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Abstract

Water ecosystems polluted by heavy metals, such as cadmium, may also be affected by the increasing presence 

of TiO2 NPs. Several researchers have studied the effects of the two contaminants individually, however only 

a few studies on their joint action have been published for plants. Focusing on the aquatic environment, the 

hydrophyte Azolla filiculoides can be a useful model to assess if TiO2 NPs may in some way alleviate the Cd 

injuries and improve the ability of the plant to cope with this metal. With this mechanistic hypothesis, after a 

pre-treatment with TiO2 NPs, A. filiculoides plants were transferred to cadmium contaminated water with or 

without TiO2 nanoparticles. After five days of treatment, cadmium uptake, morpho-anatomical and 

physiological aspects were studied in plants. The continuous presence of TiO2 nanoparticles, though not 

increasing the uptake of cadmium in comparison with a priming treatment, induced a higher translocation of 

this heavy metal to the aerial portion. Despite the translocation factor was always well below 1, cadmium 

contents in the fronds, generally greater than 100 ppm, ranked A. filiculoides as a good cadmium accumulator. 

Higher cadmium contents in leaves did not induce damages to the photosynthetic machinery probably thanks 

to a compartmentalization strategy aimed at confining most of this pollutant to less metabolically active 

peripheral cells. The permanence of NPs in growth medium ensured a better efficiency of the antioxidant 

apparatus (proline and glutathione peroxidase and catalase activities), induced a decrease in H2O2 content, 

however was not able to lower the oxidative damage (in terms of TBARS). 

Keywords: Azolla filiculoides · cadmium · histochemistry · oxidative stress · photosynthetic efficiency · TiO2

nanoparticles

Introduction 

Nanotechnologies are among the so-called “Key Enabling Technologies”, recognized by the EC to be essential 

for the sustainable innovation, scientific research, competitiveness and industry modernization and growth 

(European Commission 2019). Recognizing the opportunities offered by nanotechnologies, it is nonetheless 

central and urgent to produce scientific data in different disciplines to thoroughly understand the possible risks 

related to the release into the environment of nanoparticles (NPs), considered among the emerging 

contaminants. By material flow modelling advanced studies, predictions of the future environmental 

concentrations have been proposed for natural ecosystems, notwithstanding NPs chemical transformation, 

ageing processes, and their transfer to the food chain and in living organisms are not yet precisely known 

(Ibrahim et al. 2016, Bundschuh et al. 2018). TiO2 NPs are among the most employed nanomaterials, with an 

annual production of about 5000 tons, estimated to increase annually up to 2025 (Weir et al. 2012). Because 

of the impressive increase in nanoparticles expected both in the soil and in marine and freshwater 

environments, it is necessary to characterize unambiguously TiO2 NPs actions. Despite the substantial amount 

of data published on the subject, to date it is difficult to state with certainty whether TiO2 NPs have 

toxic/harmful, neutral or positive effects on plant growth and development (Lyu et al. 2017). On the other 

hand, it is widely accepted that the effects of nanoparticles may depend on their characteristics (shape, size, 

charge, etc.), on the organism tested, and on the experimental conditions in which they are applied/studied 
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(Ruffini Castiglione et al. 2016). In view of this it is also very important to understand what effects they can 

exert when co-present with other pre-existing inorganic contaminants (Manesh et al. 2018). Deng and 

collaborators (2017) have performed a detailed bibliographic study on NPs and co-existing organic and 

inorganic contaminants and the combined effects/risks on biota. From the literature published so far the 

complexity of the problem emerges, related to reactive nanoparticles, that, in the presence of other 

contaminants, can increase or decrease the toxicity of conventional contaminants, being able to act at various 

levels, ranging from the bioavailability of the contaminant in the growth medium, to its ability to penetrate the 

organism, to its mobility and possible chemical and physical changes out or within the organism. 

Heavy metals continue to cause great concern, even if a general decrease of the environmental emissions has 

been recorded in Europe (lead decreased by 93 %, mercury by 71 % and cadmium by 64 % between 1990 and 

2016 (European Environmental Agency 2018). Cadmium has been ranked, among the heavy metals, as the 

seventh most toxic (ATSDR 2017). It is a by-product of zinc production, and it is mainly used in alkaline 

batteries, and to a lesser extent in pigments and platings, in coatings and as stabilizer for plastics. Cadmium 

possesses a specific toxicological profile (ATSDR 2012) describing its adverse effects for living organisms 

and human health. The harm induced by exposure will depend on many factors (e.g. dose, duration, type of 

contact) as well as on the bioavailability and/or the chemical interactions with other materials able to enhance 

or debase its activity. Though being a non-redox reactive metal, cadmium can indirectly cause oxidative stress 

(Wang et al. 2008), through the substitution of redox-active metals in proteins (Cuypers et al. 2011), and 

induction of NADPH oxidase activity, with the production of reactive oxygen species (ROS; Gallego et al. 

2012).  

Previous studies reported an induction of antioxidant response in seedlings of Vicia spp. treated with TiO2 NPs 

(Ruffini Castiglione et al. 2014; Ruffini Castiglione et al. 2016). This response was able to maintain a low 

level of oxidative damage in roots from treated plants, suggesting a possible protective action of nanoparticles 

in plants exposed to abiotic stress (Ruffini Castiglione et al. 2016). On that basis, the hypothesis was made the 

TiO2 NPs might have a protective action on plants subjected to cadmium stress.

As a significant portion of the nanomaterials of soil and air is expected to reach the aquatic environment and 

cadmium is characterized by high water solubility, a hydrophyte fern was used in the present experimentation. 

In particular, Azolla filiculoides has been chosen due to its high biomass production, metal accumulation ability 

(Valderrama et al. 2013; Naghipour et al. 2018) and free floating nature, all positive characteristics for 

phytoremediation purposes. In addition, the high water content typical of A. filiculoides fronds (Serag et al. 

2000) drastically reduces the problems of disposal (Sood et al. 2012) and its ability to make symbiotic 

relationship with the heterocystous blue-green alga, Anabaena azollae, allows its growth also in contaminated 

low nitrogen environment. Despite the capacity of Azolla species to accumulate cadmium, it is known that this 

heavy metal is able to induce oxidative stress in ferns of this genus (Prasad and Singh 2011; Abhishek 2012).  

On the basis of what above, the clue that TiO2 NPs may in some way alleviate the Cd injuries and improve the 

ability of the plant to cope with this metal represents our mechanistic insights. 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



 

In particular, the goals of the present work were: i) to assess the capacity and pattern of cadmium accumulation 

and translocation under priming and co-presence of TiO2 NPs/Cd; ii) to highlight the eventual protective action 

of nanoparticles from cadmium induced stress and; iii) to characterize the pattern of activation of antioxidant 

response in the two different experimental conditions. 

With these aims, plants of Azolla filiculoides were pre-treated with TiO2 NPs and transferred to cadmium 

contaminated water with or without TiO2 NPs. After five days of cadmium treatment, morpho-anatomical and 

physiological aspects of the response to the imposed culture conditions were explored. 

Materials and methods 

Plant material and treatments 

Azolla filiculoides Lam. sporophytes were collected from a non-polluted pool of the 'Idrofitorio' at the 

Botanical Garden of Pisa, Italy (43°43'11"N, 10°23'46"E; the average year temperature and rainfall are 14.8 

°C and 823 mm, respectively) in October 2017.

Next, the plants were transferred to plastic pots filled with deionized water and subjected to an acclimation

period of 20 days in a growth chamber under controlled temperature and irradiance (25 ± 2 °C; 300 μmol m-2

s-1), with a 16/8 h light/dark photoperiod.  

Preliminary experiments with different Cd concentrations (from 2 mg L-1 to 20 mg L-1 of CdCl2) indicated 5 

and 10 mg L-1 as the highest concentration for which no damage to the plants was observed and the lowest 

concentration which induced visible damage (chlorosis symptoms) respectively.  

Regarding TiO2 NPs, a middle-low treatment concentration (50 mg L-1) was chosen, possibly reproducing an 

actual environmental exposure, estimated by probabilistic material-flow modelling studies (Praetorius et al. 

2012). 

Commercial powder of TiO2 was bought from US Research Nanomaterials Inc. (Houston, USA) as anatase or 

rutile NPs (nominal size of 30 nm) having at least 99.9% of purity (producers' information). Shape and size 

were previously characterized (Giorgetti et al. 2019): anatase NPs appeared prismatic or cylindrical with a size 

in the range 20-80 nm, rutile NPs were prismatic with cusp with size in the range 30-100nm. TiO2 NPs (anatase 

+ rutile, 1:1 ratio) were suspended in deionized water, sonicated (Sonifier 250, Branson) for 30 min at 80 W 

and lastly diluted at the selected concentration. 

The experimental design foresaw a priming treatment with sonicated TiO2 NPs for three days.  

Healthy mature sporophytes were selected and transferred in plastic pots containing: deionized water (C), TiO2

NPs (CNPs), CdCl2 (5 and 10 mg L-1; Cd5 and Cd10 respectively) and CdCl2 (5 and 10 mg L-1) plus TiO2 NPs 

(Cd5+NPs and Cd10+NPs). Control and treated sporophytes were maintained for five days in the growth 

chamber under the same experimental conditions provided during the acclimation period. 

At the end of the experiment, treated and control sporophytes were triple rinsed with deionized water and then 

processed for experimental determinations. 

Scanning electron microscopy 
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For scanning electron microscopy (SEM) observations, the samples were fixed in 3% glutaraldehyde in 100 

mM sodium phosphate buffer (pH 7.4) for 24 h and then dehydrated in a graded ethanol series. After critical-

point drying, root and frond portions (three roots and frond portions of comparable developmental stage 

belonging to five different plants) were coated with gold, examined and captured with a scanning electron 

microscope (JSM-5410, Jeol, Tokyo, Japan). 

Atomic absorption spectrometry analysis for cadmium content determination 

Cadmium content in roots and fronds was determined according to Ciobanu et al. (2013) with minor 

modifications. In particular, the samples after drying to ash in muffle furnace at 525°C for 3 hours, were ground 

in porcelain mortar. The digested samples (65% HNO3 and 1N HCl (1:1 v/v) and heating at 145°C till white 

fumes start appearing) were made at 25 mL with deionized water and filtered through filter paper. Heavy metal 

concentration was measured in a flame atomic absorption spectrometer (Thermo Scientific, ICE 3000 series).  

Bioconcentration factor and translocation factor 

The bioconcentration factor (BCF) was calculated according to Rahmani and Sternberg (1999) as follows: 

 !" =
#$%&' ()*($*%+&%,)* ,* -'&*%  .+,$. /,)#&00 (#2 3245)

,*,%,&' #$%&' ()*($*%+&%,)* ,* %ℎ$ $8%$+*&' 0)'9%,)* (#2 :45)
 

The translocation factor (TF) was determined according to Luo et al. (2005) as follows: 

;" =
#$%&' ()*($*%+&%,)* ,* '$&<$0 (#2 3245)

#$%&' ()*($*%+&%,)* ,* +))%0 (#2 3245)
  

Histochemical localization of Cd 

In situ localization of cadmium in control and treated roots and fronds of A. filiculoides, was performed by 

dithizone (diphenylthiocarbazone) method, following the procedure described by Seregin and Ivanov (1997) 

with some modifications (Balestri et al. 2014b). Cadmium occurrence in plant cells/tissues was detectable as 

brown/reddish color precipitates. Five whole roots and leaves from five different plants were stained for 1.5 h 

with a dithizone solution (30 mg dissolved in 60 mL acetone and 20 mL distilled water), rinsed in water and 

immediately analyzed using a Leitz Diaplan light microscope (Wetzlar, Germany). Images were captured using 

a Leica DFC 420 (Leica Microsystems, Heerbrugg, Germany). 

Water content, pigment determination and photosynthetic efficiency 

The percentage of plant water content was estimated on the fresh weight basis with the formula: 

����� % =
 ! − #!

 !
$100

FW = Fresh weight, DW = Dry weight. 

After recording fresh weight, roots or fronds were dried in an oven at 60° C to constant weight and reweighed 

to obtain the dry weight. 

Frond chlorophylls (a, b and total) and carotenoids were extracted and determined as in Spanò and Bottega 

(2016), according to Hassanzadeh et al. (2009) and to Lichtenthaler (1987). Pigment contents were expressed 

as mg g-1FW.
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Photosynthetic efficiency was determined by analyzing chlorophyll a fluorescence by a portable fluorometer 

(MINI-PAM Walz, Effeltrich, Germany). Five records per pot were taken from 4 pots per treatment on light-

exposed fronds, thus acquiring the operating Photosystem II (PSII) quantum yield (ΦPSII). The measurements 

were repeated following 30 min dark acclimation, to evaluate the maximum PSII quantum yield (Fv/Fm) 

(Genty et al. 1989). Consequently, the value of each thesis was the average of 20 measurements ± SE.

Oxidative stress and antioxidant response  

Hydrogen peroxide content of plants was determined spectrophotometrically at 410 nm, using titanium 

chloride in H2SO4 for peroxide detection according to Jana and Choudhuri (1982). The amount of H2O2 in the 

extracts was expressed as μmol g−1FW referring to a standard curve. 

Lipid peroxidation in plants was estimated by determining the amount of thiobarbituric acid reactive 

substances (TBARS) according to Wang et al. (2013) with minor modifications as in Spanò et al. (2017). The 

concentration of TBARS, measured as specific absorbance at 532 nm by subtracting the non-specific 

absorbance at 600 nm, was expressed as nmol g-FW.

Proline concentration was determined according to the method of Bates et al. (1973) with minor modifications, 

as in Spanò et al. (2013). Plant tissue was homogenized with 3% sulfosalicylic acid and the supernatant was 

incubated with glacial acetic acid and ninhydrin reagent (1:1:1) and boiled for 60 min. After cooling the 

reaction mixture and addition of toluene, the absorbance of toluene phase was read at 520 nm. Proline content 

was expressed as µmol g-1FW referring to a standard curve. 

For antioxidant enzymes, extraction was made as in Spanò et al. (2013) after grounding of plants in liquid 

nitrogen with a mortar and pestle at 4°C. The homogenate was then centrifuged at 15,000 g for 20 min. For 

ascorbate peroxidase, 2 mM ascorbate was added to the extraction medium and for glutathione reductase (GR, 

EC 1.6.4.2) the supernatant was desalted on a Sephadex G-25 column.

Supernatants were collected and stored at -80°C until their use for enzymatic assays. Ascorbate peroxidase 

(APX, EC 1.11.1.11) activity was measured according to Nakano and Asada (1981) recording the decrease in 

absorbance at 290 nm (extinction coefficient 2.8 mM_1 cm_1) as ascorbate was oxidised. Correction was made 

for the low, non-enzymatic oxidation of ascorbate by hydrogen peroxide (blank). Glutathione peroxidase 

(GPX, EC 1.11.1.9) activity was determined according to Navari-Izzo et al. (1997) following the oxidation of 

NADPH at 340 nm (extinction coefficient 6.2 mm_1 cm_1). The activity of GR was determined as described by 

Rao et al. (1995) following the oxidation of NADPH at 340 nm. Catalase (EC 1.11.1.6) activity was determined 

as described by Aebi (1984) and calculated from the 39.4 mM_1 cm_1 extinction coefficient. A blank containing 

only the enzymatic solution was made. Guaiacol peroxidase (POX, EC 1.11.1.7) activity was determined as 

described by Arezky et al. (2001) using as substrate 1% guaiacol and measured determining guaiacol oxidation 

by H2O2 at 470 nm (extinction coefficient 26.6 mM-1 cm-1), one unit oxidising 1.0 mmole guaiacol per min. 

Histochemical localization of H2O2

In situ localization of hydrogen peroxide in control and treated roots and fronds of A. filiculoides, was 

performed by 3,3’-diaminobenzidine (DAB) staining (Daudi et al. 2012). This compound is oxidized by 

hydrogen peroxide occurring in plant cell/tissues to generate dark brown precipitates. Five whole roots and 
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leaves from five different plants were soaked in a freshly prepared incubation medium containing 1 mg mL-1

DAB for 4 hours at 25°C in complete darkness. To remove chlorophylls, leaves were fixed in 

ethanol:glycerol:acetic acid (3:1:1, bleaching solution) and placed in a water bath at 95°C for 15 min. After 

extensive rinsing the sample were immediately observed under light microscopy (Leitz Diaplan microscope; 

Wetzlar, Germany) and images were captured using a Leica DFC 420 (Leica Microsystems, Heerbrugg, 

Germany). 

Statistical analysis 

Data were expressed as mean of at least six replicates ± SE. Normality of distribution and homogeneity of 

variances were assessed by Shapiro-Wilk and Levene tests, respectively. The results were processed by one-

way analysis of variance (ANOVA) followed by post hoc multiple comparisons (Tukey test). The level of 

significance was p < 0.05 

Results and discussion 

Water ecosystems may be affected by the increasing presence of TiO2 NPs as well as by Cd pollution following 

different contamination ways: both the contaminants can convey in freshwater basin ecosystems, via industrial 

plants waste, wastewater, polluted runoff, biosolid and soil, as well as via surface water in a total life cycle 

with a non-clear fate and prediction on how they may work together to exert interactive effects on the biota. 

Only a few studies on this joint action have been published for plants, taking into account NPs and heavy 

metals as occurring contaminants, co-present in the growth medium (Wang et al. 2015; Lopez-Luna et al. 2016; 

Ji et al. 2017; Rossi et al. 2018). Following a specific experimental design, A. filiculoides plants displayed 

interesting and peculiar responses depending on Cd concentration as well as on the simultaneous presence with 

TiO2NPs in the growth medium. 

Effects on plant morphology  

To observe the effects of the imposed treatments on plant morphology, SEM analysis has been employed. Leaf 

morphology did not change considering the structure and organization in both the dorsal photosynthetic lobe 

and lower not photosynthetic thin-lobe leaf. Figure 1 shows the dorsal lobes of leaves, organized in two rows 

along the rhizome, with unicellular papilliform trichomes and stomata in the upper surface. On the contrary 

root morphology displayed noteworthy differences, depending on the treatments (Fig. 2). The simple priming 

treatment with TiO2 NPs was not able to preserve root hair patterning when the plants were placed in contact 

with Cd (at both concentrations). Indeed, after 5 days of Cd treatments, root hairs were rarely or no detectable 

in the first millimeters (on average 4.5±0.3 mm) from the root apex (Fig. 2c, d). This result contrasts with what 

is reported in the literature on the Arabidopsis thaliana model system: Cd enhances the density and the length 

of root hairs, by the modulation of the expression of specific genes in a context in which auxin and auxin 

signalling pathway are involved (Bahmani et al. 2016). Given that recent studies suggest possible different 

roles of auxin (and cytokinins) in homorhizoic roots of ferns compared to allorhizoic root of A. thaliana

(Augstein and Carlsbecker 2018), different root architecture induced by Cd may reasonably be explained. In 

addition, it is worth noting that in Pteris vittata treated with 100 μM Cd a drastic reduction of density and 
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length of root hairs was reported too (Balestri et al. 2014b) and a comparable root adaptive plasticity was 

shown in response to arsenic (Forino et al. 2012). 

Interestingly, in the present experimentation, Cd in co-presence with TiO2 NPs did not affect the root 

architecture that, in these experimental conditions, maintained a root hair indumentum set up comparable to 

the control, with a partial mitigation of the notorious Cd toxicity (Fig. 2). Indeed, the ability of nanoparticles 

to induce the proliferation of root hairs is known in the literature (Giordani et al. 2012) and could therefore 

compensate for the toxic action of cadmium on the root growth habitus. 

Cadmium content  

Cd was taken up from the growth medium by root hairs, as shown by root dithizone staining (Fig. 3) and 

particularly evident in Cd10 (Fig. 3g). According to Piñeros et al. (1998), the root apical region may be also 

involved in the uptake of cations, constituting an absorption site, reasonably active in Cd5 and Cd10 plants

(Fig. 3e, 3g insert), that lacked root hairs in the first millimetres from the root apex (Fig. 2).

In accordance with most of data in literature (Dai et al. 2006; Tan et al. 2011; Valderrama et al. 2013; Balestri 

et al. 2014a, b; Valderrama et al. 2016) cadmium content progressively increased with its increasing 

concentration in the growth medium both in roots and in fronds (Table 1). In Azolla (Tan et al. 2011), just as 

in other plants (Ji et al. 2017), at a given Cd treatment, the content of this heavy metal was higher in roots, 

than in fronds (Table 1). The preferential accumulation in roots of A. filiculoides, though not surprising, as 

roots are in direct contact with the contaminant, could highlight a strategy of avoidance to protect the 

photosynthetic apparatus from possible negative effects. The continuous presence of NPs in the pots induced 

a slight decrease in root cadmium concentration in comparison with the simple priming with nanoparticles 

(Table 1). In addition, root bioconcentration factor was lower under the higher Cd concentration in growth 

medium, showing a limited capacity of accumulation of this heavy metal in this plant organ. A decrease in Cd 

concentration has been recorded in roots of rice co-treated with TiO2 NPs and similar reduction were detected 

also in leaves (Ji et al. 2017). On the contrary, in fronds of A. filiculoides, the concentration of this heavy metal 

was significantly higher in plants grown in NPs, that, as a consequence, had a relatively higher TF and BCF. 

A similar positive effect on TF value was also recorded in Bohemeria rigida (Gong et al. 2017). Cd presence 

in leaves was marked as reddish aggregates mainly in membranous margin of the foliar lobes (Fig. 3f, h, j, l). 

These margins, formed by hetero-dimensional cells, contained chloroplasts, but at lower extent, compared to 

the assimilating cells below epidermis of the lobe central region, thicker and active for photosynthesis (Fig. 

3b, d). In addition, in Cd5+NPs and Cd10+NPs treated plants, Cd was detected histochemically also in the 

unicellular papillae, characterizing superior epidermis. Foliar lobe Cd patterning suggests an endeavor to 

delocalize and sequestrate this toxic metal in less metabolically bioactive cells/tissues such the peripheral 

membranous margins of the foliar lobe, epidermis and papillae. This could be one of the possible mechanisms 

for heavy metal detoxification and defense strategies in tracheophytes (Küpper et al. 2000; Pielichowska and 

Wierzbicka 2004; Balestri et al. 2014b). 

Pigment content and photosynthetic efficiency 
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Priming with NPs seemed to have a protective action on total chlorophyll content (Table 2), whose content 

generally declines under cadmium treatment (Dai et al. 2006; Prasad and Singh 2011). The continuous presence 

of TiO2 NPs in the growth medium induced an increase, though not significant, in the concentration of this 

pigment despite the increase in cadmium frond content. There were not significant differences in carotenoids 

content among the different treatments, showing a protective action of TiO2 NPs also on this pigment, as in 

literature a carotenoids cadmium-dependent decrease has been recorded (Dai et al. 2006). Operating PSII 

quantum yield (ΦPSII) and maximum PSII quantum yield (Fv/Fm) were not negatively affected, either by

cadmium and NPs in the growth medium (Fig. 4), therefore photochemical efficiency might have benefited 

from the compartmentation of this heavy metal in the less metabolically active portions of the leaves, which 

seems to be a successful strategy for the protection of the photosynthetic apparatus.

Oxidative stress and antioxidant response 

Cadmium treatment induced an increase in hydrogen peroxide content in comparison with control plants (Table 

2).  

The accumulation of this ROS, besides being a common trait in plants treated with this heavy metal (Lv et al. 

2017; Leng et al. 2018), has also been recorded in plants amended with TiO2 NPs (Giorgetti et al. 2019) and 

consistently, neither the priming nor the continuous treatment with TiO2 NPs were able to reduce the increase 

in this signaling molecule (Table 2).  

In situ determination of hydrogen peroxide by DAB staining (Fig. 5), performed on leaves and roots separately, 

showed a higher responsiveness of root compared to leaf compartment in Cd5 treatment (Fig. 5e, f), while, at 

higher concentration, the opposite occurrence was detected (Fig. 5g, h). It is worth noting that only the leaf 

central lobe and thicker region were stained (Fig. 5f, h). The co-presence of NPs induced a lower level of DAB 

staining but with a comparable differentiation between root and leaf (Fig. 5c, d, i, j, h, l). In addition, leaf 

staining in Cd10+NPs was partially extended to the membranous margin of the foliar lobe (Fig. 5l), in which 

the highest Cd accumulation was recorded by dithizone staining (Fig. 3l). 

Although in most papers (Kapoor et al. 2016; Leng et al. 2018) a cadmium concentration-dependent increase 

in H2O2 content has been reported, in the present work the highest content of this ROS was detected under the 

lower concentration of this heavy metal, in accordance with histochemical data. A similar trend has sometimes 

been reported in literature (Chang et al. 2012) and is not surprising if the mechanism of induction of oxidative 

stress by cadmium is considered. In fact, this heavy metal produces ROS indirectly by different mechanisms 

among which the weakening of the antioxidant defence can play an important role (Srivastava et al. 2004; Gill 

and Tuteja 2010). In accordance CAT and GPX activities were particularly low just in Cd5 plants. On the other 

hand, the partial recovery in the activities of these antioxidant enzymes in Cd5+NPs plants could help to 

explain the lower contents of hydrogen peroxide recorded in particular just in these plants. Oxidative damage 

indicated as TBARS (Table 2), indirect indicator of lipid peroxidation and membrane injury, was always higher 

under cadmium treatment and despite the differences recorded in H2O2 concentration, the continuous presence 

of NPs was not able to reduce this damage. The partial lack of correlation between hydrogen peroxide content 

and oxidative damage in cadmium-treated plants has been already recorded in literature (Balestri et al. 2014a) 
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and further underlines the presence of an oxidative injury not completely ROS-mediated. In fact, the activation 

by cadmium of a lipoxygenase inducing lipid peroxidation has been already reported (Chaoui et al. 1997; 

Balestri et al. 2014a). In the complex antioxidant response, antioxidant molecules are involved. Among these, 

proline, compatible solute, besides its contribution to osmotic adjustment, protects macromolecules in stress 

conditions and can act as a radical scavenger (Hayat et al. 2012). Most of data in literature, report an 

accumulation of proline under heavy metal treatment (Alayat et al. 2014; Natarajan et al. 2018), while both 

decrease and increase in the content of this amino acid have been recorded in plants treated with TiO2

nanoparticles (Ruffini Castiglione et al. 2014; Ruffini Castiglione et al. 2016). In A. filiculoides cadmium 

exposure induced a decrease in proline content in NPs primed plants (Table 2). Interestingly, under the 

simultaneous treatment with cadmium and NPs, a significant increase in this antioxidant molecule was 

recorded further showing that the continuous presence of nanoparticles helped to maintain a good antioxidant 

response. Besides molecules, such as proline, antioxidant enzymes play an important protective role in stress 

conditions. Both decrease and increase in the activity of these enzymes have been reported in the presence of 

cadmium (Li et al. 2013; Balestri et al. 2014a; Irfan et al. 2014) or TiO2 NPs (Lei et al. 2008; Foltete et al. 

2011; Ruffini Castiglione et al. 2014, 2016; Okupnik and Pflugmacher 2016).  

The continuous presence of nanoparticles induced in itself a decrease in activity of APX and GPX and an 

increase in activity of POX and CAT in control plants (Table 2), confirming that the influence of NPs may be 

different on the different antioxidant enzymes as previously reported for other plant systems (Servin et al. 

2013; Ruffini Castiglione et al. 2016). With the exception of GR, whose activity was not statistically different 

across the different treatments (Table 2), the presence of cadmium generally induced a decrease of enzymatic 

activity and for APX and POX this inhibition was concentration-dependent. The general impairment of 

antioxidant activity by cadmium is in accordance with its ability to indirectly induce oxidative stress by 

weakening the antioxidant defense (Srivastava et al. 2004; Gill and Tuteja 2010). A partial protection of the 

antioxidant enzymes GPX and CAT by nanoparticles was recorded only under Cd and NPs co-treatment, and 

limited to the treatment with the lower cadmium concentration.  

Conclusions 

The continuous presence of TiO2 nanoparticles, though not increasing the uptake of cadmium in comparison 

with a priming treatment, induced a higher translocation of this heavy metal to the aerial portion of the plant. 

Although the translocation factor was always well below 1, cadmium contents in the fronds were generally 

greater than 100 ppm and therefore A. filiculoides can be considered a good cadmium accumulator, especially 

since the whole plant can be collected after the period of phytoremediation. Higher cadmium contents in leaves 

did not impair photochemistry, probably thanks to a compartmentalization strategy confining most of this 

pollutant to less metabolically active peripheral cells of the leaf. The permanence of NPs in growth medium 

despite ensuring a better efficiency of the antioxidant apparatus, in terms of proline and GPX and CAT 

activities, and inducing a decrease in H2O2 content, was not able to lower the oxidative damage (in terms of 

TBARS).  
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Figure captions

Fig. 1. Portions of representative floating stems of A. filiculoides, as observed on scanning electron 

microscope, bearing two lateral rows of alternately arranged leaves on the dorsal surface. a) C plant sample. 

b) Cd10 plant sample. c-d) leaf epidermis with one-celled trichomes (papillae, Pp) and adjacent stomata (St) 

from Cd5+NPs. C=deionized water; Cd10=10 mg L-1 CdCl2; Cd5+NPs=5 mg L-1 CdCl2 plus TiO2 NPs.  

Fig. 2. Apical part of roots of A. filiculoides observed on scanning electron microscope. a) C root; b) CNPs 

root; c) Cd5 root; d) Cd10 root; e) Cd5+NPs root; f) Cd10+NPs root. C=deionized water; CNPs=TiO2 NPs; 

Cd5=5 mg L-1 CdCl2; Cd10=10 mg L-1 CdCl2; Cd5+NPs=5 mg L-1 CdCl2 plus TiO2 NPs; Cd10+NPs=10 mg 

L-1 CdCl2 plus TiO2NPs. 

Fig. 3. In situ Cd localization in A. filiculoides roots and mature leaves after treatment with dithizone. Root 

images correspond to a portion about 2 mm far from the apex except for g and for insert in e (about 5 mm from 

the apex). a) Detail of the root and root hairs of C plants. b) ventral side of the dorsal lobe of a C leaf: Mm: 

membranous margin of the foliar lobe; Cr: thick photosynthetic central region; Cv: pore of the leaf cavity. c) 

Detail of the root and root hairs of CNPs plants. d) feature of Cr and Mm of the leaf lobe in CNPs plants. e-f) 

Cd5 treatment: root and leaf representative images with brown/reddish Cd precipitates (arrows). g-h) Cd10 

treatment: root and leaf representative images with brown/reddish Cd precipitates (arrows). i-j) Cd5+NPs 

treatment: root and leaf representative images with brown/reddish Cd precipitates (arrows); Cd positivity is 

also detectable in dorsal epidermis and papillae (Pp). k-l) Cd10+NPs treatment: root and leaf representative 

images with brown/reddish Cd precipitates (arrows); Cd positivity is also detectable in dorsal epidermis and 

papillae (Pp). C=deionized water; CNPs=TiO2 NPs; Cd5=5 mg L-1 CdCl2; Cd10=10 mg L-1 CdCl2;

Cd5+NPs=5 mg L-1 CdCl2 plus TiO2 NPs; Cd10+NPs=10 mg L-1 CdCl2 plus TiO2NPs. 

Fig. 4. Operating (ΦPSII, left) and maximum potential (Fv/Fm, right) efficiency of photosynthesis of A. 

filiculoides, under different treatments. C=deionized water; CNPs=TiO2 NPs; Cd5=5 mg L-1 CdCl2; Cd10=10 

mg L-1 CdCl2; Cd5+NPs=5 mg L-1 CdCl2 plus TiO2 NPs; Cd10+NPs=10 mg L-1 CdCl2 plus TiO2NPs. Values 

are the results of 20 measures per treatment ± SE.

Fig. 5 Histochemical staining of roots and mature leaves for visual localization of hydrogen peroxide in A. 

filiculoides. Root images correspond to a portion about 2 mm far from the apex. a-b) Detail of the root and leaf 

dorsal lobe of C plants. c-d) Detail of the root and leaf dorsal lobe of CNPs plants. e-f) Detail of the root and 

leaf dorsal lobe of Cd5 plants. g-h) Detail of the root and leaf dorsal lobe of Cd10 plants. i-j) Detail of the root 

and leaf dorsal lobe of Cd5NPs plants. k-l) Detail of the root and leaf dorsal lobe of Cd10NPs plants. 

Mm: membranous margin of the foliar lobe; Cr: thick photosynthetic central region; Vt: vascular trace which 

encircles almost the whole circumference of the leaf cavity (Lf). 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



 

C=deionized water; CNPs=TiO2 NPs; Cd5=5 mg L-1 CdCl2; Cd10=10 mg L-1 CdCl2; Cd5+NPs=5 mg L-1 CdCl2

plus TiO2 NPs; Cd10+NPs=10 mg L-1 CdCl2 plus TiO2NPs. 
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Table 1 

Content of cadmium, bioconcentration factor (BCF) and translocation factor (TF) in roots and fronds of Azolla 

caroliniana under different treatments: C=deionized water; CNPs=TiO2 NPs; Cd5=5 mg L-1 CdCl2; Cd10=10 

mg L-1 CdCl2; Cd5+NPs=5 mg L-1 CdCl2 plus TiO2 NPs; Cd10+NPs=10 mg L-1 CdCl2 plus TiO2NPs.  
Values are means of at least six replicates ± SE. Different letters denote significant differences at p<0.05 

 C Cd5 Cd10 CNPs Cd5+NPs Cd10+NPs

Root Cd content 

(µg g-1 DW)

BDL 2299.43±31.20c 4203.95±67.26a BDL 2176.63±20.45d 4049.30±50.23b

Frond Cd content 

(µg g-1 DW)

BDL 74.51±6.52d 649.95±13.09b BDL 275.94±12.37c 933.22±26.89a

Root BCF - 459.89 420.39 - 435.33 404.93

Frond BCF - 14.90 64.99 - 55.19 93.22

TF - 0.03 0.15 - 0.13 0.23

BDL: Below detection limit 



Table 2 

Contents of total chlorophylls (Tot chl) and carotenoids in fronds and contents of hydrogen peroxide (H2O2), 

thiobarbituric acid reactive substances (TBARS) and proline and activities of ascorbate peroxidase (APX), 

glutathione reductase (GR), glutathione peroxidase (GPX), guaiacol peroxidase (POX) and catalase (CAT) in 

plants of Azolla caroliniana under different treatments: C=deionized water; CNPs=TiO2 NPs; Cd5=5 mg 

L-1 CdCl2; Cd10=10 mg L-1 CdCl2; Cd5+NPs=5 mg L-1 CdCl2 plus TiO2 NPs; Cd10+NPs=10 mg L-1

CdCl2 plus TiO2NPs.

Values are means of t least six replicates ± SE. Different letters denote significant differences at p<0.05 

C Cd5 Cd10 CNPs Cd5+NPs Cd10+NPs
Tot chl

(mg g-1 FW)

0.65±0.05a 0.62±0.02a 0.61±0.03a 0.70±0.08a 0.73±0.02a 0.85±0.10a

Carotenoids (mg 

g-1 FW)

0.11±0.01a 0.10±0.00a 0.10±0.00a 0.12±0.01a 0.12±0.00a 0.12±0.01a

H2O2 content

(µmol g-1 FW)

2.45±0.14d 5.41±0.15a 3.82±0.17bc 2.78±0.04d 4.31±0.13b 3.42±0.06c

TBARS content

(nmol g-1 FW)

11.58±0.21b 15.94±0.83a 16.62±0.24a 11.06±0.20b 15.63±0.54a 14.54±0.56a

Proline content

(µmol g-1 FW)

0.99±0.02b 0.47±0.01c 0.31±0.01c 0.92±0.21b 1.35±0.09a 1.22±0.16ab

APX

(U mg-1 protein)

1.07±0.03a 0.62±0.04c 0.42±0.03d 0.85±0.05b 0.64±0.03c 0.49±0.02d

GR

(U mg-1 protein)

0.12±0.02a 0.10±0.02a 0.10±0.02a 0.10±0.02a 0.09±0.00a 0.09±0.00a

GPX

(U mg-1 protein)

2.31±0.01a 1.16±0.01d 1.83±0.04b 1.16±0.10d 1.39±0.02c 1.47±0.02c

POX

(U mg-1 protein)

0.052±0.003b 0.028±0.000c 0.022±0.000f 0.056±0.001a 0.027±0.000d 0.026±0.000e

CAT

(U mg-1 protein)

4.39±0.40c 1.75±0.11d 2.56±0.19d 6.55±0.53a 5.49±0.41b 2.21±0.12d

 

 


