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Abstract It is shown that the problem of balancing a nonnegative matrix by6

positive diagonal matrices can be recast as a nonlinear eigenvalue problem with7

eigenvector nonlinearity. Based on this equivalent formulation some adaptations of8

the power method and Arnoldi process are proposed for computing the dominant9

eigenvector which defines the structure of the diagonal transformations. Numerical10

results illustrate that our novel methods accelerate significantly the convergence11

of the customary Sinkhorn-Knopp iteration for matrix balancing in the case of12

clustered dominant eigenvalues.13

Keywords Sinkhorn-Knopp iteration, Nonlinear Eigenvalue Problem, Power14

method, Arnoldi method15

1 Introduction16

Many important types of data, like text, sound, event logs, biological sequences,17

can be viewed as graphs connecting basic data elements. Networks provide a pow-18

erful tool for describing the dynamic behavior of systems in biology, computer19

science, information engineering. Networks and graphs are generally represented20

as very large nonnegative matrices describing either the network topology, quan-21

tifying certain attributes of nodes or exhibiting the correlation between certain22

node features. Among the challenging theoretical and computational problems23

with these matrices there are the balancing/scalability issues.24
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The Sinkhorn-Knopp (SK) balancing problem can be stated as follows: Given a25

nonnegative matrix A ∈ Rn×n (A ≥ 0), find if they exist two nonnegative diagonal26

matrices D1, D2 ∈ Rn×n such that S = D1AD2 is doubly stochastic, i.e.,27

D2A
TD1e = e, D1AD2e = e, e = [1, . . . , 1]T . (1)

The problem was raised in three different papers [35–37] that contain the well-28

known iteration for matrix balancing that bears their names. Several equilibra-29

tion problems exist in which row or column norms are not equal but rather are30

specified by positive vectors. Variants of the SK problem have attracted atten-31

tion in various fields of pure and applied sciences including input-output analysis32

in economics [31], optimal transportation theory and its applications in machine33

learning [11], complex network analysis [6, 19], probabilistic and statistical mod-34

eling [33], optimization of traffic and telecommunication flows [21] and matrix35

preconditioning [12]. For a general review and summary of these applications one36

can see [16].37

For any admissible vector v ∈ Rn and any α ∈ Z, α 6= 0, let Dα(v) be defined38

as the n × n diagonal matrix with diagonal entries di = vαi , 1 ≤ i ≤ n. Then the39

computation in (1) amounts to find two vectors r and c such that D1 = D(r) and40

D2 = D(c) satisfy41 {
D(c)ATD(r)e = D(c)AT r = D(AT r)c = e;
D(r)AD(c)e = D(r)Ac = D(Ac)r = e.

When A is symmetric we can determine r = c = z to satisfy D(Az)z = D(z)Az =42

e. In [37] the authors proposed the following fixed point iteration –called Sinkhorn-43

Knopp (SK) iteration– for computing the desired vectors r and c:44 {
ck+1 = D−1(AT rk)e;
rk+1 = D−1(Ack+1)e.

(2)

In the symmetric case the SK iteration reduces to45

zk+1 = D−1(Azk)e (3)

or, equivalently, by setting 1./zk : = D−1(zk)e = xk with the assumption 1/0 =46

+∞,47

xk+1 = 1./zk+1 = Azk = A(1./xk). (4)

The SK iterations (2),(3),(4) have been rediscovered several times in different48

applicative contexts. Related methods are the RAS method [31] in economics,49

the iterative proportional fitting procedure (IPFP) in statistics and Kruithof’s50

projection scheme [21] in optimization.51

A common drawback of all these iterative algorithms is the slow convergence52

behavior exhibited even in deceivingly simple cases. To explain this performance53

gap we observe that the equations in (2) can be combined to get54

ck+1 = D−1(ATD−1(Ack)e)e, k ≥ 0, (5)

which can be expressed componentwise as55

(ck+1)s =

 n∑
m=1

am,s

(
n∑
`=1

am,`(ck)`

)−1
−1

, 1 ≤ s ≤ n, k ≥ 0.
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This means that (5) is equivalent to the fixed point iteration56

ck+1 = T (ck), T (x)s =

 n∑
m=1

am,s

(
n∑
`=1

am,`x`

)−1
−1

, (6)

for solving57

x = T (x), x ≥ 0, (7)

where T is the nonlinear operator introduced by Menon in [25,26]. Morishima [29]58

first dealt with the nonlinear eigenvalue problem (7) by proving its solvability over59

the closed simplex x ≥ 0, ‖ x ‖1= 1 in Euclidean n−space.60

Our first contribution consists of a novel formulation of the fixed point problem61

(7) as a nonlinear eigenvalue problem with eigenvector nonlinearity (NEPv) [4, 9,62

17] of the form63

x = JT (x)x, x ≥ 0, (8)

where JT (z) denotes the Jacobian matrix of T evaluated at the point z. Although64

the proof is quite simple, to our knowledge this property has been completely65

overlooked in the literature even though it has both theoretical and computational66

implications.67

Theoretically, it follows that the local dynamics of the original SK algorithm (5)68

can be described as a power method with perturbations [38] applied to the matrix69

JT (x) evaluated at the fixed point. Therefore the SK iterations inherit the slow70

convergence of the power process in the case of clustered dominant eigenvalues71

of JT (x). In particular, under some technical assumptions it is shown that the72

convergence rate1 of (6) is O(1/∆) where ∆ = λ1−λ2 is the eigen-gap of JT (x) and73

λ1 = 1 > λ2 ≥ 0 are the first two largest eigenvalues of JT (x) (compare with [19] for74

a quite different proof of the same estimate). Moreover, this convergence analysis75

also extends to certain power-based adaptations of the SK iteration (6).76

Relation (8) can also be exploited practically in order to speed up the computa-77

tion of the Sinkhorn-Knopp vector. Acceleration methods using nonlinear solvers78

applied to equation (7) have been recently proposed in [20] whereas optimization79

strategies and descending techniques are considered in [18, 32]. In this paper we80

pursue a different approach by taking into account the properties of the equiv-81

alent NEPv (8). Some adaptations of an iterative procedure referred to as the82

Self-Consistent Field (SCF) iteration [9] , in which a set of eigenvectors of a ma-83

trix that changes at each iteration are to be computed, are devised. Specifically,84

we propose here to compute an approximation of the fixed point of T by using an85

SCF iteration of the form86

λkvk+1 = JT (vk)vk+1, k ≥ 0, (9)

where λk is the dominant eigenvalue of JT (vk) with corresponding normalized87

eigenvector vk+1. The iterative scheme can be recast as an inexact Newton method88

applied to (8) possibly exhibiting a fast superlinear convergence. Each iteration89

amounts to approximate the dominant eigenpair of a matrix JT (vk). Krylov meth-90

ods are the algorithms of choice for the computation of a few eigenvalues of largest91

1 For complexity comparisons the term ’convergence rate’ here and hereafter denotes the
reciprocal of the usual convergence rate and it is roughly the number of iterations required to
attain a error tolerance of 1.0e− 1.
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magnitude of large-scale matrices [3] and they have been proven to be efficient for92

achieving eigenvalue/eigenvector separation [15]. Since JT (vk) is diagonally simi-93

lar to a symmetric semidefinite matrix fast eigensolvers relying upon the Lanczos94

process are specifically tailored to solve these problems for large-scale matrices and95

can achieve the accelerated convergence rate of O(1/
√
∆k) being ∆k the eigen-gap96

of JT (vk). Filtered power methods by Chebyshev polynomials [8,39] are also suited97

to provide a systematic acceleration over the basic power method. Numerical re-98

sults show that the inner-outer schemes (9) complemented with Lanczos or filtered99

power iterations are successful attempts to accelerate the convergence of the SK100

algorithm in the case of clustered dominant eigenvalues of JT (x).101

The paper is organized as follows. In Section 2 after briefly recalling the prop-102

erties of the SK fixed point iteration (6) we exploit the eigenvalue connection by103

devising accelerated variants of (6) using Arnoldi-type methods. The description104

and implementation of these variants together with numerical results are discussed105

in Section 3. Finally, in section 4 conclusion and some remarks on future work are106

given.107

2 Theoretical Setup108

Let us denote by P,P0 and P∞ the subsets of R̄n, R̄ = R ∪ {±∞}, defined by109

P = {x ∈ Rn : x ≥ 0}, P0 = {x ∈ Rn : x > 0} and P∞ = {x ∈ R̄n : x ≥ 0},110

respectively. For the sake of simplicity, we consider the matrix scaling problem111

(1) for a given A ∈ Rn×n with all positive entries, that is, A > 0. Extensions to112

more general fully indecomposable nonnegative matrices can be obtained by using113

classical results in matrix theory possibly complemented with the perturbative114

analysis introduced in [26] (see also Section 6.2 in [22]). These extensions are115

briefly sketched in the following when required. Numerical evidences shown in116

Section 3 indicate that our approach also works in the more general setting.117

Arithmetic operations are generalized as in [26] over the nonnegative extended118

real line [0,+∞] ⊂ R̄ by setting 1/0 = ∞, 1/∞ = 0, ∞ +∞ = ∞, 0 · ∞ = 0,119

a · ∞ = ∞ if a > 0, where ∞ = +∞. Under these assumptions we can introduce120

the nonlinear operators defined as follows:121

1. U : P∞ → P∞, U(x) = 1./x;122

2. S : P∞ → P∞, S(x) = U(Ax);123

3. T : P∞ → P∞, T (x) = U(ATU(Ax)).124

In this way it can be easily noticed that T is the same as the operator introduced125

in (6) and, therefore, the Sinkhorn-Knopp problem for the matrix A reduces to126

computing the fixed points of T , that is, the vectors x ∈ P∞ such that127

x = T (x) = U(ATU(Ax)), x ∈ P∞. (10)

Summing up the results stated in [25, 26] we obtain the following theorem128

concerning the existence and the uniqueness of the desired fixed point.129

Theorem 1 Let A ∈ Rn×n be a matrix with all positive entries. Then ∀u ∈ P \ {0}130

we have sup{λ : T (u) ≥ λu} ≤ 1. Moreover, T has a distinct eigenvalue equal to 1131

with a unique (except for positive scalar multiples) corresponding eigenvector x ∈ P0.132
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The basic SK algorithm proceeds to approximate the eigenvector x ∈ P0 by means133

of the fixed point iteration134 {
x(0) ∈ P0;

x(k+1) = T (x(k)), k ≥ 0.
(11)

Observe that x(0) ∈ P0 implies x(k) ∈ P0 ∀k ≥ 0. The property is immediate135

under the assumption A > 0 but it still remains true if A is supposed to be136

nonnegative and fully indecomposable. Indeed, by Frobenius-König theorem [24] it137

follows that if A ≥ 0 is fully indecomposable then there exist permutation matrices138

P and Q such that B = PAQ is irreducible with positive diagonal. Clearly x ∈ P0139

implies Bx ∈ P0 and, hence, T (x) ∈ P0.140

The iteration (11) is shown to be globally convergent since T is a contraction141

for the Hilbert metric associated to the cone P. [7, 23].142

Theorem 2 For any x(0) ∈ P0 there exists γ = γ(x(0)) ∈ R, γ > 0, such that143

lim
k→∞

x(k) = γx.

The convergence is linear and the rate depends on the second singular value of the144

doubly stochastic matrix Σ = D(S(x))AD(x). We have the following [19].145

Theorem 3 Let x ∈ P0 denote the limit of the sequence {x(k)}k∈N generated accord-146

ing to (11). Then the matrix Σ = D(S(x))AD(x) is doubly stochastic and, moreover,147

if σ2 is the second largest singular value of Σ it holds148

‖ x(k+1) − x ‖2≤ σ22 ‖ x(k) − x ‖2 +o
(
‖ x(k) − x ‖2

)
, k ≥ 0.

The convergence can be very slow in the case of nearly decomposable matrices.149

The following definition is provided in [1, 28].150

Definition 1 For a given ε > 0, the matrix A ∈ Rn×n is ε-nearly decomposable if151

there exist E ∈ [0, 1]n×n and a permutation matrix P such that PAPT = Â+ εE152

where Â is block triangular with square diagonal blocks.153

The relevance of nearly decomposable matrices for the study of dynamic systems154

in economics has been examined by Simon and Ando [34]. The role of near de-155

composability in queuing and computer system applications has been discussed156

in [10]. For a general overview of the properties of nearly decomposable graphs157

and networks with applications in data science and information retrieval one can158

see [30].159

Example 1 For the matrix A =

[
1 ε

1 1

]
, ε > 0, the SK iteration (11) is convergent160

but the number of iterations grows exponentially as ε becomes small. In Table 1161

we show the number of iterations performed by Algorithm 1 in Section 3 applied162

to the matrix A with the error tolerance τ = 1.0e− 8.163

The local dynamics of (11) depend on the properties of the Jacobian matrix164

evaluated at the fixed point. By using the chain rule for the composite function165

we obtain that166

JT (z) = JUATUA(z) = JU (ATU(Az)) · JAT (U(Az)) · JU (Az) · JA(z).
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Table 1: Number of SK iterations ItN for different values of ε = 10−k

k 1 2 3 4 5 6 7 8 9 10
ItN 16 46 132 391 1139 3312 9563 27360 77413 216017

where JA(z) = A is the Jacobian matrix of the map on Rn induced by the matrix167

A, i.e., z → Az. Since JU (z) = −D−2(z) = −D2(U(z)) we find that168

JT (z) = D2(T (z)) ·AT · D2(S(z))A. (12)

The next result gives a lower bound for the spectral radius of JT (z) for z ∈ P0.169

Theorem 4 For any given fixed z ∈ P0 the spectral radius of JT (z) satisfies ρ(JT (z)) ≥170

1.171

Proof Let us denote G = D(T (z)) ·AT · D(S(z)). It holds172

JT (z) = D2(T (z)) ·AT · D2(S(z))A

= D(T (z)) ·G ·GT D−1(T (z)),

and, hence JT (z) and G ·GT are similar. Now observe that173

Ge = D(T (z)) ·AT · D(S(z))e = D(T (z)) ·ATUAz = e.

It follows that ρ(JT (z)) = σ21(G) =‖ G ‖22≥ 1.174

If x = T (x), x ∈ P0, then it is worth noting that175

JT (x) = D2(T (x)) ·AT · D2(S(x))A = D2(x) ·AT · D2(S(x))A,

and, hence,176

JT (x) = D(x) ·ΣTΣD−1(x),

where Σ is introduced in Theorem 3. This means that JT (x) and F = ΣTΣ are177

similar and therefore the eigenvalues of JT (x) are the squares of the singular values178

of Σ. Since A > 0 then it is irreducible and primitive and the same holds for Σ179

and a fortiori for F . These properties still hold if A ≥ 0 is fully indecomposable.180

In this case it follows that Σ is fully indecomposable and therefore by Frobenius-181

König theorem there exist permutation matrices P and Q such that B = PΣQ is182

irreducible with positive diagonal. Then F is similar to BBT which is a nonnegative183

irreducible and symmetric positive definite matrix. Hence, BBT is primitive too.184

By the Perron-Frobenius theorem we conclude that the spectral radius of JT (x)185

satisfies ρ(JT (x)) = 1 and λ = 1 is a simple eigenvalue of JT (x) with a positive186

corresponding eigenvector.187

A characterization of such an eigenvector can be derived by the following result.188

189

Theorem 5 For each vector z ∈ P0 it holds190

T (z) = JT (z) · z.
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Proof Let z ∈ P0, then we have191

JT (z) · z = D2(T (z)) ·AT · D2(S(z))Az

= D2(T (z)) ·AT · S(z)

= D−2(ATS(z)) ·AT · S(z)

= D−1(ATS(z))e

= D(U(ATU(Az)))e

= T (z).

This theorem implies that192

x ∈ P0, x = T (x) ⇐⇒ x ∈ P0, x = JT (x)x

and therefore the eigenvector of JT (x) corresponding with the eigenvalue 1 is193

exactly the desired solution of the SK problem. Furthermore, the SK iteration194

(11) can equivalently be written as195 {
x(0) ∈ P0;

x(k+1) = T (x(k)) = JT (x(k))x(k), k ≥ 0.
(13)

According to Theorem 3 the convergence rate of (13) is O(1/∆) where ∆ =196

1 − λ2 is the eigen-gap with λ2 = σ22 the second largest eigenvalue of JT (x) and197

P0 3 x = limk→+∞ x(k). Notably, the power method, as well as some its inexact198

variants, applied to JT (x) inherits the same rate of convergence. Lanczos method199

and filtered power methods can achieve the accelerated rate O(1/
√
∆) for comput-200

ing the top eigenpair of a symmetric positive semidefinite matrix [15, 39]. In the201

following we elaborate upon the relationship between (13) and the power method202

in order to devise similar accelerated modifications of the iterative scheme (13).203

In principle one can accelerate the convergence of this scheme without im-204

proving the efficiency of the resulting method by replacing T with the operator205

T` = T ◦ T ◦ · · · ◦ T , T1 = T , generated from the composition (` times) of T for a206

certain ` ≥ 1. The linearized form of the resulting iteration around the fixed point207

x = T (x), x ∈ P0, is208 {
x(0) ∈ P0;

x(k+1) = JT (x)`x(k), k ≥ 0.
(14)

This is the power method applied to the matrix J`T (x) for the approximation of an209

eigenvector associated with the dominant eigenvalue λ = 1. A normalized variant210

of (14) can be more suited for numerical computations211 
x(0) ∈ P0;{
v(k+1) = JT (x)`x(k),

x(k+1) = v(k+1)/(eTv(k+1))
, k ≥ 0.

(15)

Since λ = 1 is the simple dominant eigenvalue of JT (x) with a positive correspond-212

ing eigenvector it is well known that (15) generates sequences such that213

lim
k→∞

x(k) = x/(eTx), lim sup
k→∞

‖ x(k) − x/(eTx) ‖1/k2 ≤ λ`2 = σ2`2 ,
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where 0 ≤ λ2 = σ22 < 1 is the second largest eigenvalue of JT (x) and σ2 denotes the214

second largest singular value of P defined as in Theorem 3. For practical purposes215

we introduce the following modified adaptation of (15) called SK` iteration:216 
x(0) ∈ P0;{

v(k+1) = JT (x(k))
`
x(k),

x(k+1) = v(k+1)/(eTv(k+1))
, k ≥ 0.

(16)

For ` = 1 SK1 reduces to the scaled customary SK iteration. Under suitable217

assumptions we can show that SK` generates a sequence converging to the desired218

fixed point.219

Theorem 6 Let {x(k)}k be the sequence generated by SK` from a given initial guess220

x(0) ∈ P0. Let x ∈ P0 be such that x = T (x) and eTx = 1. Assume that:221

1. ∃η > 0 : JT (x(k))
`

= JT (x)` + Ek, ‖ Ek ‖2≤ ησ2`k2 , k ≥ 0;222

2. ∃γ > 0 : ‖
∏m
k=0 JT (x(k))

`
‖2≥ γ, m ≥ 0.223

Then we have224

lim
k→∞

x(k) = x,

and225

lim sup
k→∞

‖ x(k) − x ‖1/k2 ≤ σ2`2 .

Proof Since
∑∞
k=0 ‖ Ek ‖2<∞ from Theorem 4.1 in [38] we obtain that the matrix226

sequence Pm =
∏m
k=0 JT (x(k))

`
is such that227

lim
m→∞

Pm = xzT , z ∈ P.

From Property 2 in view of the continuity of the norm it follows that z 6= 0 and228

this implies the convergence of {x(k)}k. About the rate of convergence we observe229

that230

‖ x(k+1) − x ‖2=‖ Pkx
(0)

eTPkx(0)
− x

zTx(0)

zTx(0)
‖2

≤‖ Pkx
(0)

zTx(0)
− x

zTx(0)

zTx(0)
‖2 + ‖ Pkx

(0)

eTPkx(0)
− Pkx

(0)

zTx(0)
‖2

≤ ‖ (Pk − xzT )x(0)) ‖2
|zTx(0)|

+ ‖ Pkx(0) ‖2
∣∣∣∣eT (xzT − Pk)x(0)

eTPkx(0)zTx(0)

∣∣∣∣
which says that x(k) approaches x as fast as Pk tends to xzT . Again using Theorem231

4.1 in [38] under our assumptions there follows that232

lim sup
k→∞

‖ Pk − xzT ‖1/k2 ≤ σ2`2 = λ`2.

which concludes the proof.233
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This theorem says that the speed of convergence of SK` increases as ` increases.234

Also, notice that for any z ∈ P0 the matrix JT (z) is primitive and irreducible235

and therefore by the Perron-Frobenius theorem its spectral radius is a dominant236

eigenvalue with a corresponding positive eigenvector. The proof is straightforward237

for A > 0. The generalization to the case where A ≥ 0 is fully indecomposable238

proceeds by the same arguments stated after the proof of Theorem 4.239

From Theorem 4 the dominant eigenvalue of JT (z) is greater than or equal to240

1. It follows that for large ` the iterate x(k+1) provides an approximation of the241

positive dominant eigenvector of JT (x(k)). This fact suggests to consider SK∞ as242

an effective method for approximating the limit vector x. The method performs243

as an inner-outer procedure. In the inner phase given the current approximation244

x(k) of x we apply the Power Method245 
v(0) = x(k);{
z(k+1) = JT (x(k))v(k),

v(k+1) = z(k+1)/(eT z(k+1))
, k ≥ 0

(17)

until convergence to find the new approximation x(k+1) = v(k̂+1). Numerically246

this latter vector solves247

JT (x(k))x(k+1) = θkx
(k+1), θk = ρ(JT (x(k))), eTx(k+1) = 1. (18)

If convergence occurs, then (θk,x
(k+1)) approaches (1,x) in the limit and conver-248

gence would be superlinear. Indeed, by setting θk = 1 + δk, δk ≥ 0, it follows that249

(18) can be recast as an inexact Newton method applied for the solution of the250

system of nonlinear equations F (x) = T (x)− x = 0. In fact in view of Theorem 5251

we obtain that252

F ′(x(k))(x(k+1) − x(k)) = −F (x(k)) + δkx
(k+1) ⇐⇒

(JT (x(k) − In)(x(k+1) − x(k)) = x(k) − T (x(k)) + δkx
(k+1) ⇐⇒

(JT (x(k) − In)x(k+1) = δkx
(k+1) ⇐⇒

JT (x(k))x(k+1) = (1 + δk)x(k+1) = θkx
(k+1).

Example 2 As in Example 1 let A =

[
1 ε

1 1

]
with ε = 1.0e − 8. In Figures 1a and253

1b we illustrate the convergence history of iteration (18) applied to A with start-254

ing guess x(0) = v(0) = [1/2, 1/2]T . The iterative scheme stops after 13 steps. The255

dominant eigenpair (λk,v
(k+1)) is computed by using the function eig of MATLAB256

R2019a. In Figure 1b we show the distance between two consecutive normalized257

eigenvectors measured in the Hilbert metric dH(u,v) = maxi,j log

(
uivj
viuj

)
, ∀u,v ∈258

P0. It is seen that the convergence is regular and it looks ultimately superlinear.259

260

In principle the matrix eigenvalue problem (18) can be solved by using any reliable261

method. For large sparse matrices in the case of clustered eigenvalues the conver-262

gence of the inner iteration can be greatly improved by considering filtered variants263

of the power method or Krylov-based algorithms for approximating a few largest264

eigenvalues of the matrix. In the next section the effectiveness and robustness of265

these methods are evaluated by numerical experiments.266
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Fig. 1: Plot of ψ(k) = λk − 1 (Figure 1a) and of θ(k) = dH(v(k+1) − v(k)) (Figure
1b) for the matrix A as given in Example 2 where (λk,v

(k+1)) is the dominant
eigenpair of JT (v(k)).

3 Numerical Results267

We have tested the algorithms presented above in a numerical environment using268

MATLAB R2019a on a PC with Intel Core i9-9900K processor with 64GB of269

RAM. The first method to be considered is the scaled SK iteration implemented270

by Algorithm 1.

Algorithm 1 Scaled SK iteration

Input: A ∈ Rn×n, A ≥ 0 and a tolerance τ > 0
Output: x such that x = Tx, x ≥ 0, sum(x) = 1

1: Function SK(A, τ)
2: x = ones(n, 1)/n;
3: err = inf ;
4: while err > τ do
5: z = T (x);
6: s = sum(z);
7: z = z/s;
8: err = norm(z − x);
9: x = z;

10: EndFunction

271

Based on the results of the previous section we propose to exploit the properties272

of either power methods and Arnoldi-type iterations for computing the SK vector.273

The resulting schemes are specializations of Algorithm 2. Algorithm 2 makes use274

of an internal function FDE(JT (x),x, τ) for “finding the dominant eigenpair” of275

JT (x) at a prescribed tolerance depending on the value of τ . If FDE implements276

the power method then Algorithm 2 reduces to the SK∞ iterative method. How-277

ever, when the largest eigenvalues of JT (x) are clustered the power method will278

perform poorly. In this case the performance of the eigensolver can be improved279

by exploiting different techniques and methodologies. In our experiments, we have280

considered three different approaches:281
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Algorithm 2 Arnoldi-type method

Input: A ∈ Rn×n, A ≥ 0 and given tolerances τ > 0
Output: x such that x = Tx, x ≥ 0, sum(x) = 1

1: Function Arnoldi SK(A, τ)
2: x = ones(n, 1)/n;
3: err = inf ;
4: while err > τ do
5: [λ,z] = FDE(JT (x),x, τ);
6: s = sum(z);
7: z = z/s;
8: err = norm(T(z)− z);
9: x = z;

10: EndFunction

1. Filtered power methods using Chebyshev approximation to provide better sep-282

aration of the eigenvalues of JT (x). A similar method was proposed in [39] for283

accelerating the HITS algorithm. The power method is applied to the matrix284

c̃m(JT (x)) where c̃m(z) = cm(2z − 1) with cm(z) the m−th degree Chebyshev285

polynomial of the first kind. When λ1 > 1 > λ2 and λ1, λ2 are the top eigen-286

values of JT (x) then |c̃m(λ2)/c̃m(λ1)| is significantly smaller than |λ2/λ1|. The287

resulting adaptations of Algorithm 2 are denoted as Alg2 FCPMm where m is288

the degree of the Chebyshev polynomial.289

2. The Lanczos iteration can implicitly use the properties of Chebyshev approxi-290

mation by achieving an accelerated convergence rate. We compute an approx-291

imation of the dominant eigenpair of JT (x) by using the MATLAB function292

eigs which implements an implicitly restarted Arnoldi/Lanczos method. The293

input sequence of eigs is given as294

[V,D]=eigs(@(w)D2*D2*AFUNT(D1*D1*AFUN(w)),length(A),1,’largestabs’,’StartVector’,x);295

where AFUN(w) and AFUNT (w) are functions that compute the product296

Aw and ATw, respectively, D1 = D(S(x)) and D2 = D(T (x)) are diagonal297

matrices and A, D1 and D2 are stored in a sparse format. This modification298

of Algorithm 2 is referred as Alg2 EIGS299

3. A further improvement of the Lanczos iteration are the block variants whose300

convergence depend on the separation between those eigenvalues that are301

“close” to λ1 and those that are sufficiently smaller in magnitude. In our302

experiments we consider the function ahbeigs [2] which implements a block303

Arnoldi/Lanczos method for computing a few eigenvalues of sparse matrices.304

Block methods can suffer from the occurrence of complex eigenpairs. There-305

fore, based on the proof of Theorem 4 the method is applied to the symmetric306

matrix G ·GT , G = D2 ·AT ·D1 which is similar to JT (x). The input sequence307

of ahbeigs is given as308

OPTS.sigma=’LM’;OPTS.k=m;OPTS.V0=R0;[V,D]=ahbeigs(’afuncsym’, n, speye(n), OPTS)309

where n is the size of the matrix A, m is the number of desired eigenvalues,310

R0 ∈ Rn×m is the set of starting vectors and ’afuncsym’ denotes a function311

that computes the product of G ·GT by a vector where A is stored in a sparse312

format. The resulting variation of Algorithm 2 is named Alg2 AHBEIGS.313

It is worth pointing out that MATLAB complies with the IEEE 754 standard314

for floating point arithmetic, including in its treatment of infinite values, and315
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Fig. 2: Plot of ψ(k) = λk−1 (Figure 2a) and of θ(k) = dH(v(k+1)−v(k)) (Figure 2b)
for the matrix H128(127) where (λk,v

(k+1)) is the dominant eigenpair of JT (v(k)).

therefore, differently from the convention assumed at the beginning of Section 2,316

we find that 0 ? (+Inf) = NaN . In some exceptional cases this discrepancy can317

produce numerical difficulties and wrong results. Nevertheless, we have preferred318

to avoid the redefinition of the multiplication operation by presenting tests that319

are unaffected by such issue.320

Our first batch of test matrices were introduced in [32] to compare the perfor-321

mances of different algorithms for matrix balancing. These are upper Hessenberg322

matrices Hn(γ) ∈ Rn×n defined as Hn(γ) = ĤN + γIn with ĤN = (ĥi,j) and323

ĥi,j = 1 if j − i ≥ −1. For large values of γ and n the matrix becomes very close324

in a relative sense to a decompasable matrix. Our timing results for n = 128 and325

γ = n− 1 are given in Table 2. The algorithms considered here are our variants of326

Algorithm 2; the SK iteration implemented in Algorithm 1; EQ algorithm from [32]327

and BNEWT algorithm from [20]. In our tests the algorithm EQ from [32] per-328

forms slower than the SK iteration. This is in accordance with the comparisons329

shown in [20]. The adaptations of Algorithm 2 are stopped when err = dH(T (z),z)330

is below a fixed tolerance of τ = 1.0e−12. The stopping criterion in BNEWT is ad-331

justed to obtain a comparable accuracy. It is seen that our proposed methods are332

faster than the original SK iteration but BNEWT outperforms the other choices.333

However, the point to stress here is that BNEWT is weakly connected to SK. As334

noticed in [20] the convergence of BNEWT is far from monotonic and the vector x335

returned as output is very large in norm (‖ x ‖1' 1.0e+ 18). Conversely our algo-336

rithms retain many properties of SK. In Figure 2 we show the convergence graphs337

of Alg2 EIGS for H128(127). The method exhibits a monotonic convergence which338

is ultimately superlinear.339

Table 2: Computing times (in seconds) of different algorithms applied to H128(127)

Alg1 Alg2 FCPM3 Alg2 FCPM6 Alg2 EIGS BNEWT
3.4 1.9 0.6 0.08 0.03

340
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The performances of our proposed algorithms have been also evaluated and341

compared with SK on large sparse matrices either fully indecompasable or not.342

The test suite consists of the following matrices with entries 0 or 1 only:343

i HB/can 1072 of size n = 1072 from the Harwell-Boeing collection;344

ii SNAP/email-Eu-core of size n = 1005 from the SNAP (Stanford Network345

Analysis Platform) large network dataset collection;346

iii SNAP/Oregon-1 of size n = 11492 from the SNAP collection;347

The matrix HB/can 1072 is sparse and irreducible. The (scaled) SK iteration348

is convergent. Both Algorithm 1 and our variants of Algorithm 2 – Alg2 FCPM3,349

Alg2 FCPM6 and Alg2 EIGS– perform quite well with running times in the range350

between 0.02 and 0.06 seconds for a tolerance τ = 1.0e − 14. More specifically351

Alg2 EIGS converges in 4 outer iterations. Table 3 gives the measured errors by352

showing quadratic convergence.353

Table 3: Errors generated by Alg2 EIGS applied to HB/can 1072 for τ = 1.0e−14

it 1 2 3 4
err 1.086e-02 1.678e-04 1.743e-08 2.664e-15

The remaining matrices (ii) and (iii) from the SNAP collections are not fully354

indecomposable. According to [19] in order to compute an approximate solution of355

the matrix balancing problem we may consider perturbations of the input matrix356

A of the form357

Ã = A+ γeeT , e = [1, . . . , 1]T , γ > 0,

for decreasing values γi, 1 ≤ i ≤ K, of γ. The approach resembles the customary358

strategy employed for solving the PageRanking problem. As γ approaches zero the359

associated eigenproblem becomes more and more challenging due to the occurrence360

of clustered eigenvalues around 1 of JT (x) where x ∈ P0 is a fixed point of T . From361

Theorem 4.3 in [5] we know that Arnoldi-type methods can greatly benefit of the362

choice of the initial vector and therefore Alg2 EIGS is especially suited to be used363

in these continuation schemes.364

In the next tables 4 and 5 we report the computing times of Algorithm 1 and365

Alg2 EIGS. When γ = γ1 both algorithms start with x = e/n whereas for i > 1366

the starting vector is given by the solution computed at the previous step with367

γ = γi−1. In all experiments the tolerance was set at τ = 1.0e − 12. We observe368

that Alg2 EIGS outperforms Algorithm 1 for sufficiently small values of γ when369

the perturbed matrix is close to the original web link graph.370

Table 4: Computing times of Algorithm 1 and Alg2 EIGS applied to SNAP/email-
Eu-core for different values of γ

γ 1.0e-2 1.0e-4 1.0e-6 1.0e-8 1.0e-10 1.0e-12 1.0e-14
Alg1 0.003 0.006 0.04 0.34 2.78 23.21 193.66

Alg2 EIGS 0.02 0.02 0.05 0.12 0.33 0.72 1.12
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Table 5: Computing times of Algorithm 1 and Alg2 EIGS applied to
SNAP/Oregon-1 for different values of γ

γ 1.0e-2 1.0e-4 1.0e-6 1.0e-8 1.0e-10 1.0e-12 1.0e-14
Alg1 0.005 0.01 0.05 0.32 2.21 13.9 61.56

Alg2 EIGS 0.04 0.06 0.21 0.63 2.05 6.04 11.67

In network analysis, an interesting class of difficult matrix scaling problems con-371

sists of adjacency matrices which exhibit community structures, that is, densely372

connected groups that are loosely associated with each other. In this case the num-373

ber of eigenvalues clustered around the Perron root λ1 = 1 can be related with the374

number of communities [27]. If we know some a priori upper bound on this number375

it can be recommended the use of a block Arnoldi-based eigensolver which using376

a set of starting vectors is able to compute multiple or clustered eigenvalues more377

efficiently than an unblocked routine. In our experiments we consider the function378

ahbeigs [2] which implements a block Arnoldi/Lanczos method for computing a379

few eigenvalues of sparse matrices. For numerical testing we consider the following380

matrices:381

1. the adjacency matrix Ajazz ∈ R198×198 constructed from a collaboration net-382

work between Jazz musicians. Each node is a Jazz musician and an edge denotes383

that two musicians have played together in a band. The data was collected in384

2003 [13].385

2. the matrix Ambeause ∈ R496×496 generated by taking the absolute value of386

the matrix HB/mbeause from the the Harwell-Boeing collection. The original387

matrix is derived from an economic model which reveals several communities.388

This structure is maintained in the modified matrix.389

In Table 6 we compare the computing times of Algorithm 1 and Alg2 AHBEIGS390

applied to the matrices Ã : = A + γeeT for different values of γ and A = Ajazz,391

A = Ambeause. In each experiment we set τ = 1.0e − 14 and the (block) starting392

vector is X = ones(n,m) where n is the size of A, m = 1 for Algorithm 1 and393

m = 16, 32 for Algorithm 2 applied to Ajazz and Ambeause, respectively.394

Table 6: Computing times of Algorithm 1 and Alg2 AHBEIGS for different values
of γ

Ajazz Ambeause

γ 1.0e-10 1.0e-12 1.0e-14 1.0e-10 1.0e-12 1.0e-14
Alg1 0.19 0.77 3.51 9.06 44.91 118.18

Alg2 AHBEIGS 0.19 0.21 0.23 1.83 2.31 2.81

For these matrices the methods based on eigenvalue computations can be dra-395

matically faster than the fixed point iteration. In particular, Alg2 AHBEIGS ap-396

plied to Ajazz with τ = 1.0 − e − 14 and m = 16 converges in 12,14,16 iterations397

for γ = 1.0e− 10, 1.0e− 12, 1.0e− 14, respectively.398
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4 Conclusions and Future Work399

In this paper we have discussed some numerical techniques for accelerating the400

customary SK iteration based on certain equivalent formulations of the fixed point401

problem as a matrix eigenvalue problem. Variants of the power method relying402

upon the Arnoldi/Lanczos process have been proposed for the efficient solution403

of the matrix eigenvalue problem. There are several topics which remain to be404

addressed. Specifically:405

1. A formal proof of the convergence for the SK∞ method is still missing. As sug-406

gested by Figure 1b and Figure 2b in this respect it might be useful to inves-407

tigate the contraction properties of the map E : P0 → P0 defined by E(v) = w408

where w is the normalized dominant eigenvector of JT (v).409

2. The numerical behavior of (block) Arnoldi-based methods can be improved by410

exploiting several additional properties In particular following [14] we can take411

advantage of knowing the largest eigenvalue of the limit problem to speed up412

the intermediate steps. Also, when the matrix is symmetric then simplifica-413

tions are introduced in the Jacobian matrix which can alleviate the numerical414

difficulties of the associated eigenvalue problem. Finally, the invariance by scal-415

ing of the solution of the matrix equilibration problem can be used to balance416

numerical computations.417

3. Further theoretical and computational investigation of the modified algorithms418

for the generalized matrix balancing problem is an ongoing research project.419
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