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Abstract

In this paper we study the problem of energy conservation for the solutions of the ini-
tial boundary value problem associated to the 3D Navier-Stokes equations, with Dirichlet
boundary conditions.

First, we consider Leray-Hopf weak solutions and we prove some new criteria, involving
the gradient of the velocity. Next, we compare them with the existing literature in scaling
invariant spaces and with the Onsager conjecture.

Then, we consider the problem of energy conservation for very-weak solutions, proving
energy equality for distributional solutions belonging to the so-called Shinbrot class. A pos-
sible explanation of the role of this classical class of solutions, which is not scaling invariant,
is also given.
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1 Introduction

We consider the Navier-Stokes equations in a bounded domain Ω ⊂ R3 with smooth boundary
∂Ω, and vanishing Dirichlet boundary conditions

(1.1)


∂tu−∆u+ (u · ∇)u+∇p = 0 in (0, T )× Ω,

∇ · u = 0 in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u(0, ·) = u0 in Ω.

We study the problem in a bounded domain, but the results are valid also in more general
domains, with minor changes in the proofs. For simplicity we treat the problem with unit
viscosity and with vanishing external force, but both assumptions are unessential.

We recall that starting with the works of Leray [36] and Hopf [32] the notion of kinetic energy
became of fundamental relevance in the analysis of the Navier-Stokes equations, since its bound-
edness represents the very basic a priori estimate, which allows to start the machinery which is
used to construct the so-called Leray-Hopf weak solutions. It is well-known that solutions in this
class exist for all positive times, but their regularity and even their uniqueness are still unproved
at present. The balance of the kinetic energy formally follows by multiplying the equations by
the solutions itself and by performing some integration by parts, once the needed computations
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are allowed. On the other hand, the work of Leray and Hopf showed that the energy inequality
below (opposed to the equality (1.5))

1

2

∫
Ω
|u(t, x)|2dx+

∫ t

0

∫
Ω
|∇u(s, x)|2 dxds ≤ 1

2

∫
Ω
|u0(x)|2dx ∀ t ≥ 0,

can be inferred for weak solutions in the class where globally in time existence holds. In the
latter inequality the sign “less or equal” is due to the lack of regularity of weak solutions and
it comes from a limiting process on smoother functions based on weak convergence. We note
that under some restrictions on the domain also the strong energy inequality is valid, but this is
inessential for the present research, see e.g. [27].

The first attempts to determine sufficient conditions implying the validity of the energy
equality (1.5) in the class of weak solutions –especially in connection with the problem of
uniqueness– came with a series of papers by Lions [38] and Prodi [43], where the criterion
u ∈ L4(0, T ;L4(Ω)) has been identified. The connections with the 2D case and the results of
Kiselev and Ladyžhenskaya [34] highlighted the similarities and differences between the two and
three-dimensional case. A few years later, in the wake of the celebrated survey of Serrin [44],
Shinbrot [45] derived the criterion

(1.2) u ∈ Lr(0, T ;Ls(Ω)) with
2

r
+

2

s
= 1 for s ≥ 4,

which contains the condition L4(0, T ;L4(Ω)) as a sub-case, and which extends to a wide range
of exponents the condition for energy conservation.

Remark 1.1. The condition derived by Shinbrot reads more precisely as 2
r + 2

s ≤ 1. The most
interesting is the limiting case and here we refer to condition (1.2), since the same results are
straightforward if the sum is strictly smaller than one.

It is extremely relevant to observe that the condition (1.2) does not depend on the space
dimension n (in particular it is valid also for n > 3) and moreover –very remarkably– it is
not scaling invariant, we will elaborate on this in the sequel. We observe that the results of
Ladyžhenskaya, Prodi, and Serrin (popularized especially after the appearance of [44]) showed
regularity of weak solutions (and hence validity of the energy equality) if the scaling invariant
condition

(1.3) u ∈ Lr(0, T ;Ls(Ω)) with
2

r
+

3

s
= 1 for s > 3,

holds true (see also Sohr [48]). A nice survey of these classical results can be found in Galdi [27].
The fact that Shinbrot condition does not fit in with the framework of scaling invariance (and

also that (1.2) reduces to (1.3) as s→ +∞) makes the understanding and the explanation of (1.2)
more involved. We will give later on in Section 2.3 a possible interpretation, which is based on
a different scaling and which highlights the importance of the convective term as responsible
of the non-linear character of the equations, which seems in this case more relevant than the
non-local nature induced by the divergence-free constraint and by the pressure. Indeed, it seems
that the “hyperbolic” part of the equations, plays a fundamental role in the redistribution of
the energy, not at the Fourier level, but in a sort of regularity exchange, see Section 2.3.

The essential difference between the energy equality and the energy inequality is the pres-
ence of anomalous dissipation due to the presence of non-linearity. The dissipation phenomenon
is expected to be connected with the possible roughness of the solutions. The importance of
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energy conservation/dissipation (especially in the limit of vanishing viscosity) came from On-
sager’s work [42]. Moreover, for the Navier-Stokes equations the possible connection between
energy conservation and uniqueness of weak solutions still represent an interesting open problem.
Furthermore, we observe that the energy equality, will imply in the case of Faedo-Galerkin ap-
proximate functions {um}m∈N, the convergence of the norms ‖um‖L2(0,T ;W 1,2(Ω), which combined
with the weak convergence will produce the strong convergence. This will have also relevant
consequences when these methods are used in the numerical approximation of the solutions.

The famous Onsager conjecture for the Euler and Navier-Stokes equations predicts the
threshold regularity for energy conservation. In this direction, energy conservation for C0,1/3-
solutions of the Euler equations has been recently addressed in the work of Isett [33] and also
Buckmaster, De Lellis, Székelyhidi, and Vicol [11]. On the other hand the role of Besov-Hölder
continuous spaces in the energy conservation of the viscous Navier-Stokes equations was studied
by Cheskidov, Constantin, Friedlander and Shvydkoy [12], who proved that weak solutions in
the following class

u ∈ L3(0, T ;B
1/3
3,∞(R3)),

conserve the energy, Cf. also Constantin, E, and Titi [16] for the Euler equations. The latter
result has been recently extended by Cheskidov and Luo [14] to the class

u ∈ Lβw(0, T ;B
2
β

+ 2
p
−1

p,∞ (R3)) with
2

p
+

1

β
< 1 for 1 ≤ β < p ≤ ∞,

where Lβw denotes the weak (Marcinkiewicz) space, while Bs
p,q(R3) are the standard Besov spaces.

A similar approach, based on Fourier methods, allowed Cheskidov, Friedlander, and Shvyd-
koy [13] to prove the following sufficient condition for energy conservation (here A denotes the
Stokes operator associated to the Dirichlet boundary conditions)

A5/12u ∈ L3(0, T ;L2(Ω)),

which turns out to be –in terms of scaling– less strict than Shinbrot one (1.2). In fact, the
latter criterion by Cheskidov, Friedlander, and Shvydkoy is equivalent in terms of scaling to
u ∈ L3(0, T ;L9/2(Ω)). The comparison and discussion of the various results will be given in
detail in Section 2.2.1. We also recall that Farwig [21] proved the following sufficient condition
for energy conservation

A1/4u ∈ L3(0, T ;L18/7(Ω)),

which turns out to have the same scaling.
Our first aim is to improve the above results by looking for regularity requirements sufficient

to prove energy conservation and weaker than the existing ones. The improvements coming
from our results can be measured in terms of scaling, see Theorem 1. Moreover, we will use
tools of functional analysis accessible to an extremely wide range of researchers, since we mainly
focus on showing conditions involving usual derivatives in Lebesgue spaces, without entering the
technical difficulties of more complex functional settings. This complies with the spirit of looking
for refinements of basic results in classical functional spaces. Possible further developments in
slightly sharper, but more complicated spaces (but at the same level of scaling) are not excluded,
but beyond our goals.

In order to present our first main result we recall, for the reader not acquainted with all
the technicalities necessary when dealing with genuine Leray-Hopf weak solutions of the Navier-
Stokes equations, that one main step in the analysis of the energy equality is to rigorously prove
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the following equality

(1.4)

∫ T

0

∫
Ω

(u · ∇)u · u dxdt = 0.

The latter equality is formally valid if u is a divergence-free vector field tangential to the bound-
ary. The calculations are justified once u is smooth enough to ensure that the above space-time
integral is finite, but this is not the case if u is a weak solution in the 3D case.

The novelty of our approach is to look for conditions involving the gradient of the velocity,
instead of the velocity itself, which allow to conclude that the above integral is finite.

The first result of this paper is the following criterion.

Theorem 1. Let u0 ∈ H and let u be a Leray-Hopf weak solution of (1.1) corresponding to u0

as initial datum. Let us assume that one the following conditions is satisfied

(i) ∇u ∈ L
q

2q−3 (0, T ;Lq(Ω)), for 3
2 < q < 9

5 ;

(ii) ∇u ∈ L
5q

5q−6 (0, T ;Lq(Ω)), for 9
5 ≤ q ≤ 3;

(iii) ∇u ∈ L1+ 2
q (0, T ;Lq(Ω)), for q > 3.

Then, the velocity u satisfies the energy equality

(1.5)
1

2

∫
Ω
|u(t, x)|2dx+

∫ t

0

∫
Ω
|∇u(s, x)|2 dxds =

1

2

∫
Ω
|u0(x)|2dx ∀ t ≥ 0.

These results will be proved in Section 3, but the comparison with the previous ones known
in literature will be be discussed already in Section 2.2.1. The overall strategy is, to assume
that ∇u ∈ Lq(Ω) for some fixed q, and to employ all the available regularity coming from the
definition of weak solutions, so to find the smaller exponent in the time variable which allows
to show (1.4).

Remark 1.2. A similar approach had already been implemented also by Farwig and Tani-
uchi [24], focusing on the degree k of (fractional) smoothness of the velocity u and on the correct
definition of spaces in the case of general unbounded domains. In particular, their result for
k = 1 has the same scaling as ours in the case q = 9/5. Very recently, our approach of work-
ing with levels of regularity for the gradient of the velocity has inspired the paper of Beirão da
Veiga and Yang [4] where they treat Newtonian and non-Newtonian fluids. They obtain some
improvements of the results in (iii), by employing a Gagliardo-Nirenberg inequality.

Remark 1.3. Even if not explicitly stated, it is clear that any of the conditions on the gradient
in Theorem 1 implies, directly by the standard theory of traces, an extra condition on the initial
datum. To keep the paper self-contained and more understandable we do not elaborate on this
technical point, which can be probably improved by using the theory of weighted estimates as in
Farwig, Giga, and Hsu [22] or by dealing with conditions valid on any time interval of the type
[ε, T ] (with ε > 0), as done in the recent paper by Maremonti [40] and also Farwig [21].

In the last part of the paper (cf. Section 4) we will consider the problem of energy conservation
for solutions which are very-weak, see Section 2.1 for the precise definition. In this case there is
not any available regularity on u, apart the solution being in L2

loc((0, T )× Ω). The interest for
very-weak solutions dates back to Foias [26], who proved their uniqueness under condition (1.3).
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Later Fabes, Jones, and Rivière [20] proved the existence of very-weak solutions for the Cauchy
problem, while the case of the initial-boundary value problem has been studied mainly starting
from the work of Amann [1]. As usual when dealing with very-weak solutions a duality argument
can be employed to show uniqueness, by using properties of the adjoint problem (which in case
of the Navier-Stokes equations, is a backward Oseen type-problem). The connection with the
energy equality has been very recently developed by Galdi [30], who showed that very-weak
solution in the Lions-Prodi class L4(0, T ;L4(Ω)), and with initial data in L2(Ω), satisfy (1.5). It
is relevant to observe that the duality argument is used to improve the known regularity of the
solution, in order to use the previously established results for usual weak solutions. This has been
used also in a different context in [7], but the approach we follow here takes also inspiration from
a bootstrap argument as used in Lions and Masmoudi [39] for results concerning mild solutions.

The second result we prove is then the following.

Theorem 2. Let u ∈ L2
loc((0, T )× Ω) be a distributional solution of (1.1). If the initial datum

u0 ∈ H and if (1.2) holds true, then the energy equality (1.5) is satisfied.

The interpretation of the latter result and its connection with the scaling of space and time
variables will be given in Section 2.3. The techniques employed here are inspired by the approach
followed in Galdi [30, 29].

Summarizing the results, the sufficient conditions required for the energy equality are stronger
if the requested regularity of the solution u is weaker. In particular, the less strict requirement
of the solution (being just a distributional solution) seems to require more restrictive conditions
then those in Theorem 1, which are nevertheless the same as those classically found in [43, 38, 45]
for Leray-Hopf weak solutions.

Acknowledgments The authors warmly thank Prof. Herbert Amann for having provided in
a private communication, and prior to publishing, the results of Lemma 2.2, which appears in
the recent Ref. [2] and Prof. Reinhard Farwig for having provided several relevant bibliographic
references.

The research that led to the present paper was partially supported by a grant of the
group GNAMPA of INdAM and by the project of the University of Pisa within the grant
PRA 2018 52 UNIPI Energy and regularity: New techniques for classical PDE problems.

2 Functional setting and comparison with previous results

In this section we first introduce the notation and the precise definitions of solutions we want
to deal with, then we compare our results with the ones in the existing literature. We will use
the customary Sobolev spaces (W s,p(Ω), ‖ . ‖W s,p) and we denote the Lp-norm simply by ‖ . ‖p
and since the Hilbert case plays a special role we denote the L2(Ω)-norm simply by ‖ . ‖. For
X a Banach space we will also denote the usual Bochner spaces of functions defined on [0, T ]
and with values in X by (Lp(0, T ;X), ‖ . ‖Lp(X)). In the case X = Lq(Ω) we denote the norm of
Lp(0, T ;Lq(Ω)) simply by ‖ . ‖p,q.

2.1 On Leray-Hopf weak and very-weak solutions

For the variational formulation of the Navier-Stokes equations (1.1), we introduce as usual
the space V of smooth and divergence-free vectors fields, with compact support in Ω. We then
denote the completion of V in L2(Ω) by H and the completion in W 1,2

0 (Ω) by V . The Hilbert
space H is endowed with the natural L2-norm ‖ . ‖ and inner product (·, ·), while V with the
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norm ‖∇v‖ and inner product ((u, v)) := (∇u,∇v). As usual, we do not distinguish between
scalar and vector valued functions. The dual pairing between V and V ′ is denoted by 〈·, ·〉, and
the dual norm by ‖ . ‖∗.

Definition 1 (Leray-Hopf weak solutions). A vector field u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) is a
Leray-Hopf weak solution to the Navier-Stokes equations (1.1) if

(i) u is a solution of (1.1) in the sense of distributions, i.e.∫ T

0
(u, ∂tφ)− (∇u,∇φ)− ((u · ∇)u, φ) dt = −(u0, φ(0)),

for all φ ∈ C∞0 ([0, T [×Ω) with ∇ · φ = 0;

(ii) u satisfies the global energy inequality

(2.1)
1

2
‖u(t)‖2 +

∫ t

0
‖∇u(s)‖2 ≤ 1

2
‖u0‖2 ∀ t ≥ 0;

(iii) the initial datum is attained in the strong sense of L2(Ω)

‖u(t)− u0‖ → 0 t→ 0+.

Remark 2.1. If u is a weak solution on [0, T [×Ω for all T > 0, then u will be called a global
weak solution.

Since the works of Leray and Hopf [36, 32] for the Cauchy problem and for the initial
boundary vale problem, it is well-known that for initial data in H, and for all T > 0 there exists
at least a weak solution in the above sense. An outstanding open problem is that of proving (or
disproving) the uniqueness and regularity of weak solutions, see Constantin and Foias [17] and
Galdi [27].

In the last section of the paper we deal with another less-restrictive notion of solution, which
allows for infinite energy.

Definition 2 (very-weak solutions). A vector field u ∈ L2
loc((0, T )× Ω) is a very-weak solution

to the Navier-Stokes equations if

(i) the following identity∫ T

0
(u, ∂tφ) + (u,∆φ) + (u, (u · ∇)φ) dt = −(u0, φ(0)),

holds true for all φ ∈ DT ,where

DT :=

{
φ ∈ C∞([0, T ]× Ω),with support contained in a compact set of [0, T ]× Ω,

such that ∇ · φ = 0 in Ω, φ = 0 on ∂Ω and φ(T ) = 0 in Ω

}
;

(ii) ∇ · u = 0 in the sense of D′(Ω), i.e. in the sense of distributions in Ω, for a.e. t ∈ [0, T ].

As mentioned before, the existence of very-weak solutions in the case of the whole space has
been treated in [20], but the notion in the 3D time-evolution case in a bounded domain (especially
with analysis of the meaning of boundary conditions) is analyzed for instance in Amann [1] and
Farwig, Kozono, and Sohr [23], with emphasis on the non-homogeneous problem, too.
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2.2 Comparison with previous results

In this section we compare our results with the ones already present in literature. From the
physical point of view the most relevant results are those related with large q, especially with
q > 3, being 3 the space dimension.

2.2.1 Energy conservation and Onsager conjecture

As mentioned in the introduction, the validity of (1.5) has a strong connection with Onsager
conjecture about the threshold regularity of C1/3-Hölder continuity of the velocity which allows
for energy conservation. While for the 3D Euler equations the conjecture is basically solved in
both directions, for the 3D Navier-Stokes equations much has still to be done. This is a strong
motivation to investigate further the energy equality for the 3D Navier-Stokes equations and
to understand the anomalous energy dissipation phenomenon in this case. Our result involves
Sobolev regularity of the velocity, but this can be compared to Hölder regularity as we will
explain in the following. In the range q > 3, standard Sobolev embedding theorems imply
W 1,q(Ω) ⊂ C0,1−3/q(Ω), and W 1,q(Ω) is a proper subset of C0,1−3/q(Ω). On the other hand, in
order to compare our result with previous ones, we can consider the two spaces as if they would
be equivalent in a certain sense. Indeed, Sobolev norms measure a sort of combination of three
properties of a function: height (amplitude), width (measure of the support), and frequency
(inverse wavelength). Roughly speaking, if a function has amplitude A, is supported on a set of
volume V , and has oscillations with frequency N , then the W k,p-(homogeneous) norm is of the
order of ANkV 1/p. A key quantity is the “weight” k− n

p of the Sobolev space W k,p(Rn): If one

scales the metric by a constant R > 0 then this transformations scales the W k,p-norm by Rn/p−k

and the Cm,α-norm by R−(m+α), showing the relevance of the weights. Hence, from the point of
view of Sobolev embedding and fractional regularity it is sound to consider as very close (and so
almost equivalent) in the 3D case the spaces W s1,p1 and W s2,p2 , when 1/p1−s1/3 = 1/p2−s2/3,
and they both embed in C0,α, for α := si − 3/pi, whenever this quantity is positive. Also in
terms of interpolation theory, these spaces behave in the same way, as can be seen with the
DeVore diagrams [18]. Hence, we can also consider C0,1−3/q(Ω) as a rough –but meaningful–
measure of the classical regularity of W 1,q(Ω).

By embedding, results from Theorem 1 in the range q > 3 are very close to the condition

u ∈ L1+ 2
q (0, T ;C

0,1− 3
q (Ω)).

In particular, by taking q = 9/2 we obtain, as class of solutions conserving the energy, that with
scaling comparable to

u ∈ L
13
9 (0, T ;C0,1/3(Ω)),

which improves the previously cited results

u ∈ L3(0, T ;B
1/3
3,∞(R3)) from Ref. [12];

u ∈ L
3
2
w(0, T ;B1/3

∞,∞(R3)) from Ref. [14], when p =∞, and β = 3/2.

In the space variables the two functional spaces are very close to C0,1/3(Ω), but 3 > 3/2 = 1.5 >
13/9 = 1.4.

We also warn again the reader that our results are obtained by embedding, hence they are
valid for a proper subset of C0,1/3(Ω) and there is not any direct connection between Hölder
and Sobolev regularity (recall that the Weierstrass function

∑
n∈N a

n cos(bnπx), 0 < a < 1,
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is − log(a)/ log(b)−Hölder continuous but is not even of bounded variation). Nevertheless, in
terms of scaling our results present a better behavior as compared with the previous ones present
in literature. This suggests that there could be also room for further improvements.

2.2.2 Scaling invariance and comparison with previous criteria

In order to explain the comparison (we will make later on) we also wish to recall the notion
of scaling invariance for space-time functions. By interpolation one can show that Leray-Hopf
weak solution have the following regularity

u ∈ Lr(0, T ;Ls(Ω)) with
2

r
+

3

s
=

3

2
, for 2 ≤ s ≤ 6.

Several results (starting again from the classical work of Ladyžhenskaya, Prodi, and Serrin)
concern uniqueness and regularity with scaling invariant conditions on solutions. In particular,
if a weak solution satisfies condition (1.3) (see [44] for example), then it becomes unique, strong,
smooth, and it satisfies the energy equality.

Full regularity of weak solutions follows also under alternative assumptions on the gradient
of the velocity ∇u. More specifically, if

(2.2) ∇u ∈ Lp(0, T ;Lq(Ω)) with
2

p
+

3

q
= 2, for q >

3

2
,

then weak solutions are regular, see Beirão da Veiga [3] and also [5] for the problem in a
bounded domain. In R3 standard Sobolev embeddings imply that if ∇u ∈ Lp(0, T ;Lq(Ω))
then u ∈ Lp(0, T ;Lq

∗
(Ω)) where 1

q∗ = 1
q −

1
3 . We recall that for weak solutions ∇u is simply

(x, t)-square-integrable and 2
2 + 3

2 = 5
2 > 2.

The class defined by (1.3) is important from the point of view of the relation between scaling
invariance and partial regularity of weak solutions. In fact, if a pair (u, p) solves (1.1), then so
does the family {(uλ, pλ)}λ>0 defined by

(2.3) uλ(t, x) := λu(λ2t, λx) and pλ(x, t) := λ2p(λ2t, λx).

Scaling invariance means that ‖uλ‖Lr(0,T/λ2;Ls(Ωλ)) = ‖u‖Lr(0,T ;Ls(Ω)) and this happens if and
only if (r, s) satisfy (1.3). (Here Ωλ := {x/λ : x ∈ Ω}.) Likewise, the scaling invariance of ∇u
occurs if and only if (2.2) holds true. We will use these notions to compare classical and more
recent results with the new ones from Theorem 1.

If u ∈ L4(0, T ;L4(Ω)) then, in terms of scaling, this regularity lies in between the class of
existence and that of regularity since

1 =
2

4
+

2

4
<

2

4
+

3

4
=

5

4
<

3

2
.

We note that also the class (1.2) identified by Shinbrot shares the same property, even if in
terms of scaling

1 <
2

r
+

3

s
=

2

r
+

2

s
+

1

s
= 1 +

1

s
<

3

2
,

hence, as s increases, this class becomes closer and closer to that of regularity given by (1.3). A
natural question is that if we can lower down the level of regularity needed for a weak solution,
in order to satisfy the energy equality.

The new results we present are related with the aim of finding sufficient conditions for the
energy equality involving the gradient of the velocity.
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The fact that condition (1.2) is not scaling invariant makes it possible to conjecture that
perhaps some threshold can be broken by a more precise inspection of the calculations. In fact,
the aforementioned results in [13, 21] identified the sufficient conditions

A5/12u ∈ L3(0, T ;L2(Ω)) or A1/4u ∈ L3(0, T ;L18/7(Ω)).

which are –in terms of scaling– both comparable with

u ∈ L3(0, T ;L9/2(Ω)),

which is less restrictive than (1.2), since

1 <
2

3
+

2

9/2
=

10

9
,

but at the same time the space L3(0, T ;L9/2(Ω)) it is still between the class of existence and
that of regularity, being 1 < 2

3 + 3
9/2 = 4

3 <
3
2 .

The ranges obtained in Theorem 1 have respectively the following properties, which turn out
easy to be compared with the condition (2.2).

We have in fact that:

(i) it holds 2 < 2
p + 3

q = 4− 3
q <

7
3 , for 3

2 < q < 9
5 ;

(ii) it holds 2 < 7
3 ≤

2
p + 3

q = 2 + 3
5q <

11
5 , for 9

5 ≤ q < 3;

(iii) it holds 2 < 2
p + 3

q = 2q
q+2 + 3

q ≤
11
5 , for 3 ≤ q < 6.

Thus, we have that for 3
2 < q < 6 our conditions imply range of exponents which are not

those of scaling invariance (2.2), hence not those implying full regularity of the solutions (and
consequently also energy equality in a trivial way). This explains the limitation q < 6.

Remark 2.2. In cases (i) and (ii), i.e. when 3
2 < q < 3, the standard Sobolev embedding tells

us that u ∈ Lp(0, T ;Lq
∗
(Ω)) where q∗ = 3q

3−q and p is given as a function of q by Theorem 1.
This means that by case (i) and case (ii) the exponent of integrability q∗ in the space variable
for the solution u can span the range from 3 to +∞.

Recalling that q∗ = 3q
3−q , the ranges obtained in Theorem 1 have respectively the following

properties:

(i) it holds 1 < 2
p + 2

q∗ = 2(5q−6)
3q , for 12

7 < q < 9
5 ;

(ii) it holds 1 < 2
p + 2

q∗ = 2(10q−3)
15q , for 9

5 ≤ q < 3;

(iii) it holds 1 < 2
p + 2

q∗ = 2q
q+2 , for q > 3.

Thus, we showed that our range of exponents improves those in Shinbrot condition (1.2). We
observe that Shinbrot condition for the space integrability of u (exponent ≥ 4) corresponds to
q > 12

7 in our classification.

Remark 2.3. (Scaling invariance) The “best exponent” if measured in terms of making the
quantity 2

p + 3
q as large as possible, turns out to be q = 9/5. This implies that by embedding

(9/5)∗ = 9/2, which gives the sufficient condition

u ∈ L3(0, T ;W 1,9/5(Ω)) ⊂ L3(0, T ;L9/2(Ω)),

that is at the same level of scaling of [13, 21], even if the various conditions are not directly
comparable each other.
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Remark 2.4. (Shinbrot exponents) The “best exponent”, if measured in terms of making the
quantity 2

p + 2
q∗ as large as possible, turns out to be “formally” q = 6. We write formally, since

in this case we fall into the class of scaling invariant regularity. Nevertheless, for 3 < q < 6

by Sobolev embedding we obtain u ∈ L
1+ 2

q (0, T ;L∞(Ω)), which gives the larger values of the
quantity 2

p + 2
q∗ = 2q

2+q when approaching q = 6.

We further remark that, in the range q > 12
7 , our result improves also the ranges obtained

by Leslie and Shvydkoy in [37]. Indeed, they prove (see [37, Theorem 1.1]) the validity of the
energy equality for u ∈ Lr(0, T ;Ls(Ω)) with 3 ≤ r ≤ s and

1

r
+

1

s
≤ 1

2
,

while, for q > 12
7 we are assuming ∇u ∈ Lp(0, T ;Lq(Ω)) and hence u ∈ Lp(0, T ;Lq

∗
(Ω)) with

p ≤ q∗ and
1

p
+

1

q∗
>

1

2
.

However, authors in [37] studied also the case s < 3 corresponding in our case to q < 3/2 which
is not covered here. Moreover, for the case 3 ≤ s < r, they can prove the energy equality with
exponents r and s satisfying 1

r + 1
s < 1

2 : this matches our interval 3/2 ≤ q < 12/7, where
1
p + 1

q∗ <
1
2 , thus showing that we are not improving [37] in this last range of exponents.

Figure 1: The shaded area corresponds to the ranges of Theorem 1 and in particular the dashed
one corresponds to new ranges of exponents not obtained before in the literature.
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2.3 On the Shinbrot condition (1.2) and very-weak solutions

In the case of very-weak solutions, the sufficient condition for energy equality we find is
the same as (1.2), hence showing that it has a universal role, since it applies to distributional
solutions which can be outside of any Lebesgue space, hence not the common Leray-Hopf weak
solutions.

We observe that the condition (1.2) breaks down all the standard theory of scaling invariance,
even if we consider different families of scaling transformation. In fact, beside the standard
parabolic scaling (2.3), it is well-known that useful different approaches are those concerning
invariance of the equation under the following space-time transformation, indexed by α ∈ R

(2.4) uλ,α(t, x) := λαu(λα+1t, λx) and pλ,α(t, x) := λ2αp(λα+1t, λx).

Note that the transformation in (2.3) corresponds to α = 1. On varying α, with these transfor-
mations it is possible to extract some heuristic and useful information from the equations. In
particular, they keep for all α ∈ R the material derivative operator D

Dt := ∂t + u · ∇ unchanged,
while the viscosity changes from ν to λα−1ν. This explains the relevance of these transforma-
tion in the study of Euler equations or also in presence of very small viscosities. We point out
that the case α = −1/3 determines the so-called Kolmogorov scaling, which has connections
with the conservation of energy input for stochastic statistically stationary solutions, stochastic
equations, and Large Eddy Simulation for turbulence modeling. See [6, 8], Flandoli, Gubinelli,
Hairer, and Romito [25], and Kupiainen [35]. If we try to consider the scaling of norms under
the transformation (2.4) we obtain that

‖uλ,α‖Lr(0,T/λ2;Ls(Ωλ)) = λα−
3
s
−α+1

r ‖u‖Lr(0,T ;Ls(Ω))

hence the norms cannot be invariant for the relevant values of α, since α− 3
s−

α+1
r never vanishes

for both α = 1 and α = −1/3. A possible explanation or justification of the condition (1.2) will
come from a different analysis.

In particular, in condition (1.2) the space and time variables have the same “strength,” as
in hyperbolic equations, while in our studies the viscosity and hence the parabolic part play
a fundamental role. To understand in which situation hyperbolic nature of convection plays a
major role we have to consider the maximal regularity type results for the Stokes problem, which
will be used to handle the adjoint problem. Coming back to Solonnikov [49] (see also Giga and
Sohr [31] and Maremonti and Solonnikov [41] for the mixed estimates) it is well-known that for
a wide class of domains the following result holds true.

Theorem 3. Let Ω ⊂ R3 be smooth and bounded (or exterior or the full-space or even the
half-space) and let F ∈ Lα(0, T ;Lβ(Ω)), with 1 < α, β < ∞. Then, the boundary initial value
problem associated to the linear Stokes system

(2.5)

∂tv −∆v +∇π = F in (0, T )× Ω,

∇ · v = 0 in (0, T )× Ω,

v(t, x) = 0 on (0, T )× ∂Ω,

v(0, x) = 0 in Ω,

has a unique solution (v, π) such that

(2.6) ∃ c > 0 ‖∂tv‖Lα(Lβ) + ‖∇2v‖Lα(Lβ) + ‖∇π‖Lα(Lβ) ≤ c ‖F‖Lα(Lβ),

where the constant c depends on T, α, β, and on the domain.
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Remark 2.5. In fact, the constant c in (2.6) can be taken independent of T if β < 3/2 (see
for instance [41]), but this is not relevant in our context since we will be always working on the
finite time interval (0, T ).

For our purposes, a very interesting application consists in using Theorem 3 to find improved
regularity for the solutions of a linear problem in which F = (u · ∇) v, where u is an assigned
function with a given space-time summability as for instance (1.2).

We have the following lemma.

Lemma 2.1. Let Ω ⊂ R3 be smooth and bounded (or exterior or the full-space or even the
half-space), and let u ∈ Lr(0, T ;Ls(Ω)) with 2

r + 3
s ≤

7
2 , such that ∇ · u = 0 in D′(Ω), for a.e.

t ∈ [0, T ]. Then, the boundary initial value problem

(2.7)

∂tv −∆v +∇π = −(u · ∇) v in (0, T )× Ω,

∇ · v = 0 in (0, T )× Ω,

v(t, x) = 0 on (0, T )× ∂Ω,

v(0, x) = 0 in Ω,

has a unique solution such that

v ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2
0 (Ω)).

Moreover, if the solution v satisfies also

∇v ∈ Lα(0, T ;Lβ(Ω)), with 1 < α, β <∞, for
1

r
+

1

α
< 1, and

1

s
+

1

β
< 1,

then the solution v itself satisfies also the following improved estimate

∃ c > 0 ‖∂tv‖
L
rα
r+α (L

sβ
s+β )

+ ‖∇2v‖
L
rα
r+α (L

sβ
s+β )

+ ‖∇π‖
L
rα
r+α (L

sβ
s+β )

≤ c ‖u‖Lr(Ls)‖∇v‖Lα(Lβ),

for some non negative constant c = c(T, r, s, α, β,Ω).

The existence part in the energy space comes from usual smoothing of u, Faedo-Galerkin
approximation, and eventually using the technique of invading domains for unbounded domains
(see [30, 40, 49]), while the further regularity follows by applying Theorem 3

In order to show the requested regularity (which will make the calculations in the proof of
Theorem 2 fully justified) we need to apply the above result several –but a finite number of–
times, making possible a sort of bootstrap. This is the main difference with the proof of the
result for r = s = 4 from [30], where a single step was enough.

In our case we need to apply an extremely sharp interpolation result, which has been kindly
provided to us by Prof. Amann [2, Ch. 7] in the following explicit form.

Lemma 2.2. Let φ ∈W 1,p(0, T ;Lq(Ω))∩Lp(0, T ;W 2,q∩W 1,q
0 (Ω)), with φ(0) = 0, for 1 < p < 2,

1 < q <∞. Then, it follows that

φ ∈ Lp1(0, T ;W 1,q
0 (Ω)) for all p1 ≤ p∗, where

1

p∗
:=

1

p
− 1

2
.

This lemma could be deduced also from a more general result known as the mixed derivative
theorem due to Sobolevskii [47]. We refer for instance to [19, Lemma 9.7] where the particular
choice of operators therein A = −∆ and B = ∂t would allow to recover Lemma 2.2.
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Remark 2.6. We observe that in the embedding of Lemma 2.2 we have also compactness for
any given p1 < p∗ and this is a classical, e.g., see Simon [46, Corollary. 8]). We note that
the case r = s = 4 can be treated directly, without Lemma 2.2 and also we observe that if
instead of the sharp continuous embedding one uses the classical compact one (not valid in the
endpoint case) the same result of Theorem 2 can be obtained under the more restrictive condition
u ∈ Lr(0, T ;Ls(Ω)) with 2

r + 2
s < 1, for s > 4.

The interpolation type inequality from Lemma 2.2 allows us to infer the following result.

Proposition 2.3. Let r, s, α, b as in the previous lemma and if u ∈ Lr(0, T ;Ls(Ω)) is given,
with 1

r + 1
s = γ ≤ 1

2 . If the unique solution of (2.7) satisfies ∇v ∈ Lα(0, T ;Lβ(Ω)), then in
addition

(2.8) ∇v ∈ Lα1(0, T ;L
βs
β+s (Ω)) ∀α1 ≤

( α r

α+ r

)
∗
.

We observe that since by definition 1/
(
α r
α+r

)
∗

= α+r
α r −

1
2 , then the following equalities hold

true

1(
α r
α+r

)
∗

+
1
β s
β+s

=
α+ r

α r
− 1

2
+
β + s

β s
=

1

r
+

1

s
− 1

2
+

1

α
+

1

β
=
[
γ − 1

2

]
+

1

α
+

1

β
,

hence the value γ = 1
2 is exactly the one which keeps the mixed space-time regularity unchanged.

Since we will need this to iterate the procedure to infer further regularity for the solution of
the linear problem, we give now the precise regularity which is obtained by using repeatedly the
same argument. To this aim let (α1, β1) = (2, 2) (this because the starting point is the energy
space, that is ∇v ∈ L2((0, T )× Ω)), we define then by recurrence

αn+1 :=
( αn r

αn + r

)
∗

and βn+1 :=
βn s

βn + s
.

We observe that

(2.9)
1

αn+1
+

1

βn+1
=
[
γ − 1

2

]
+

1

αn
+

1

βn
∀n ∈ N,

and taking into account that the iteration stops if the limiting values 1 or +∞ for either αn+1

or βn+1 are reached.

Remark 2.7. By direct computations using the recurrence definition, it follows that βn+1 ≤ βn,
and consequently αn+1 ≥ αn. Hence, the use of the maximal regularity applied to the linear
problem decreases the available regularity in the space variables, but increases the one of the
time variable.

Concerning the linear Stokes problem we have the following result

Proposition 2.4. Let u ∈ Lr(0, T ;Ls(Ω)) be given with 1
r + 1

s = γ ≤ 1
2 . Then, the unique

solution v of (2.7) satisfies

(2.10) ∇v ∈ Lα̃n(0, T ;Lβn(Ω)),

for all α̃n ≤ αn, where the couple (αn, βn) is defined as in (2.9). Hence, by Hölder inequality we
have also

(2.11) (u · ∇) v, ∇π ∈ L
α̃n r
α̃n+r (0, T ;L

βn s
βn+s (Ω)),

and
1
α̃n r
α̃n+r

+
1
βn s
βn+s

≤ γ + 1.
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Observe that, while in the time variable we can consider by Hölder inequality also exponents
smaller than αn, in the space variables this is not possible when the domain Ω is with infinite
Lebesgue measure.

In terms of scaling the result of Proposition 2.4 can be viewed as a modulated and controlled
exchange of regularity between space-and time (which resembles some of the estimates obtainable
with Fourier analysis and has connections also with the early estimates for the gradient of the
vorticity in L4/3+ε((0, T ) × Ω) from [15]). The above result shows that the standard theory of
linear parabolic equations can be used to obtain a full scale of results with similar regularity
drain from some variables towards others. This will be enough for our purposes of applications
to very-weak solutions.

3 On the energy equality for Leray-Hopf weak solutions.

Before proceeding with the proof of Theorem 1, let us recall that we mainly need to show
that the conditions in the statement of Theorem 1 are sufficient to show that the double integral∫ T

0 (u · ∇u, u) dt is finite, hence that (1.4) holds true. The calculations leading to (1.5) can be
justified by approximating u by the family of smoother function (u)ε = kε ∗t u and then taking
the limit for ε→ 0+. The (time) mollification operator, denoted in the sequel by (·)ε, is defined
for a space-time function Φ : (0, T )× Ω→ Rn by

(3.1) (Φ)ε(t, x) :=

∫ T

0
kε(t− τ)Φ(τ, x) dτ for 0 < ε < T.

It is a standard Friederichs mollification with respect to the time variable, where k is a C∞0 (R),
real-valued, non-negative even function, supported in [−1, 1] with

∫
R k(s) ds = 1 and, as usual,

kε(t) := ε−1k(t/ε).
Before starting the proof we recall the following property of weak solutions, which is a special

case of a result by Hopf [32].

Lemma 3.1. Let u0 ∈ H and let u be a Leray-Hopf weak solution of (1.1). Then u can be
redefined on a set of zero Lebesgue measure in such a way that u(t) ∈ L2(Ω) for all t ∈ [0, T )
and it satisfies the identity

(3.2) (u(s), φ(s)) = (u0, φ(0)) +

∫ s

0
[(u, ∂tφ)− ((u · ∇)u, φ)− (∇u,∇φ)] dτ,

for all φ ∈ C∞0 ([0, T [;C∞0 (Ω)), with ∇ · φ = 0 and all 0 ≤ s < T .

We observe that from the above Lemma it also follows that u is continuous as a map [0, T ]
with values in L2(Ω), if endowed with the weak topology, that is

∀ t0 ∈ [0, T ) lim
t→t0

(u(t)− u(t0), φ) = 0 ∀φ ∈ L2(Ω).

The procedure of mollifying and taking the limits is clearly explained for instance in Galdi [27,
Sec. 4], even if we need to make some changes and adapt to our setting the results. Anyway,
one has mainly to use the following two facts

(3.3)

∫ T

0
(∇u,∇(u)ε) dt =

∫ T

0
(∇u, (∇u)ε) dt

ε→0+−→
∫ T

0
‖∇u‖2 dt,

(u(t), (u)ε(t)) =
‖u(t)‖2

2
+O(ε).
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which come from the choice of the mollifier and the first relies on the fact that u ∈ L2(0, T ;V ),
while the second comes from the weak-L2-continuity of u as a Leray-Hopf weak solution.

Next, the probably most relevant point is to show that∫ T

0
((u · ∇)u, uε) dt

ε→0+−→ 0,

under the assumption of the theorem, since this step cannot be deduced –at present– from the
properties of weak solution.

We can now give the proof of the first result of this paper.

Proof of Theorem 1. The proof follows some rather standard arguments but relies also on some
new estimates for the nonlinear term. Let 0 < T < +∞ be given and let us fix t0 with
0 < t0 ≤ T . Now, let {um} ⊂ C∞0 ([0, T [;V) be a sequence converging to u at least in the

space L2(0, T ;V )∩Lp(0, T ;
.
W

1,q
(Ω)), where

.
W

1,q
(Ω), denotes as usual the homogeneous space,

endowed with the semi-norm ‖∇u‖Lq . Here p = p(q) < ∞ is the exponent coming from any of
the cases from the statement of Theorem 1, i), ii), iii) and the existence of the approximating
sequence comes from standard density results.

We choose in (3.2) s = t0 and as legitimate test function φ = (um)ε, for some 0 < ε < t0. In
this way we get the identity

(3.4)

(u(t0), (um)ε(t0)) = (u0, (um)ε(0))

+

∫ t0

0
[(u, ∂t (um)ε)− ((u · ∇)u, (um)ε)− (∇u, (∇um)ε)] dt.

Our first goal is to study in the previous equality, taking first the limit for m→∞, with ε > 0
fixed, and then the limit as ε → 0+. As usual, in passing to the limit the term which requires
more care is the nonlinear one. So we focus on the following∫ t0

0
((u · ∇)u, (um)ε) dt =

∫ t0

0

∫ t0

0
kε(t− τ)((u(t) · ∇)u(t), um(τ)) dτdt.

For this purpose we split it into three terms as follows

(3.5)

∫ t0

0
((u · ∇)u, (um)ε) dt =

∫ t0

0
((u · ∇)u, (um)ε − (u)ε) dt

+

∫ t0

0
((u · ∇)u, (u)ε − u) dt+

∫ t0

0
((u · ∇)u, u) dt,

and show that: a) the first term from the right-hand side converges to zero, as m → +∞,
with ε > 0 fixed; b) the second term from the right-hand side converges to zero, as ε → 0+;
c) the last term one is exactly zero, provided that u is a weak solutions satisfying one of the
conditions of Theorem 1. We note that the splitting is a little bit different from the usual one
employed in [43, 38, 45], since the hypotheses are now on the gradient of the velocity, instead of
the velocity itself. For this reason we give detailed proofs of the steps which are not the same
as in the previous papers.

We start by handling the point c) regarding the third term and proving that

(3.6)

∫ t0

0
((u · ∇)u, u) dt = 0,
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distinguishing among the three ranges given by Theorem 1.
Let {um} ⊂ C∞0 ([0, T [;V) be as above. Since the field um is smooth, integrating by parts

and since the weak solution u is redefined in such a way that u(t) ∈ H for all t ∈ [0, T ), we get∫ t0

0
((u · ∇)um, um) dt = 0.

Thus, if we are able to show that∫ t0

0
((u · ∇)um, um) dt→

∫ t0

0
((u · ∇)u, u) dt,

this would imply (3.6). To this end let us we handle the absolute value of the difference as
follows ∣∣∣∣∫ t0

0
((u · ∇)um, um) dt−

∫ t0

0
((u · ∇)u, u) dt

∣∣∣∣
≤
∣∣∣∣∫ t0

0
((u · ∇)um, (um − u)) dt

∣∣∣∣+

∣∣∣∣∫ t0

0
((u · ∇) (um − u), u) dt

∣∣∣∣ .
and we will show the convergence of the two terms from the right hand side to zero in the three
different cases.

In the sequel we will use the notation a . b to denote that there exists a constant C > 0,
depending only on p, q,Ω, T through the various inequalities valid in Lebesgue and Sobolev
spaces, but not depending on the solution u itself, such that a ≤ C b.

(i) In the case 3
2 < q < 9

5 we have ∇u ∈ Lp(0, T ;Lq(Ω)) with p = q
2q−3 . Let us note that in

this range we have q∗ < 2q′ < 6, where 1/q′ + 1/q = 1 and q′ is the conjugate exponent
of q. Hence, we can interpolate and write that q̃ := 2q′ satisfies 1/q̃ = θ/q∗ + (1 − θ)/6,
which gives us θ := (3− 2q)/(3(q− 2)). Now, we can estimate, by the Sobolev embedding
theorems, the space integral, obtaining∣∣∣∣∫ t0

0
((u · ∇) (um − u), u) dt

∣∣∣∣ ≤ ∣∣∣∣∫ t0

0
‖u‖q̃ ‖∇(um − u)‖q ‖u‖q̃ dt

∣∣∣∣
≤
∣∣∣∣∫ t0

0
‖u‖2θq∗ ‖u‖

2(1−θ)
6 ‖∇(um − u)‖q dt

∣∣∣∣
.

∣∣∣∣∫ t0

0
‖∇u‖2θq ‖∇u‖

2(1−θ)
2 ‖∇(um − u)‖q dt

∣∣∣∣
. ‖∇u‖2θp,q ‖∇u‖

2(1−θ)
2,2 ‖∇(um − u)‖p,q ,

where we have applied in the last step Hölder inequality in the time variable with exponents
x, y, z such that 2(1−θ)x = 2, z = p, and 2θy = p, and thus satisfying 1/x+1/y+1/z = 1.
This shows that

∫ t0
0 ((u · ∇) (um − u), u) dt→ 0, as m→ +∞.
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Analogously, we have also the following estimates∣∣∣∣∫ t0

0
((u · ∇)um, (um − u)) dt

∣∣∣∣
≤
∣∣∣∣∫ t0

0
‖u‖q̃ ‖∇um‖q ‖um − u‖q̃ dt

∣∣∣∣
≤
∣∣∣∣∫ t0

0
‖u‖θq∗ ‖u‖

(1−θ)
6 ‖∇um‖q ‖um − u‖

θ
q∗ ‖um − u‖

(1−θ)
6 dt

∣∣∣∣
.

∣∣∣∣∫ t0

0
‖∇u‖θq ‖∇u‖

(1−θ)
2 ‖∇um‖q ‖∇(um − u)‖θq ‖∇(um − u)‖(1−θ)2 dt

∣∣∣∣
. ‖∇u‖θp,q ‖∇u‖

(1−θ)
2,2 ‖∇um‖p,q ‖∇(um − u)‖θp,q ‖∇(um − u)‖(1−θ)2,2 ,

where we used Hölder inequality in the time variable with exponents x̃ = 2x for both

the terms ‖∇u‖(1−θ)2 and ‖∇(um − u)‖(1−θ)2 , with ỹ = 2y for both the terms ‖∇u‖θq and

‖∇(um − u)‖θq, and with z̃ = z for the term ‖∇um‖q. This implies that, as m → +∞ it

holds
∫ t0

0 ((u · ∇)um, (um − u)) dt→ 0.

The case (ii) is better handled when split into two sub-cases.

(ii)1 In the case 9
5 ≤ q < 12

5 we have ∇u ∈ Lp(0, T ;Lq(Ω)) with p = 5q
5q−6 . Let us note that

in this range we have 2 < 2q′ < q∗, where 1/q′ + 1/q = 1. Hence, we can interpolate and
write that q̃ := 2q′ satisfies 1/q̃ = θ/2 + (1− θ)/q∗, which implies θ := (5q − 9)/(5q − 6).
Now, by using the Sobolev embedding theorems, we show that∣∣∣∣∫ t0

0
((u · ∇) (um − u), u) dt

∣∣∣∣ ≤ ∣∣∣∣∫ t0

0
‖u‖q̃ ‖∇(um − u)‖q ‖u‖q̃ dt

∣∣∣∣
≤
∣∣∣∣∫ t0

0
‖u‖2θ2 ‖u‖

2(1−θ)
q∗ ‖∇(um − u)‖q dt

∣∣∣∣
.

∣∣∣∣∫ t0

0
‖u‖2θ2 ‖∇u‖

2(1−θ)
q ‖∇(um − u)‖q dt

∣∣∣∣
. ‖u‖2θ∞,2 ‖∇u‖

2(1−θ)
p,q ‖∇(um − u)‖p,q ,

thanks to Hölder inequality in the time variable with exponents γ1, γ2 such that 2(1−θ)γ1 =
p, γ2 = p, with 1/γ1 +1/γ2 = 1. This shows that

∫ t0
0 ((u ·∇) (um−u), u) dt→ 0. The term∣∣∣∫ t00 ((u · ∇)um, (um − u)) dt

∣∣∣ can be treated in a very similar way, so that to conclude that∫ t0
0 ((u · ∇)um, um) dt→

∫ t0
0 ((u · ∇)u, u) dt.

(ii)2 In the case 12
5 ≤ q < 3 we have ∇u ∈ Lp(0, T ;Lq(Ω)) with p = 5q

5q−6 . Let us denote by r
the exponent such that 1/r + 1/q = 1/2. Let us note that in this range we have r < q∗.
Hence, we can use the convex interpolation between 2 and q∗ to write that r satisfies
1/r = θ/2 + (1 − θ)/q∗, which gives us θ := (5q − 12)/(5q − 6). Now, by the Sobolev
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embedding theorems, we can estimate the integral as follows∣∣∣∣∫ t0

0
((u · ∇) (um − u), u) dt

∣∣∣∣ ≤ ∣∣∣∣∫ t0

0
‖u‖2 ‖∇(um − u)‖q ‖u‖r dt

∣∣∣∣
≤
∣∣∣∣∫ t0

0
‖u‖1+θ

2 ‖∇(um − u)‖q ‖u‖
1−θ
q∗ dt

∣∣∣∣
.

∣∣∣∣∫ t0

0
‖u‖1+θ

2 ‖∇(um − u)‖q ‖∇u‖
1−θ
q dt

∣∣∣∣
. ‖u‖1+θ

∞,2 ‖∇(um − u)‖p,q ‖∇u‖
1−θ
p,q ,

where we have applied Hölder inequality with respect to the time variable with exponents
α1, α2 such that (1− θ)α1 = p and α2 = p, with 1/α1 + 1/α2 = 1. For the the other term
we can argue similarly and thus this shows that

∫ t0
0 ((u · ∇)um, um) dt→

∫ t0
0 (u · ∇u, u) dt

in this case, as well.

The case q = 3 can be treated in a mostly similar way, by observing that W 1,3(Ω) ⊂ Lr(Ω),
for all finite 3 ≤ r, while the rest of the proof remains unchanged.

(iii) In case 3 < q <∞ we have ∇u ∈ Lp(0, T ;Lq(Ω)) with p = 1 + 2
q . Let us denote by q′ the

conjugate exponent of q, i.e. 1/q′ + 1/q = 1 and by 1 < q̃ := 2q′ < ∞. We estimate the
Lq̃(Ω)-norm from convex interpolation between L2(Ω) and L∞(Ω), with 1/q̃ = θ/2, which
gives us θ := 1− 1

q . Now, by Sobolev embedding theorems∣∣∣∣∫ t0

0
((u · ∇) (um − u), u) dt

∣∣∣∣ ≤ ∣∣∣∣∫ t0

0
‖u‖q̃ ‖∇(um − u)‖q ‖u‖q̃ dt

∣∣∣∣
.

∣∣∣∣∫ t0

0
‖u‖2θ2 ‖u‖

2(1−θ)
∞ ‖∇(um − u)‖q dt

∣∣∣∣
.

∣∣∣∣∫ t0

0
‖u‖2θ2 ‖∇u‖

2(1−θ)
q ‖∇(um − u)‖q dt

∣∣∣∣
. ‖u‖2θ∞,2 ‖∇u‖

2(1−θ)
p,q ‖∇(um − u)‖p,q ,

the last inequality being justified by use of the Hölder inequality in the time variable with
exponents β1, β2 such that 2(1− θ)β1 = p, and β2 = p, such that 1/β1 + 1/β2 = 1. As in
the previous cases, we can treat also the other term in a similar way and conclude that
that

∫ t0
0 ((u · ∇)um, um) dt →

∫ t0
0 (u · ∇u, u) dt, as m → +∞. The case q = ∞ does not

deserve any proof since this case falls within the range of full regularity, as a simplified
version of Beale-Kato-Majda criterion, cf. [3, 5].

Collecting the above estimates we conclude the proof of (3.6), which is the most crucial
step. The other terms will be treated below, but their analysis follows more classical path-lines,
already outlined in previous works.

Next, for the sake of completeness, we show that the first two terms from the right hand side
of (3.5) converge to zero. This follows easily using the usual properties of mollifiers together
with similar estimates as above, distinguishing among the three different ranges. In case (i),
going through the same lines of the preceding estimates and with same notation, indeed we can
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bound the first integral from the right hand side as follows∣∣∣∣∫ t0

0
((u · ∇)u, (um)ε − (u)ε) dt

∣∣∣∣
≤
∫ t0

0
‖u‖q̃ ‖∇u‖q ‖(um)ε − (u)ε‖q̃ dt

≤
∫ t0

0
‖u‖θq∗ ‖u‖

1−θ
6 ‖∇u‖q ‖(um)ε − (u)ε‖θq∗ ‖(um)ε − (u)ε‖1−θ6 dt

.
∫ t0

0
‖∇u‖1+θ

q ‖∇u‖1−θ2 ‖∇((um)ε − (u)ε)‖θq ‖∇((um)ε − (u)ε)‖1−θ2 dt

. ‖∇u‖1+θ
p,q ‖∇u‖

1−θ
2,2 ‖∇((um)ε − (u)ε)‖θp,q ‖∇((um)ε − (u)ε)‖1−θ2,2 ,

where we have applied Hölder inequality in the time variable with exponents η1, η2, η3 such that
(1+θ)η1 = p, (1−θ)η2 = 2, and θη3 = p, and satisfying 1/η1 +2/η2 +1/η3 = 1. Now, Lemma 2.5
in [28] ensures that

lim
m→∞

‖∇((um)ε − (u)ε)‖p,q = 0 and lim
m→∞

‖∇((um)ε − (u)ε)‖2,2 = 0,

which, together with the previous estimate, implies that for each fixed ε > 0 it holds.

lim
m→+∞

∫ t0

0
((u · ∇)u, (um)ε − (u)ε) dt = 0.

Cases (ii) and (iii) can be treated similarly and we skip the proof which is now straightforward.
The very same approach allows to bound the integral

∫ t0
0 ((u · ∇)u, (u)ε − u) dt as follows

∣∣∣∣∫ t0

0
((u · ∇)u, (u)ε − u) dt

∣∣∣∣ . ‖∇u‖1+θ
p,q ‖∇u‖

1−θ
2,2 ‖∇(u)ε − u‖θp,q ‖∇(u)ε − u‖1−θ2,2 ,

which converges to zero as ε→ 0+ once more thanks to Lemma 2.5 in [28].
By collecting all results we finally get that

lim
ε→0+

lim
m→+∞

∫ t0

0
((u · ∇)u, (um)ε) dt = 0.

Passing to the limit as m→ +∞ in (3.4) we then obtain

(u(t0), (u)ε(t0)) = (u0, (u)ε(0)) +

∫ t0

0
[(u, ∂t (u)ε)− ((u · ∇)u, (u)ε)− (∇u, (∇u)ε)] dt.

and we now let ε→ 0+ and the convective term vanishes. The term involving the time derivative

of kε, i.e.
∫ t0

0

(
u, ∂(um)ε

∂t

)
vanishes identically since kε is even. The usual properties of mollifiers

from (3.3) imply that in the limit ε→ 0+ we get

‖u(t0)‖2 + 2

∫ t0

0
‖∇u(s)‖2 ds = ‖u0‖2 ,

which is (1.5) for t = t0. By the arbitrariness of t0, the proof of Theorem 1 is complete.
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4 On the energy equality for distributional solutions.

In this section we prove Theorem 2 concerning the energy equality for a class of solutions
which do not satisfy a priori the energy inequality. The proof follows by a duality argument
as done in [30], who treated the case r = s = 4. Here, we cover the full range of exponents
by following a similar technique, but performing a more detailed analysis of the regularity of
the solution of the adjoint problem. We point out that also in our case, the main point is to
show that a very-weak solution (in the sense of Definition 2) with initial datum in H and such
that (1.2) holds true becomes a Leray-Hopf weak solution, hence satisfies the energy equality
by the classical results from [45]. From the proof and from the analysis performed in Sec. 2.3 it
turns out that less stringent hypotheses (as those considered in the Theorem 1) are not sufficient
to conclude the proof, hence condition (1.2) seems not improvable for very-weak solutions, at
present.

By following the same notation from [7, 30], given g : (0, T )×Ω→ R3 we define the function
g̃ as follows

g̃(t, x) := g(T − t, x).

In the sequel we will need again to approximate in a suitable way functions defined on
(0, T )× Ω→ R3, mollifying also in the space variables.

Remark 4.1. In the case of the Cauchy problem the smoothing can be done simply by mollifying
also in the space variables (as in [30]) while in the case of an exterior domain one can use
practically the same approach we propose, by using the result by Borchers and Sohr [10] in the
appropriate setting.

For this purpose we define

Ωε :=

{
x ∈ Ω ⊂ R3 : |x| < 1

ε
, d(x, ∂Ω) ≥ 2ε

}
,

with d(x,A) the Euclidean distance from x ∈ R3 to the closed set A ⊂ R3. For small enough
ε > 0, the set Ωε turns out to be measurable, bounded, and non-empty. Then, by taking
ρ ∈ C∞0 (R3), non-negative, radial, and such that

∫
R3 ρ(x) dx = 1, we define as usual the scaled

ρε(x) = ε−3ρ(x/ε). Moreover, if χA denotes the indicator function of the measurable set A ⊂ R3,
we define, for any v ∈ (L1

loc(Ω))3, the function εv(x) ∈ (C∞0 (Ω))3 as follows

εv(x) := [(v χΩε) ∗ ρε](x).

By the standard properties of mollifiers it follows that εv is smooth and with compact support,
but possibly ∇ · (εv) 6= 0. For the energy estimates used later on we need a divergence-free
approximation, hence one possibility is to use the Bogovskĭı [9] operator B[f ] defined as follows

B[f ](x) :=

∫
Ω
f(y)

[
x− y
|x− y|n

∫ +∞

|x−y|
ψ

(
y + ξ

x− y
|x− y|

)
ξn−1dξ

]
dy,

where ψ ∈ C∞0 (R3), with support in the unit ball and
∫
R3 ψ(y) dy = 1, when Ω contains and it

is star shaped with respect to the unit ball. (Some changes with scaling and translations are
needed if this is not satisfied).

It is well-known that if Ω is smooth and bounded and if f ∈ C∞0 (Ω), then B[f ] ∈ C∞0 (Ω)
and

∇ · B[f ](x) = f(x)− 1

|Ω|

∫
Ω
f(y) dy.

20



In addition, if f ∈ Ls(Ω), with 1 < s <∞, then B[f ] ∈W 1,s
0 (Ω) and moreover it holds (for fixed

ψ) that ‖f‖W 1,s ≤ C(s,Ω)‖f‖Ls , see for instance the review in Galdi [28] for general domain
satisfying the cone condition. We thus define,

v(ε)(x) := εv(x)− B[∇ · (εv)](x),

and, since
∫

Ω∇ · (
εv) dx =

∫
∂Ω

εv · n dS = 0, it follows that if v ∈ Ls(Ω) we have the following
relevant properties:

i) v(ε)(x) ∈ C∞0 (Ω), with ∇ · v(ε) = 0;

ii) ‖v(ε)‖Ls ≤ C(s,Ω)‖v‖Ls , uniformly in ε > 0;

iii) v(ε) → v in Ls(Ω), as ε→ 0+.

We apply this procedure to the initial datum u0 ∈ L2(Ω) and we define the family of functions

{u(ε)
0 }ε>0 ⊂ C∞0 (Ω) in such a way that

∇ · u(ε)
0 = 0 and also lim

ε→0+
‖u(ε)

0 − u0‖ = 0.

We also need to apply a similar smoothing procedure to space-time functions. Hence, given
u ∈ Lr(0, T ;Ls(Ω)) we define u(ε) with the above technique obtaining a family u(ε) of functions
which are divergence-free and smooth in the space variables. To regularize also in the time
variable we use the same Friederichs mollifier as introduced in (3.1) and we define, for 0 < ε < T

u(ε)(t, x) :=

∫ T

0
kε(t− τ)u(ε)(τ, x) dτ,

in such a way that

(4.1)

i) u(ε)(t, x) ∈ L∞((0, T )× Ω);

ii) ∇ · u(ε) = 0;

iii) u(ε) → u in Lr(0, T ;Ls(Ω)), as ε→ 0+.

It turns out that u(ε) and also ũ(ε) (that one with reversed time) are then suitable vector fields
to be used as a convection term in Oseen-type systems, in order to obtain global solution in the
energy space, that is in L∞(0, T ;H) ∩ L2(0, T ;V ).

With this regularization at disposal, we can in fact start by considering (uε, pε) solution of
the linear Oseen problem

(4.2)

∂tu
ε −∆uε + (u(ε) · ∇)uε +∇pε = 0 in (0, T )× Ω,

∇ · uε = 0 in (0, T )× Ω,

uε(t, x) = 0 on (0, T )× ∂Ω,

uε(0, x) = u
(ε)
0 in Ω,

and by the standard Galerkin method (combined with the method of invading domains if the
domain is unbounded), it turns out that there exists a unique (distributional) solution (uε, pε)
such that

uε ∈W 1,2(0, T ;H)∩L2(0, T ;W 2,2(Ω)∩V ) ⊂ C(0, T ;W 1,2
0 (Ω)) and ∇pε ∈ L2((0, T )×Ω).
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The main point is that
(
(u(ε) · ∇)uε, uε)

)
= 0 and (∇pε, uε) = 0 and the two equalities come

from the vanishing value at the boundary and the divergence-free constraint on both u(ε) and
uε; hence, one can show that in the sense of D′(0, T )

1

2

d

dt
‖uε‖2 + ν‖∇uε‖2 = 0.

From the latter equality we can prove a first a priori estimate and then use the standard theory
for linear equation systems of Stokes type to prove existence and regularity of the solution.

By the definition of very-weak solution we obtain that the following identity is satisfied by
the difference u− uε

(4.3)

∫ T

0
(u− uε, ∂tφ+ ∆φ+ (u(ε) · ∇)φ) ds =

∫ T

0
((u− u(ε)) · ∇φ, u)− (u0 − u(ε)

0 , φ(0)),

for all φ ∈ DT .
Let us consider now, for a given f ∈ C∞0 ((0, T )×Ω) the solution (wε, πε) of the linear Oseen

problem

(4.4)

∂tw
ε −∆wε − (ũ(ε) · ∇)wε +∇πε = −f̃ in (0, T )× Ω,

∇ · wε = 0 in (0, T )× Ω,

wε(t, x) = 0 on (0, T )× ∂Ω,

wε(0, x) = 0 in Ω,

and define

Ψε(t, x) := w̃ε(t, x) = wε(T − t, x) and Ξε(t, x) := π̃ε(t, x) = πε(T − t, x),

in such a way that they have the same regularity as (wε, πε) and they solve the following final
value problem

(4.5)

∂tΨ
ε + ∆Ψε + (u(ε) · ∇) Ψε −∇Ξε = f in (0, T )× Ω,

∇ ·Ψε = 0 in (0, T )× Ω,

Ψε(t, x) = 0 on (0, T )× ∂Ω,

Ψε(T, x) = 0 in Ω.

By the standard theory of Galerkin methods it follows again that

Ψε ∈W 1,2(0, T ;H)∩L2(0, T ;W 2,2(Ω)∩V ) ⊂ C(0, T ;W 1,2
0 (Ω)) and ∇Ξε ∈ L2((0, T )×Ω),

and we would like to use Ψε as test function in (4.3), instead of φ ∈ DT . By using standard
density arguments we can approximate Ψε in DT with uniform bounds in ε > 0, provided that
Ψε is smooth enough, independently of ε > 0. This will make all integrals well-defined.

Proof of Theorem 2. The proof follows by considering (4.3) with test function given by Ψε.
Formally (calculations would be rigorous by using a smooth approximation of Ψε and this can
be constructed by standard density arguments, as recalled in the appendix of [30]) we obtain
that

(4.6)

∫ T

0
(u− uε, f +∇Ξε) ds =

∫ T

0
((u− u(ε) · ∇) Ψε, u) ds− (u0 − u(ε)

0 ,Ψε(0)),
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but the argument will be completely rigorous after we have proved that (Ψε,Ξε) is smooth
enough. This will come by a proper use of the maximal regularity arguments for the Stokes
system and by standard density arguments

First, we need to prove that the identity∫ T

0
(u− uε,∇Ξε) ds = 0,

is valid, showing enough regularity on Ξε and using the fact that ∇ · (u− uε) = 0 in D′(Ω) a.e
t ∈ (0, T ). Next, by taking the limit as ε → 0+, the uniform bound in L2(Ω) of Ψε(0) implies
that

lim
ε→0+

(u0 − u(ε)
0 ,Ψε(0)) = 0.

Since u ∈ Lr(0, T ;Ls(Ω)), then u− u(ε) → 0 in Lr(0, T ;Ls(Ω)) and

lim
ε→0+

∫ T

0
((u− u(ε) · ∇) Ψε, u) ds = 0,

provided that
∣∣ ∫ T

0 ((u − u(ε) · ∇) Ψε, u) ds
∣∣ < ∞, and it is at this point that we will use the

assumption (1.2) and its consequences on the regularity of the Oseen system.
In particular, we have to show that

∇Ξε, ((u− u(ε) · ∇) Ψε ∈ Lr′(0, T ;Ls
′
(Ω))

or equivalently, by recalling the link between r and s from (1.2),

(4.7) ∇Ξε, ((u− u(ε) · ∇) Ψε ∈ L
2s
2+s (0, T ;L

s
s−1 (Ω)),

the second coming from the condition ∇Ψε ∈ L
s
2 (0, T ;L

s
s−2 (Ω)), by using the Hölder inequality.

Once the above steps are done, one can approximate Ξε and Ψε by a family of smooth
compactly supported functions Θε

η ∈ DT and Υε
η ∈ C∞0 ((0, T ) × Ω), with uniform bounds in

η > 0 in the spaces Lr
′
(0, T ;W 1,s′(Ω)) and L

s
2 (0, T ;W 1, s

s−2 (Ω)), respectively. These smooth
functions Θε

η and Υε
η, can be then employed as legitimate test functions in the definition of

very-weak solution. We do not explicitly write this since it will be clear to the reader how to
proceed, hence we simply show the requested regularity.

Once this step is performed, the uniform bounds of uε in L∞(0, T ;H) ∩ L2(0, T ;V ) imply
–by standard results about weak compactness– the existence of U ∈ L∞(0, T ;H) ∩ L2(0, T ;V )
such that, along some sub-sequence {εn} converging to 0+ as n→ +∞

uεn
∗
⇀ U weakly* in L∞(0, T ;H) ⊂ L∞(0, T ;L2(Ω)),

uεn ⇀ U weakly in L2(0, T ;V ) ⊂ L2(0, T ;W 1,2
0 (Ω)).

hence, taking the limit as n→ +∞ in (4.6) considered with ε = εn, we obtain∫ T

0
(u− U, f) ds

n→+∞←−−−−−
∫ T

0
(u− uεn , f) ds

n→+∞−−−−−→ 0 ∀ f ∈ C∞0 ((0, T )× Ω).

Consequently, we get
∫ T

0 (u− U, f) ds = 0 and, by the arbitrariness of the smooth f , this shows

that u can be identified with U ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2
0 (Ω)). This proves that u falls
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into the class of Leray-Hopf weak solutions, for which the classical results from [45] imply the
energy equality.

In order to conclude the proof we need now to justify the method and in particular the fact
that the integrals involving Ψε and Ξε are well-defined, with the available regularity of u from
the assumption (1.2). To this end, observe that the starting point of our analysis is the fact that
∇wε ∈ L2(0;T, L2(Ω)) and also u ∈ Lr(0, T ;Ls(Ω)) is a very-weak solution of (1.1) with (1.2).

By using Propositions 2.3 and 2.4, we observe that under the hypotheses of (1.2) (that is
γ = 1/2) it follows that (α0, β0) = (2, 2) and the n-th iteration of the maximal regularity results
from Proposition 2.4 shows that, for n ≥ 1

(ũ(ε) · ∇)wε,∇πε ∈ Lαn(0, T ;Lβn(Ω)), with βn =
βn−1 s

βn−1 + s
and

1

αn
+

1

βn
=

3

2
,

which reduces, in terms of Φε and Ξε (and more explicitly in terms of the single parameter
s > 4) to the following

αn =
s

s− n
and βn =

2s

2n+ s
∀n ≥ 1.

To have then, for each fixed n ∈ N

(4.8) (ũ(ε) · ∇) Ψε,∇Ξε ∈ L
s

s−n (0, T ;L
2s

2n+s (Ω)) uniformly in ε > 0.

Observe that the norms of the above functions depend on the number n ∈ N of applications of
the maximal parabolic regularity, on the domain Ω, on the value of s > 4, on the norm ‖u‖r,s
(and the other data of the problem), but are independent of the relevant quantities.

We note that the case s = 4 has been treated in [30], hence we will not study it (even if
comes after a single simpler step).

We distinguish between two cases depending on the fact that s ∈ R is an even number, or
not.

In the case s > 4 is an even number, that is s = 2m, with 2 < m ∈ N, it follows that with
m− 1 steps it holds true

αm−1 =
2s

2 + s
and βm−1 =

s

s− 1
,

that is exactly the regularity from (4.7).
In the case s > 4 is not an even integer, we observe that βn is monotonically strictly

decreasing, hence we determine N ∈ N (the number of iterations) solving the inequalities

1 < βN+1 <
s

s− 1
≤ βN ,

and obtaining
s

2
− 2 ≤ N <

s

2
− 1,

with the corresponding value of N ∈ N

N :=
[s

2

]
− 1,

where [x] denotes as usual the integer part of x ∈ R.
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At this point we can use interpolation to obtain

L
s
s−1 (Ω) =

[
LβN (Ω), LβN+1(Ω)

]
θ

with θ =
1

2

(
2
[s

2

]
− s+ 2

)
,

and consequently to obtain with the same θ = 1
2

(
2
[
s
2

]
− s+ 2

)
also

∇Ξ, ((u− u(ε) · ∇) Ψε ∈
[
LαN (0, T ;LβN (Ω)), LαN+1(0, T ;LβN+1(Ω))

]
θ

= L
2s
2+s (0, T ;L

s
s−1 (Ω)),

since, by direct computation 2+s
2s = θ

αN
+ 1−θ

αN+1
, ending the proof.
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[9] M. E. Bogovskĭı. Solutions of some problems of vector analysis, associated with the opera-
tors div and grad. In Theory of cubature formulas and the application of functional analysis
to problems of mathematical physics, volume 1980 of Trudy Sem. S. L. Soboleva, No. 1,
pages 5–40, 149. Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 1980.

[10] W. Borchers and H. Sohr. On the equations rot v = g and div u = f with zero boundary
conditions. Hokkaido Math. J., 19(1):67–87, 1990.
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[14] A. Cheskidov and X. Luo. Energy equality for the Navier-Stokes equations in weak-in-time
Onsager spaces. Technical Report 1802.05785, ArXiv, 2018.

[15] P. Constantin. Navier-Stokes equations and area of interfaces. Comm. Math. Phys.,
129(2):241–266, 1990.

[16] P. Constantin, W. E, and E.S. Titi. Onsager’s conjecture on the energy conservation for
solutions of Euler’s equation. Comm. Math. Phys., 165(1):207–209, 1994.

[17] P. Constantin and C. Foias. Navier-Stokes equations. Chicago Lectures in Mathematics.
University of Chicago Press, Chicago, IL, 1988.

[18] R. A. DeVore. Nonlinear approximation. In Acta numerica, 1998, volume 7 of Acta Numer.,
pages 51–150. Cambridge Univ. Press, Cambridge, 1998.

[19] J. Escher, J. Prüss, and G. Simonett. Analytic solutions for a Stefan problem with Gibbs-
Thomson correction. J. Reine Angew. Math., 563:1–52, 2003.

[20] E. B. Fabes, B. F. Jones, and N. M. Rivière. The initial value problem for the Navier-Stokes
equations with data in Lp. Arch. Rational Mech. Anal., 45:222–240, 1972.

[21] R. Farwig. On regularity of weak solutions to the instationary Navier-Stokes system: a
review on recent results. Ann. Univ. Ferrara Sez. VII Sci. Mat., 60(1):91–122, 2014.

[22] R. Farwig, Y. Giga, and P.-Y. Hsu. Initial values for the Navier-Stokes equations in spaces
with weights in time. Funkcial. Ekvac., 59(2):199–216, 2016.

[23] R. Farwig, H. Kozono, and H. Sohr. Very weak solutions of the Navier-Stokes equations in
exterior domains with nonhomogeneous data. J. Math. Soc. Japan, 59(1):127–150, 2007.

[24] R. Farwig and Y. Taniuchi. On the energy equality of Navier-Stokes equations in general
unbounded domains. Arch. Math. (Basel), 95(5):447–456, 2010.

[25] F. Flandoli, M. Gubinelli, M. Hairer, and M. Romito. Rigorous remarks about scaling laws
in turbulent fluids. Comm. Math. Phys., 278(1):1–29, 2008.
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