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Abstract. Autonomous driving techniques frequently need the 

clustering and the classification of data coming from several 
input sensors, like cameras, radar and lidars. These sub-tasks 

need to be implemented0020in real-time in embedded on-board 

computing units. The trend for data classification and clustering 

in the signal processing community is moving towards machine 

learning (ML) algorithms. One of them, which plays a central 

role, is the k-nearest neighbors (k-NN) algorithm. To meet 

stringent requirements in terms of real-time computing 

capability and circuit/memory complexity, ML accelerators are 

needed. Innovation is required in terms of computing arithmetic 

since classic integer numbers lead to low classification 

accuracy with respect to the needs of safety critical applications 

like autonomous driving. Instead, floating numbers require too 
much circuit and memory. To overcome these issues the paper 

shows that the use of a new format, called Posit, implemented 

in a new cppPosit software library, can lead to a k-NN 

implementation having the same accuracy of floats, but with 

halved bit-size. This means that a Posit Processing Unit (PPU) 

reduces by a factor higher than 2 the data transfer and storage 

complexity of ML accelerators. We also prove that a LUT-

based complete tabulated implementation of a PPU for a 8-bit 

requires just 64 kB storage size, compliant with memory-

constrained devices. 
Index Terms - k-Nearest Neighbors (k-NN), Alternative Real 
Representation, Posits, Machine Learning (ML) Accelerator 

I. INTRODUCTION 

Autonomous driving is a safety critical application, as specified 

also in functional safety standards like ISO26262, with strict 

requirements in terms of real-time (both throughput and latency) 
[1, 2]. In Levels 1 and 2 of the SAE autonomous driving scale [1] 

just an assistance to human driver is needed. Hence, signal 

processing based on deterministic algorithms is still enough, e.g. 

FFT-based processing of Frequency Modulated Continuous 

Wave Radar (FMCW) as done in [1]. Instead, for high 

autonomous driving levels, from L3 to L5, the complexity of the 

scenario and the needs of signal processing are very high, not 

only for sensing, but also for localization, navigation, decision 

and actuation. As consequence, in recent state-of-art Machine 

Learning (ML) signal processing is proposed to be used on-board 

of vehicles [1-4]. ML approaches have reached the state-of-art in 
several signal processing domains [4-7] like image processing, 

segmentation, classification and broader computer vision. Tasks 

such as scene understanding (image segmentation, region-of-

interest extraction, sub-scene classification, etc.) must be done 

on-board the vehicle, since cloud-based computing scenarios 

(where the processing is done on remote cloud server and on-

board there is only a client generating requests to the server) 

suffers of several issues: privacy, authentication, integrity and 

connection latency and contention or even communication 

unavailability in uncovered areas (highway tunnels, etc). On 
board ML computing can be done only if the computational 

algorithm complexity is not too high, and a performing HW is 

adopted. Hence, on-board computing units for ML should be 

optimized in terms of the ratio between processing throughput 

performance and resources (memory, bandwidth, power 

consumption, ...) [7-9]. This is the trend that also big industrial 

players are following like Google, Nvidia or Intel, that are trying 

to enter in the autonomous driving market, or the recently 

announced Full Self Driving (FSD) chip from Tesla. This topic 

is also the core of the automotive stream in the H2020 European 

Processor Initiative (embedded HPC for autonomous driving 

with BMW as main technology end-user [9, 10]) funding this 
work. 

To address the above issues new computing arithmetic styles are 

appearing in research [11-20] overcoming the classic fixed-point 

(INT) vs. IEEE-754 floating-point duality in case of embedded 

DNN (Deep Neural Networks) signal processing. Just as an 

example, Intel is proposing BFLOAT16 (Brain Floating Point), 

that has same number of exponent bits of the single-precision 

floating point allowing in this way to replace binary32 in 

practical uses although with less precision. BFLOAT16 are 

supported in Google TensorFlow software, in Google Tensor 

Processing Units (TPU) and Intel AI processors. Intel is also 
proposing flexpoint [11, 12] in which exponent information is 

shared among a group of numbers. NVIDIA for its latest Turing 

architecture is supporting the concurrent execution of floating 

point and integer instructions in the Turing SM such as 

Float32/Float16 and INT32/8/4 precision modes for inferencing 

workloads that can tolerate quantization [13]. The Tesla FSD 

chip exploits a neural processing units using 8-bit by 8-bit integer 

multiply and a 32-bit integer addition. Transprecision computing 

for DNN is also proposed in state of art by academia [14] and 

industry, e.g. IBM and Greenwaves in [15]. Signal processing 

sparsity has been exploited recently [16, 17] to achieve a 

compression of ML complexity to reach real-time computing on 
edge devices. However, the deep compression in [16] is paid in 

terms of accuracy reduction, e.g. 76.6% Top-1 (far from the 

requirements, typically above 95%, of functional safety 

applications) on the Imagenet object classification 

challenge. Quantized neural networks are proposed in [18], 

where using data sets such as MNIST, CIFAR-10, and ImageNet, 

weights and activations are reduced to 1-bit or 2-bit but the top-1 

accuracy is limited to 51%. Recently, a novel way to represent 

real numbers, called Posit, has been proposed [19, 20]. Basically, 

the Posit format can be thought as a compressed floating-point 

representation, where more mantissa bits are used for small 
numbers, and less mantissa bits for large numbers, within a fixed-

length format (the exponent bits adapt accordingly, to maintain 
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the format fixed in length). In this work we present the results 

obtained when exploiting the Posit format, with a new proposed 

cppPosit library, and exploiting also tabulated look-up table 

(LUT) based HW calculation, on a widely used ML algorithm, 

like the k-NN classifier [4]. 

II. THE POSIT FORMAT 

The Posit representation [19, 20] is depicted in Fig. 1. A Posit 

contains a maximum of four fields: the sign bit, the regime field, 

the exponent field and the fraction fields. The fields are variable 

length with priority given to the encoding of regime, then 

exponent and finally fraction. The maximum length of the 

exponent is decided a-priori, together with the total length in 

bits. These two lengths characterize different types of Posit 

representations. The length of the regime field is determined 

using a run-length method: the number of consecutive 0 after 

the sign bit and before the first 1 bit is the regime length (a 

regime field can be also made by a sequence of 1, until the first 
0 is encountered: in that case the number of consecutive 1 is the 

regime length, but this time its value is negative). Once the 

length of the regime is known, the length of the mantissa can be 

determined, as the number of remaining bits (after skipping the 

exponent bits). The formula that allows retrieving the real 

number is in [20] and two examples of its application are shown 

in Fig. 2. Please observe how the two Posits representations 

shown in the figure have a different number of bits reserved for 

the fraction field (8 and 9, respectively), having different 

lengths for the regime fields (4 vs 3). 

 
 

Posits can be conveniently put on a circle sharing the concept 
of projection of reals over a circle, but different design 

decisions allow to implement Posit operation without imposing 

the use of a LUT. In Fig. 3 the circle for a 4-bit Posit is 

presented, in the case of 1 bit for the exponent.  

Posits enjoy many really interesting properties, such as: 

• Unique representation for zero 

• No representations wasted for Not-A-Number (NaN). 

When using Posits, an exception is raised instead of 

reserving representations for NaNs. The IEEE 754 standard 

wastes a lot of representations for NaNs, which makes also 

the HW for comparing floats complex. 

• No need to support unnormalized numbers (which, instead, 

are generally introduced in floats to augment the accuracy 

around zero, but makes the FPU implementation 
significantly more complex). 

Even more interestingly, Posits are sorted like signed integers, 

when the latter are represented using the two's complement. 

Thus, comparing two Posits can be done in ALU by type re-

casting to signed integers: negative Posits are expressed using 

complement two as integers, and the other three fields allow 

direct ordering. We think the brightest idea of the Posit 

representation is to reserve more bits to the mantissa for small 

real numbers (close to zero) and less for large real numbers, 

within a fixed length format (the total length is fixed, although 

the length of the regime and that of the mantissa vary). Posit 

can also be viewed as a (lossy) compressed version of a float. 

 
Fig. 3.   Posit circle when the total number of bits is 4 and the number 
of exponent bits is just 1. Observe how the mantissa is almost 1 bit in 
this case (the last blue bit, when present). 

III. THE CPPPOSIT LIBRARY 

In this work we present the implementation of a new C++11 

general purpose Open Source library, called cppPosit available 

on github. It is released with a generic programming approach 

and C++ traits in order to achieve compactness of 

representation and speed. The library supports Posits having 

total number of bits ranging from 4 to 64, and supports many 

variants of the Posits as controlled by the template parameters: 

template <class T, int totalbits, int 

esbits, class FT, PositSpec> 

where class T is the storage type for the Posit itself (a signed 

integer data type, such as int8); totalbits is the number of bits 

of the posit. This number can be less than the storage type size   
for experimenting with different memory layouts; espbits is the 

maximum number of bits of the exponent; class FT is the 

storage type for the fractional part of the mantissa during 

manipulation (an unsigned data type, such as uint16). The FT 

data type is useful when performing the four elementary 

operations on unpacked Posits – see below – ). The presence of 
NaN is optional.   
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A. Different operations performed at different levels 

The cppPosit library uses different Posits represented at 

different decoding levels. 

We defined 4 level of operations for working with Posits: 

1. At level 1, operations are performed manipulating directly 

the bits of the encoding. The cost is the one of integer ALU. 

Examples of operations that work at level 1 are: 

o 1/x (inversion) 

o –x (unary minus) and |x| (absolute value) 

o x < y, x<=y, x > y, x >= y (comparisons) 

o 1-x (for espbits=0 and x in [0,1]) 
o Pseudosigmoid (for esbits=0) 

2. At level 2, Posit is unpacked on its underlying fields (sign, 

regime, exponent, and fraction), without building the 

complete exponent. The operations are done on such fields 

and the cost comprises the encoding and decoding. 

Examples of operations are: 

o x/2 (computing the half of x) 

o 2*x (doubling x) 

3. At level 3 we have a fully unpacked version (sign, 

exponent, fraction). In addition to level 2 operations it is 

necessary to compute the full exponent. Examples are: 
o convert to/from float, posit or fixed point 

4. At level 4 the unpacked version is used to perform the 

operations in two possible ways: 

o Software floating point 

o Hardware floating point  

In the cppPosit library everything is template based, this is one 

of the most important advantages of this library. cppPosit 

defines three key types: Posit (level 1), UnpackedLow (level 2), 

Unpacked (level 3). Unpacked is parametrized to the type of the 

fraction (mantissa) and it can handle the conversion to/from any 

type of IEEE floating point number (expressed via trait) and 

Posit. A specialized class PostF provides all operations as Level 
4 over single or double. In the next section we present an 

implementation of the k-NN which can work with different data 

types, in particular with Posits and float. 

B. Tabulated Posits 

When the total number of bits for the considered Posit is lower 

than or equal to 14, Posits can be tabulated. This allows to 
speed-up the computation in architecture that still do not have a 

HW PPU (Posit Processing Unit). To save memory, cppPosit 

uses some tricks, such as using a single LUT to store both the 

result of the sum and the difference between two Posits. This is 

possible due to the fact that the sum is symmetric (so the values 

are stored on the main diagonal and above it), while the 

difference is antisymmetric (thus we can store its values below 

the diagonal). Finally, to avoid the need of the tables for 

multiplication and division we have tabulated both the natural 

logarithm and exponential function. When we have to compute 

the product between Posits, we first compute the logarithms of 
both, then we sum these values, finally we compute the 

exponential function of their sum.  

A similar trick is used for the division (this time the difference 

between the two logarithms is computed). Following this 

strategy, we are able to store everything is needed for the four 

elementary operations into a single square LUT of size X*X, 

plus two vectors of length X, see Table 1, where X is the total 

number of bits of the Posit. For Posit8 or 10 the whole 

computation if tabulated can be saved in cache memory or on-

chip SRAM buffer, thus allowing for high-speed computation. 

For Posit8 the storage size is compliant with memory-

constrained units. 

Tab. 1 Memory required to store the single LUT as a function of X 
(total number of bits of the Posit). 

Total bits (X) Storage type bits (b) Per-table occupation 

8 8 64KB 

10 16 2MB 

12 16 32MB 

14 16 512MB 

16 16 8GB 

IV. IMPLEMENTING THE k-NN WITH POSITS SUPPORT 

The k-Nearest-Neighbors (k-NN) is a simple learning algorithm 

used for classification and regression problems. Regarding 

classification, a new object is classified by a majority vote of its 

neighbors, in particular the object is assigned to the class most 

common among its k nearest neighbors. The position of each 

object in n-dimension space is determined by its n-features. The 

algorithm can be summarized as: 

• A positive integer k is specified, along with a new object 

• It selects the k entries in the dataset which are closest to the 

new object (e.g. using the euclidean distance) 

• It finds the most voted class of these entries. That label will 

be how the object is classified 

The best choice of k depends upon the data. Larger values of k 

reduce effect of the noise on the classification, but make 

boundaries between classes less distinct. A good k can be 

selected by various heuristic techniques.  

The k-NN can also be used for regression, in this case the output 

is the property value for the object. This value is the average of 

the values of its k nearest neighbors. We have implemented both 

a C++ library for Posit support (cppPosit) and a generic k-NN 

algorithm, able to work both with floats and Posits, see Fig. 4. 
In particular, we extended the nanoflann library 

(https://github.com/jlblancoc/nanoflann) to operate with Posits. 

For small-size Posit (up to 12 bits) we have also considered the 

tabulated version. 
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Fig. 4. SW architecture of the implemented k-NN library able to run 
with different data types. 

V. EXPERIMENTAL RESULTS 

We have tested our implementation on three well-known 

datasets [4]: sift-128-euclidean; mnist-784-euclidean; fashion-

mnist-784-euclidean. Table 2 and Fig. 5 show the performance 

of different data types, for data set usually used as classification 

benchmarks in literature (e.g. fashion, mnist and sift), when 

changing the scaling factor from 0 to 1. The scaling factor 

parameter rescales the whole dataset. Scaling = 1 means no 

scaling (thus the original dataset is used in that case). On the 

other cases, a scaled version of the original dataset is used (thus 

the variability on the datasets is reduced: this allows data types 

with lower dynamic to accommodate the observations without 

truncation). Table 2 shows that Posit16 with 3 bits of exponent 
works very well. From Fig. 5, the k-NN with a 16-bit Posit with 

three bits of exponent attains performance close to a float32 and 

an 8-bit Posit outperforms float16. The achieved results show 

that Posit16-3 can ensure the same precision (in pattern 

recognition precision is the fraction of relevant instances among 

the retrieved instances) than a Float32 on the original data set 

(Scaling=1). Moreover, Posit8-1 outperforms Float16 since it 

achieves higher precision for the same scaling factor. Applying 

an appropriate scaling factor to the dataset values we can adapt 

the test to types with smaller range. For the k-NN 

implementations the algorithm chosen for the test is nanoflann, 
that is a pure-template version of the more widespread FLANN 

[4]. Although nanoflann is parametrized over generic types it 

required some patching for supporting non-floating point 

values, with specific care in the accumulation of vector norms. 

For testing purposes with ann-benchmarks we created a library 

that contains the nanoflann templates instantiated with each of 

the relevant types. 

 
Fig. 5. Precision as a function of the scaling factor, Mnist dataset 
(similar results for the other benchmark data set) 

Tab. 2. Precision obtained on the three datasets, when using float32, 
Posit16 and Posit32. Scaling factor=1.  

 

VI. CONCLUSIONS 

This work compared the performance of a k-NN classifier, 

when using Posit and float, showing the benefits introduced by 

the former. For example, using a PPU instead of floats for k-

NN classification (on known data set benchmarks), a Posit16 
achieved the same accuracy of Floats32 while a Posit8 

outperformed Floats16 (that in literature has been proposed as 

alternative to Floats32 for artificial intelligence applications). 

This is a remarkable result, not only for saving storage space, 

but also to better exploit CPU vectorization, all levels of cache, 

and to increase the bandwidth of data transfer between CPU and 

RAM to contrast the memory wall phenomenon. As showed in 

Table 1, a LUT-based tabulated implementation of a PPU for 

Posit8 requires a 64 kB storage size, compliant with memory-

constrained embedded devices. The impact of this work is thus 

high, since beside autonomous driving there are many safety-
critical applications where the accuracy of ML-based decisions is 

an issue but low-complexity/real-time is needed (robotics, 

industry4.0, avionics). As future work, we are considering the 

implementation of fused dot product, the high-level synthesis in 

HDL starting from the cppPosit SW library for HW design of a 

PPU, and the use of Posits in DNNs. 
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