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SOME ATTEMPTS AT A DIRECT REDUCTION
OF THE INFINITE TO THE (LARGE) FINITE

LUCA BELLOTTI

Abstract

I survey some endeavors which have been made to attain a sort of
direct reduction of the usual notion of countable infinity to some
reasonable notion of finiteness, in terms of non-standard arithmetic,
feasibility, pseudo-models of derivations, Ehrenfeucht *models, etc.
I maintain that although many interesting results have been obtained
in these attempts, they ultimately show that (at least by the means
considered here) no satisfactory reduction is possible.

1. Introduction

The aim of this paper is to survey and evaluate various attempts that have
been made, by more or less non-traditional means, to explore the very pos-
sibility of giving a direct reduction of countable infinity to finiteness. The
kind of attempted reductions in which we are interested have a straightfor-
ward character, they are made by brute force, namely by simply trying to
‘squeeze’ infinity into a finite, discrete object, typically a very big integer.
Great efforts have been devoted by many authors to this apparently desper-
ate enterprise — indeed, if anything ever deserved to be called ‘a blanket too
short’, this is the ‘finite/infinite’ envisaged object — and a lot of very inter-
esting results have been obtained along the way. We shall be able, in what
follows, to look only at some samples of this vast and scattered literature,
which ranges from little classics, such as Parikh (1971), to very controver-
sial work, such as Esenin-Vol’pin’s papers (one of which, however, was the
object of an interesting exchange between Godel and Bernays, which will be
reported and briefly commented upon below, section 5). I chose on the basis
of admittedly debatable preferences, trying to convey some significant ideas
and to give only the gist of the arguments, without technicalities. We shall
see that the efforts were indeed great; the achievement of the original goal,
of course, is another matter. My conclusion, after a rather tortuous journey
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through quite exotic logical landscapes, will be (perhaps unsurprisingly) in
the negative.

Before we start, some caveats are necessary. First, in this paper I will de-
liberately ignore some very important attempts at an indirect reduction of in-
finity to the finite: Hilbert’s program and nominalist programs (e.g., those of
Carnap, Tarski, Goodman, Quine, Field, Chihara, etc.). Secondly, it should
be clear at the outset that in this work I am not interested in the arguments
in favor or against strict finitism (the refusal of the idealization involved in
the arbitrarily large finite, considered, among others, by Borel, Mannoury,
Van Dantzig and Wittgenstein), although some of the authors whose ideas I
discuss below are strict finitists (see Welti 1986 for a wide-ranging historical
study of strict finitism). I am interested in a different problem, namely the
possibility of ‘modeling’ (in some very non-traditional sense and not neces-
sarily with eliminative aims) the infinite in the finite.

A further caveat is in order: it is well-known that a very special role in this
area is played by paraconsistency, so that the reader might wonder why I
will not deal, in spite of their interest, with programs based on paraconsistent
logics (see, e.g., Van Bendegem 1994 and Priest 1997). At first sight, one
could try to justify this choice by arguing that although some of the attempts
which will be examined below produce systems which reveal ‘a posteriori’
highly non-traditional features, this is a sort of by-product, in the sense that
they do not adopt from the start a system of logic admitting contradictions
(in fact, proofs of consistency or ‘quasi-consistency’ are the target). If one
compares the formal systems below with the usual systems of paraconsistent
logic, one might argue that the former are syntactically and semantically
‘closer’ to classical logic (in terms of axioms and/or rules, interpretations,
etc.), at least in their treatment of inconsistency, although (e.g.) restricting
the length of proofs or pseudo-modeling single derivations has deeply non-
classical effects. It is clear, though, that the distinction between classical
systems with non-classical notions of proof or model (in a sense to be spec-
ified case by case) and non-classical systems is conceptually a weak distinc-
tion (and its weakness will become more and more visible in what follows).
So, I simply decided to put paraconsistent systems on one side ‘for the time
being’, concentrating on other approaches, less fashionable at present. The
(in)competence of the author, the space limitations of a survey like this and
the existence of excellent recent surveys on the paraconsistent approach (see,
e.g., Priest 2003) will be (meager) justifications for my choice. Of course,
one might argue that the failure of the attempts examined here is a further
argument for the necessity of paraconsistency in this context.

The motivations of these attempts at reduction have different sources.
Some of them are largely analogous to those of the nominalist programs,
some analogous to those of strict finitism. But there could also be simple
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motivations of ontological nature (ontological economy, etc.), or of episte-
mological character: to explain our use of the infinite on the basis of an ex-
trapolation from the indefinitely large, or simply the very large; to have a sort
of ‘conceptual’ reduction of infinity to finiteness; to refuse the idealizations
— already underscored by someone above all suspicion in this connection,
namely Paul Bernays (Bernays 1935, 265) — involved in dealing with very
large numbers and in the very idea of potential infinity, etc. There is, fi-
nally, the (unreasonable and unmentionable) desire to bypass the limitations
of Godel’s theorem on consistency proofs, and to try to give shape to our
vague feeling that ‘we do set theory because we feel we have an informal
consistency proof for it. This feeling is based on the fact that in any given
case we are only speaking about specific sets defined by properties and by
tracing back a contradiction we could eventually reduce it to the integers’
(Cohen 1971, 14). Of course, Godel’s results taught us that what we can do
in any given case can be very far from what we can do in general (see below,
end of section 6), but the feeling remains. However, I shall not discuss these
motivations here (they would require at least another paper), but only look
at some examples of (tentative) mathematical fulfilment of the dream.

2. A statement of the problem

A set which is finite inside a model of Zermelo-Fraenkel set theory can be
seen to be infinite ‘from the outside’; but the converse cannot happen. This
is the basic problem that I take as a starting point. The predicate ‘x has n
elements’, for a fixed integer n, is absolute between models of ZF what-
ever. The general notion of finiteness, on the other hand, is absolute only
between transitive models, and this engenders a certain degree of relativity.
It seems, though, that the infinite remains in any case irreducible to the fi-
nite: we can realize that something which looks finite is in fact infinite, but
not vice versa. On the other hand, one could object that non-standard natu-
ral numbers are infinite objects which behave exactly like finite ones, since
they obey all the laws of first-order arithmetic. But even if one would be dis-
posed to consider a non-standard model of arithmetic as the ‘true’ world, in
which some supposedly infinite numbers reveal themselves to be finite, this
is possible only in view of the relativity of the general notion of finiteness;
the infinite natural numbers of any non-standard model satisfy all formu-
las =(xz = 0),~(z = 1), etc. In any case, it seems that no ‘true’ natural
number, say 10'2, can be made infinite in any sense in any model. Seen
‘from above’, this phenomenon looks utterly devoid of mystery: w is inac-
cessible, in the obvious sense that it is not the union of finitely many finite
ordinals, and that if n is finite, 2" is finite; while any natural number is, in
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the same sense, obviously accessible. Thus, we should look for some no-
tion of pseudo-inaccessibility, perhaps in terms of unfeasibility (section 4),
or of a vague, unapproachable boundary (a ‘horizon’, in Vopénka’s terms,
section 8), in order to see as infinite what is really finite; or, alternatively, we
should take a pseudo-finite number and then show that (almost) nothing is
lost in treating it as finite but unfeasible, and modeling feasible numbers as
the standard numbers, according to Kreisel’s motto: feasible is to standard
as standard is to non-standard (section 3). In sum, the point is the following:
it is apparently obvious that no true integer can be made infinite in any way;
is there a way to circumvent this impossibility, either by altering the notion
of infinity (or of inaccessibility), or the notion of finiteness, or the notion of
proof, or semantics (sections 6 and 7), or whatever? This is the subject of
the following sections.

3. Non-standard methods

Non-standard analysis (see, e.g., Robinson 1974, and Robinson 1963 for
applications to syntax) could apparently offer a twofold way to reduce di-
rectly the infinite to the finite. The first is the existence of hyperfinite natural
numbers, objects which are indistinguishable from the true natural numbers,
although they are in fact ‘infinite’ (there is no formal way, at first order, to
isolate the standard numbers among the objects of any non-standard model).
The second is the existence of non-zero infinitesimals, so that (e.g.) the set
{¢, c+¢, c+c+c,---}, where ¢ > 0 is an infinitesimal, has no least
upper bound (half a finite number remains an upper bound and twice an in-
finitesimal is greater than the infinitesimal). One could in some way use this
phenomenon to generate a ‘model’ of the natural numbers in an arbitrarily
small interval (a proposal in this spirit was perhaps first made by Rashevskii
1973). But both ways seem very problematic if one views them as attempts
at a reduction of the infinite to the finite. In the first case, one has in fact a
very complex structure, of order type w + (w* + w)6, where w* is the re-
verse order of w, and @ is a dense linear order without endpoints. All the
objects there look like finite numbers, but the structure they live in cannot
be reduced to the finite in any sense (it contains two typical aspects which
allow or even require infinity, namely the non-well-foundedness of the order
of the elements and the density of the order of the ‘galaxies’). In the second
case, we need the structure of the non-standard continuum, which is even
more complicated. In this case, we would have a ‘reduction’ of the basic
infinite structure to a much more complex infinite one. Even if we use the
standard continuum we can well have (by means of trivial examples of limit
processes) bounded structures in which we can ‘embed’ the denumerable
infinite, but this is due precisely to the features of that continuum. From a



SOME ATTEMPTS AT A DIRECT REDUCTION OF THE INFINITE TO THE FINITE 7

certain viewpoint, non-standard analysis allows a sort of ‘discretization’ of
the continuum, but for this advantage we pay the price of a much more com-
plicated structure. But it seems that in no case we have any kind of reduction
of the denumerably infinite to the finite.

Non-standard analysis perhaps also provides a possible interpretation of
some aspects of the controversial proof-theoretic investigations on the con-
sistency of ZF made by Esenin-Vol’pin within his ‘ultra-intuitionistic’ pro-
gram, which could be better called ‘ultra-finitist’ (see Esenin-Vol’pin 1961,
1970, 1981; note that the name has been transliterated also ‘Yessenin-Volpin’
and ‘Esénine-Volpine’). This program remains very problematic, but it has
the greatest importance with respect to our topic. The basic idea can be
explained as follows (see Geiser 1974; the details, to our knowledge, have
never been published, and cannot be easily reconstructed, so one has to be
very cautious). The aim is a proof of consistency for ZF. We consider a
structure T of all the hereditarily finite sets over a set of urelements, which is
a model of ZF~ (ZF without extensionality) without the infinity axiom. We
want to assert (as an axiom) that the designatum of a certain term ¢, which in
fact is finite, is infinite. We get, of course, an inconsistent system, but all the
same we try to define a notion of proof such that the length of the shortest
proof of a contradiction is an increasing function of the size of ¢; this will
allow a sort of (non-traditional) consistency proof for our system (see Geiser
1974). The basic idea of Esenin-Vol’pin in this connection was to use two
different series of natural numbers: the first is longer, its length depends on
the size of ¢, and is used to build the structure T; the second is shorter, though
itself ‘infinite’, and (this is the key point) ‘sees’ ¢ as infinite. Now, the role of
non-standard analysis is to give a precise meaning to these vague intuitions:
N (the ordinary natural number series) is used as the shorter series, *N (the
non-standard natural number series) is used as the longer one, and we give a
pseudofinite (but in fact infinite) size to ¢. In this way Geiser (1974) obtains
a consistency proof for a weak system of set theory with a Dedekind infinity
axiom with respect to the non-traditional notion of proof employed. More
precisely, he considers a notion of proof GG,, for the hereditarily finite sets
over a domain of n urelements, with a sort of w-rule (from the set of for-
mulas {A(¢;)}, t; any closed term, infer V2 A(x)), and then he extends the
system to the case of a pseudo-finite integer ng. Finally, he isolates Ggy, a
subsystem of G, to formulate Esenin-Vol’pin’s notion of proof, by consid-
ering a subset of the constant terms as the feasible ones (singled out in the
metatheory by an indirect restriction to the standard integers, see ibid.), and
putting a deduction tree T in G gy if and only if only feasible terms occur in
the subtree T* obtained from T by restricting the w-rule to premises in which
all ¢ are feasible (this is nontrivial, since, in proving existential formulas, we
may introduce new terms). On this basis Geiser defines a non-classical no-
tion of proof GG (see ibid.), which is consistent, closed under modus ponens,
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in which the law of the excluded middle does not hold in general, and which
proves pairing, union, powerset, infinity, weak forms of comprehension and
replacement, and all ¥} true sentences of second-order arithmetic.

We can now briefly explain the controversial ‘consistency proof’ for ZF
originally proposed by Esenin-Vol’pin. Although the details are obscure,
and sometimes lacking, the basic idea could perhaps be explained as follows
(see Esenin-Vol’pin 1961, 1970 and Geiser 1974). The overall strategy is to
translate the formal system S, whose consistency we want to prove, into an-
other system S’, whose proofs are such that it is a priori certain that they will
yield no contradiction (this is similar to what happens with Gentzen-style
consistency proofs). We choose an integer k, and we consider ZF proofs of
length at most k. Then we introduce two different natural number series, of
different length (in the sense explained above), which can be represented re-
spectively by the standard natural number sequence (employed as the shorter
series) and the sequence of (finite and pseudo-finite) numbers less than or
equal to a non-standard integer n; (employed as the longer sequence). This
allows the ‘semantical interpretation’ (in a non-traditional sense) of a cor-
responding suitable non-classical ‘formal system’ (see ibid.), the study of
which yields the following result: no ZF proof of length at most & is a proof
of a contradiction. Recall that k£ is an arbitrary integer, in the sense of an
arbitrary element of a basic natural number series /N which is chosen before
the consistency proof and which constitutes the frame of reference for the
general notion of finiteness adopted (both syntactic and semantical).

These results are interesting, but it is not at all clear whether we do really
have a consistency proof for ZF, even on the basis of a system whose strength
cannot be easily determined (and which of course has to be stronger than ZF,
if we really prove consistency). We have the following dilemma. The first
possibility is that we consider proofs of arbitrary finite length, and then we
could well have a consistency proof, but in this case we have no reduction
of the infinite to the finite, but only something which could point (but this
is not clear) at the possibility of a hitherto unknown consistency proof for
ZF by means of some (stronger) non-standard version of set theory (some-
thing similar happens, in a different context, with Hrbacek’s non-standard
set theory N/S3, which proves the consistency of ZFC; see Hrbacek 1978,
6-7). The point is that, even in the case that we eventually had such a proof,
the basic philosophical problem remains: the object satisfying the infinity
axiom in these systems is in fact infinite, though pseudofinite, and this is a
decisive obstacle to any reductionist interpretation of the results. The second
possibility is that we consider proofs of length at most k, where k is a stan-
dard, finite integer, but then we no longer have a consistency proof, but only
a proof of ‘almost consistency’, in the sense that the shortest possible proof
of a contradiction will be non-feasibly long, and in this case the result could
well be proved in a rather weak theory.
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The second alternative will be the subject of the next section. As regards
the first one, we recall that any formalization of non-standard analysis which
has in fact been extracted (this is a very difficult task; it was attempted by
Kreisel 1967, Ehrenfeucht-Kreisel 1967 and Geiser 1974) as a possible back-
ground theory of Esenin-Vol’pin’s work gives a conservative extension of
standard analysis (it is well-known that, in general, this is not always the
case with formalizations of non-standard analysis), and this casts doubt on
his results, since it seems that his principles are too weak for his purposes.
It is true, though, that non-standard analysis provides only a very partial for-
malization of his ideas: the very notion of many natural number series, of
different length, all of which are in some sense ‘unending’, and yet ‘con-
tained’ (in some sense) in finite sets (finite from a classical point of view) is
certainly very unorthodox, and it is dubious that non-standard analysis could
explain it faithfully. Dummett (1975) gives a discussion of strict finitism
which tries to make sense of such a notion, taking it seriously and connecting
it with the Sorites paradox, vagueness phenomena and observational pred-
icates. Dummett’s conclusion is in the negative: he argues that the use of
suitable predicates corresponding to the postulated sequences is intrinsically
inconsistent, and this is sufficient for him to rule out strict finitism as a ten-
able position at all (for a thorough critique of Dummett’s arguments, see
Wright 1982).

A final remark on the use of non-standard methods in this context is in
order. I will not deal here with some very important attempts at a lato sensu
“finitistic’ foundation of non-standard analysis, the oldest of which is per-
haps Nelson’s ‘internal set theory’ (see, e.g., Nelson 1977). Such attempts
could be relevant to our problem if one could make a reduction of infinity
to hyper-finiteness, followed by a reduction of non-standard arithmetic to a
finitistic basis. But nothing in Nelson’s work shows that a true reduction
could go through in this setting, despite his insistence on his purely syntactic
view of the distinction between standard and non-standard objects, and on
the fact that we simply have standard and non-standard elements inside the
old classical set of the natural numbers (see ibid.). What we really have is
hyperfinite (and not strictly finite) numbers, together with an axiomatic foun-
dation of non-standard analysis based on non-finitistic principles. Nelson’s
work certainly provides a very interesting foundation of non-standard anal-
ysis, but not a reduction of infinity to finiteness. Similar remarks apply to
other approaches, in spite of their intrinsic interest and their deep differences,
at least as far as our problem of ‘strict’ reduction is concerned. To take only
a few examples, with respect to our present viewpoint we would not consider
as true reductions of infinity neither Baratella and Ferro’s ‘non-standard reg-
ular finite set theory’ (see Baratella-Ferro 1995), based on a non-Cantorian
notion of infinity (according to which a set may be considered as infinite
by an observer if she is not able to recall its entire construction process),
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nor Andreev and Gordon’s ‘theory of hyperfinite sets’ (see Andreev-Gordon
2006), admitting proper subclasses of large finite sets (see section 8 for this
notion), nor, finally, a possible approach based on Vopénka’s ‘alternative set
theory’ (Vopénka 1979), which will be briefly considered below (section 8).

4. Feasibility

Another possible interpretation of ultra-finitism, a more straightforward one,
is the one in terms of feasibility. As Kreisel remarks in his review of Esenin-
Vol’pin 1961 (Kreisel 1967; see also Ehrenfeucht-Kreisel 1967), there are a
priori various possibilities for those who seek a consistency proof for ZF on
the basis of a notion of feasibility. The first possibility is to treat feasibility as
a primitive notion and to adopt an informal approach by means of which we
consider only feasible formulas and proofs of ZF. A more ambitious program
‘would be to find a structure defined in terms of the new notion which satis-
fies all theorems of ZF (Kreisel 1967, 9); this is not implausible, provided
the envisaged notion of feasibility is sufficiently unfamiliar to transcend ZF
set theory (in terms of definability or provability). One should find axioms
and rules for the notion of feasibility, building up a formal system for it in the
classical sense, and then give a finitist relative consistency proof of ZF with
respect to the established formal system. There is also a third possibility: to
consider a formal system for the notion of feasibility in which axioms and
rules respect in their turn some feasibility restrictions, and to give a consis-
tency proof of ZF (or a proof of consistency limited to feasible proofs in ZF)
relative to it.

An explicit mathematical interpretation of ultra-finitism in terms of fea-
sibility was first proposed by Parikh, in a paper (Parikh 1971) whose main
interest was to introduce feasibility itself and to explore an ‘anthropomor-
phic’ view of mathematics, rather than to give reductionist arguments on
the infinite. It is well-known that the very notion of feasibility is a priori
problematic, in view of Sorites-like situations: 0 is feasible; for all n, if
n is feasible so is n + 1; thus, by induction ... This is the basic problem.
Parikh’s basic countermove is simple: we take a formal system for arithmetic
in which very large numbers are dealt with (axiomatically) as though they
were infinite (without redefining the basic arithmetical operations; see Bur-
gin 1977 for an attempt in which this is done), but we prove that, nonetheless,
as far as proofs of reasonable length are concerned, the formal system yields
the correct results. It is not at all trivial to prove that this is the case, and
Parikh was the first to do that, thus showing that feasibility could be treated
as a respectable mathematical notion (his results were then generalized, e.g.
by Dragalin 1985 and Sazonov 1995). In this way we could have systems
(which Parikh calls ‘almost consistent theories’) which in the realm of finitist
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formulas differ from the traditional ones, and yet no contradiction in them
would ever be met in our actual mathematical practice (see Pudldk 1996 for a
survey of subsequent research on the length of proofs of statements asserting
that there is no short proof of a contradiction, for various formal systems).
Parikh makes a crucial point:

Suppose we are given two sets, N1 and N», which contain 0, are
‘closed under successor’, and are ‘well-ordered’ and such that N
is a proper subset of No. One feels at once that No cannot be
well-ordered [...] and that structures like N9 arise because ‘well-
ordered’ is not a first-order notion. What we would like to point
out is that neither is the notion ‘closed’. Clearly, having a notion of
‘closed’ presupposes that one already has a set of natural numbers
and it cannot be used to define one. Thus it is quite possible that
from the point of view of N1, N is not well-ordered and from the
point of view of Ny, N is either not closed or else not a proper set.
(E.g. not ‘internal’ in the sense of A. Robinson) (Parikh 1971, 507).

In his own work Parikh provides an example of what happens when one
takes the point of view which identifies the ‘longer’ sequence Ny with the
standard natural number sequence N (including its non-feasible members)
and the ‘shorter’ N7 with the non-closed ‘sequence’ of feasible numbers;
while those who adopt non-standard methods (see the preceding section)
take the point of view which identifies the ‘shorter’ N7 with the standard
sequence N and the ‘longer’ N with a non-standard one (which, of course,
cannot be in fact well-founded). But there is also the possibility to refuse to
consider N; a ‘proper set’ (as Parikh remarks): this points not only at the
‘internal/external’ distinction, familiar in non-standard analysis (where, in-
tuitively, internal sets are the only ones about which the formal language ‘has
information’: e.g, N is not internal in *N), but also at Vopénka’s approach in
terms of his ‘alternative set theory’ (see below, section 8).

Aiming at a more radical formulation of feasibility, Sazonov considers a
variant of arithmetic, PAQ, with the largest natural number [] (see Sazonov
1995 and 1997; Esenin-Vol’pin was perhaps the first to study such theories,
though they were suggested before, e.g. by Carnap, see Mancosu 2005). It
is a version of Peano Arithmetic in the language for partial recursive func-
tions and functionals, with corresponding axioms (i.e., recursive equations,
in which second-order function variables can occur, but as free variables
only; see Sazonov 1997 for the details), with a new constant, [, for the
largest natural number and suitably modified successor axioms. PAF is the
same theory with added the following axioms: =(J = 0), =(O = 1), etc.
The basic idea is to consider a notion of proof such that a formula A is a
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theorem if and only if there is a normal classical natural deduction proof
of A (i.e., intuitively, a proof without ‘vicious circles’ in the occurrences of
introduction and elimination rules) such that each occurrence of any term
in the proof has only a feasible number of symbols (in an intuitive sense of
‘feasible’, which can be made precise, see below). Even PAF is consistent
with respect to this notion of proof, since any normal proof of a contradiction
in it needs the occurrence of a term which cannot be physically inscribed or
stored, simply because it is too long. In Sazonov’s own words:

PAR is actually a [J-bounded arithmetic of [J-recursive, or equiv-
alently polynomial time computable global functions (relative to
some second-order parameters) over the segment U = {0, 1,--- |
O — 1,0} with O any indefinite, formally finite and possibly non-
standard natural number [...]. We may take [ as some ‘non-feasi-
ble’ and ‘concrete’ (from the point of view of classical or intuition-
istic mathematics) natural number, say [] = 21000 [ 1. In some
non-traditional, though very natural sense, this axiom is consistent
even with PAR, if we assume that all (formulas in) formal proofs
should be ‘physically’ written on a sheet of paper or in a computer
memory. We can even imagine very informally a (second-order)
model U for the resulting theory, even though no universe for ZF
has such a model as a legal object (Sazonov 1997, 100).

Here Sazonov refers to polynomial time computability over Ug (see ibid.
for the details). In this connection, it is right to recall an important histori-
cal fact: in the last few decades, the main interpretations of the very notion
of feasibility have been given precisely in terms of computational complex-
ity (polynomial-time computability, etc.) and corresponding formal systems
(see Buss 1986).

The theories of Parikh and Sazonov could give examples of a possible
foundation of the infinite upon the large finite (they deal with arithmetic and
not with ZF, but they open the way to a possible ‘finitization’ of the infi-
nite), but the price we have to pay is very high: one has to change the very
notion of proof. One could maintain that nevertheless the logic — stricto
sensu — is not changed, since both syntactically and semantically the for-
mal systems considered remain classical; but this is a delicate matter, since
in the end we do have inconsistent systems, in which disaster is prevented
simply by considering suitably short proofs (instead of making other, more
‘logical’ prohibitions). In any case, if we interpret ‘finite’ as ‘obtained in a
feasible number of steps’ and ‘infinite’ as ‘obtained in a non-feasible number
of steps’ (though in fact finite), we are back to the case of proofs of bounded
length (with fixed bound n), in which we simply apply the rules of formation
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and deduction only feasibly many times. This seems the only reasonable re-
ductionist interpretation in terms of feasibility. Perhaps one will also need
a somehow ‘layered’ notion of feasibility (see, e.g., Dragalin 1985), if one
wants to represent in the finite all the objects dealt with in feasible ZF proofs.
E.g., one has to accommodate various ‘feasible’ principles of construction of
infinite cardinals currently available in ZF, and it is not at all obvious how to
‘mimic’ them in the finite, without too much distortion and without allow-
ing disastrous shortenings in the proofs of contradictions (we have to take
into account the enormous strength of the replacement axiom in this context
— while the case without replacement seems more tractable at first sight,
in spite of other well-known difficulties; however, to my knowledge, there
is nothing on this topic in the literature). On the other hand, apparently no
indefinite growth is needed: any imaginable iteration is bounded, and I do
not see any compelling reason why one could not restrict oneself to a fi-
nite number of well-behaved rules of construction to be iterated, since (by
hypothesis) one is content with modeling objects feasibly obtainable in ZF.

In any case, it seems that the notions of feasibility employed so far are not
‘new’ enough to permit a real foundation of the infinite on the large finite
(a similar remark was made by Ehrenfeucht and Kreisel (1967) on Esenin-
Vol’pin’s alleged consistency proof). We have so far no really irreducible
notion of feasibility, a notion whose properties are so ‘strange’ that we can
hope to construct a structure defined by means of it in which all theorems of
ZF hold, not only the feasibly provable ones. On the other hand (as Sazonov
remarks), a notion of feasibility (once properly mathematized without reduc-
ing it to polynomial-time computability etc.) could be unfamiliar enough to
be relevant in the future (in a way that we do not imagine at present) for the
‘P vs. NP’ question and other problems in complexity theory.

Another model of feasibility was proposed, independently of Parikh, by
Engeler (1981, written in 1971), in order to give a reasonable formulation
of strict finitism in ‘algorithmic’ terms, and also to explain, among other
things, ‘why, and in what fashion, finite minds can perceive infinite totalities’
(Engeler 1981, 347). Engeler considers flowchart programs which generate
hereditarily finite sets and verify their properties, with the crucial restric-
tion that, given a program P, we consider only programs P°?, i an integer,
in which each loop cannot be run through more than ¢ times; in this sense
Engeler speaks of ‘the i-th mathematician’. A sentence is strict finitistically
true if and only if for all sufficiently large 7 the i-th mathematician accepts
the sentence, where acceptance is defined inductively in a reasonable way
(see ibid. for the details) taking into account the limitations imposed on
the programs P (e.g., a universally quantified formula is accepted if after
loops of the program composed of a generating program followed by a test
program for the relevant subformula, all the tests, limited in number, have
given positive results). The case in which we are interested is of course
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the one of the axiom of infinity. The basic idea is simple: since the ¢-th
mathematician cannot repeat her tests more than ¢ times, we can simply let
her accept the ‘infinity’ of each suitably generated set of at least 7 elements.
Note that the sentence (the conjunction) asserting that there is an infinite
set (according to the usual ZF definition) and that no set is infinite (in the
same sense), though having classically the form of a contradiction, belongs
to the set of strict finitistically true sentences (thus intuitionistic logic is too
strong for them, and Engeler concludes that his system is not relevant for the
foundations of mathematics but only as a theory of feasibility in computer
science). This formulation is interesting for its straightforward algorithmic
character, though apparently it does not add anything conceptually new to
the usual interpretations of strict finitism in terms of feasibility (recall, how-
ever, that Engeler originally formulated his proposal at the same time and
independently of Parikh’s work).

5. Intermezzo: Gadel-Bernays exchange on feasibility and the work of
Esenin-Vol’pin

We find a brief but very interesting exchange on the work of Esenin-Vol pin
in Godel’s correspondence with Bernays in the years 1962-1963 (Godel
2003, 204-233; see also Feferman’s introduction, ibid., 57-59). I shall sim-
ply report this exchange here in its entirety, without detailed commentary,
only to show the reactions of these eminent logicians in front of the first
attempts which were made to develop the ideas we are discussing.

First, Godel shows a skeptical attitude:

As to Vol’pin’s idea, I would very much like to see some, even just
halfway plausible axioms about the concept of ‘accessible number’
[= feasible number] which imply the consistency at least of analysis.
Are you aware of any such thing? It would also be really surprising
if one could base mathematics (including number theory) on the in-
sight that the concept of natural number is nonsensical (Godel 2003,
209).

Bernays’ reply is more charitable to Esenin-Vol’pin, but points at a crucial
difficulty:

In the applications of these considerations [the ones involved in
Henkin’s completeness proof] to set theory it is evident how far re-
moved one remains from the characterization of an ‘absolute’. The
Skolem paradox asserts itself fully. This circumstance probably also
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brought Esenin-Vol’pin to his thoughts on sharpening the construc-
tive standpoint. If it is possible — the thinking may have proceeded
— to eliminate the impropriety in the axiomatic treatment of high
infinities from proof-theoretic considerations, shouldn’t it then also
be possible to avoid the number-theoretic infinity in proof-theory?
Here one need not at all have the view that ‘the concept of natural
number is nonsensical’, any more than the proof-theorist needs to
reject the concept of the uncountable as nonsensical. The founda-
tional problem, however, is this: every way of making deduction
precise apparently introduces already the number-theoretic infinity.
VolI’pin account does not show, so far as I see, how this difficulty
can be overcome. He introduces the postulate Trad (p. 205 [of
Esenin-Vol’pin 1961]), which demands the existence of a ‘natural
sequence’ N with the property that the operation 2" is everywhere
defined in this sequence, and this presupposition is used, if I un-
derstand correctly, in the sense that if n belongs to N, then 2™ also
belongs to N (cf. p. 206, lines 23-24 [ibid.]). The difficulty that
lies therein Vol’pin has of course also noted. Thus on p. 221 [ibid.]
he says that the ultra-intuitionistic program requires above all the
justification of the postulate Trad. It seems to me, though, that the
same difficulty exists already in the requirement of the existence of
the successor for each element of a ‘natural sequence’ (cf. p. 203,
chapter [in the German original Absatz = paragraph] 3 [ibid.]). A
kind of unsharpness, analogous to the Brouwerian unsharpness with
respect to tertium non datur, would probably have to be introduced.
It is hard to see how that is to be carried out theoretically, even
though in actual fact such unsharpness exists when differentiating
concrete sequences (e.g., those of acoustically perceptible degrees)
(Ibid., 213-215).

Note that the (impossible) elimination of the number-theoretic infinite from
proof theory is just the idea underlying subsequent work on pseudo-models
of derivations (see below, section 6). Moreover, Bernays realizes that Esenin-
Vol’pin’s view per se neither presupposes nor implies the idea that the no-
tion of natural number is nonsensical. Finally, Bernays acutely perceives
the connection between the notion of feasibility and Sorites-like phenomena
(this point was developed and discussed by Dummett, see above, section 3;
it is also, independently, the key feature of Vopénka’s approach, see below,
section §), and the apparently overwhelming difficulties in making sense of
the involved ‘unsharpness’.
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Godel replies underscoring the differences of ultra-finitism with respect to
ordinary finitism (whereas Bernays had noticed the similarities):

The relation of Vol pin to classical mathematics seems to me to be
quite different from [the relation] of finitism to it. For Vol’pin as-
sumes axioms about the concept ‘accessible’ that according to clas-
sical mathematics are false for every (even imprecise) concept, un-
less one gives up the concept of truth and speaks only of degrees
of truth. But that seems to me incompatible with Vol’pin’s idea
of a consistency proof for classical mathematics [...]. P.S. With
regard to the fact that for the consistency proof [of classical math-
ematics — G.’s footnote] Vol’pin nonetheless wants to use his ax-
ioms about accessibility only in connection with number theory (or
combinatorics), I hold the following to be highly probable: if one
somehow weakens the meaning of his axioms (e.g., also in the way
you indicated) so that they become compatible with classical math-
ematics, then the existence of such a concept of accessibility (or
its consistency with number theory) becomes provable in classical
mathematics, which makes a consistency proof for it [viz., classical
mathematics] impossible (Ibid., 223).

Here Godel initially points at the radical ‘strangeness’ of the notion of feasi-
bility with respect to the classical setting, and envisages (without endorsing
it) a way out in terms of a non-traditional, ‘graduated’ notion of truth (which
reminds us of Ehrenfeucht’s nonclassical *semantics, see below, section 7).
Then he makes a decisive point, which was (independently) also made by
Kreisel (see above): a tame concept of feasibility might well be consistent
with classical mathematics, but then it becomes too weak and completely
useless for the original purpose.

Bernays concludes the exchange with a balanced remark, denying that
Esenin-Vol’pin’s assumptions are contradictory with respect to classical
mathematics (they are only very restrictive — the proposal is a radical sharp-
ening of the constructive viewpoint), remarking that the goal is a proof of ‘al-
most consistency’ or ‘feasible consistency’ (see above), not of consistency
tout court, and stating as an open problem the possibility of such a proof,
a question that opens the way to the mathematical work that Parikh would
have done a few years later (see above). Bernays writes:

With respect to the investigations of Esenin-Vol’pin, you speak of
the axioms that he assumes about the concept ‘accessible’ and that
are false in the sense of classical mathematics. But in the version of
his deliberations that is published in the Warsaw Congress volume
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[Esenin-Vol’pin 1961] I find no axioms at all that directly contradict
classical mathematics; rather, only the rejection of many familiar
assumptions of classical mathematics. Furthermore, there is a dis-
tinction from the usual proof-theoretic consideration, that it is not
consistency per se that is to be proved, but only this: that a con-
tradiction can only arise with a proof of a certain minimal length,
which then no longer is viewed as a concrete one. Whether a consis-
tency proof in this weakened sense is also excluded by your under-
ivability theorem I have not yet pondered sufficiently (Ibid., 231).

6. Pseudo-models of derivations

We could also try to reconstruct Esenin-Vol’pin’s idea by considering pseudo-
models of derivations (Ehrenfeucht-Kreisel 1967), rather than the classical
models of sets of formulas (with all their infinitely many logical conse-
quences, or the infinitely many derivations from them). The idea is, as usual,
to interpret terms defining infinite sets by means of large hereditarily finite
sets. Given a certain derivation, its pseudo-model is required to ‘pseudo-
satisfy’ only the formulas which actually occur in the derivation (as opposed
to satisfying all the logical consequences of the formulas). There is an anal-
ogy (the extent of which is not clear) with Hilbert’s e-substitution method
(Hilbert-Bernays 1939). Let us imagine to give a formulation of set theory
in the e-calculus, so that we have only propositional combinations of atomic
formulas of the form ¢ = t' or t € ¢, where ¢t and ¢’ are e-terms. Now,
we can well have in any case an assignment of hereditarily finite sets to the
terms occurring in any given derivation, in such a way that all formulas in
the derivation come out true after evaluating atomic formulas. We simply
replace distinct terms with distinct variables, take the conjunction of all the
formulas occurring in the derivation, and consider the existential closure of
that conjunction: by construction, it will be true in the universe of sets, and
since any purely existential formula in the language of set theory which is
true in a well-founded model is already satisfied by hereditarily finite sets,
we can simply find by trial and error the required hereditarily finite sets,
and obtain the pseudo-model we were looking for. The problem, in view of
the envisaged reduction of the infinite, is not the existence of these pseudo-
models, but the fact that it is not clear what is needed to prove their existence:
Esenin-Vol pin appeals to feasibility, but all the axioms on this notion which
can be extracted from his informal treatment give, according to Ehrenfeucht
and Kreisel (see ibid.), only conservative extensions of elementary arith-
metic, and therefore are certainly insufficient for a consistency proof for ZF;
we would need much stronger principles on the notion. If, on the other hand,
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we are satisfied with pseudo-modeling single derivations, then we succeed,
but we give up the original quest for a real consistency proof.

A reconstruction of Esenin-Vol pin’s consistency proof in terms of pseudo-
models of derivations was also given by Gandy (1982), in the following way.
We take a concrete proof in ZF, and we assign to the bound variables in the
proof finite (term) domains, by finding suitable witnesses, so that all steps in
the proof come out true. We have a finite ordinal, W, to which all the desig-
nata of those witnesses which are number terms can be assumed to belong,
so that it is sufficient to take a finite ordinal larger than all the elements of W
as the designatum of the witness of the axiom of infinity (this finite ordinal
will act as the substitute of w), and hence suitable hereditarily finite sets as
designata of witnesses in general. In this way, by assigning hereditarily finite
sets as ranges to the bound variables, each step in the proof turns out to be
true. But this procedure involves, in general, non-feasible computations.

What Esenin-Vol’pin does is to introduce a notion (‘F’) of feasible
number (and feasible hereditarily finite set). The idea is that the
members of W will all be feasible, while w will be represented by
some non-feasible set. The feasibility of the members of W is to
be secured by postulating that W (although finite) is closed under
various functions (which will cover the relevant operations of wit-
ness formation). The plausibility of such postulates of feasibility is
illustrated by an example: there were less than 100 heartbeats in
my childhood, but every heartbeat in my childhood was followed
by another heartbeat in my childhood (Gandy 1982, 140).

Note that the latter example (originally given by Esenin-Vol’pin 1961 and
discussed, e.g., by Dummett 1975, 313-317) is a classical one in the debates
on strict finitism: it shows the possible connections between issues arising
in these debates and those concerning vagueness. Is it really true that every
heartbeat in my childhood was followed by another heartbeat in my child-
hood? Compare this example, on the one hand, with the case of birthdays in
place of heartbeats, and on the other, with the case of shades of color — and,
finally, why should all this be mathematically relevant?

However, Gandy’s point is that if we simply take Esenin-Vol’pin’s idea
at face value, we would need a notion of feasible number closed at least
under all the computable functions which are provably computable in ZF in
a feasible number of steps, and this reference to feasible provability in ZF
would introduce a possible vicious circularity. So, it is not immediately clear
how to delimit the notion of feasibility in this approach. In general, the point
is that the collection of ‘concretely definable’ numbers is an essentially open
totality, somewhat similar (in this respect) to Cantor’s ‘absolute’ (but one is
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reminded also of Brouwer’s theory of the creative subject), since it contains
‘numbers which will one day be given as yet quite unforeseeable concrete
descriptions’ (Gandy 1982, 134). However, Gandy concludes: ‘the claim
is that the highly elaborate theory of concrete mathematical activity which
Esenin-Vol’pin has developed is both plausible and sufficiently powerful to
prove the concrete (or feasible) consistency of ZF’ (ibid.), thus having a
chance to carry out one of the ‘programs’ based on feasibility hypothesized
by Kreisel (see above, section 4), against Kreisel’s own opinion.

The idea of pseudo-models of derivations was further developed by Isles
in his work (see, e.g., Isles 1992; we are not interested here in the skeptical
aims of his arguments against a univocal notion of natural number, but only
in the positive side of his program; see also Cardone 1995). We build up
non-traditional models, which must satisfy only the occurrences of formulas
in a certain single derivation, disregarding their logical consequences. The
interpretation of a formula depends even on its position in the derivation (this
idea can perhaps be traced back to the medieval logician John Buridan),
and we allow the assignment of suitable different ranges to the variables
occurring there, in order to preserve consistency. If this is done in a suitable
way, we can obtain in this non-traditional semantics finite pseudo-models
for any set-theoretic theorem. But it seems that this cannot provide any
reduction of infinity to finiteness, since in this way in fact we model (in
a non-traditional sense) finite objects (the set of occurrences of formulas
in a derivation) in finite (pseudo) structures, deliberately overlooking the
potential infinity of consequences (both syntactic and semantical) ‘implicitly
contained’ in a single formula, and so its full meaning (just think of the
infinity axiom of ZF). If we want the generality required for a real relative
consistency proof for ZF, we would need a universal construction of pseudo-
models, which could be applied uniformly to all derivations, and this poses
the problem of the irreducibility of these constructions to a single pattern,
unless we have a theory stronger than ZF, which is just what one wants to
avoid in this setting.

The latter problem can be illustrated with a simple example in an utterly
classical context. Consider the following argument: (1) ZF proves the con-
sistency of any finite subtheory of ZF; (2) ZF proves the compactness the-
orem for first-order theories; (3) hence, ZF proves its own consistency, and
thus ZF is inconsistent. Of course, this is incorrect. And, of course, the point
is to evaluate the exact meaning of (1). What cannot be done within ZF is
to realize that in fact we have a uniform procedure to prove, given a finite
subtheory of ZF, the consistency of that subtheory (by means of the local
reflection principle). Given a specific subtheory, we can apply our procedure
inside ZF; but we can realize the universal applicability of that procedure
only outside ZF.
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7. Ehrenfeucht *models

A very interesting proposal, explicitly traced back to Esenin-Vol’pin by its
author, is the one which was originally given by Ehrenfeucht with his *mod-
els (Ehrenfeucht 1974), and then generalized by Parikh and others (see, e.g.,
Parikh 1999 and the references there). I shall give only a basic example.
Consider the following set of structures: R* = {Rj, R, R3}. The do-
main of every R; is {0, 1,2,3}, we have in each R; identity, a designated
element 0, and a single binary relation, whose graph is (respectively) the
following: in R; the graph of the only relation is {(0, 1), (1,2), (2, 3)}, in
Ry itis {(0,3),(3,1),(1,2)} and in Rs it is {(0,2),(2,3),(3,1)}. Given
a suitable definition of *truth (obviously unorthodox; see below), we have
that in R* the following sentences are simultaneously *true: ‘every element
has a successor’, ‘successor and predecessor are unique’, ‘there is exactly
one element without predecessors’, and ‘there are exactly four elements’.
Moreover, it can be proved that if S is a finite, (classically) consistent set of
sentences, then S has a finite *model. The notion of *truth can be explained
as follows (see Ehrenfeucht 1974 for the details). *Truth is defined in each
case with respect to a set of structures, R*, which is called a *structure. R*
must have suitable properties: the structures in R* have common domain;
they have certain designated elements (the same number in each); they are
isomorphic, but the isomorphisms are not required to preserve the designated
elements; the structures must have the same designated elements; finally, the
same relations must hold among the latter. The notion of *truth is inductively
defined, by means of assignments, in a substantially classical way, except for
atomic formulas (an atomic formula is *true in R* if and only if it is true in
at least one structure R in R*), and for the existential quantifier. This is the
key point: an existential formula is *true in R* under an assignment v if and
only if there is Ry in R*, and an element e in the (common) domain of the
structures in R*, such that the relevant subformula is *true in R}, under the
assignment vy (which is exactly like v, but further assigns e to the quantified
variable), where R] is the *structure whose elements are the structures in
R* which are isomorphic to R; with an isomorphism which is the identity
as far as the designated elements and the elements of the assignment v; are
concerned.

Where is the infinite in this setting? Is this a true reduction? Recall that
this proposal is not aimed at ‘modeling’ the set-theoretic axiom of infinity
— which is the object of essentially all the approaches examined here — but
rather assertions that imply the existence of infinitely many (finite) objects.
By the way, note that the fact that the other approaches need arbitrarily large
finite objects in order to represent arbitrarily large infinite ones is a non-issue
for the reductionist: it would be decidedly too much to ask for something
more than a reduction of the essentially open multiplicity of infinite sets to
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an analogously open multiplicity of finite ones. If we want to somehow
‘mock’ the set-theoretic infinities by means of finite objects, we should at
least be allowed to use all the finite sets that we shall need (in the course of
a process which cannot be imagined in advance), provided only we invent in
any case suitable ways to describe them (recall Gandy’s comparison above,
between concretely definable numbers and members of Cantor’s ‘absolute’).

Coming back to *semantics, note that it is *true that the *structure *sat-
isfying the above propositions to the effect that there are infinitely many
objects has four elements, so the semantics is highly unusual. E.g., in this
semantics, when one verifies whether a certain sentence is true in a struc-
ture, the only elements which are really ‘visible’ during the verification are
the designated elements. The two basic features of this proposal (explicitly
recognized by its author) are the following: first, non-iteration — which re-
minds us of Sorites-like situations, in the sense that the trouble there arises
from iteration of a locally innocuous step; secondly, locality — while there
is a sense in which infinity is ‘non-local’: in this sense, the *structure above
reminds us of those two-dimensional representations of ‘impossible’ geo-
metric solids which are only locally, but not globally, geometrically and per-
ceptively coherent (as cohomological considerations show). We could em-
phasize a third, decisive feature: (partial) circularity in the graph of the basic
relation, which points at non-well-foundedness, apparently the true ‘way in’
of infinity in this context.

8. Other approaches

I shall briefly consider a few other approaches, perhaps even farther removed
from the ordinary setting than the preceding ones. First, let us explain the
notion of local finiteness. A theory is locally finite if and only if every finite
set of its theorems has a finite model (see Lavine 1994; the original results
were obtained by Mycielski, see e.g. Mycielski 1986). It can be shown that
for every consistent first order theory T there is a locally finite theory Fin(T)
such that provability and consistency are preserved in a suitable translation
from one theory to the other. Moreover, it can be shown that the consistency
of any first-order theory T is equivalent to the local finiteness of a corre-
sponding Fin(T). In the case of ZF, which is obviously not locally finite, the
idea is to translate the axiom of infinity by axioms in which the quantifiers
are relativized to an infinite sequence of finite domains, g, {21, etc. E.g.,
the axiom of infinity, formulated as follows:

(Fz)@ €z A (YY) (y € 2 — {y,{y}} € 2)),
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becomes, in the simplest case:
(Fr € Q)Dez A (Vy € )y € 2 — {y, {y}} € ).

Thus, z is closed under successor as far as {21 knows, but the latter might
not be closed under successor, and x may well be finite in reality. Mycielski
(ibid.) claimed to have developed finite intuitions of the local finiteness of
Fin(ZF) (from which consistency of ZF follows), but there is the same old
problem of the generality of the proof, in this case involving local finite-
ness. One has to show that every finite set of theorems of Fin(ZF) has a
finite model, and there is no way to do this uniformly, not even in ZF. As
regards the conceptual reduction of the infinite to the finite, which is ex-
plicitly the purpose of Lavine, one should remember that the basic theory
Fin (which is in a sense the common basis of all nontrivial Fin(T)) cannot
have well-founded models, because of the ‘potential infinity’ of every postu-
lated €2,,, though every finite set of its axioms has a finite model of the form
{0,1,--- ,n}.

Another attempt at the reduction of the infinite to the finite could be based
on Vopénka’s Alternative Set Theory (AST, Vopénka 1979). The idea is to
develop a theory of classes in which all sets are in fact finite, but there are sets
that include subclasses that are not subsets (proper subclasses or ‘semisets’).
Thus, proper classes are not necessarily larger than sets. Infinite sets are
those sets which are not finite classes, where in general a class is finite if and
only if all its subclasses are sets. This allows a straightforward treatment of
problematic properties such as feasibility. E.g., if F'(x) means ‘x is feasi-
ble’ and n is not feasible, the set of feasible numbers less than or equal to
n has classically the contradictory properties of containing 0, being closed
under successor and not containing n, but in AST the separation axiom (a
subclass of a set is a set) fails, so that the above defined alleged set is not a
set. The idea was introduced mainly to deal with vague predicates, and it is
founded philosophically on Vopénka’s notion of ‘natural infinity’, based in
its turn on the concept of ‘horizon’ (see ibid.). As a reduction of the infinite
to the finite an attempt based on AST seems promising at first sight, though
no ‘true’ natural number can be made infinite in this way. But it is not easy
to evaluate the meaning of the class/set distinction on the problem of reduc-
tion. One has the suspect that classes are introduced here as a means to treat
uncertain boundaries, rather than infinities; in fact, even in the classical set-
ting, proper classes can be viewed as inconsistent multiplicities, rather than
the largest infinities (although they are always larger than sets, while this is
not true in AST). Moreover, the most natural interpretations of AST are in
terms of non-standard models of arithmetic, so that one is strongly tempted
to reduce this approach conceptually to some non-standard background, al-
though Vopénka would reply that this would reverse the conceptual priority,
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since non-standard analysis is for him a (rather artificial) ‘Cantorian’ way to
treat ‘natural’ infinity.

In intuitionist mathematics, the notion of finiteness is basically the follow-
ing: a species is finite if and only if there is a constructive bijection between
the species and an initial segment of the sequence of the natural numbers
(see, e.g., Troelstra-Van Dalen 1988, 14). Moreover, a species is finitely in-
dexed if it is the image under a constructive mapping of a finite species; and
it is subfinite if it is a subspecies of a finite species. Note that subfiniteness
and being finitely indexed are independent properties. Thus, there are classi-
cally finite sets whose finiteness is intuitionistically an open problem. Could
this give another possibility for a reduction of the infinite to the finite (though
it is well-known that this reduction is not at all a purpose of intuitionism)?
I am strongly inclined to answer in the negative. First, no natural number
could in any sense be considered infinite according to the above definition of
finiteness. Even for other sets, whose status is still open (but one is usually
able to prove intuitionistically at least that they are not infinite), we have no
real gain, since once the set is shown (constructively) to be finite we have
no longer the possibility to consider it ‘infinite’ from another point of view
(intuitionistic logic and mathematics do not leave room for any kind of rel-
ativity phenomena in the sense of the various models of classical theories).
On the other hand, until we (constructively) prove its finiteness, we do not
have knowledge of its status, and certainly we cannot act as though it were
known to be infinite (we have not a further point of view, but so to speak
only the point of view of our maybe temporary ignorance). So it seems that
intuitionistic mathematics does not provide examples of infinities which can
be recognized, from another point of view, to be in fact finite.

As an aside, I recall that ordinal notations provide a way to represent effec-
tively a segment of the second number class by means of natural numbers.
In this way, w (and in fact much larger ordinals) can be represented by fi-
nite numbers. E.g., in Kleene’s system O (see, e.g., Rogers 1967) we have:
1 <02 <022 <092 0 ... 03.51m <O ... where the first infi-
nite sequence of terms gives notations for the natural numbers, in their order
(of notations) <©, and the following term is a notation for w (among infin-
itely many possible notations), in which ¥ is the index of a partial recursive
function which enumerates (in order) the notations of an infinite increasing
sequence of natural numbers. But this is utterly useless in view of the re-
duction of the infinite to the finite. There is a sequence of notations which
is infinite in actu below the finite notation for w; we have here a way to
‘reduce’ a segment of the countable ordinals to the natural numbers, i.e. a
‘higher’ infinity to a ‘lower’ one, rather than the infinite to the finite. Similar
remarks apply to Takeuti’s ‘discussion of ordinals from a finitist standpoint’
(Takeuti 1987, 86—100), or any similar finitary treatment of a segment of
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the countable ordinals; however, these treatments have no strict reductionist
aim.

Finally, it is well-known that the notion of Dedekind-finiteness does not
necessarily coincide with finiteness in models in which the axiom of choice
does not hold: there can be sets which are Dedekind-finite, but not really
finite, there. But this is another unpromising attempt at a reduction of the
infinite, since the envisaged Dedekind-finite sets are in fact infinite in every
respect, except for the fact that they lack any bijections with proper subsets
of themselves. That the latter feature can be considered as showing, after all,
their finiteness (which is what we would need for a reduction) is, to say the
least, dubious. In this connection, it seems that Mayberry’s important (but
rather idiosyncratic) work in the foundations of set theory, specifically his
elaboration of a ‘Euclidean finitism’ (see Mayberry 2000), in which one as-
sumes that every set is Dedekind-finite, is not directly relevant to our topic,
although it allows the construction of different simply infinite systems (and
hence different natural number sequences). In any case, it is not Mayberry’s
aim to reduce infinity to finiteness, but (among other things) to explore the
possibility of developing a theory of infinite systems without axioms of in-
finity.

9. Concluding remarks

We have seen that when we consider the two main alternatives (among those
we have discussed) which apparently allow one to make sense of a sort of
‘modeling’ of countable infinity in the finite, namely non-standard methods
and feasibility, we face a dilemma. If we take into account proofs of arbi-
trary finite length, we might have consistency proofs, perhaps even a relative
consistency proof of ZF with respect to some stronger non-standard version
of set theory (though this is dubious, as we have seen), but we do not obtain
any reduction of the infinite to the finite. On the other hand, if we consider
proofs of length at most k, with k£ a standard integer, we have only proofs
(possibly in relatively weak theories) of ‘almost consistency’, and we do
not obtain real consistency proofs: we can only show that the length of the
shortest proof of a contradiction is a non-feasible number. It seems that in
any case we have to choose: either there is no finite upper bound on the
length of the proofs we consider, and then we might have an interpretation
in terms of non-standard models; or the maximal length of the proofs is in
fact finite, and then we might have an interpretation in terms of feasibility.
What is forbidden is to treat the length of proofs ambiguously, considering
it as arbitrarily finite for the consistency proof, and then as determinately
finite in our ultra-finitist metatheory. But this ambiguous treatment seems
precisely what is needed to carry out a thoroughly reductionist program.
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On the other hand, as regards the other attempts explained above, they do
not seem to offer better prospects of success: pseudo-models of derivations
seem to simply circumvent the original problem; Ehrenfeucht *models are
based on a highly unusual semantics (perhaps just too unusual with respect
to our present concerns); it is not clear to me how to make sense of the ideas
of local finiteness and of proper subclasses of finite sets without recourse to
non-standard models; finally, intuitionism is ultimately far from any reduc-
tionist aim. I conclude that none of the attempts that have been discussed
here give any clue to the envisaged reduction of infinity to finiteness.
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