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Abstract This paper deals with the problem of determining an analytical control law capable of maintaining
highly-elliptical heliosynchronous polar orbits around Venus. The problem is addressed using the Smart Dust
concept, a propellantless propulsion system that extracts momentum from the solar rays using a reflective coating.
The modulation of the thrust magnitude is performed by exploiting the property of electrochromic materials of
changing their optical characteristics through the application of an electrical voltage. The propulsive acceleration
can therefore be switched from a minimum to a maximum value (o vice versa) so as to obtain a simple on-off

control law. The required Smart Dust performance are described in closed form as a function of the semimajor axis
and eccentricity of the working orbit. The soundness of the analytical control law is validated through a numerical
integration of the equations of motion, in which the orbital perturbations due to the oblateness of Venus and to the
gravitational attraction of the Sun are also included.
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1. Introduction

This paper investigates the possibility of generating nearly polar heliosynchronous eccentric orbits around Venus.
A heliosynchronous orbit is characterized by a precession of the node line equal to the mean motion of the planet
around the Sun [1]. Although the planet oblateness usually induces a secular variation of the right ascension of the
ascending node when the orbit is nearly polar [2], such a precession may be insufficient and, therefore, a propulsion
system is necessary to achieve the desired precession rate. To that end, Macdonald et al. [3] considered the exten-
sion of heliosynchronous orbits around the Earth using a non-orientation-constrained low-thrust propulsion system.
In particular, Ref. [3] provides an analytical control law capable of guaranteeing the free selection of both orbit
altitude and inclination. Docherty and Macdonald [4] investigated the analytical solution of low-thrust transfer tra-
jectories between heliosynchronous orbits. Moreover, Anderson and Macdonald [1] developed heliosynchronous
and highly elliptical orbits, in which the required thrust magnitude is given as a function of the local perturbations
acting on the spacecraft. Finally, Wu et al. [5] developed heliosynchronous orbits around terrestrial planets using
solar electric propulsion for the exploration of planet surface and atmosphere.
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In this paper, heliosynchronous orbits are generated using Smart Dusts (SDs) [6,7], which exploit the solar
radiation pressure to create a propulsive acceleration. The solar radiation pressure may significantly modify the SD
orbit thanks to the high value of its area-to-mass ratio [8]. In the context of heliosynchronous orbits generated by
photon-propelled spaceships, Tscherbakova et al. [9] dealt with the problem of stabilizing heliosynchronous orbits
around the Earth using a balloon satellite under the effect of the light pressure of solar rays, whereas Cao et al. [10]
proposed to use a femtosatellite swarm in heliosynchronous orbit for Earth remote sensing by taking advantage of
solar radiation pressure for orbit control.

The collection of atmospheric data around Venus is a necessary step for understanding why Earth and Venus
undergone two completely different evolutions despite their common geophysical characteristics [11]. This is pos-
sible by means of heliosynchronous polar orbits around Venus. The aim of this paper is therefore to determine an
on-off control law that ensures a precession rate of the node line equal to the mean motion of Venus, while keep-
ing both the argument of periapsis and the orbital inclination constant. These trajectories belong to the set of the
so-called Taranis orbits [1], which are also characterized by high eccentricity and constant argument of periapsis.
A Taranis orbit is typically generated by exploiting low-thrust propulsion systems to offset the drift of the apse
line caused by the oblateness of the planet [12,13,14]. To that end, electrochromic coating systems may be used
to exploit the peculiarity of electrochromic materials of changing their optical properties through the application
of an electrical voltage [15]. In fact, SDs are capable of generating two values of propulsive acceleration thanks to
the coverage of their surface by means of electrochromic material [16,17,18]. This paper shows that the required
propulsive acceleration can be expressed in closed form as a function of both the semimajor axis and eccentricity
of the SD reference orbit. In particular, the required performance increases for smaller values of semimajor axis
and eccentricity. The soundness of the analytical control law is confirmed by numerical integration, in which the
third-body perturbation due to the Sun and the gravitational field of Venus up to the J4 zonal harmonic are also
taken into account.

The paper is organized as follows. Sections 2 describes the mathematical model (that is, the differential equa-
tions that govern the SD motion) and derives the analytical control law for maintaining heliosynchronous Taranis
orbits around Venus. Section 3 deals with a case study, and shows some numerical simulations that are useful to
validate the soundness of the analytical control law. Finally, Section 4 contains some concluding remarks.

2. Mathematical model

The control law for creating heliosynchronous Taranis orbits is obtained in closed form by neglecting the per-
turbative accelerations due to Venus’ oblateness and to the third-body perturbation of the Sun, and assuming the
propulsive acceleration given by the solar radiation pressure to be oriented perpendicularly to the osculating orbital
plane of the spacecraft. The latter assumption is reasonable when the SD orbital plane is orthogonal to the Sun-
Venus line, and the SD is able to passively maintain a Sun-facing attitude [19,20,21]. The SD option is applied
to the noteworthy case of polar orbits around Venus and with an apoapsis above the North pole of the planet [22].
Venus is indeed an effective scenario where to apply the SD concept for generating artificial heliosynchronous or-
bits because of two significant properties: 1) the negligible eccentricity of its orbit, approximately equal to 0.0068
only, and 2) the small axial tilt of the planet, which is inclined of about 2.64 deg and has a retrograde rotation. In
this situation, when the SD orbit is perpendicular to the Sun-Venus line, a simple on-off control law is sufficient to
generate quasi-frozen heliosynchronous orbits.

In such a simplified model, the SD is merely subjected to the gravitational field of Venus (all of the zonal
harmonics being neglected) and to the propulsive acceleration aN due to the solar radiation pressure, which acts
perpendicular to the SD orbital plane. The derivatives of the spacecraft orbital parameters {a, e, i, ω, Ω} with
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respect to the true anomaly ν are [23]

da
dν

=
de
dν

= 0 (1)

di
dν

=
p2

µ♀

cos(ν + ω)
(1 + e cos ν)3 aN (2)

dω
dν

=
p2

µ♀

− sin(ν + ω)
(1 + e cos ν)3 tan i

aN (3)

dΩ
dν

=
p2

µ♀

sin(ν + ω)
(1 + e cos ν)3 sin i

aN (4)

where {a, e, i, ω, Ω} are the osculating semimajor axis, eccentricity, inclination, argument of periapsis, and right
ascension of the ascending node, respectively. In Eqs. (2)–(4), p , a (1 − e2) is the (constant) semilatus rectum
of the SD orbit, whereas µ♀ = 1 DU3

♀/TU2
♀ is the gravitational parameter of Venus, where 1 DU♀ ≡ R♀ '

6051.8 km is the mean radius of Venus, and 1 TU♀ ' 826 s. The propulsive acceleration aN provided by a SD
is proportional to the lightness number β = {βmin; βmax}, which is a performance parameter defined as the ratio
of the maximum acceleration due to solar radiation pressure to the gravitational attraction of the Sun at a given
heliocentric distance [24]. Therefore, aN may be written as

aN = β
µ�

a2
♀

(5)

where µ� ' 4.0853 × 105 DU3
♀/TU2

♀ is the gravitational parameter of the Sun, and a♀ ' 1.7880 × 108 DU♀ is the
semimajor axis of Venus’ orbit. Note that, due to the small eccentricity of Venus’ orbit, the Sun-SD distance is
always approximately equal to a♀.

2.1. Control law

With reference to Eq. (2), the requirement that the periodical variation of i is equal to zero may be formalized in
mathematical terms as ∫ −ω+2π

−ω

cos(ν + ω)
(1 + e cos ν)3 aN dν = 0 (6)

from which it may be expected that i(ν) ' i0 , π/2 rad ∀ν (where the subscript 0 denotes the initial reference
value). In that case, the argument of periapsis is also constant as dω/dν ' 0 when i ' π/2 rad; see Eq. (3).
Therefore, it is possible to approximate ω with its initial value, that is, ω(ν) ' ω0 , 3 π/2 rad ∀ν. In fact, recall
that the SD option is here applied to the noteworthy case of polar orbit around Venus, with its apoapsis above the
North pole of the planet, as is schematically illustrated in Fig. 1.

Actually, ω will slightly change because Eq. (6) only ensures that i ≡ i0 after one revolution of the SD around
Venus. Moreover, the perturbative accelerations acting on the SD orbital plane may theoretically produce a drift
of the apse line. Such perturbative sources, however, are not taken into account in the evaluation of the analytical
control law. When ω ' ω0, Eq. (6) may be equivalently rewritten as∫ π/2

−3 π/2

sin ν
(1 + e cos ν)3 aN dν = 0 (7)

Note that the extremes of integration ν = −3 π/2 rad and ν = π/2 rad correspond to the ascending node of the SD
orbit; see Fig. 1.

Consider now Eq. (4). When i ' i0 rad (that is, when sin i ' 1) and ω ' ω0, the heliosynchronous condition
can be written as ∫ π/2

−3 π/2
−

cos ν
(1 + e cos ν)3 aN dν =

µ♀
p2

(
T ω♀

)
=

2 πω♀
(1 − e2)2

√
µ♀
a

(8)
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Fig. 1 Schematic representation of SD orbit.

where T , 2 π
√

a3/µ♀ is the orbital period of the spacecraft, while ω♀ ,
√
µ�/a3

♀ ' 2.6733 × 10−4 rad/TU♀ is

the mean motion of the planet. Note that
(
T ω♀

)
is the angle swept out by the planet throughout T .

Equations (7) and (8) are the two requirements that have to be satisfied in order to create heliosynchronous
Taranis orbits by suitably changing the value of the lightness number β. To that end, the assumption is made that
the value of β switches when the SD crosses the line of nodes. In fact, in order to increase the right ascension
of the ascending node, it is useful to maximize aN when sign (sin u) > 0 and, conversely, to minimize it when
sign (sin u) < 0. To that end, consider the design parameter n , βmax/βmin > 1, defined as the (constant) ratio of
the maximum to the minimum propulsive acceleration provided by a SD at a given heliocentric distance. With the
previous assumptions, the lightness number may be written as

β =
βmin

2
[
n + 1 + (n − 1) sign (sin u)

]
(9)

where u , ν + ω is the argument of latitude. Therefore, for a given value of n, aN is a function of the spacecraft
position through the argument of latitude u, and is proportional to βmin, which must be determined in order to
satisfy Eqs. (7) and (8). To that end, introduce the functions f and g defined as

f ,
sin ν

(1 + e cos ν)3 , g , −
cos ν

(1 + e cos ν)3 (10)

and assume F and G to be the their primitives, that is

F ,
∫

sin ν
(1 + e cos ν)3 dν , G ,

∫
−

cos ν
(1 + e cos ν)3 dν (11)

It may be verified that

F =
1

2 e (1 + e cos ν)2 (12)

G =

3 e

arctan
√1 − e

1 + e
tan

(
ν

2

) +
ν

2
− arctan

[
tan

(
ν

2

)]
(1 − e2)5/2 −

sin ν
[(

e + 2 e3
)

cos ν + e2 + 2
]

2
(
1 − e2)2 (1 + e cos ν)2

(13)
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With the control law defined by Eq. (9), and taking Eq. (12) into account, it may be checked that Eq. (7) is
automatically met. Instead, Eq. (8) implies

βmin =
2 π

√
µ♀/µ�

√
a♀/a

√
1 − e2

(n − 1)
(2 + e2) √1 − e2 − 6 e arctan

√1 − e
1 + e

 + 3 π n e

(14)

Therefore, an increase of n reduces the required βmin. Moreover, βmin is inversely proportional to
√

a, and is a
monotonic decreasing function of e. In particular, the maximum value of βmin relative to e is

βmin(e = 0) =
π

√
µ♀/µ�

√
a♀/a

n − 1
(15)

whereas βmin tends to zero when e → 1−. However, the maximum allowable value of e (that is, emax) is related to
the spacecraft semimajor axis a and to the periapsis altitude (that is, hmin) of the SD orbit as

emax = 1 −
R♀ + hmin

a
(16)

3. Case study

The procedure discussed in the previous section is here applied to three particular SD configurations (referred to
as SD1, SD2, and SD3), of which the characteristics are taken from Refs. [25,21] and are reported in Tab. 1.

Table 1 SD characteristics. Data taken from Refs. [25,21].

SD βmax βmin n

SD1 0.0241 0.0134 1.8

SD2 0.0451 0.0251 1.8

SD3 0.0756 0.0420 1.8

In these three cases n = 1.8, therefore the required βmin may be written as a function of a and e as

βmin =
10 π

√
µ♀/µ�

√
a♀/a

√
1 − e2

4
(2 + e2) √1 − e2 − 6 e arctan

√1 − e
1 + e

 + 27 π e

(17)

It is useful to obtain a relationship that, for given values of βmin and e, provides the (unique) feasible value of a. To
that end, consider Eq. (17) and introduce the function γ(e) defined as

γ(e) ,
100 π2

(
1 − e2

)
4

(2 + e2) √1 − e2 − 6 e arctan
√1 − e

1 + e

 + 27 π e


2 (18)

such that

a =
µ♀
µ�

a♀ γ(e)

β2
min

(19)

Figure 2 shows that γ(e) is a decreasing function of e ∈ [0, 1). Therefore, for a given value of βmin, the feasible
minimum semimajor axis is obtained when e = emax; see Eq (16).

The orbital parameters of the feasible working orbits around Venus are shown in Fig. 3 when hmin , 250 km,
which corresponds to the thickness of Venus’ atmosphere [11]. Figure 3 also shows the envelope curve that delimits
the region of acceptable orbits (rp ≥ rmin) from that of ineligible ones (rp < rmin), being rp the periapsis radius
and rmin , hmin + R♀. Note that for the SD3 configuration the feasible minimum-energy orbit is characterized by a
semimajor axis of 3.4788 DU♀ and an eccentricity equal to 0.7007.
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Fig. 3 Variation of a with e with hmin , 250 km.

3.1. Numerical simulations

The control law is validated through numerical integration of the equations of motion with the addition of the
orbital perturbations. In the simulations it is assumed that the total force acting on the Smart Dust is given by three
contributions: the solar radiation pressure, the third-body perturbation due to the Sun, and the gravitational field
of Venus up to the J4 zonal harmonic. In fact, the zonal harmonics J2 = 4.458 × 10−6, J3 = −2.1082 × 10−6, and
J4 = −2.1471 × 10−6 of Venus are of the same order of magnitude [22,11], hence, they are all included in the
numerical simulations. Let r be the position vector of the SD with respect to the center of mass of Venus, then the
vectorial equation of motion is

r̈ = a� + a♀ (20)
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where

a� , µ�
{

r − r�
||r − r�||3

(β − 1)
r�
||r�||3

}
(21)

a♀ , ∇

 µ♀||r||
1 − 4∑

n=2

Jn

(R♀
||r||

)n

Pn

(
z
||r||

)
 (22)

are the acceleration vectors due to Sun and Venus, respectively, in which z represents the distance of the SD from
the equatorial plane of the planet, whereas the lightness number β is given by Eq. (9) and (17). In particular, for
n = 1.8, β becomes

β =
2 π

√
µ♀/µ�

√
a♀/a0

√
1 − e2

0
[
7 − 2 sign (cos ν)

]
4

[(
2 + e2

0

) √
1 − e2

0 − 6 e0 arctan
(√

1 − e0

1 + e0

)]
+ 27 π e0

(23)

where the subscript 0 denotes the (reference) initial value. Also, r� is the position of the Sun with respect to Venus
(see Fig. 4), which is taken from the JPL ephemeris for the time window between the 1st of January 2019 to the 1st

of January 2029 1. Finally, Pn(x) is the Legendre polynomial of degree n, defined as

Pn(x) ,
1

2n n!
dn

dxn

[(
x2 − 1

)n]
(24)

SD

Sun

Venus’ orbit

Venus

SD orbit

�
r

r

Fig. 4 Schematic representation of r and r� vectors.

The time evolution of the orbital parameters {a, e, i, ω, Ω}, under the influence of the solar radiation pressure,
the perturbative acceleration due to the J2, J3, and J4 zonal harmonics of Venus, and the third-body perturbation
due to the Sun is investigated in order to confirm the soundness of the analytical control law described by Eq. (23).
The orbital parameters of the initial orbit are chosen consistently with those of the scenario described by Anderson
et al. [22], who selected a0 = 4.1072 DU♀ (i.e., T0 = 12 hours), e0 = 0.7244, and ω0 = 270 deg. Assuming a SD3

1 Data retrieved from https://ssd.jpl.nasa.gov/?planet_eph_export
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configuration (see Tab. 1), a0 = 4.1072 DU♀ implies e0 = 0.6696 (see Fig. 3), which slightly differs from the case
study of Ref. [22].

The simulation runs starting from JD = 2458545.53 UTC, which corresponds to the first equinox of Venus after
1st January 2019. In that date, the angle α between the Sun-Venus line and the orbital plane of the SD is zero if
Ω0 = 328.83 deg. Figure 5 shows that the previously discussed control law (see Fig. 6) is actually able to meet the
heliosynchronous condition. The fluctuations of orbital inclination and argument of periapsis (see Figs. 7 and 8)
are on the order of a few degrees, while the semimajor axis and the eccentricity vary less than 0.09% and 0.48%,
respectively, with respect to their nominal values, as shown in Figs. 9 and 10. In fact, Fig. 11 shows that α fluctuates
between 0 and 2.11 deg during the three year-long simulation, consistently with the small axial tilt of Venus. Such
an angle yields a disturbance acceleration on the SD orbital plane, which causes the aforesaid fluctuations of a and
e, and, also, a drift of the apse line. However, those fluctuations are an acceptable cost, as the heliosynchronous
condition is exactly met with a simple control law to implement, and, moreover, the attitude control is performed
in a totally passive way.
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240

300

360

+
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eg
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Fig. 5 Variation of Ω in the SD3 case for T = 12 hours.

4. Conclusions

This paper has investigated the generation of heliosynchronous Taranis orbits around Venus. It has been shown that
such a goal may be achieved using the Smart Dust concept, which can provide two levels of propulsive acceleration
thanks to the coverage of its surface with electrochromic material. A simple on-off control law has been obtained
in closed form as a function of the characteristics of the Smart Dust working orbit. A numerical integration of the
Smart Dust equations of motion has proved the soundness of the analytical control law by also including some
perturbative sources in the simulation code.
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