
IEEE ICECS 2019 – SS “Advances in Circuits and Systems for HPC Accelerators and Processors” 1

Abstract. Autonomous driving techniques frequently need the

clustering and the classification of data coming from several
input sensors, like cameras, radar and lidars. These sub-tasks

need to be implemented0020in real-time in embedded on-board

computing units. The trend for data classification and clustering

in the signal processing community is moving towards machine

learning (ML) algorithms. One of them, which plays a central

role, is the k-nearest neighbors (k-NN) algorithm. To meet

stringent requirements in terms of real-time computing

capability and circuit/memory complexity, ML accelerators are

needed. Innovation is required in terms of computing arithmetic

since classic integer numbers lead to low classification

accuracy with respect to the needs of safety critical applications

like autonomous driving. Instead, floating numbers require too
much circuit and memory. To overcome these issues the paper

shows that the use of a new format, called Posit, implemented

in a new cppPosit software library, can lead to a k-NN

implementation having the same accuracy of floats, but with

halved bit-size. This means that a Posit Processing Unit (PPU)

reduces by a factor higher than 2 the data transfer and storage

complexity of ML accelerators. We also prove that a LUT-

based complete tabulated implementation of a PPU for a 8-bit

requires just 64 kB storage size, compliant with memory-

constrained devices.
Index Terms - k-Nearest Neighbors (k-NN), Alternative Real
Representation, Posits, Machine Learning (ML) Accelerator

I. INTRODUCTION

Autonomous driving is a safety critical application, as specified

also in functional safety standards like ISO26262, with strict

requirements in terms of real-time (both throughput and latency)
[1, 2]. In Levels 1 and 2 of the SAE autonomous driving scale [1]

just an assistance to human driver is needed. Hence, signal

processing based on deterministic algorithms is still enough, e.g.

FFT-based processing of Frequency Modulated Continuous

Wave Radar (FMCW) as done in [1]. Instead, for high

autonomous driving levels, from L3 to L5, the complexity of the

scenario and the needs of signal processing are very high, not

only for sensing, but also for localization, navigation, decision

and actuation. As consequence, in recent state-of-art Machine

Learning (ML) signal processing is proposed to be used on-board

of vehicles [1-4]. ML approaches have reached the state-of-art in
several signal processing domains [4-7] like image processing,

segmentation, classification and broader computer vision. Tasks

such as scene understanding (image segmentation, region-of-

interest extraction, sub-scene classification, etc.) must be done

on-board the vehicle, since cloud-based computing scenarios

(where the processing is done on remote cloud server and on-

board there is only a client generating requests to the server)

suffers of several issues: privacy, authentication, integrity and

connection latency and contention or even communication

unavailability in uncovered areas (highway tunnels, etc). On
board ML computing can be done only if the computational

algorithm complexity is not too high, and a performing HW is

adopted. Hence, on-board computing units for ML should be

optimized in terms of the ratio between processing throughput

performance and resources (memory, bandwidth, power

consumption, ...) [7-9]. This is the trend that also big industrial

players are following like Google, Nvidia or Intel, that are trying

to enter in the autonomous driving market, or the recently

announced Full Self Driving (FSD) chip from Tesla. This topic

is also the core of the automotive stream in the H2020 European

Processor Initiative (embedded HPC for autonomous driving

with BMW as main technology end-user [9, 10]) funding this
work.

To address the above issues new computing arithmetic styles are

appearing in research [11-20] overcoming the classic fixed-point

(INT) vs. IEEE-754 floating-point duality in case of embedded

DNN (Deep Neural Networks) signal processing. Just as an

example, Intel is proposing BFLOAT16 (Brain Floating Point),

that has same number of exponent bits of the single-precision

floating point allowing in this way to replace binary32 in

practical uses although with less precision. BFLOAT16 are

supported in Google TensorFlow software, in Google Tensor

Processing Units (TPU) and Intel AI processors. Intel is also
proposing flexpoint [11, 12] in which exponent information is

shared among a group of numbers. NVIDIA for its latest Turing

architecture is supporting the concurrent execution of floating

point and integer instructions in the Turing SM such as

Float32/Float16 and INT32/8/4 precision modes for inferencing

workloads that can tolerate quantization [13]. The Tesla FSD

chip exploits a neural processing units using 8-bit by 8-bit integer

multiply and a 32-bit integer addition. Transprecision computing

for DNN is also proposed in state of art by academia [14] and

industry, e.g. IBM and Greenwaves in [15]. Signal processing

sparsity has been exploited recently [16, 17] to achieve a

compression of ML complexity to reach real-time computing on
edge devices. However, the deep compression in [16] is paid in

terms of accuracy reduction, e.g. 76.6% Top-1 (far from the

requirements, typically above 95%, of functional safety

applications) on the Imagenet object classification

challenge. Quantized neural networks are proposed in [18],

where using data sets such as MNIST, CIFAR-10, and ImageNet,

weights and activations are reduced to 1-bit or 2-bit but the top-1

accuracy is limited to 51%. Recently, a novel way to represent

real numbers, called Posit, has been proposed [19, 20]. Basically,

the Posit format can be thought as a compressed floating-point

representation, where more mantissa bits are used for small
numbers, and less mantissa bits for large numbers, within a fixed-

length format (the exponent bits adapt accordingly, to maintain

Novel Arithmetics to Accelerate Machine Learning

Classifiers in Autonomous Driving Applications
Marco Cococcioni*, IEEE SM, Federico Rossi*, Emanuele Ruffaldi#, Sergio Saponara*, IEEE SM

*Dept. of Information Engineering, University of Pisa, Italy - #MMI spa, Calci, Pisa, Italy

IEEE ICECS 2019 – SS “Advances in Circuits and Systems for HPC Accelerators and Processors” 2

the format fixed in length). In this work we present the results

obtained when exploiting the Posit format, with a new proposed

cppPosit library, and exploiting also tabulated look-up table

(LUT) based HW calculation, on a widely used ML algorithm,

like the k-NN classifier [4].

II. THE POSIT FORMAT

The Posit representation [19, 20] is depicted in Fig. 1. A Posit

contains a maximum of four fields: the sign bit, the regime field,

the exponent field and the fraction fields. The fields are variable

length with priority given to the encoding of regime, then

exponent and finally fraction. The maximum length of the

exponent is decided a-priori, together with the total length in

bits. These two lengths characterize different types of Posit

representations. The length of the regime field is determined

using a run-length method: the number of consecutive 0 after

the sign bit and before the first 1 bit is the regime length (a

regime field can be also made by a sequence of 1, until the first
0 is encountered: in that case the number of consecutive 1 is the

regime length, but this time its value is negative). Once the

length of the regime is known, the length of the mantissa can be

determined, as the number of remaining bits (after skipping the

exponent bits). The formula that allows retrieving the real

number is in [20] and two examples of its application are shown

in Fig. 2. Please observe how the two Posits representations

shown in the figure have a different number of bits reserved for

the fraction field (8 and 9, respectively), having different

lengths for the regime fields (4 vs 3).

Posits can be conveniently put on a circle sharing the concept
of projection of reals over a circle, but different design

decisions allow to implement Posit operation without imposing

the use of a LUT. In Fig. 3 the circle for a 4-bit Posit is

presented, in the case of 1 bit for the exponent.

Posits enjoy many really interesting properties, such as:

• Unique representation for zero

• No representations wasted for Not-A-Number (NaN).

When using Posits, an exception is raised instead of

reserving representations for NaNs. The IEEE 754 standard

wastes a lot of representations for NaNs, which makes also

the HW for comparing floats complex.

• No need to support unnormalized numbers (which, instead,

are generally introduced in floats to augment the accuracy

around zero, but makes the FPU implementation
significantly more complex).

Even more interestingly, Posits are sorted like signed integers,

when the latter are represented using the two's complement.

Thus, comparing two Posits can be done in ALU by type re-

casting to signed integers: negative Posits are expressed using

complement two as integers, and the other three fields allow

direct ordering. We think the brightest idea of the Posit

representation is to reserve more bits to the mantissa for small

real numbers (close to zero) and less for large real numbers,

within a fixed length format (the total length is fixed, although

the length of the regime and that of the mantissa vary). Posit

can also be viewed as a (lossy) compressed version of a float.

Fig. 3. Posit circle when the total number of bits is 4 and the number
of exponent bits is just 1. Observe how the mantissa is almost 1 bit in
this case (the last blue bit, when present).

III. THE CPPPOSIT LIBRARY

In this work we present the implementation of a new C++11

general purpose Open Source library, called cppPosit available

on github. It is released with a generic programming approach

and C++ traits in order to achieve compactness of

representation and speed. The library supports Posits having

total number of bits ranging from 4 to 64, and supports many

variants of the Posits as controlled by the template parameters:

template <class T, int totalbits, int

esbits, class FT, PositSpec>

where class T is the storage type for the Posit itself (a signed

integer data type, such as int8); totalbits is the number of bits

of the posit. This number can be less than the storage type size
for experimenting with different memory layouts; espbits is the

maximum number of bits of the exponent; class FT is the

storage type for the fractional part of the mantissa during

manipulation (an unsigned data type, such as uint16). The FT

data type is useful when performing the four elementary

operations on unpacked Posits – see below –). The presence of
NaN is optional.

IEEE ICECS 2019 – SS “Advances in Circuits and Systems for HPC Accelerators and Processors” 3

A. Different operations performed at different levels

The cppPosit library uses different Posits represented at

different decoding levels.

We defined 4 level of operations for working with Posits:

1. At level 1, operations are performed manipulating directly

the bits of the encoding. The cost is the one of integer ALU.

Examples of operations that work at level 1 are:

o 1/x (inversion)

o –x (unary minus) and |x| (absolute value)

o x < y, x<=y, x > y, x >= y (comparisons)

o 1-x (for espbits=0 and x in [0,1])
o Pseudosigmoid (for esbits=0)

2. At level 2, Posit is unpacked on its underlying fields (sign,

regime, exponent, and fraction), without building the

complete exponent. The operations are done on such fields

and the cost comprises the encoding and decoding.

Examples of operations are:

o x/2 (computing the half of x)

o 2*x (doubling x)

3. At level 3 we have a fully unpacked version (sign,

exponent, fraction). In addition to level 2 operations it is

necessary to compute the full exponent. Examples are:
o convert to/from float, posit or fixed point

4. At level 4 the unpacked version is used to perform the

operations in two possible ways:

o Software floating point

o Hardware floating point

In the cppPosit library everything is template based, this is one

of the most important advantages of this library. cppPosit

defines three key types: Posit (level 1), UnpackedLow (level 2),

Unpacked (level 3). Unpacked is parametrized to the type of the

fraction (mantissa) and it can handle the conversion to/from any

type of IEEE floating point number (expressed via trait) and

Posit. A specialized class PostF provides all operations as Level
4 over single or double. In the next section we present an

implementation of the k-NN which can work with different data

types, in particular with Posits and float.

B. Tabulated Posits

When the total number of bits for the considered Posit is lower

than or equal to 14, Posits can be tabulated. This allows to
speed-up the computation in architecture that still do not have a

HW PPU (Posit Processing Unit). To save memory, cppPosit

uses some tricks, such as using a single LUT to store both the

result of the sum and the difference between two Posits. This is

possible due to the fact that the sum is symmetric (so the values

are stored on the main diagonal and above it), while the

difference is antisymmetric (thus we can store its values below

the diagonal). Finally, to avoid the need of the tables for

multiplication and division we have tabulated both the natural

logarithm and exponential function. When we have to compute

the product between Posits, we first compute the logarithms of
both, then we sum these values, finally we compute the

exponential function of their sum.

A similar trick is used for the division (this time the difference

between the two logarithms is computed). Following this

strategy, we are able to store everything is needed for the four

elementary operations into a single square LUT of size X*X,

plus two vectors of length X, see Table 1, where X is the total

number of bits of the Posit. For Posit8 or 10 the whole

computation if tabulated can be saved in cache memory or on-

chip SRAM buffer, thus allowing for high-speed computation.

For Posit8 the storage size is compliant with memory-

constrained units.

Tab. 1 Memory required to store the single LUT as a function of X
(total number of bits of the Posit).

Total bits (X) Storage type bits (b) Per-table occupation

8 8 64KB

10 16 2MB

12 16 32MB

14 16 512MB

16 16 8GB

IV. IMPLEMENTING THE k-NN WITH POSITS SUPPORT

The k-Nearest-Neighbors (k-NN) is a simple learning algorithm

used for classification and regression problems. Regarding

classification, a new object is classified by a majority vote of its

neighbors, in particular the object is assigned to the class most

common among its k nearest neighbors. The position of each

object in n-dimension space is determined by its n-features. The

algorithm can be summarized as:

• A positive integer k is specified, along with a new object

• It selects the k entries in the dataset which are closest to the

new object (e.g. using the euclidean distance)

• It finds the most voted class of these entries. That label will

be how the object is classified

The best choice of k depends upon the data. Larger values of k

reduce effect of the noise on the classification, but make

boundaries between classes less distinct. A good k can be

selected by various heuristic techniques.

The k-NN can also be used for regression, in this case the output

is the property value for the object. This value is the average of

the values of its k nearest neighbors. We have implemented both

a C++ library for Posit support (cppPosit) and a generic k-NN

algorithm, able to work both with floats and Posits, see Fig. 4.
In particular, we extended the nanoflann library

(https://github.com/jlblancoc/nanoflann) to operate with Posits.

For small-size Posit (up to 12 bits) we have also considered the

tabulated version.

IEEE ICECS 2019 – SS “Advances in Circuits and Systems for HPC Accelerators and Processors” 4

Fig. 4. SW architecture of the implemented k-NN library able to run
with different data types.

V. EXPERIMENTAL RESULTS

We have tested our implementation on three well-known

datasets [4]: sift-128-euclidean; mnist-784-euclidean; fashion-

mnist-784-euclidean. Table 2 and Fig. 5 show the performance

of different data types, for data set usually used as classification

benchmarks in literature (e.g. fashion, mnist and sift), when

changing the scaling factor from 0 to 1. The scaling factor

parameter rescales the whole dataset. Scaling = 1 means no

scaling (thus the original dataset is used in that case). On the

other cases, a scaled version of the original dataset is used (thus

the variability on the datasets is reduced: this allows data types

with lower dynamic to accommodate the observations without

truncation). Table 2 shows that Posit16 with 3 bits of exponent
works very well. From Fig. 5, the k-NN with a 16-bit Posit with

three bits of exponent attains performance close to a float32 and

an 8-bit Posit outperforms float16. The achieved results show

that Posit16-3 can ensure the same precision (in pattern

recognition precision is the fraction of relevant instances among

the retrieved instances) than a Float32 on the original data set

(Scaling=1). Moreover, Posit8-1 outperforms Float16 since it

achieves higher precision for the same scaling factor. Applying

an appropriate scaling factor to the dataset values we can adapt

the test to types with smaller range. For the k-NN

implementations the algorithm chosen for the test is nanoflann,
that is a pure-template version of the more widespread FLANN

[4]. Although nanoflann is parametrized over generic types it

required some patching for supporting non-floating point

values, with specific care in the accumulation of vector norms.

For testing purposes with ann-benchmarks we created a library

that contains the nanoflann templates instantiated with each of

the relevant types.

Fig. 5. Precision as a function of the scaling factor, Mnist dataset
(similar results for the other benchmark data set)

Tab. 2. Precision obtained on the three datasets, when using float32,
Posit16 and Posit32. Scaling factor=1.

VI. CONCLUSIONS

This work compared the performance of a k-NN classifier,

when using Posit and float, showing the benefits introduced by

the former. For example, using a PPU instead of floats for k-

NN classification (on known data set benchmarks), a Posit16
achieved the same accuracy of Floats32 while a Posit8

outperformed Floats16 (that in literature has been proposed as

alternative to Floats32 for artificial intelligence applications).

This is a remarkable result, not only for saving storage space,

but also to better exploit CPU vectorization, all levels of cache,

and to increase the bandwidth of data transfer between CPU and

RAM to contrast the memory wall phenomenon. As showed in

Table 1, a LUT-based tabulated implementation of a PPU for

Posit8 requires a 64 kB storage size, compliant with memory-

constrained embedded devices. The impact of this work is thus

high, since beside autonomous driving there are many safety-
critical applications where the accuracy of ML-based decisions is

an issue but low-complexity/real-time is needed (robotics,

industry4.0, avionics). As future work, we are considering the

implementation of fused dot product, the high-level synthesis in

HDL starting from the cppPosit SW library for HW design of a

PPU, and the use of Posits in DNNs.

ACKNOWLEDGMENTS

This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant

agreement No 826647

REFERENCES

[1] S. Saponara, et al., “Radar-on-chip/in-package in autonomous driving

vehicles and intelligent transport systems: opportunities and challenges”,

IEEE Signal Processing Magazine, 36 (5), 2019

[2] L. Lo Bello, et al., “Recent advances and trends in on-board embedded

and networked automotive systems”, IEEE Tran. Ind. Inf., 15 (2), 2019

[3] “From Signal Processing to Machine Learning”, in Digital Signal

Processing with Kernel Methods, by J. Royo-Alvarez et al, Wiley, 2018

IEEE ICECS 2019 – SS “Advances in Circuits and Systems for HPC Accelerators and Processors” 5

[4] M. Muja et al.,“Scalable nearest neighbor algorithms for high dimensional

data”, IEEE Trans. Pattern Analysis and Mach. Int., 36 (11), 2014

[5] T. Bubolz et al., “Quality and Energy-Aware HEVC Transrating Based

on Machine Learning”, IEEE Tran. Circ. and Syst. I, 66 (6), 2019

[6] Li Du et al., “A Reconfigurable 64-Dimension K-Means Clustering

Accelerator with Adaptive Overflow Control”, IEEE Trans. Circ. and Sys.

II , 2019, doi 10.1109/TCSII.2019.2922657

[7] P. Nousi, et al., “Convolutional Neural Networks for visual information

analysis with limited computing resources” IEEE ICIP2018, pp.321-325

[8] Yu Cheng et al., “Model Compression and Acceleration for Deep Neural

Networks”, IEEE Signal Proc. Mag., pp. 126-136, 35 (1), 2018

[9] D. Reinhardt et al., “High performance processor architecture for

automotive large scaled integrated systems within the European Processor

Initiative research project”, SAE Tech. Paper 2019-01-0118

[10] https://www.european-processor-initiative.eu/

[11] U. Köster et al. “Flexpoint: An Adaptive Numerical Format for Efficient

Training of Deep Neural Networks”, NIPS 2017, pp. 1740-1750

[12] V. Popescu et al., “Flexpoint: predictive numerics for deep learning”,

IEEE Symposium on Computer Arithmetics, 2018

[13] “NVIDIA TURING GPU Architecture, graphics reinvented”, White

paper n. WP-09183-001_v01, pp. 1-80, 2018

[14] G. Tagliavini et al., “FlexFloat: A Software Library for Transprecision

Computing”, IEEE Trans. on CAD of Int. Cir. and Syst. 2019

[15] A. Malossi et al., “The transprecision computing paradigm: concept,

design, and applications”, IEEE DATE 2018, pp. 1105-1110

[16] G. Venkatesh et al., “Accelerating Deep Convolutional Networks Using

Low-Precision and Sparsity”, IEEE ICASSP 2017

[17] G. Srivastava et al., “Joint optimization of quantization and

structured sparsity for compressed deep neural networks”, ICASSP 2019

[18] I. Hubara, et al., “Quantized neural networks: training neural networks

with low precision weights and activations”, J. ML Research, 18 (1), 2017

[19] M. Cococcioni, et al., “Exploiting posit arithmetic for Deep Neural

Networks in autonomous driving applications,” IEEE Automotive 2018

[20] J. L. Gustafson et al., “Beating floating point at its own game: Posit

arithmetic,” Supercomp. Frontiers and Innov., 4 (2), 2017

https://www.european-processor-initiative.eu/

