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Abstract

This paper investigates the optimal transfer trajectories from a circular parking orbit towards the apocenter of
a rectilinear ellipse, where the spacecraft reaches a quasi-stationary condition relative to an inertial reference
frame. The spacecraft is equipped with a propulsion system that provides a circumferential continuous propulsive
acceleration, that is, an acceleration whose direction is perpendicular to the primary body-spacecraft line. The
performance index to minimize is the total flight time, and an indirect method is used to analyze the transfer
trajectories. In this context, the optimal transfer performance is obtained as a function of the spacecraft propulsive
acceleration magnitude through an interpolation procedure of numerical simulations. The results obtained with a
continuous thrust propulsion system are also compared with those derived from a multi-impulse transfer. Finally,
the paper investigates a heliocentric mission scenario in which the spacecraft minimizes the flight time required
to reach a rectilinear ellipse with a given value of the aphelion radius.

Keywords: Circumferential propulsive acceleration, rectilinear ellipse, optimal transfer, preliminary
mission analysis, quasi-stationary condition

Nomenclature

a = propulsive acceleration vector ( mm/s2)
aT = maximum propulsive acceleration magnitude ( mm/s2)
c = scalar parameter
H = Hamiltonian function
h = specific angular momentum ( km2/s)

îr = radial unit vector

îθ = circumferential unit vector
J = performance index
N = number of impulsive manoeuvres
r = radial distance ( km)
r = position vector ( km)
T (O; r θ) = polar reference frame
T0 = parking orbit period (days)
t = time ( s)
u = radial component of the spacecraft velocity ( km/s)
v = circumferential component of the spacecraft velocity ( km/s)
v = velocity vector ( km/s)
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∆t = time interval ( s)
∆v = velocity change vector ( km/s)
θ = polar angle
λr, λu, λh = adjoint variables
µ = primary body gravitational parameter ( km3/s2)
τ = control parameter

Subscripts

0 = initial time
A = apocenter
e = end of a leg
f = final time
I = switching point
imp = multi-impulse case
int = interval
s = beginning of a leg
tot = total
� = Sun

Superscripts

? = optimal value
∼ = dimensionless parameter
· = time derivative
′ = derivative with respect to t̃

1. Introduction

The spacecraft trajectory generated by a constant, continuous, propulsive acceleration with a fixed
direction relative to an orbital reference frame is a classical astrodynamics problem [1, 2], which offers
interesting analytical results useful for a preliminary mission design [3]. For mathematical tractability, the
spacecraft motion under a constant and continuous thrust is often addressed in some noteworthy situations,
including the purely radial, tangential or circumferential cases. The latter scenario in which the propulsive
acceleration direction is always orthogonal to the primary body-spacecraft line, has been recently studied
by Niccolai et al. [4] from a viewpoint substantially different than that adopted by the classical works by
Tsien [1] or Battin [2]. In particular, the equations of motion have been written with the aid of non-singular
orbital parameters, using the perturbative analysis originally proposed by Bombardelli et al. [5]. That way,
the spacecraft propelled trajectory is described in analytic form under the assumptions of a circle-to-circle
orbit raising (or lowering) and a small propulsive acceleration when compared to the local gravitational pull.

Escape trajectories from a circular parking orbit are exemplary trajectories that may be attained using
a constant circumferential propulsive acceleration. In particular, the minimum time necessary to reach the
escape conditions from the gravitational attraction of a primary body may be obtained, in an analytical form ,
by suitably simplifying the spacecraft equations of motion [1, 2], or through analytical relations interpolating
the results from numerical simulations [6]. Other mission applications with a constant circumferential thrust
are possible and, indeed, this paper concentrates on the possibility of reaching the apocenter of an Elliptic
Rectilinear Orbit (ERO).

An ERO is an elliptic Keplerian orbit whose pericenter distance tends to zero and, as such, the ellipse
degenerates into a line segment connecting the primary body center-of-mass to the ERO apocenter [7].
It is characterized by a circumferential component of the orbital velocity vector equal to zero. In the
neighborhood of the apocenter the orbital velocity is close to zero (since even the radial velocity component
tends to zero) and so the spacecraft experiences a near-heliostationary condition that would be otherwise
impossible to obtain with other trajectory types. Possible scientific applications related to the achievement
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of a heliostationary condition are discussed at length in a paper by Dandouras et al. [8], where the use
of a propellantless propulsion system (an ideal solar sail) is first proposed for such an advanced mission
concept. This same mission scenario has been later studied with more accurate models of the thrust vector
characteristics. In particular, the optimal performance of a non-ideal solar sail in a mission towards a
heliostationary condition have been calculated in Ref. [9], while Refs. [10, 11] propose the concept of a
mission towards an ERO to reach a near-heliostationary condition in the apocenter zone. The main feature
of an ERO is that the spacecraft is able to track a descent rectilinear trajectory toward the attracting body,
whose interesting scientific consequences are thoroughly discussed by Colombo e al. [12].

This paper focuses on the minimum time trajectories necessary to transfer a spacecraft from a circular
parking orbit of given radius to the apocenter of an ERO. The results are expressed as a function of the
maximum magnitude of the circumferential propulsive acceleration. The problem is studied assuming a
two-dimensional mission case in which the distance between the ERO apocenter and the primary center
of mass is not given a priori, but is an output of the optimization process. The optimal trajectories are
calculated using an indirect approach and, in this context, the paper (graphically) reports the initial values
of the adjoint variables as a function of the propulsion system characteristics. These values are necessary
to solve the two-point boundary value problem associated to the optimum problem, and to simulate the
minimum-time trajectory. In particular, the optimal control law is shown to be particularly simple to
manage, as there exists a single point only where the thrust vector reverses its direction with respect to an
orbital reference frame. The same mission scenario has also been studied assuming an optimal multi-impulse
transfer with a direct approach and, in this case, the simulation results have both confirmed the optimality
of the trajectories obtained with a continuous thrust and revealed the optimal multi-impulse strategy.

The paper is organized as follows. The next section discusses the mathematical model used to calculate
the minimum-time trajectories from a circular orbit to an ERO whose apocenter distance is unconstrained.
The mathematical model is then used in a parametric study of the optimal performance as a function of the
(maximum) propulsive acceleration magnitude. The numerical results obtained with a continuous thrust
are compared to those achievable with an optimal multi-impulse transfer strategy. Finally, the last section
contains some concluding remarks.

2. Mathematical Model

Assume a spacecraft to be initially placed on a circular parking orbit with radius r0 around a primary
body with gravitational parameter µ. Introduce a polar reference frame T (O; r θ) with its origin in the
primary center of mass, while îr and îθ are the radial and circumferential unit vectors, respectively. The
primary propulsion system provides a purely circumferential acceleration a (that is, a propulsive acceleration
whose direction is orthogonal to the primary-spacecraft line, see Fig. 1), given by

a = τ aT îθ (1)

where aT is the maximum acceleration magnitude, and τ , which models the thrust level, is a dimensionless
control variable that may be varied with continuity within the interval [−1, 1], with τ ≷ 0 according to
whether a · îθ ≷ 0. The spacecraft equations of motion in T are:

ṙ = u (2)

θ̇ =
h

r2
(3)

u̇ = − µ
r2

+
h2

r3
(4)

ḣ = τ r aT (5)

where r is the primary-spacecraft distance, |h| is the magnitude of the spacecraft specific angular momentum,
u is the radial component of the spacecraft velocity (note that the circumferential component of the spacecraft
velocity is v = h/r), and θ is the polar angle measured counterclockwise from the primary body-spacecraft
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Figure 1: Reference frame and transverse propulsive acceleration concept.

line at the initial time t0 , 0, that is, when the propulsion system is switched-on. The boundary conditions
for a circular orbit are

r(t0) = r0 , θ(t0) = 0 , u(t0) = 0 , h(t0) =
√
µ r0 (6)

where θ(t0) is assumed to be zero without loss of generality, see Fig. 1.
In the absence of any constraint on the spacecraft angular position and assuming τ to be independent

of θ, the time variation of the osculating orbit characteristics may be studied through Eqs. (2), (4) and (5)
only. To that end, introduce the dimensionless variables

r̃ ,
r

r0
, ũ ,

u√
µ/r0

, h̃ ,
h
√
µ r0

, ãT ,
aT
µ/r20

, t̃ ,
t√
r30/µ

(7)

Using the prime symbol to denote a derivative taken with respect to t̃, the dimensionless equations of motion
become

r̃′ = ũ , ũ′ = − 1

r̃2
+
h̃2

r̃3
, h̃′ = τ r̃ ãT (8)

with initial conditions
r̃(t̃0) = h̃(t̃0) = 1 , ũ(t̃0) = 0 (9)

Note that when the maximum thrust level ãT and the control law τ = τ(t̃) are given, Eqs. (8) and (9)
allow the spacecraft dynamics to be simulated independent of the parking orbit radius r0 and the primary
gravitational parameter µ.
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2.1. Trajectory optimization

For a given value of the maximum propulsive acceleration magnitude aT (or ãT ), the problem is to
find the minimum time interval ∆t = tf − t0 ≡ tf necessary for the spacecraft to reach the apocenter A
of an ERO. The distance from A to the primary’s center of mass is not assigned, but is obtained as an
output of the optimization process. In correspondence of point A, the spacecraft is at a stationary condition
relative to the primary, since its inertial velocity is equal to zero. When the spacecraft is in the proximity of
the apocenter, it therefore experiences a near-heliostationary condition of great scientific interest for space
observation, especially when the primary body is the Sun, as is discussed in Refs. [8, 13, 14].

The minimum-time problem is mathematically equivalent to finding the time history of the control
variable τ? = τ(t) (or τ? = τ(t̃)), which maximizes the scalar performance index

J , −tf (10)

with the final boundary conditions
u(tf ) = 0 , h(tf ) = 0 (11)

Since Eqs. (11) do not involve the angular coordinate θ, the minimum transfer time may be calculated with
the dimensionless relations (8). Likewise, Eqs. (11) are replaced by their dimensionless counterpart

ũ(t̃f ) = 0 , h̃(t̃f ) = 0 (12)

where t̃f = tf/
√
r30/µ is the final dimensionless time. The problem is addressed with an indirect approach [15,

16] by introducing the Hamiltonian function

H , λr ũ+
λu
r̃2

(
h̃2

r̃
− 1

)
+ λh τ r̃ ãT (13)

where {λr, λu, λh} are the dimensionless functions adjoint to {r̃, ũ, h̃}. Their time derivatives are given by
the Euler-Lagrange equations

λ̇r = −dH
dr̃

=
λu
r̃3

(
3 h̃2

r̃
− 2

)
− λh τ ãT (14)

λ̇u = −dH
dũ

= −λr (15)

λ̇h = −dH
dh̃

= −2λu h̃

r̃3
(16)

with boundary conditions
λr(t̃f ) = 0 , H(t̃f ) = 1 (17)

Since H is a linear function of τ , see Eq. (13), from the Pontryagin’s maximum principle the optimal control
law τ? = τ(t̃) is in the form of a bang-bang control, that is

τ? = sign (λh) (18)

where sign (2) is the signum function.
To summarize, for a given value of ãT , the minimum flight time t̃f is obtained by solving a Two-Point

Boundary Value Problem (TPBVP) in which the unknowns {λr(t̃0), λu(t̃0), λh(t̃0), t̃f} are calculated by
enforcing the constraints given by Eqs. (12) and (17). The problem solution may be slightly simplified by
noting that Eq. (13) does not depend explicitly on time and, as such, H is a constant of motion [15], that is,
H(t̃0) = H(t̃f ) = 1, see Eq. (17). When Eqs. (9) are substituted into (13) and the optimal control law (18)
is suitably taken into account, the Hamiltonian function reduces to∣∣λh(t̃0)

∣∣ ãT = 1 (19)
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or

λh(t̃0) =
sign

(
λh(t̃0)

)
ãT

(20)

with ãT 6= 0. In other terms, sign
(
λh(t̃0)

)
∈ {−1, 1} is the new unknown to be found in place of λh(t̃0). The

TPBVP has been solved by means of a hybrid numerical technique that uses global optimization techniques
to obtain a first guess of the adjoint variables, while the solution is then refined with gradient-based and
direct methods [17]. In practice, a numerical continuation procedure, parameterized with the propulsive
acceleration magnitude, has been used to reduce the computational effort in obtaining an estimate of the
initial adjoint variables. Finally, Eqs. (8) have been integrated in double precision using a variable order
Adams-Bashforth-Moulton solver scheme [18, 19] with absolute and relative errors of 10−12.

3. Numerical simulations

The optimal transfer trajectories towards the apocenter of an ERO have been simulated with the previous
mathematical model assuming ãT = {0.01, 0.1, 1}. These three values of propulsive acceleration may be
considered as representative of a propulsion system with a low, medium and high performance, respectively.
In fact, ãT = 1 corresponds to a maximum propulsive acceleration equal to the gravitational acceleration
on the circular parking orbit, see Eqs. (7). For example, taking the Sun as the primary body and r0 = 1 au,
ãT = 1 implies aT ' 5.93 mm/s2, which corresponds to a value well beyond the state-of-the-art performance
of continuous-thrust propulsion systems.

The time histories of the spacecraft state variables {r̃, ũ, h̃} along the optimal transfer are shown in
Fig. 2. As expected, the transfer times are strongly dependent on the propulsive acceleration magnitude
and, indeed, they vary from t̃f ' 100 when ãT = 0.01, see Fig. 2(a), to t̃f ' 1.6 when ãT = 1, see

Fig. 2(c). Recall that the dimensionless value of the parking orbit period is T̃0 = 2π. There is also a
substantial variation of the apocenter distance r̃A , r̃(t̃f ) from the primary, which decreases from r̃A ' 10.5
when ãT = 0.01, to r̃A ' 1.3 when ãT = 1. Figure 2 shows that the optimal trajectory towards the ERO
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Figure 2: Time variation of dimensionless state variables {r̃, ũ, h̃} on the optimal trajectory.

apocenter may be divided into two parts. In a first phase the propulsive acceleration has a positive projection
along îθ (τ? = 1), which increases the spacecraft angular momentum (h̃′ > 0). In a second phase, instead,

a · îθ < 0 (τ? = −1), thus inducing a progressive reduction of h̃ until the final conditions of Eqs. (12) are
met. Such a somewhat counterintuitive behavior of the optimal control law is clearly shown in Fig. 3, which
illustrates the time history of τ? for the three values of ãT . Other simulations, not reported in the paper,
confirm that an initial phase with h̃′ > 0 exists for all values of ãT ranging in the interval [0.01, 1]. The
latter remark allows the initial value of λh to be immediately found using Eq. (20) with sign

(
λh(t̃0)

)
= 1.

Let I be the trajectory point where a · îθ reverses its sign. This point is reached at t̃I and is placed at a
distance r̃I from the primary. Figures 3(a)–3(c) show that t̃I decreases as ãT is increased, which implies a

reduction of the range within which h̃′ > 0.
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Figure 3: Optimal control law τ? = τ?(t̃) as a function of ãT = {0.01, 0.1, 1}.

Figure 4 illustrates the time histories of the adjoint functions, which are necessary for reproducing the
optimal transfer trajectories of Fig. 5. Note that these functions are rather involved, with a number of local
minima, especially for small values of ãT . The initial value of λh is positive and coincides with the result
given by Eq. (20). Table 1 summarizes the main characteristics of the optimal transfer orbits in the three
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(b) ãT = 0.1.

0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

et

6
r
,
6

u
,
6

h

6h

6u

6r
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Figure 4: Time variation of the dimensionless adjoint functions {λr, λu, λh} along the optimal trajectory as a function of
ãT = {0.01, 0.1, 1}.

exemplary cases. The final value of the polar angle is θf , which coincides with the angular position of point
A.
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Figure 5: Polar form of the optimal transfer trajectory as a function of ãT = {0.01, 0.1, 1}.
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ãT

0.01 0.1 1

t̃f 98.4112 9.1439 1.6287

θf/(2π) 4.1828 0.6039 0.1921

r̃A 10.4821 3.1826 1.3167

t̃I 67.1991 3.7243 0.4335

r̃I 6.4443 1.8166 1.0293

λr(t̃0) −1.6069 −1.6972 −0.4388

λu(t̃0) 9.6719 −4.4515 0.8986

λh(t̃0) 100 10 1

Table 1: Optimal transfer orbit characteristics as a function of ãT = {0.01, 0.1, 1}.

3.1. Parametric analysis

The optimal trajectories of the three exemplary cases are useful for a parametric study of the minimum
time transfers in which the propulsive acceleration is varied within the range ãT ∈ [0.01, 1] with a step size of
∆ãT = 1/2000. In fact, the TPBVP associated to the optimal problem has been analyzed starting from an
acceleration level ãT = 1 and decreasing such value, for each problem to address, of an amount equal to the
step size. In doing so, the i-th problem, characterized by a propulsive acceleration ãT = 1− i∆ãT , has been
solved by taking the adjoint variables obtained from the previous (i− 1)-th problem as their initial guesses.
The solution of the whole set of optimal transfer trajectories allows the curve describing the minimum time
variation as a function of the maximum propulsive acceleration magnitude to be found numerically. Such
a result is shown in Fig. 6, where the distance r̃A from the primary and the final polar angle θf are also
reported.

The variations of {t̃f , r̃A, θf} with ãT ∈ [0.01, 1] may also be interpolated (with a few tenths percent
error) through the following functions

t̃f '
0.9856

ãT
(21)

r̃A '
1.14 ãT + 0.2647

ãT + 0.01807
(22)

θf
2π
' 0.1896 +

0.04039

ãT
(23)

For a given value of ãT , the optimal control law is univocally defined by the switching time t̃I and the
corresponding distance from the primary r̃I , which are graphically obtained from Fig. 7, or analytically
approximated by the relations

t̃I '
0.5778

ãT
(24)

r̃I '
0.8579 ãT + 0.1195

ãT + 0.00971
(25)

Note that Eqs. (21)–(25) are consistent with the results of numerical simulations (with a few tenths
percent error only) provided the dimensionless propulsive acceleration magnitude ranges in the interval
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Figure 6: Minimum flight time, apocenter radius, and final polar angle as a function of ãT ∈ [0.01, 1].

ãT ∈ [0.01, 1] . The initial values of the three adjoint variables {λr, λu, λh} are useful for simulating the
optimal control law. For that reason Fig. 8 summarizes the results obtained from numerical simulations. In
particular, the curve describing λh(t̃0) as a function of ãT is in agreement with Eq. (20).

It is interesting to compare the minimum time solutions using a propulsion system with a continuous cir-
cumferential thrust with those achievable using a multi-impulse approach, in order to quantify the differences
in terms of transfer performance in the two cases. This subject is discussed in the next section.

3.2. Multi-impulse transfer scenario

The continuous thrust case, investigated in the previous sections, is now approximated by a number of
impulsive manoeuvres, and the optimal trajectory (in terms of minimum total transfer time) is calculated
for comparative purposes using such a different approach. The optimal solution in this case is obtained using
the Sims-Flanagan transcription method [20] with some additional assumptions. In particular, the whole
spacecraft trajectory is divided into intervals of equal time length ∆t̃int with

∆t̃int =
t̃f

N − 1
(26)

where N is the total number of impulsive manoeuvres.
The continuous thrust acting on the spacecraft during each time interval is approximated by an impulsive

manoeuvre applied in the middle of the interval. Each velocity change ∆ṽi is assumed to take place along
the circumferential direction and is therefore written as

∆ṽi = τi ãT ∆t̃int îθ with i = 1, .., N (27)
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where τi ∈ [−1, 1]. A two-body model is used to propagate each trajectory leg between two succeeding
impulses, so that the whole trajectory is fully obtained by solving N − 1 Kepler’s problems. The problem is
to minimize the total flight time t̃f using {τ1, τ2, . . . , τN} as the set of control variables, while enforcing the
final spacecraft velocity to be zero. Note that the total number of impulses represents a tradeoff parameter
between computational cost and capability of better approximating the continuous thrust case.

Global optimization algorithms have been used to find the optimal trajectory, which was then refined
through a non-linear programming problem solver [20]. The minimum transfer time required to reach the
apocenter of an ERO has been calculated in the three previous exemplary cases characterized by ãT =
{0.01, 0.1, 1}, assuming a circular parking orbit of radius r̃(t̃0) = 1. For example, when the number of
impulses is N = 50, the optimal transfer orbit characteristics are summarized in Table 2. As expected, a

ãT

0.01 0.1 1

t̃f 97.0249 8.9501 1.5933

θf/(2π) 4.0935 0.5887 0.1889

r̃A 10.2371 3.1506 1.3085

t̃I 67.3234 3.6531 0.4227

r̃I 6.4185 1.8252 1.0305

Table 2: Optimal multi-impulse transfer orbit characteristics as a function of ãT = {0.01, 0.1, 1} when N = 50.

comparison between Table 2 and Table 1 shows that the differences between the results obtained with a
continuous thrust and a multi-impulse strategy tend to increase as the acceleration level ãT is decreased.
However, the simplified method described in this section is shown to be very efficient in finding a good
approximation of the optimal continuous thrust solution (at least for high values of the propulsive acceleration
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magnitude). Note that, unlike the indirect approach, this method does not require any initial guess of the
optimal solution, since the optimization algorithm generates a random initial population of feasible solutions.

3.2.1. Minimization of total velocity variation

In this section the optimization of the transfer trajectory toward the apocenter of an ERO is investigated
considering the total velocity change ∆vtot as the performance index to minimize, while the total flight time
tf may vary within a given time interval. In this case, the control variables are the components of each
velocity variation ∆vi (whose direction is now left unconstrained) and the flight times along each trajectory
leg between two succeeding impulses.

Taking into account that the spacecraft initial conditions (position r0 and velocity v0) are given, the
total velocity change can be evaluated as a function of the number N of impulses, as is now described. First,

the spacecraft velocity at the beginning of the first trajectory leg is obtained as v
(1)
s = v0 +∆v0, where ∆v0

is the velocity variation at the first impulsive manoeuvre. Then, the position and the velocity just before
the application of the succeeding manoeuvre can be computed by solving a Kepler’s problem, once the flight
time along the trajectory leg is known. The velocity at the beginning of the succeeding leg is simply the sum
of the latter velocity and the velocity change associated to the next impulsive manoeuvre. This procedure
is repeated for each impulsive manoeuvre, that is

v(i+1)
s = v(i)

e + ∆vi with i = 1, .., N − 2 (28)

where v
(i)
e is the spacecraft velocity at the end of the i-th leg, and v

(i+1)
s is the velocity at the beginning of

the (i+ 1)-th leg, see Fig. 9. The total velocity variation ∆vtot is therefore
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Figure 9: Conceptual sketch of the multi-impulse transfer.

∆vtot = ∆v0 +

N−2∑
i=1

∆vi + ∆vf (29)

Note that the last impulsive manoeuvre ∆vf is not a control variable, but is obtained by enforcing the final
spacecraft velocity to be zero, viz.

∆vf = −vA (30)

where vA is the spacecraft velocity when it reaches the apocenter A of the ERO.
The optimization problem was solved with a global optimization algorithm based on the use of both

genetic algorithms and differential evolution methods. When the number N of impulsive maneuvers is
given, and assuming that each velocity variation does not exceed a maximum allowable magnitude, the
optimal control law is found to consist of one or more impulses concentrated at the initial time (which may
be though of as equivalent to a single impulsive manoeuvre), and a final impulse that allows the spacecraft
to be put into the ERO. These initial velocity variation vectors are tangent to the circular parking orbit,
whereas the magnitude of all other intermediate impulses is equal to zero. As a result, the optimal transfer
orbit resembles a Hohmann-like trajectory (see Fig. 10), and the required total velocity change can be written
as a function of r̃A as [11]

∆ṽtot =

√
2− 2

1 + r̃A
− 1 +

√
1

r̃A

√
2− 2r̃A

1 + r̃A
(31)

where ∆ṽtot = ∆vtot/
√
µ/r0, while the dimensionless total time of flight is

∆t̃ = π

√
(1 + r̃A)3

8
(32)

The variation of ∆ṽtot and ∆t̃ with r̃A is reported in Fig. 11. In particular, Fig. 11 shows that the higher
the apocenter radius, the lower (higher) is the required velocity change (flight time). However, Fig. 11 (or
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Eq. (31)) clearly shows that a multi-impulse transfer towards the apocenter of a ERO requires a high value
of the total velocity change.
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Figure 11: Total velocity change and flight time as a function of r̃A in a multi-impulse transfer scenario.

4. Case study

The curves of Figs. 6-7, or their mathematical approximations given by Eqs. (21)–(25), are useful for a
preliminary mission analysis, as they relate the ERO geometry with the propulsive acceleration magnitude.
For exemplary purposes consider a heliocentric mission scenario (µ = µ� = 132 712 439 935 km3/s2) in
which the spacecraft reaches an ERO with aphelion distance rA = 5 au starting from a circular orbit of
radius r(t0) = 1 au. Once the aphelion A is reached, the spacecraft starts a rectilinear trajectory towards
the Sun that coincides with the scientific mission phase [12, 10, 11]. A high value of the aphelion distance
allows the flight time along the ERO to be sufficiently long [10] before the spacecraft reaches a critical
(small) distance from the Sun, which causes the probe destruction. Therefore, rA affects the scientific phase
of the mission in terms of time interval available for observations and data measurements. For example,
when rA = 5 au, the scientific phase length necessary to reach the critical distance from the Sun of 0.1 au is
about two years [10].
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According to Eq. (22), the optimal circumferential propulsive acceleration required for the spacecraft to
reach an ERO with r̃A = 5 is about aT ' 0.27 mm/s2, the flight time is tf ' 1268 days ' 3.5 years, whereas
the propulsive acceleration reverses its direction at time tI ' 744 days, when the spacecraft is at a distance
rI ' 3 au from the Sun, see Eqs. (21) and (24)-(25). In this case, the optimal spacecraft transfer trajectory
is shown in Fig. 12, and the time variations of r, u and v are shown in Fig. 13.
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Figure 12: Polar form of the optimal transfer trajectory when rA = 5 au and aT = 0.27 mm/s2.

In particular, the function v = v(t) has a discontinuity in the first derivative when the thrust direction is
inverted. Note that using a multi-impulse scenario, an ERO with the same apocenter radius would require
a flight time of about 950 days (less than that necessary with a continuous acceleration), at the expense of
a very high velocity change, that is, ∆vtot = 16.36 km/s, see Eq. (31).

5. Conclusions

Optimal missions toward the apocenter of rectilinear ellipses have been studied with an indirect approach
considering a spacecraft propelled by a circumferential acceleration. The problem solution requires the use
of adjoint variables, whose initial values are given by means of suitable graphs that may be used for repro-
ducing the optimal control law. The numerical results have been used to obtain, through an interpolation
procedure, a set of analytical expressions that give the optimal transfer characteristics as functions of the
propulsive acceleration magnitude. These approximated functions are useful for a preliminary analysis with
low computational effort. The performance of the continuous propulsive acceleration case has been com-
pared with that obtained by considering an optimal, multi-impulse transfer scenario, revealing the latter to
require a very high value of the total velocity variation.

A possible extension of this work is to analyze the transfer trajectories that minimize the propulsive
acceleration magnitude necessary to reach a prescribed rectilinear ellipse in a given flight time. The results of
this new problem, combined with the approximate equations discussed in this paper, may be successfully used
to get a thorough parametric analysis of the optimal transfer toward a rectilinear orbit with a circumferential
propulsive acceleration of constant magnitude.
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