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Measurements of the dynamical environment of supermassive black holes (SMBHs) are becoming
abundant and precise. We use such measurements to look for ultralight dark matter (ULDM), which is
predicted to form dense cores (“solitons”) in the centre of galactic halos. We search for the gravitational
imprint of an ULDM soliton on stellar orbits near Sgr A* and by combining stellar velocity measurements
with Event Horizon Telescope imaging of M87*. Finding no positive evidence, we set limits on the soliton
mass for different values of the ULDM particle mass m. The constraints we derive exclude the solitons
predicted by a naive extrapolation of the soliton-halo relation, found in DM-only numerical simulations,
for 2 × 10−20 eV . m . 8 × 10−19 eV (from Sgr A*) and m . 4 × 10−22 eV (from M87*). However,
we present theoretical arguments suggesting that an extrapolation of the soliton-halo relation may not
be adequate: in some regions of the parameter space, the dynamical effect of the SMBH could cause
this extrapolation to over-predict the soliton mass by orders of magnitude.

I. INTRODUCTION

Supermassive black holes (SMBHs) reside in most galax-
ies [1–3] and their properties (mass, spin, and close envi-
ronment) are under rapidly improving observational scrutiny.
Two SMBHs for which very precise data exists are Sgr A* in
the dynamical centre of the Milky Way (MW) and M87* in
the elliptical galaxy M87. Near Sgr A*, the orbit of the star
S2 in the S star cluster [4–6] has been observed along more
than a full lap [7, 8]. In the case of M87*, the event horizon
telescope (EHT) collaboration has very recently released a
breathtaking image of the BH shadow [9].

In this paper we show that measurements of the dynam-
ical environment of SMBHs provide an interesting probe
of ultralight dark matter (ULDM) [10–15]. ULDM gained
wide interest partially because in the window 10−22 eV .
m . 10−21 eV, it could alleviate small-scale puzzles facing
the dark matter paradigm [10, 16, 17]. This mass range,
moreover, defines the absolute lower bound for the possi-
ble mass of dark matter. At the centre of galactic halos
ULDM is expected to develop cored density profiles [17–
44], commonly referred to as “solitons”,1 corresponding to
quasi-stationary minimum energy solutions of the equations
of motion. The ULDM soliton could be detected given de-
tailed knowledge of the mass distribution in the inner halo.
Such detailed view is provided by SMBH precision measure-
ments: in the case of Sgr A*, any additional mass distri-
bution δM between the periastron and apoastron of the S2
orbit (∼ 0.005 pc) is constrained at the level of δM/MBH .
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1 A more appropriate term is oscillatons; but we will stick to solitons

in what follows.

few percent [6]. Measurements of stellar motions at larger
distances [5] (∼ 0.3 pc) provide more constraints. For
M87*, a combination of the EHT measurement with analy-
sis of stellar velocity dispersion at distances of . 0.5 kpc can
be translated into the constraint δM/MBH . 10%. We will
show that these observations probe ULDM at a meaningful
level.

The problem of a minimally-coupled massive scalar field
in the strong gravity regime around a BH (including the su-
perradiance phenomenon [45]) was investigated in the liter-
ature [13, 46–55], recently also in the context of M87* [56].
Other works [17, 35, 37] considered the interplay between
ULDM and black holes on galactic scales within the New-
tonian approximation. Our approach focuses on the inter-
mediate case, where on the one hand a Newtonian analysis
is applicable but on the other hand, the SMBH dominates
the dynamics.

Several other constraints on ULDM have appeared in the
literature. The matter power spectrum revealed by Ly-α for-
est analyses is in tension with m . 10−21 eV [57–61] (see
also [62, 63]). Rotation curves of low-surface-brightness
galaxies (LSBs) also disfavour m . 10−21 eV [35, 44], if
one accepts the soliton cores predicted by numerical sim-
ulations [22, 23, 64]. Independent evidence from rotation
curve data against ULDM cores was reported in [65]. Dy-
namical heating of the MW disk [66] and a preliminary anal-
ysis of stellar streams [67] disfavour m . 10−22 eV. A
weaker bound comes from pulsar timing measurements [68]
of scalar metric perturbations induced by ULDM [69], which
exclude m . 10−23 eV. Ref. [38] showed that a dynam-
ical analysis of a central star cluster in Eridanus-II could
potentially probe ULDM up to m . 10−19 eV.

The paper is outlined as follows.

Section II sets the stage for our investigation, introduc-
ing a few basic properties of the ULDM soliton, explaining
how ballpark numbers for the soliton mass motivate us to
look for ULDM near SMBHs, and highlighting a few of the
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complications we will encounter.

In section III we use observations to search for solitons,
considering first Sgr A* (Secs. III A 1 and III A 2) and then
M87* (section III B 1). Our goal is to examine how different
values of the soliton mass, Msol, affect measurements of the
SMBH dynamical environment for different assumed values
of m. The observational constraints that we found for Sgr
A* and for M87* are compared to theoretical expectations
in section III A 3 and section III B 2, respectively.

Theoretical benchmarks for the soliton are explained in
Secs. IV and V, with some details postponed to appendix A.
The basic benchmark we look at, in section IV, comes from
the soliton-host halo relation found in the DM-only numer-
ical simulations of Refs. [22, 23]. We find that the soliton-
halo relation is tested by the SMBH data in a new range
of m compared to previous tests. However, the soliton-
halo relation involves caveats that prevent us from turning
the constraints on Msol into robust exclusion on m. First,
the solitons we consider must account for the effect of a
SMBH, whereas the numerical simulations included only
ULDM. Second, the simulations were only run for a limited
range of host halo masses and ULDM particle masses, while
we explore more massive halos and more massive particles.

In section V we consider the question of dynamical re-
laxation. Using the relaxation time estimate of Ref. [41],
combined with observations made in [35, 44], we show that
dynamical relaxation may become a bottleneck for soliton
formation for Mh ∼ 1012 M� and m & 10−22 eV. At
m = 10−19 eV, for example, the soliton mass prescribed by
dynamical relaxation could be an order of magnitude lower
than that predicted by naive extrapolation of the scaling re-
lation of [22, 23], even when one ignores the impact of a
SMBH.

We summarise our results in section VI.

We leave some details to appendices. In appendix A we
review the structure of the soliton in the regime where the
dynamics is dominated by a SMBH, but where the New-
tonian approximation is still valid. A simple approximation
for the soliton profile is introduced to facilitate numerical
calculations. We calculate the time scale characterising the
absorption of a soliton into the SMBH. Our results suggest
that over much of the parameter space of interest, Sgr A*
and M87* could absorb ULDM too fast to allow for a soliton
to be established.

Finally, in appendix B we outline the parametric re-
gion where non-gravitational self-interactions, motivated by
axion-like particle models of ULDM, could affect our results.

II. SETTING THE STAGE

The density profile of a self-gravitating soliton is cored
with characteristic radius xc and mass Msol related by (see,

e.g. [35])2

self-gravitating soliton:

Msol xc ≈ 2.3× 105
( m

10−19 eV

)−2

M� pc .
(1)

A glance at the properties of Sgr A*, with mass MBH ≈
4× 106 M� dominating the dynamics out to a few pc [5],
suggests that stellar orbit measurements with ∼ 10% accu-
racy in the SMBH-dominated region could be sensitive to
m ∼ (10−20 − 10−19) eV provided that Msol ∼ MBH. In-
terestingly, this ballpark for Msol is consistent with a naive
extrapolation (in m) of the results of DM-only numerical
simulations [22, 23].

These estimates look promising, and we will see that mea-
surements of Sgr A* do lead to constraints that test the
extrapolation of [22, 23]. However, the presence of the
SMBH complicates the situation. First of all, when the
SMBH dominates the dynamics, the soliton shape is dis-
torted. The characteristic radius becomes independent of
Msol and, instead of eq. (1), is given by (see appendix A 1)

BH-dominated soliton:

MBH xc ≈ 4× 106
( m

10−20 eV

)−2

M� pc .
(2)

The soliton mass is then an independent parameter.
Whether the soliton can be probed by stellar orbits, or not,
depends on Msol via its relation to the soliton central den-
sity, Msol ≈ πρ0/(GMBHm

2)3.
The particular complication due to the transition from

eq. (1) to eq. (2) does not turn out to be a show stopper,
but it does illustrate the impact of the SMBH. We will con-
sider a number of other complications, such as the possible
impact of the SMBH on the naive large-m extrapolation
(by large-m, we mean m & 10−21 eV) of the Msol scaling
of [22, 23]. A key caveat suggested by our findings is that in
much of the parameter space where SMBH measurements
could naively test ULDM, the soliton may actually be con-
sumed by accretion into the SMBH. Understanding what re-
ally happens in this case requires simulating the co-evolving
SMBH+ULDM systems, which is beyond the scope of this
paper. Our take-home message after considering these com-
plications will be that while SMBH measurements open up
an interesting avenue to search for ULDM, the theoretical
uncertainties are still too large to allow for robust exclusion,
at least based on the observables that we analysed.

III. LOOKING FOR ULDM NEAR SMBHS

In this section we derive observational constraints on
ULDM solitons from stellar orbits near Sgr A* in the MW
(section III A) and from the EHT measurements and stellar

2 We define xc as the radius at which the soliton mass density de-
creases by a factor of 2 compared to its value at the origin [22, 23].
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dispersion analyses of M87* (section III B). While the re-
sults can be read and understood without referring to the
technical details of the soliton’s structure, the underlying
calculations employ tools and results that are explained in
subsequent sections. In particular, we use the BH-deformed
soliton shape calculation of appendix A 1, and compare our
constraints to theoretical benchmarks which are explained
in section IV, section V and appendix A.

A. Milky Way

We now discuss the constraints obtained from observa-
tions around the SMBH in the MW, specifically from the
orbit of the star S2 (section III A 1) and from observations
of a stellar disk (section III A 2).3 These constrain the
∼ 0.005 pc and ∼ 0.2 pc regions, respectively. Farther
away, at the few pc region and outwards, the stellar mass
contribution becomes comparable to the BH mass [71]. This
makes the analysis more involved, beyond the scope of the
current work. In section III A 3 we compare the constraints
from observations to theoretical expectations.

1. The orbit of S2

Precision measurements of the orbits of stars in the S star
cluster at the centre of the MW (see, e.g. [4, 6]) are sensitive
to the mass distribution near the SMBH. The discriminatory
power between an extended mass distribution to an isolated
point mass (BH) arises from the eccentricity of the stellar
orbit. In figure 1 we show a schematic view of the elliptic
orbit of the B2-type star S2, for which more than a full orbit
has been recorded [7]. An extended mass distribution M ext,
defined as the mass within the green filled shell extending
between the periastron and apastron of the orbit, can be
constrained independently of the central mass inside of the
periastron, shown by the internal white region with a black
point representing the SMBH. It should be noted that in
the presence of a significant extended mass distribution, the
orbit of S2 would exhibit strong precession. In that limit,
figure 1 should be thought of as showing only the osculating
orbit of the star.

Our computation follows Ref. [72]. There, VLT measure-
ments of the orbit of S2 up to 2016 were used to constrain
the distribution of dark mass, which was assumed to exhibit
a density spike towards the SMBH. Here, we use the same
data to constrain an ULDM soliton.

We use an orbit-fitting procedure as developed in Refs. [6,
7, 73–75] and described in detail in Ref. [72]. The procedure
reconstructs the evolution of the position and velocity of the
star on its orbit as a function of time, and constrains the

3 Position and polarization measurements in near infra-red, attributed
to flares of Sgr A* [70], may also constrain the properties of the
SMBH.

S2: e=0.8831

FIG. 1: Schematic view of the S2 elliptic orbit.

properties of the gravitational potential by fitting the param-
eters of the model to the data, consistently combined in the
likelihood. The data includes right ascension, declination,
and radial velocity of S2 from VLT measurements [6].4 The
14 parameters of the problem are the mass of the central
object, MBH, and its six phase-space coordinates, namely
its distance R0, its position on the sky (right ascension αBH,
declination δBH), and velocity (vα,BH, vδ,BH, vr,BH), as well
as the six phase-space coordinates of the star, and the total
soliton mass Msol which characterizes the mass profile M ext

of the soliton. We assume that the SMBH and the soliton
are concentric.

Given an assumed BH mass MBH, ULDM particle mass m
and soliton mass Msol, we compute M ext using the formulae
given in appendix A 1. For the parameters of the star we
consider the initial conditions on the polar radius and angle
in the plane of the orbit, r0, θ0, and their corresponding
derivatives ṙ0, θ̇0, as well as the inclination angle I with
respect to the plane of the orbit and the standard longitude
Ω of the ascending node.5

Following [72], we use PyMultiNest [76], which relies
on the MultiNest multimodal nested Monte Carlo sampling
code [77], to derive the posterior probability distribution of
the parameters of the model, in particular Msol. We fix the
ULDM mass m for a given Monte Carlo run, and scan over
m by means of independent runs.

We find that including an ULDM soliton does not mod-
ify the Bayesian evidence in a statistically significant way.

4 Combining the VLT data with the data from the Keck observatory
[75], using the procedure of Ref. [7], only improves the limits on
Msol by an O(1) factor at the price of having 4 additional parameters
to reconcile the coordinate systems for both data sets, which leads
to additional degeneracies and longer computing times. Therefore,
in figure 2 we only account for the VLT data.

5 Note that we cannot rely on the 6 standard orbital elements that
characterize Keplerian orbits since in the presence of an extended
mass the orbit is no longer Keplerian. We note however that I and
Ω still define the plane of the orbit even for non-Keplerian motion.



4

��-�� ��-�� ��-�� ��-�� ��-��
���

���

���

���

�������� ���� �� ��

�
�
��
��
�
�
�
��
��
�

⊙

�
�
-
α
/�
�
�
�

��
����������

��
���

FIG. 2: Constraints on the total mass of an ULDM soliton. The
red shaded region, marked “S2”, is excluded at the 95 % CL
by measurements of the star S2 (see section III A 1). The green
shaded region, marked “CWD”, is in conflict with observations of
a clockwise-rotating disk (see section III A 2). In the blue-shaded
region, marked “BH absorption”, the time scale for absorption
of the soliton by the SMBH, estimated in section A 2, is shorter
than τU. Different lines represent theoretical benchmarks for
Msol, explained in section III A 3.

Therefore, we derive upper limits on Msol at the 95% con-
fidence level.6 The excluded range in the (m,Msol) plane is
shown by the red-shaded region in figure 2, marked by “S2”.
Total soliton masses down to ∼ 5×104M� are excluded at
the 95% confidence level for m ∼ 4 × 10−19 eV. It should
be noted that above m ∼ 10−18 eV, the entire soliton is
confined within the pericentre of the orbit of S2, such that
the total soliton mass is degenerate with the BH mass.

2. A stellar disk

The orbit reconstruction of S2 and other well-measured
members of the S star cluster can probe an ULDM soli-
ton in the inner r . 0.01 pc around Sgr A*. This
translates into constraints that are particularly strong for
10−19 eV . m . 10−18 eV. Additional measurements of
stellar kinematics extending to r ∼ 0.1−1 pc provide some-
what less precise estimates of the central mass [5], but the
larger distance probed by these measurements makes them
sensitive to smaller values of m.

Ref. [79] analysed the kinematics of a clockwise-rotating
disk (CWD) of stars spanning distances of ∼ 0.1 − 0.3 pc

6 We use the corner.py Python module [78].

around Sgr A*. For an 8 kpc distance estimate to Sgr A*,
they found MBH = (4.3± 0.5)× 106 M�. Combined with
the results for the S2 orbit reconstruction, we deduce the
constraint:

δM (r < 0.3 pc) . 106 M� . (3)

This constraint, translated to the (m,Msol) plane, is shown
by the green-shaded region, marked by “CWD” in figure 2.

3. Comparison of constraints with theoretical expectations

It is interesting to compare the observational constraints
of figure 2 to theoretical expectations for the soliton mass.
As we discuss later on, despite the fact that ULDM solitons
were invariably seen to form in numerical simulations, the
dominant physical mechanisms controlling soliton formation
are not yet understood. This leaves significant room for
theoretical uncertainties, the identification and preliminary
quantification of which make up some of our results in this
paper. To keep the discussion concise, we postpone most
of the details to sections IV, V and A 2. Here we highlight
the main results, as follows:

1. The thin solid blue line in figure 2 shows the value of
Msol predicted by eq. (6) using Mh = 1.54×1012 M�
for the MW halo [80, 81]. This benchmark ignores
possible effects due to the SMBH.

2. The thin dashed blue line shows a more conservative
prediction, obtained from eq. (7) subject to the as-
sumption that the SMBH formation preceded the soli-
ton formation: the reasoning behind this prediction is
summarised in section IV. Note that if, on the other
hand, the soliton formed early preceding the SMBH,
then the SMBH formation may actually attract more
ULDM mass into the soliton; in which case Msol could
exceed not only the thin dashed line, but also the solid
blue line.

3. The thick solid black line shows the constraint on the
soliton mass, that arises if one assumes that the soli-
ton is dominantly formed in the kinetic regime via
dynamical relaxation. This line is computed using
eq. (10) following the reasoning presented in section
V. It is equivalent to the central value of the blue band
in figure 5. The SMBH is ignored in this computation.

4. In the blue-shaded region, occupying approximately
half of the plot7 at m > 3 × 10−20 eV, a rough
estimate of the time scale for absorption of the soliton
by the SMBH, computed in section A 2, is shorter than
τU ' 13.8 Gyr. In this region, the soliton may be

7 With the exception of the upper-right corner, where due to the
degeneracy between Msol and MBH, the latter is compatible with
zero.
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entirely eaten by the BH and precise determination of
the dynamics would require simulating the co-evolving
SMBH and ULDM systems.

5. Finally, in the region above the thick-dotted magenta
line, axion-like particle models of ULDM, where ini-
tial field misalignment in a cosine potential deter-
mines the ULDM relic abundance, predict that non-
gravitational self-interactions could modify the soli-
ton solution. Note that the SMBH causes the field
to compress, making non-linearities more important
than in the self-gravitating soliton case. We also
note, however, that the precise range in m where
self-interactions become important depends strongly
on the initial misalignment: a ∼ 10% tuning in the
initial conditions would shift the dashed magenta line
up by a factor of ∼ 100. The details are given in
appendix B.

B. Messier 87

In this section we derive observational constraints on
ULDM solitons by comparing the EHT measurement and
stellar kinematics measurements of M87*, the SMBH in
M87. In section III B 1 we present the constraint and in
section III B 2 we discuss its implications.

1. EHT BH shadow vs. stellar kinematics in M87

The EHT collaboration has recently reported an image
of the shadow of the SMBH M87* [9].8 The BH shadow
observed by the EHT translates into a gravitational angular
radius [83–86]

θg =
GMBH

c2D
= (3.8± 0.4) µarcsec , (4)

where D is the distance to the BH. In what follows we will
assume a fiducial distance of D = 17 Mpc, in which case
one finds MBH = (6.6± 0.7)× 109 M�.

The EHT result allows for a new test of the mass distri-
bution in the inner region of the galaxy.9 Ref. [88] analysed
stellar kinematics, where the most detailed and precise data
used in the analysis fell in the range θ∗ = (2.5′′−11′′). Com-
bined with the value of D used by [88], their result for MBH

translates into GM(θ∗)/(c
2D) = (3.6± 0.2) µarcsec.

Comparing eq. (4) to the results of [88], we see that an
additional mass distribution within θ∗ > θg, parametrised
by δM(θ∗), is constrained by:

δM(θ∗)

MBH
=

GM(θ∗)

c2D

1

θg
− 1 = −0.04± 0.11 . (5)

8 For a previous discussion see [82] and references therein.
9 Here we consider the constraints on the mass distribution far away

from the BH horizon, in the weak field regime. The mass distribution
in the strong field regime could, in principle, be tested too [87].

For simplicity, we interpret eq. (5) to hold for θ∗ = (2.5′′ −
11′′), understanding that additional information could be
deduced in a more detailed analysis extending to somewhat
larger or smaller θ∗.

Given the values of m and MBH, we can calculate the
mass profile of an ULDM soliton of total mass Msol and use
eq. (5) to derive constraints in the (m,Msol) plane. The
result of this exercise is shown in figure 3. In the grey-shaded
region, marked “M87 SMBH”, the soliton mass contribution
exceeds the upper limit defined by eq. (5) for θ∗ = 11′′.
To compute the plot we use the fiducial values MBH =
6.6 × 109 M� and D = 17 Mpc; varying these fiducial
values within the range D = (17 ± 2) Mpc and MBH =
(6.6± 1)× 109 M� does not affect the results appreciably.
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FIG. 3: Constraints on an ULDM soliton derived from com-
bining EHT BH shadow measurements [9] with the stellar dis-
persion analysis of Ref. [88]. The grey shaded region, marked
“M87 SMBH”, is excluded, as there the soliton would spoil the
agreement between [9] and [88] on the value of MBH. Vari-
ous theoretical benchmarks are shown and explained in section
III B 2.

The uncertainty in eq. (5) is dominantly systematic, and
there is room to regard it with care. We comment that
Ref. [89] considered gas-dynamical models at smaller radii
compared to those entering the stellar dispersion of [88],
and found the result GM(θ∗)/(c

2D) =
(
1.9+0.5
−0.4

)
µarcsec:

a factor of two lower than that found by [88]. The discrep-
ancy between the gas models of Ref. [89] and the stellar
kinematics analysis of Ref. [88] could be due to uncertainties
in modelling the gas distribution, e.g. the inclination of the
gas disc. Prior to the EHT measurement, one might have
argued that the factor of two mismatch between the results
of Refs. [88] and [89] could in principle come from a dark
halo contribution. The EHT closes this window of opportu-
nity with a result at θg � θ∗ that confirms the conclusions
of Ref. [88]. In our analysis we therefore used the stellar
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dispersion analysis of Ref. [88]. To get a quick estimate
of the impact of changing the allowed soliton mass from
δM/MBH < 0.07, shown in eq. (5), to δM/MBH < X,
one can multiply the horizontal lower boundary of the grey-
shaded area (equal to Msol ≈ 5× 108 M� in eq. (5)) by a
factor of X/0.07.

2. Comparison of constraints with theoretical expectations

Here we briefly compare the observational constraint with
theoretical expectations.

The thin solid blue line in figure 3 shows the value of
Msol predicted by eq. (6) using Mh = 2.4 × 1012 M� for
M87 [90]. The thin dashed blue line shows the more conser-
vative prediction that is obtained from eq. (7), as explained
in section IV. In the region above the thick-dotted magenta
line, non-gravitational self-interactions may be important,
as discussed in appendix B. In the blue-shaded region, at
m & 6 × 10−23 eV, the time scale for absorption of the
soliton by the SMBH, estimated in appendix A 2, is shorter
than τU. The solid black line shows the constraint on the
soliton mass, which arises if one assumes that the soliton
is dominantly formed in the kinetic regime via dynamical
relaxation (see section V).

IV. HOW MUCH MASS IN THE SOLITON?

The DM-only numerical simulations of Ref. [22, 23] re-
lated the soliton mass, Msol, to the mass of the galactic
halo in which it occurs, Mh:

Msol ≈ 6.5× 108
( m

10−22 eV

)−1
(

Mh

1011 M�

) 1
3

M� . (6)

Ref. [35, 44] showed that for DM-only halos, eq. (6) is equiv-
alent to the statement:

K

M

∣∣∣
soliton

≈ K

M

∣∣∣
halo

. (7)

Namely, the numerical simulations of [22, 23] are finding
that the kinetic energy per particle is the same for ULDM
particles in the large-scale host halo and in the central soli-
ton.

Independent simulations by Ref. [64] showed a result con-
sistent with eq. (6). The simulations of Ref. [32] found a dif-
ferent scaling, but as discussed in [35] it remains to be seen
if the initial conditions employed in that simulation biased
the result. To our knowledge, a direct comparison between
the soliton growth found in the simulations of Ref. [41] and
those of [22, 23] had not yet been made. There is, there-
fore, room for caution in accepting the soliton-halo relation.
We expect that the theoretical situation will become clearer
in the near future as different groups test the validity of
eq. (6).

We have used eq. (6) as an illustrative benchmark with
which observational constraints in the (m,Msol) plane can

be compared. However, it is important to note that the
reference to Eqs. (6-7) entails two significant caveats:

1. Eqs. (6-7) were found in DM-only simulations while
here we consider galaxies which host a SMBH.

2. Eqs. (6-7) express an empirical result that has only
been tested in numerical simulations of halos in the
mass range Mh ∼ (109−5×1011) M� and for ULDM
particle mass m ≈ 10−22 eV. In contrast, here we
consider more massive halos, Mh & 1012 M�, and
more massive particles, m ≥ 10−22 eV. For such Mh

and m, using Eqs. (6-7) involves significant extrapo-
lation.

In the rest of this section we discuss the effect of the
SMBH on ULDM energetics in the soliton region, with
possible implications on the soliton formation. Some tech-
nical details are postponed to appendix A. The question of
dynamical relaxation is considered in section V.

While eq. (7)—just like eq. (6)—was not tested in sim-
ulations that include an external baryonic contribution to
the gravitational potential, it is suggestive to consider it as
evidence for kinetic equilibration between the ULDM reser-
voir in the halo and in the soliton. This kinetic equilibration
is unlikely to represent true steady-state equilibrium, but
it could correspond to a bottleneck in the soliton forma-
tion which slows down once the soliton grows to saturate
eq. (7). Assuming that this is the case, we could use eq. (7)
to estimate the outcome of dynamical heating of the inner
region of the halo due to the SMBH,10 which would affect
the value of K/M |soliton on the LHS of eq. (7).

In the limit of SMBH dominance, the soliton specific ki-
netic energy becomes K/M |soliton → A2/2 where A =
GMBHm (see appendix A 1, in particular eq. (A5)). There-
fore, if A2/2 > K/M |halo, then eq. (7) cannot be satisfied.
This would imply that the soliton formation is halted by the
dynamical heating due to the SMBH.

In Figs. 2 and 3 the soliton mass predicted by eq. (7),
including the effect of the SMBH on the LHS, was shown
by the thin dashed blue lines.

The discussion above is relevant if the SMBH preceded
the formation of the soliton. In reality, the timing could
be reversed: the soliton may form early and precede the
SMBH (and even, perhaps, help to seed the SMBH). If this
latter ordering is the relevant one, then we see no reason
to expect that SMBH formation would quench the soliton
(that is, apart from the possibility that the SMBH could
eat-up the soliton altogether: this is considered in appendix
A 2). Adiabatic contraction could actually increase the soli-
ton mass above the prediction of eq. (6). An example illus-
trating related dynamics was considered in Ref. [91], which
simulated the scenario where a population of massive point

10 Ref. [44] considered the related effect of stellar and gas mass com-
ponents in low surface-brightness galaxies.
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particles (“stars”) was added to a halo containing an ex-
isting soliton, and the system was then allowed to evolve
dynamically. The stars in the simulation flowed to the cen-
tre of the halo, causing the soliton to absorb additional mass
from the large-scale ULDM host halo. After a Hubble time,
the system attained near steady-state containing a soliton
that was more massive than the prediction of eq. (6).

V. THE QUESTION OF THE RELAXATION TIME

In this section we consider the question of dynamical re-
laxation, which, for massive halos with Mh ∼ 1012 M�, may
imply a bottleneck for the soliton mass for m & 10−21 eV.
Throughout this section we ignore the dynamical impact
of a SMBH on the soliton: tackling the combined problem
of soliton formation via dynamical relaxation alongside a
simultaneously-forming SMBH is beyond the scope of this
paper. Our analysis could therefore be justified if the soli-
ton forms before the SMBH. Beyond the particular focus of
the current work, our analysis in this section may be more
generally useful for the understanding of DM-only numerical
simulations.

Ref. [17] pointed out that interference patterns in ULDM
facilitate dynamical relaxation by acting as quasi-particles of
mass m̃ ∼ ρ/(mσ)3, where ρ is the mass density and σ is
the characteristic velocity dispersion (the precise matching
to quasi-particles was derived in Ref. [37]). The time scale
for dynamical relaxation due to two-body gravitational in-
teractions between the quasi-particles is τ ∝ m̃/(ρl2σΛ) ∝
m3σ6/(G2ρ2Λ), where l = Gm̃/σ2 is the impact parameter
for gravitational collisions and Λ is the Coulomb logarithm.
This scaling was verified in Ref. [41] using numerical simu-
lations, which found that the relaxation time in a region of
spatial extent R� 1/(mσ) is given by

τ = b

√
2

12π3

m3σ6

G2ρ2 ln (mσR)
, (8)

with b ≈ 0.7. Within time τ , a soliton forms in an ensemble
of ULDM particles which initially contained no soliton.

Consider an initial NFW halo density profile [92] charac-
terised by the radius parameter Rs, a concentration param-
eter c and a halo virial mass Mh (defined as the mass within
R ≤ cRs),

ρNFW(r) =
Mh

4πc̄

1

r (r +Rs)
2 , (9)

with c̄ = ln(1 + c)− c/(1 + c). If we set σ2 = GM(R)/R,
we can calculate τ as a function of the mass coordinate
M(R) = 4π

∫ R
0
dr r2ρNFW(r). Inverting this relation gives

the mass Mrelax contained in the relaxed region as a func-
tion of the time available for relaxation.

In figure 4 we show the mass contained in the relaxed
region of an Mh = 1012 M� NFW halo, given τU (blue)
or 0.1 τU (red) to relax. The width of each shaded band
shows Mrelax for different values of the halo concentration
parameter c and scale parameter Rs, varying in the range

c = (5, 30) and Rs = (5, 20) kpc [93, 94]. For comparison,
the dashed black line shows the soliton mass expected from
extrapolating the numerical simulations of [22, 23, 64] to
m > 10−22 eV.

��-�� ��-�� ��-�� ��-�� ��-�� ��-�� ��-��
���

���

���

���

���

����

����

�������� ���� �� ��
�
��
�
�
��
�
�
��
��
�

⊙

τ = τ�
τ = ���τ�

FIG. 4: The mass contained in the dynamically relaxed region of
an Mh = 1012 M� NFW halo, given τU (blue) or 0.1 τU (red) to
relax. The width of each shaded band shows Mrelax for different
values of the halo concentration parameter c and scale parameter
Rs, varying in the range c = (5, 30) and Rs = (5, 20) kpc.
The dashed black line shows the soliton mass expected from
numerical simulations by extrapolating eq. (6) to m > 10−22 eV.

The mass Mrelax could be considered as an upper bound
on the mass of the soliton forming in a halo in the kinetic
regime [17]. However, Msol < Mrelax is probably a weak
upper bound. If we use eq. (7) to estimate the soliton by
equating

K

M

∣∣∣
soliton

=
σ2

2
, (10)

where σ2 is the velocity dispersion at Mrelax, we obtain
a stronger (and potentially more realistic) upper bound.
This comes from noting that, for a self-gravitating soliton,
eq. (10) translates into Msol ≈ (4.3/Gm)

√
(K/M)|sol =

(4.3/Gm)σ/
√

2 [35]. This upper bound is shown in figure
5.

It is interesting to consider the parametric scaling of
the soliton mass upper bound derived from eq. (10). For
massive halos like MW and M87, with Mh ∼ 1012 M�,
and for m > 10−21 eV or so, the mass contained in
the relaxed region within a Hubble time is much smaller
than M(Rs). The density, enclosed mass and velocity dis-
persion in the relevant region can then be approximated
by ρNFW ≈ Mh/(4πc̄R

2
sR), M ≈ MhR

2/(2c̄R2
s ) and
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FIG. 5: Soliton mass upper bound derived from eq. (10), where
σ2 is the velocity dispersion in the dynamically relaxed mass of
an Mh = 1012 M� NFW halo, given τU (blue) or 0.1 τU (red)
to relax. The width of the shaded bands comes from varying the
halo morphology as in figure 4.

σ2 ≈ GMhR/(2c̄R
2
s ). Inserting this into eq. (8) we have:11

τ ≈ 8

3π

GMh

c̄R2
s

(
c̄R2

sM
Mh

) 5
2

m3

ln

[√
2GMh

c̄R2
s

(
c̄R2

sM
Mh

) 3
2

m2

] . (11)

In the regime of validity of eq. (11), the mass con-
tained in the relaxed region at fixed τ scales as

Mrelax ∝ τ2/5
(
Mh/(c̄R

2
s )
)3/5

m−6/5, up to a loga-
rithmic correction. Eq. (10) then leads to Msol ∝
τ1/10(Mh/(c̄R

2
s ))2/5m−13/10, up to a logarithmic correc-

tion. Noting that Rs ∝ M
1/3
h , and ignoring the depen-

dence on the concentration parameter c, we have Msol ∝
τ1/10M

2/15
h m−13/10. The ∼ m−13/10 scaling at m >

10−21 eV is apparent in figure 5 when comparing the shaded
band (coming from eq. (10)) to the dashed line (coming
from the naive extrapolation of eq. (6)) which scales as
∼ m−1.

For m < 10−21 eV, the relaxed region extends up to
R ∼ Rs and the small R expansion of eq. (11) does not
apply. Instead, σ2 becomes approximately independent of
R (dσ2/dR vanishes at R ≈ 2.16Rs). Because σ is ap-
proximately independent of R, it follows that the soliton
determined by eq. (10) is approximately independent of the
time available for relaxation. In this regime the upper bound
prescribed by eq. (10) approximately coincides with eq. (7).

11 We chose the presentation of eq. (11) to highlight the fact that the
halo parameters enter only via the combination Mh/

(
c̄R2

s

)
.

Finally, note that eq. (8) and the corresponding dy-
namical relaxation bottleneck apply to the kinetic regime
R� 1/(mσ). These considerations may significantly over-
estimate the actual time scale for soliton formation, if the
initial conditions admit small velocity dispersion, as would
be the case in cosmological halos that decouple from the
Hubble flow before virialisation [41].

VI. SUMMARY

Measurements of the mass and dynamical environment
of SMBH are becoming increasingly precise. Two SMBHs
where precision measurements have become available are
Sgr A* (MBH ∼ 4× 106 M�, via stellar orbits) and M87*
(MBH ∼ 6 × 109 M�, via BH shadow imaging and stel-
lar velocity dispersion). The SMBH measurements provide
clean probes of the mass distribution in the region where
the BH dominates the dynamics.

We study the implications of the SMBH measurements
for ULDM. Analytical arguments and numerical simulations
predict that ULDM should form dense cores (“solitons”) in
the centre of galactic halos. We present a search for the
gravitational imprint of an ULDM soliton with mass Msol

on the orbit of the star S2. We also consider constraints
from the observations of a stellar disk. We find no evidence
for Msol > 0 and use the data to derive constraints in the
(m,Msol) plain, where m is the ULDM particle mass (see
figure 2). We then use stellar velocity dispersion analyses
combined with the Event Horizon Telescope (EHT) mea-
surement of M87* to constrain the presence of a soliton,
which could manifest itself as excess mass in the velocity
dispersion data as compared to the EHT determination of
MBH (see figure 3).

DM-only numerical simulations suggest a scaling rela-
tion [22, 23] that predicts Msol given the host halo mass
Mh and the particle mass m. The observational constraint
we find from SgrA*, combining the S2 (Sec. III A 1) and
CWD (Sec. III A 2) measurements, exclude a naive extrapo-
lation of this relation for 2×10−20 eV . m . 8×10−19 eV
(see figure 2). Similarly, from M87*, combining EHT and
stellar kinematics measurements (Sec. III B 1), the range
m . 4× 10−22 eV is naively excluded (figure 3).

However, a number of theoretical arguments lead us
to expect that the naive extrapolation of the soliton-halo
relation is not adequate. The most significant caveats are
the process of soliton absorption by the SMBH, and the
question of dynamical relaxation. Both caveats become
more pronounced as m is increased, and suggest that a
naive extrapolation of the scaling relation of [22, 23] to
m & 10−21 eV could over-predict the soliton mass by
orders of magnitude. Thus, while the SMBH analysis is
a potentially interesting discovery tool for ULDM, the
theoretical uncertainties are too large to make it a robust
exclusion tool.

Note added : while this manuscript was prepared for pub-
lication, Ref. [95] appeared, discussing stellar dynamics near
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SMBHs in the presence of ULDM and claiming the strong
constraint m > 10−18 eV. This conclusion appears to as-
sume that the soliton-host halo relation of [22, 23] remains
valid up to m ∼ 10−18 eV. However, we note that as ex-
plained here, the naive extrapolation of the soliton-host halo
relation up to m & 10−21 eV cannot, at present, be used
to infer robust constraints on ULDM.
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Appendix A: ULDM soliton near a black hole

In this section we consider the ULDM soliton in the pres-
ence of a SMBH. In section A 1 we consider the basic fea-
tures of the soliton solution, reviewing and extending an
earlier analysis in Ref. [35] (see appendix B there) and in-
troducing some useful approximations. In section A 2 we
consider the accretion of mass from the soliton into the
SMBH.

1. Soliton shape

We consider a real, massive, free scalar field φ satisfying
the Klein-Gordon equation of motion (EoM) and minimally
coupled to gravity.12 We look for a spherically-symmetric,
quasi-stationary bound state solution in the non-relativistic
regime. To this end we decompose φ as

φ(x, t) =
e−im(1+γ)t

√
8πG

χ(x) + c.c. , (A1)

where G is the gravitational Newton’s constant and γ is
an eigenvalue of the problem. We do not need the explicit
value of γ in what follows.

12 Analyses of interacting fields can be found in, e.g. Refs. [20, 21, 96,
97].

We rescale the spatial coordinate,

r = mx , (A2)

assuming spherical symmetry. The EoM for χ and for the
Newtonian gravitational potential Φ, sourced by χ, is

∂2
r (rχ) = 2r

(
Φ− A

r
− γ
)
χ , (A3)

∂2
r (rΦ) = rχ2 , (A4)

where

A = GMBHm

≈ 3× 10−3

(
MBH

4× 106 M�

)( m

10−19 eV

)
.

(A5)

The lowest energy bound state solutions of Eqs. (A3-A4)
are parametrised by a single continuous positive parameter
λ that can be chosen as the value of the field at the origin:
χλ(0;A) = λ2. Once we solve for χ1 and Φ1, all other
solutions are obtained via

χλ(r;A) = λ2χ1(λr;A/λ) , (A6)

Φλ(r;A) = λ2Φ1(λr;A/λ) . (A7)

The mass density of the χλ soliton is

ρλ(r;A) =
m2

4πG
λ4χ2

1 (λr;A/λ) . (A8)

The total mass is given by

Mλ(A) = λM1(A/λ) , (A9)

where M1 is the mass in χ1. In the limit A→ 0, one finds

M1(0) ≈ 2.06

Gm
. (A10)

In the opposite limit one finds

M1(A� 1) =
1

4A3Gm
. (A11)

Solving numerically for χ1(r;A) is not particularly diffi-
cult. However, it is useful to find a semi-analytic approx-
imation for the mass density ρλ(r;A) that applies in both
limits A → 0 and A � 1. One such useful approximation
is given by

ρλ(r;A) ≈ m2

4πG
λ4 e−2[κ(ζ)Ar]ω(ζ)

, (A12)

ζ ≡ A

λ
. (A13)

The functions κ(ξ) and ω(ξ) are found by a numerical fit
to the exact solution, and are shown in figure 6. At ζ � 1
we have ω → 1 and κ→ 1, which reproduces the Coulomb
solution, χ1(r;A → ∞) → e−Ar, where the soliton profile
is purely controlled by the BH gravity. At ζ � 1 we have
ω → ω0 ' 1.75, independent of ζ, and κ→ κ0/ζ ' 0.43/ζ.
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FIG. 7: Numerical fit of the parameter ζ.

This gives a soliton profile that is independent of A and
reconstructs with good accuracy the self-gravitating exact
numerical solution of χλ(r; 0).

Using Eqs. (A12-A13), the total mass of the λ-soliton
reads

Mλ(A) ≈ λ

Gm

(
1

ζ κ(ζ)

)3 Γ
(

3
ω(ζ)

)
8

1
ω(ζ)ω(ζ)

=λM1(ζ) .

(A14)

From this expression we can obtain a numerical fit of the
parameter ζ, expressed as a function of the physical mass

ratio Msol/MBH. The results of this fit are shown in figure
7. For later use we also compute the soliton mass M ext

λ (A)
enclosed in the shell between two radii ri and ro (corre-
sponding to physical radii xi,o = ri,o/m):

M ext
λ (A) ≈ Mλ(A)

Γ
(

3
ω(ζ) , 2 [κ(ζ)Ar]

ω(ζ)
)

Γ
(

3
ω(ζ)

)
 ∣∣∣ro

ri
.

(A15)

Finally, let us check the domain of validity of the Newto-
nian approximation of the EoM, which we have been using
so far. The characteristic momentum associated with the
ULDM field in the soliton is given by

k2 =m2

∫
dr r2 (∂rχ)

2∫
dr r2 χ2

≈
[Amκ(ζ)ω(ζ)]

2
2−2+ 2

ω(ζ) Γ
(

2 + 1
ω(ζ)

)
Γ
(

3
ω(ζ)

) .

(A16)

When the BH dominates the solution we find

k ≈ Am . (A17)

Similarly, the kinetic energy per unit mass is K/M ≈ A2/2
when the BH dominates the solution. Therefore, in the
regime where the BH dominates the dynamics, the charac-
teristic particle velocity associated with the soliton is given
by v ≈ A and the Newtonian approximation remains ade-
quate as long as A � 1. Referring back to eq. (A5) we
learn that for a SMBH with MBH = 4× 106 M� (appropri-
ate for Sgr A*) the Newtonian approximation breaks down
for m & 10−17 eV, while for MBH = 6.5 × 109 M� (ap-
propriate for M87*) the approximation breaks down already
for m & 10−20 eV. Once we come close to the relativistic
region, A ∼ 1, phenomenae such as superradiance come
into play (see, e.g. [48]). Since our analysis did not account
for these effects, we stop our exploration of the parameter
space at m = 10−18 eV and m = 10−21 eV in Figs. 2
and 3, respectively.

2. Absorption by the black hole

A SMBH would accrete mass from the soliton and grow at
its expense [17]. Ref. [35] estimated the absorption rate of
the soliton by the SMBH, in the limit that the soliton’s self-
gravity dominates over that due to the SMBH over most of
the soliton region. Here we extend this estimate to the case
where the SMBH gravity dominates throughout the soliton.

The cross section for absorption of a scalar particle with
mass m and non-relativistic momentum k � m by a
Schwarzschild BH, whose size is much smaller than the
Compton wavelength of the particle, was calculated in
Ref. [46]:

σabs =
32π2A3

k2(1− e−ξ)
, (A18)
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where the A parameter was defined in eq. (A5) and ξ =
2πAm/k. The mass accretion rate flowing from the soliton
into the BH is then

Ṁ ≈ 32π2A3ρ0

mk(1− e−ξ)
, (A19)

where ρ0 is the soliton central density. Using our parametri-
sation, and combining Eqs. (A12,A14,A16) with eq. (A19),
we can write the characteristic time for the SMBH to absorb
the soliton

tabs ≡
Msol

Ṁ
(A20)

=

√
Γ(2+ 1

ω )Γ( 3
ω )

24+ 2
ω π

1− exp

−π22− 1
ω

√√√√ Γ( 3
ω )

Γ(2+ 1
ω )

κω




κ2G5m6M5
BH

.

We are interested in the case where the BH dominates
the soliton dynamics (the opposite limit was studied in
Ref. [35]), wherein k = Am is given by eq. (A17), leading
to ξ = 2π. Thus, we can neglect e−ξ in the denominator of
eq. (A19). In the same limit, the soliton central density is re-
lated to the total soliton mass Msol by ρ0 = (Am)3Msol/π.
Combining these expressions with eq. (A19), we find the
characteristic time for the SMBH to absorb the soliton:

tabs ≡
Msol

Ṁ
≈ 1

32πA5m
(A21)

≈ 10

(
4× 106 M�

MBH

)5(
3× 10−20 eV

m

)6

Gyr

≈ 10

(
6.5× 109 M�

MBH

)5(
6.5× 10−23 eV

m

)6

Gyr.

This result is independent of the soliton mass.
In the second line of eq. (A21) the BH mass is scaled

to that of Sgr A*, and in the third line it is scaled to that
of M87*. In each line m is scaled such that the soliton
absorption time is about 10 Gyr. The strong dependence of
tabs on m implies that for each of the two systems (Sgr A*
and M87*), m larger than the values shown in eq. (A21)
would result in the soliton being rapidly consumed by the
SMBH.

Throughout this section we have ignored corrections due
to BH rotation. However, the results developed in [54] sug-
gest that this may not lead to a large correction: for a Kerr
BH with spin parameter a, using eq. (51) in [54] we find

σabsorb → σabsorb ×
1

2

(
1 +

√
1− a2

)
. (A22)

Thus, the absorption time scale tabs could be longer by up
to a factor of 2 for a maximally rotating BH.

We conclude that much of the parameter space consid-
ered in the body of the paper may be strongly affected by
BH absorption. This motivates a more careful analysis, that
(i) goes beyond the single wavelength approximation of the

soliton, adopted here for simplicity using the characteristic
wavelength from eq. (A16), and that (ii) solves the BH and
the soliton co-evolution.

Appendix B: Non-gravitational self-interactions

ULDM could be realised by axion-like particles (see,
e.g. [12]; for interesting alternatives, see [98, 99]), with
the relic abundance set by initial misalignment of the field
in a cosine potential. In this case, non-gravitational self-
interactions are expected to become significant in some re-
gions of the (m,Msol) plane.

Assuming the potential

V (φ) = m2f2

[
1− cos

(
φ

f

)]
, (B1)

one finds the following self-interaction term δV ≈
−m2φ4/24f2 ≡ κIφ

4/4 near the minimum of the po-
tential, with κI = −m2/6f2. In the misalignment
mechanism, the ULDM relic abundance is given by
Ωdm ∼ 0.1 (φ0/1017 GeV)2(m/10−22 eV)1/2 where φ0

is the initial value of the field during inflation. Thus,
the observed DM abundance is obtained for φ0 =
1017(m/10−22 eV)−1/4 GeV. Let us define φ0 ≡ θf , where
a-priori one expects θ ∼ O(1), and fix φ0 as needed for the
DM abundance. Plugging this into the expression for κI

gives

|κI| ≈ 1.7× 10−97
( m

10−22 eV

)5/2

θ2 . (B2)

Self-interactions can be estimated to contribute a fraction
∼ α of the energy density of the soliton solution when

|κI|φ4

4
∼ α |∇φ|

2

2
, (B3)

where this estimate holds for α < 1. Noting that the ULDM
mass density is given by ρ = m2φ2, and utilising formu-
las from appendix A 1, one finds that self-interactions con-
tribute a fraction > α to the soliton energy density when

Msol & 2πα
M2

pl

MBH|κI|κ
Γ
(
2 + 1

ω

)
2

1
ω

. (B4)

In the BH-dominated case, this reduces to

Msol > 2πα
M2

pl

MBH|κI|

≈ 2× 109 α

θ2

(
10−21 eV

m

) 5
2
(

6× 109 M�
MBH

)
M� .

(B5)

In Figs. 2 and 3 we used a dashed magenta line to depict
eq. (B4), setting α = 0.1 and θ = 1. From the equa-
tion above it is clear that smaller values of θ (for example
θ = 0.1) corresponding to mild fine-tuning of the initial
conditions, would push the onset of self-interactions two or-
ders of magnitude up in Msol, making this effect irrelevant
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for the parameter space analyzed in this paper. Therefore,
while it is interesting to contemplate what changes could
occur in the soliton properties due to self-interactions via a

generic cosine potential, we leave this investigation to other
works.
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