector characteristics. The simulations and tests described
in Refs. [39, 40], together with the pioneering theoretical investigations by Zubrin and Andrews [22], have
highlighted that the Magsail thrust vector depends on the heliocentric distance r and the orientation of the
magnetic dipole moment (whose unit vector is m̂) with respect to the Sun-spacecraft unit vector îr.

Consider a spacecraft S, propelled by a Magsail, which moves in the interplanetary space. With reference
to Fig. 2, assume îr × m̂ 6= 0 and introduce a transverse unit vector

îν ,
îr × m̂

sinφ
× îr ≡

m̂−
(
îr · m̂

)
îr

sinφ
(1)

where φ ∈ [−π/2, π/2] rad is the angle of attack, defined as

φ , arcsin
∥∥∥̂ir × m̂

∥∥∥ (2)

According to Ref. [43], in the general case in which φ 6= 0, the propulsive acceleration vector can be
written as

a = τ ac

(r⊕
r

)η (
CD îr + CL îν

)
when îr × m̂ 6= 0 (3)
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Figure 2: Magsail cone and attack angle.

where τ ∈ {0, 1} is a switching parameter, which models the Magsail on/off mode, ac is the spacecraft
characteristic acceleration, that is, its maximum propulsive acceleration at a Sun-spacecraft distance r =
r⊕ , 1 au, while η ∈ {4/3, 2} is a dimensionless thrust coefficient that depends on the Magsail size. Two
operation modes (either “thin” or “thick”) are usually distinguished in the literature [41], depending on
the Magsail size. More precisely, in the “thin” magnetopause mode, which describes the behaviour of a
large Magsail with a loop radius on the order of 105 m, the thrust coefficient is η = 2, while in the “thick”
magnetopause mode, consistent with a smaller Magsail and a loop radius on the order of 103 m, the thrust
coefficient is η = 4/3 [33, 39]. In Eq. (3), CD = CD(φ) and CL = CL(φ) are two dimensionless functions of
the angle of attack φ, which are obtained in Ref. [43] by interpolating the numerical and experimental data
presented in Ref. [41]. The functions CD and CL are given by

CD = h0 + h1 cos(2φ) (4)

CL = k0 sin(2φ) + k1 sin(4φ) (5)

where the (dimensionless) interpolation coefficients {h0, h1, k0, k1} are reported in Tab. 1 for the two possible
Magsail magnetopause modes. Note that, in accordance with the results of Ref. [40], CD (or CL) is an even
(or odd) function of φ. In particular, the function CD is always positive, that is, a · îr ≥ 0. That means
that, similar to what happens for a solar sail [15] or an electric solar wind sail [44], the Magsail can only
generate an outward radial thrust component. In the special case in which m̂ ≡ îr, that is, when φ = 0 (see

magnetopause mode h0 h1 k0 k1 η
“thin” 0.8133 0.1867 0.1485 0 2
“thick” 0.8312 −0.1688 −0.1338 −0.03969 4/3

Table 1: Best fit coefficients and thrust coefficient η for the two magnetopause modes; see Eqs. (4)-(5).

Fig. 2), Eqs.(4)-(5) give CD = (h0 + h1) and CL = 0 and the propulsive acceleration of Eq. (3) reduces to

a = τ ac (h0 + h1)
(r⊕
r

)η
îr when îr × m̂ = 0 (6)

that is, the Magsail gives a purely outward radial thrust.
Finally, the magnitude of the propulsive acceleration vector is

a , ‖a‖ = ac

(r⊕
r

)η √
C2
D + C2

L (7)

while the thrust cone angle α, that is, the angle between a and îr, is

α = arctan

(
CL
CD

)
(8)
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The maximum value of the thrust cone angle, referred to as αmax, depends on the selected magnetopause
mode. In particular, for the “thin” mode αmax ' 10.63 deg, while αmax ' 11.38 deg for the “thick” mode.
Figures 3 and 4 show the dimensionless propulsive acceleration and the cone angle, as a function of the angle
of attack, for the “thin” and “thick” modes, respectively. In both Figs. 3 and 4 there exists a non-operating
zone, which is highlighted by a grey colour. In fact, for each mode, the same thrust cone angle α may be
obtained with two different angles of attack. For example, assuming a “thin” mode, α = 5 deg corresponds

to either φ ' 17.36 deg or φ ' 78.12 deg. However, if φ = 17.36 deg, then a/
[
ac (r⊕/r)

2
]
' 0.9704, while

a/
[
ac (r⊕/r)

2
]
' 0.6452 when φ = 78.12 deg.
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Figure 3: Dimensionless propulsive acceleration and thrust cone angle as a function of φ (when η = 2).
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Figure 4: Dimensionless propulsive acceleration and thrust cone angle as a function of φ (when η = 4/3).

Therefore, in the rest of the paper, we will consider only intervals of φ such that, for a given feasible
α, the magnitude of the propulsive acceleration is maximized. As a result, in the “thin” mode φ ranges in
the interval [−51.66, 51.66] deg, while in the “thick” mode φ ∈ [−90, −29.77] deg or φ ∈ [29.77, 90] deg; see
Figs. 3 and 4.
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3. Generation of displaced orbits

The thrust vector model of a Magsail-based spacecraft presented in the previous section is here used
to investigate the possibility of generating and maintaining Sun-centered, circular DNKOs [15, 45]. With
reference to the scheme of Fig. 5, introduce a heliocentric-ecliptic reference frame T�(O; x, y, z), where O
is the Sun’s center of mass. Without loss of generality, the plane (x, y) coincides with the ecliptic, while

O�
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�
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S�
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�
�

r

�

d
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Figure 5: Conceptual scheme of a heliocentric circular DNKO. Adapted from Ref. [46].

the z-axis is parallel to the Earth’s orbit angular momentum and points towards the northern celestial
hemisphere [46]. A circular DNKO is a circular orbit of radius ρ and centered at O′ 6= O. The displaced
orbit plane is parallel to the ecliptic, and O′ belongs to the z-axis. Finally, the spacecraft covers the DNKO
at a given (constant) angular velocity ω.

To fully characterize a type DNKO, it is necessary to assign three independent parameters: the elevation
angle ψ ∈ [−π/2, π/2] rad, that is, the angle between the Sun-spacecraft vector and the ecliptic, the angular
velocity ω, and the Sun-spacecraft distance r. Note that the orbit radius ρ and the orbit displacement z
may be obtained as a function of ψ and r as

ρ = r cosψ (9)

z = r sinψ (10)

The required thrust cone angle α and characteristic acceleration ac can be written as a function of ψ, ω,
and r. To that end, introduce a cylindrical rotating reference frame TC(O; ρ, θ, z) of unit vectors îρ, îθ and

îz (see Fig. 6), defined as

îρ , îr cosψ − îν sinψ, , îz , îr sinψ + îν cosψ , îθ , îz × îρ (11)

where θ is the spacecraft azimuthal angle, measured from a fixed axis on the displaced orbit plane. Enforcing
the balance between the propulsive, gravitational, and centrifugal accelerations, we obtain [31]

a cosα+ ρω2 cosψ − µ�
r2

= 0 (12)

a sinα− ρω2 sinψ = 0 (13)

where µ� ' 1.327 × 1011 km3/s2 is the Sun’s gravitational parameter, while a and α are obtained from
Eqs. (7) and (8), respectively. After some calculations, Eqs. (12) and (13) may be rearranged to give

α = α? , arctan

(
(ω/ω̄)

2
tanψ

1 + tan2 ψ − (ω/ω̄)
2

)
(14)

ac
µ�/r2⊕

= ã?c ,
(r⊕
r

)2−η 1− (ω/ω̄)
2

cos2 ψ

CD
(15)
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where ω̄ ,
√
µ�/r3 is the angular velocity of a circular Keplerian orbit of radius r. Because in the “thin”

mode η = 2, in that case the required characteristic acceleration is independent of the Sun-spacecraft distance
r. Conversely, in the “thick” mode ã?c scales as r−2/3. Bearing in mind that the characteristic acceleration
is a positive-definite quantity, the condition to be met is ã?c ≥ 0, viz.

cosψ ≤
( ω̄
ω

)
(16)

which is satisfied for any ψ as long as ω ≤ ω̄. On the other hand, when ω > ω̄, ψ must be greater than
arccos(ω̄/ω), otherwise, a negative value of ã?c would occur.

A circular DNKO is usually characterized depending to its angular velocity [15]. For example, a DNKO
with a fixed ω for all values of orbit radius and displacement is called type I orbit, while a type II DNKO has
an angular velocity equal to the mean motion of the circular Keplerian orbit of radius r. The procedure for
the determination of the required thrust cone angle α? and characteristic acceleration ã?c may be summarized
as follows. 1) for given values of r, ω, and ψ, if ω̄/ω < 1 check whether ψ > arccos(ω̄/ω); 2) if the first
condition is satisfied (or ω̄/ω ≥ 1), α? may be obtained from Eq. (14); 3) if |α?| ≤ αmax, the DNKO is
feasible and ã?c is calculated from Eq. (15). It is worth noting that ã?c is inversely proportional to CD, which,
in turn, explicitly depends on φ. As such, the required φ must be found by numerically solving Eq. (8) for
α = α?. Figures 7 and 8 show ã?c as a function of ψ and ω/ω̄ for the “thin” and “thick” modes, respectively.
In particular, the results reported in Fig. 8 are valid when r = r⊕.
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Figure 7: Required dimensionless characteristic acceleration ã?c as a function of ψ and ω/ω̄ for the “thin” mode.
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Figure 8: Required dimensionless characteristic acceleration ã?c as a function of ψ and ω/ω̄ for the “thick” mode and r = r⊕.

The minimum value of the required characteristic acceleration is reached when ψ = 0 independently of
the ratio ω/ω̄ ∈ [0, 1). In particular, when ψ = 0, then α? = 0 and from Eq. (15).

ã?c =
(r⊕
r

)2−η [
1−

(ω
ω̄

)2]
(17)

When ω/ω̄ ≥ 1, instead, the minimum α? is obtained for |ψ| = π/2 rad, which implies α? = 0 and ã?c =

(r⊕/r)
2−η

.

3.1. Type I DNKO

An interesting type I DNKO [15, 32, 46] is obtained when ω = ω⊕ ,
√
µ�/r3⊕, where ω⊕ ' 0.9856 deg/day

is the Earth’s mean angular velocity. Powers and Coverstone [47] called “synchronous orbits” those heliocen-
tric circular orbits designed to match the Earth’s orbital period. In accordance with the terminology adopted
in Ref. [46], these orbits will now be referred to as Earth-Synchronous Displaced Orbits (ESDOs). The con-
dition ω = ω⊕ is effective when the spacecraft mission is to observe the Earth’s polar regions [7, 8, 10, 25, 48].
In this case it is convenient to minimize the Earth-spacecraft distance d (see Fig. 5), with the constraint
d > RSOI, where RSOI ' r⊕/100 denotes the radius of the Earth’s sphere of influence. Substituting ω with
ω⊕, Eqs. (14) and (15) become

α? = α?(r̃, ψ) = arctan

(
r̃3 tanψ

1 + tan2 ψ − r̃3

)
(18)

ã?c = ã?c(r̃, ψ) =

(
1− r̃3 cos2 ψ

CD

)
r̃(η−2) (19)

while the dimensionless Earth-spacecraft distance d̃ , d/r⊕ is

d̃ =
√
r̃2 − 2 r̃ cosψ + 1 (20)

Figures 9–12 show the required thrust cone angle α? and the dimensionless propulsive acceleration ã?c for
the two magnetopause modes. In both cases, for a given α?, a smaller d̃ is obtained for smaller values of ã?c ,
while, for a given ã?c , d̃ is minimized when α? = ±αmax. For example, consider the “thin” mode and assume
that it is required to minimize d̃ by using a Magsail with ã?c = 0.05, that is, ac ' 0.2965 mm/s2. According
to Fig. 10 the minimum obtainable d̃ is about 0.0151, which is reached when r̃ ' 0.9869 and ψ ' 0.4336 deg.
The orbit displacement above the ecliptic is about 175 Earth’s radii.
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Figure 9: Required thrust cone angle α? as a function of r̃ and ψ for the “thin” magnetopause mode.
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Figure 10: Required dimensionless characteristic acceleration ã?c as a function of r̃ and ψ for the “thin” magnetopause mode.

3.2. Type II DNKO

Recall that a type II DNKO has an angular velocity ω equal to the mean motion of the circular Keplerian
orbit of radius r [15, 31]. In that case ω/ω̄ = 1, and Eq. (14) reduces to [31]

α? = arctan (cotψ) (21)

which means that ψ and α? are complementary angles, that is, |ψ+α?| = π/2 rad. Therefore, type II DNKOs
can be maintained with a Magsail only if |ψ| ≥ αmax. The required characteristic acceleration becomes

ã?c =
sin2 ψ

CD
r̃(η−2) (22)

where r̃ , r/r⊕. In a“thin”mode, ã?c = (sinψ)2/CD, and the required propulsive acceleration is independent
of the Sun-spacecraft distance r, as is shown in Fig. 13. Figure 14 illustrates the variation of ã?c as a function
of ψ and r̃ for the “thick” magnetopause mode. Note that, when |ψ| = π/2 rad, the spacecraft is in a
heliostationary condition, that is, the thrust exactly balances the local gravitational pull.
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Figure 12: Required dimensionless characteristic acceleration ã?c as a function of r̃ and ψ for the “thick” magnetopause mode.

To summarize, Eqs. (14) and (15) quantify the performance required to generate a circular DNKO. It is
now advisable to verify whether a Magsail is able to maintain a given DNKO in a passive way, or an active
control system is necessary. This aspect is addressed in the next section by analyzing the stability of its
linearized dynamics.

4. Linear stability analysis

An important point is the stability analysis of DNKOs, which is here addressed by looking for the
conditions that ensure a (linearly) stable motion. Paralleling the procedure described in Ref. [31], consider
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the spacecraft equations of motion in the cylindrical rotating reference frame TC(O; ρ, θ, z)

ρ̈ = −µ�
r3

ρ+ ρ θ̇2 + a cos(α+ ψ) (23)

θ̈ = −2 ρ̇ θ̇

ρ
(24)

z̈ = −µ�
r3

z + a sin(α+ ψ) (25)

The perturbative dynamics is obtained by introducing an error in the spacecraft initial position, which
models an error in the orbital insertion. To that end, the initial orbit radius and displacement may be
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written as

ρ(t0) , ρ0 + δρ(t0) (26)

z(t0) , z0 + δz(t0) (27)

where the subscript 0 denotes the nominal value (being t0 , 0 the initial time), while δρ(t) � ρ0 and
δz(t) � z0 are the errors in the orbit radius and displacement, respectively. It is also assumed that no
error exists in the initial velocity (i.e., ρ(t0) θ̇(t0) = ρ0 ω0), while α(t) = α0 at any time t. Note that, from
Eq. (24), it follows that ρ2 θ̇ is constant and, in particular

ρ2 θ̇ ' ρ20 ω0

[
1 +

δρ(t0)

ρ0

]
(28)

Using the latter transformation, and recalling Eq. (28), the linearized expressions of rλ (with λ ∈ R), a,
ρ θ̇2, cosψ, and sinψ become

rλ ' rλ0
(

1 + λ cosψ0
δρ
r0

+ λ sinψ0
δz
r0

)
(29)

a ' µ�
r20

f

cosα0

(
1− η cosψ0

δρ
r0
− η sinψ0

δz
r0

)
(30)

ρ θ̇2 ' ρ0 ω2
0

[
1− 3

δρ
ρ0

+ 2
δρ(t0)

ρ0

]
(31)

cosψ ' cosψ0

(
1− cosψ0

δρ
r0
− sinψ0

δz
r0

+
δρ
ρ0

)
(32)

sinψ ' sinψ0

(
1− cosψ0

δρ
r0
− sinψ0

δz
r0

+
δz
z0

)
(33)

where

f , 1−
(ω0

ω̄

)2
cos2 ψ0 (34)

The perturbation equations are obtained from Eqs. (23) and (25) by subtracting the corresponding equilib-
rium equation, that is

− 1 + f (1− tanα0 tanψ0) +
(ω0

ω̄

)2
= 0 (35)

− 1 + f (1 + tanα0 cotψ0) = 0 (36)

where ω̄ ,
√
µ�/r30. As a result, the perturbative equations can be written in compact form as

δ′′ρ = a11 δρ + a12 δz + 2 δρ(t0) (37)

δ′′z = a21 δρ + a22 δz (38)

where the prime symbol denotes a derivative with respect to the dimensionless time t̃ , ω̄ t, while the
coefficients aij are given by

a11 = 3 cos2 ψ0 − 1 + f
[
sin2 ψ0 − η cos2 ψ0 + (1 + η) tanα0 sinψ0 cosψ0

]
− 3

(ω0

ω̄

)2
(39)

a12 = 3 sinψ0 cosψ0 − f
[
(1 + η) sinψ0 cosψ0 + tanα0 (cos2 ψ0 − η sin2 ψ0)

]
(40)

a21 = 3 sinψ0 cosψ0 − f
[
(1 + η) sinψ0 cosψ0 − tanα0 (sin2 ψ0 − η cos2 ψ0)

]
(41)

a22 = 3 sin2 ψ0 − 1 + f
[
cos2 ψ0 − η sin2 ψ0 − (1 + η) tanα0 sinψ0 cosψ0

]
(42)
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with

tanα0 ,
(ω0/ω̄)

2
tanψ0

1 + tan2 ψ0 − (ω0/ω̄)
2 (43)

The poles of the linearized system are the roots of the associated characteristic polynomial, that is

s4 + b s2 + c = 0 (44)

where

b , −(a11 + a22) (45)

c , a11 a22 − a12 a21 (46)

Because Eq. (44) is a biquadratic equation, the (marginal) stability of the linearized system requires the
roots of the characteristic equation (44) to be purely imaginary. The condition to be met is therefore
b > 2

√
c, which is satisfied for both Magsail modes as long as c > 0. For both magnetopause modes, the

regions for which ac < 0 or α > αmax are infeasible; see Figs. 15 and 16. Also, as far as the “thin” mode is
concerned, the feasible regions are always linearly stable because c > 0, as is illustrated in Fig. 17. When
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Figure 15: Constraints for the feasibility and linear stability of DNKOs with η = 2.
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Figure 16: Constraints on feasibility and linear stability of DNKOs with η = 4/3.
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Figure 17: Stable and infeasible regions of the linearized dynamics for η = 2.
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Figure 18: Stable, unstable and infeasible regions of the linearized dynamics when η = 4/3.

η = 4/3, instead, Fig. 16 shows that the coefficient c may be either positive or negative and, as such, stable,
unstable and infeasible regions are possible; see Fig. 18. Invoking the Lyapunov’s linearization method [49],
the instability of the linearized dynamics implies the instability of the nonlinear system. Conversely, the
marginal stability of the linearized dynamics is only a necessary (but not sufficient) condition for the stability
of the nonlinear system. A number of numerical simulations has been conducted to verify the stability of the
nonlinear dynamics, showing that the stability regions are slightly narrower than those reported in Figs. 17
and 18.

4.1. Mission application

Consider the problem of maintaining an ESDO, that is, a circular, displaced, non-Keplerian orbit that
the spacecraft covers following the Earth during its revolution around the Sun (ω = ω⊕). In particular,
the exemplary mission is to place the spacecraft in a convenient position relative to the Earth in order
to continuously observe its high-latitude regions. This case is similar to the pole-sitter mission concept
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described by Ceriotti et al. [8], in which a solar electric thruster or a hybrid propulsion system (i.e., a
combination of solar sail and solar electric thruster) is used to maintain an Earth-spacecraft distance of
about 0.018 au. Such a value is chosen to ensure a correct spatial resolution to the scientific instruments.
Assume d̃ = d̃0 = 0.018 and consider a Magsail with a “thick” magnetopause mode (i.e., η = 4/3). From
Eq. (20) it is possible to find all the possible combinations of r̃ and ψ such that d̃ = 0.018; see Fig. (19).
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Figure 19: Reference condition for the case study (η = 4/3).

Because a higher elevation angle allows a better coverage of the Earth’s polar zones to be obtained, a
reference condition is chosen such that r̃ = r̃0 ' 0.9842 and ψ̃ = ψ0 = 0.5 deg; see Fig. (19). From Eqs. (18)
and (19) the required thrust cone angle and characteristic acceleration may be calculated as a function of
r̃0 and ψ0, and the result is ã?c ' 0.0712 (that is, ac ' 0.42 mm/s2) and α̃? ' 10.11 deg.

In this case (ω0/ω̄)2 = (ω⊕/ω̄)2 ' 0.9534 and, therefore, the linearized system is stable; see Fig. 18.
The stability of the complete dynamics is also checked by numerical simulation, in which Eqs. (23)–(25) are
integrated in double precision using a variable order Adams-Bashforth-Moulton solver scheme with absolute
and relative errors of 10−12 and a time span of 50 years. The error in the orbit insertion is modeled assuming
δρ(t0) = δz(t0) = 0.001, which corresponds to a distance error of about 2× 105 km; see Eqs. (26) and (27).
The simulation results involving the normalized distance (r/r0) and elevation angle (ψ/ψ0) are reported in
Fig. 20. Note that the fluctuations with respect to the reference values are less than 0.4% and 8% for r and
ψ, respectively.

Finally consider the radial (vr), azimuthal (vθ) and normal (vψ) components of the spacecraft velocity,
defined as

vr , ρ̇ cosψ + ż sinψ (47)

vθ , ρ θ̇ (48)

vψ , ż cosψ − ρ̇ sinψ (49)

In the reference condition vr0 = vψ0 = 0, and vθ0 = ρ0 ω⊕ ' 29.3 km/s. The time variation of the velocity
components are reported, in a dimensionless form, in Fig. 21. Note that the fluctuations of {vr, vθ, vψ} are
very small, less than 0.02% of vθ0 (about 59 m/s).

5. Conclusions

This paper has analyzed the problem of generating circular, displaced, non-Keplerian orbits around
the Sun using a Magsail-based spacecraft. Starting from a recent mathematical model for the description
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Figure 20: Long-time variation of the spacecraft perturbed states for the case study.

of the Magsail propulsive acceleration vector, the requirements necessary to guarantee a displaced orbit
maintenance have been expressed in terms of characteristic acceleration and thrust cone angle. Due to
the small value of the maximum obtainable thrust cone angle, some combinations of angular velocity and
elevation angle are unfeasible, while others, albeit feasible, turn out to be unstable at linear order. In
particular, unstable and marginally stable regions have been investigated by assuming a position error in
the orbital insertion.

A natural extension of this work is to investigate a suitable control system that is able to reduce or even
delete the unstable regions. This result may be accomplished, for example, by modulating the electrical
current flowing in the ring, or by reorienting the thrust vector. Another interesting application of the
Magsail concept is represented by the achievement of heliocentric elliptic displaced non-Keplerian orbits.
In this last case, however, the necessary control system is more involved, since it must be able to vary the
propulsive acceleration magnitude and, at the same time, the thrust vector direction.
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