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We propose a class of axion models with generation-dependent Peccei-Quinn charges for the known
fermions that allow one to suppress the axion couplings to nucleons and electrons. Astrophysical limits are
thus relaxed, allowing for axion masses up to Oð0.1Þ eV. The axion-photon coupling remains instead
sizable, so that next-generation helioscopes will be able to probe this scenario. Astrophobia unavoidably
implies flavor-violating axion couplings so that experimental limits on flavor-violating processes can
provide complementary probes. The astrophobic axion can be a viable dark matter candidate in the heavy
mass window and can also account for anomalous energy loss in stars.
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Introduction.—One of the main mysteries of the standard
model (SM) is the absence of CP violation in strong
interactions. The most elegant solution is provided by the
Peccei-Quinn (PQ) mechanism [1,2], which predicts the
axion as a low-energy remnant [3,4]. The axion is required to
be extremely light and decoupled, and in a certainmass range
it can provide a viable darkmatter (DM) candidate. TheKim-
Shifman-Vainshtein-Zakharov (KSVZ) [5,6] and Dine-
Fischler-Srednicki-Zhitnitsky (DFSZ) [7,8] axion models
are frequently used as benchmarks to assess experimental
sensitivities and to derive astrophysical bounds. However,
constraining axion properties solely on the basis of standard
benchmarks can be too restrictive, and exploring alternative
models whose properties can sizably deviate from those of
the KSVZ and DFSZ models is highly desirable. While it is
conceptually easy to build models with suppressed axion-
electron couplings gae [5,6,9] or axion-photon couplings gaγ
[10–12], it is generally believed that a robust prediction of all
axion models is an unsuppressed axion-nucleon coupling
gaN . This is particularly important, because gaN is respon-
sible for the often-quoted bound on the axion mass ma ≲
20 meV from the neutrino burst duration of SN1987A
[13,14]. In this Letter, we argue that a strong suppression
of gaN is instead possible in a class ofDFSZ-likemodels with
generation-dependent PQ charges. Additional strong bounds

onma are obtained if gae is unsuppressed, since this can affect
white-dwarf (WD) cooling rates and redgiant (RG) evolution
[14]. In our scenario, a suppression of gae can be also
arranged. Thus, nucleophobia allows one to relax the SN
bound, and electrophobia allows one to evade the WD and
RG constraints, rendering viable ma ∼Oð0.1Þ eV. We
denote such an axion as astrophobic, although gaγ remains
generically sizable and could still affect the evolution of
horizontal branch (HB) stars. Astrophobic axions are inter-
esting in many respects: (i) They render viable a parameter
space region well beyond the standard DFSZ and KSVZ
benchmarks yet still within the reach of the planned
International Axion Observatory (IAXO) helioscope [15].
(ii) Nucleophobia necessarily implies flavor-violating (FV)
axion couplings to the quarks so that complementary
searches can be carried out in flavor experiments.
(iii) Astrophobic axions can be nonstandard DM in the
heavymass window [16–18] and (iv) can account for various
hints of anomalous star energy losses [19,20].
Axion coupling to nucleons.—Let us first recall why gaN

cannot be suppressed in KSVZ and DFSZ models. The
relevant terms for this discussion are
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where N (E) are the QCD (QED) anomaly coefficients,
fa ¼ va=ð2NÞ with va ¼

ffiffiffi
2

p hϕi the vacuum expectation
value (VEV) of the PQ symmetry-breaking singlet field,
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G̃a;μν ¼ 1
2
ϵμνρσGa

ρσ, F̃μν ¼ 1
2
ϵμνρσFρσ, and QL;R ¼ UL;R;

DL;R are vectors containing the left-handed (LH) and
right-handed (RH) quarks of the three generations (capital
letters denotematrix quantities;q,u,d are usedotherwise). In
the KSVZmodel the PQ charge matricesXQL;R

vanish, while
in the DFSZ model they are nonzero but generation blind;
hence, the current in Eq. (1) is not dependent on the quark
basis. The axion-gluon term can be removed via a field-
dependent chiral rotation of the first-generation quarks
q ¼ u, d: qL;R → e∓iða=2faÞfqqL;R with fu þ fd ¼ 1.
Defining z ¼ mu=md and choosing fu ¼ 1=ð1þ zÞ ≃ 2=3
avoids axion-pion mixing. As a result of this rotation, the
coefficient of the QED term gets shifted as E=N → E=N −
fγðzÞ with fγ ≃ 1.92, while the axion coupling to the first-
generation quarks becomes

Laq ¼
∂μa

2fa

X
q¼u;d

�
q̄γμγ5

�
XqR − XqL

2N
− fq

�
q

�
: ð2Þ

The vector couplings vanish because of the equation of
motion. For the axial-vector couplings, it is common to
denote C0

q ¼ ðXqR − XqLÞ=ð2NÞ. Matching Eq. (2) with the
nonrelativistic axion-nucleon Lagrangian allows one to
extract the axion-nucleon couplings [21], which are defined
via ∂μa=ð2faÞCNN̄γμγ5N with N ¼ p, n. We recast the
results in terms of the two linear combinations

Cp þ Cn ¼ 0.50ð5ÞðC0
u þ C0

d − 1Þ − 2δs; ð3Þ

Cp − Cn ¼ 1.273ð2Þ
�
C0
u − C0

d −
1

3

�
; ð4Þ

where the two numbers in parentheses correspond to fu þ
fd ¼ 1 (exact) and fu − fd ≃ 1=3 (approximate), while δs is
a correction appearing in the DFSZ model which is domi-
nated by the s-quark contribution. In themodels below, using
the results fromRef. [21] andallowing for the largest possible
values of C0

s;c;b;t, we have jδsj≲ 0.04. Equation (3) makes
clear why it is difficult to implement axion-nucleon decou-
pling. For the KSVZ model, C0

u ¼ C0
d ¼ 0 and the model-

independent contribution survives. For the DFSZ model,
C0
u þ C0

d ¼ Nl=N, with Nl the contribution to the QCD
anomaly of the light first-generation quarks. Hence, for
generation-blind charges, C0

u þ C0
d ¼ 1=3 is an exact result.

The nucleophobic axion.—We take as the defining con-
dition for the nucleophobic axion the (approximate) vanish-
ing of Eqs. (3) and (4). Remarkably, since the axion-pion
coupling is proportional to Cp − Cn [22], nucleophobic
axions are also pionphobic. We start by studying Eq. (3).
Neglecting δs,Cp þ Cn ¼ 0 impliesC0

u þ C0
d ¼ Nl=N ¼ 1.

This can be realized in two ways: Either (i) the contributions
of the two heavier generations cancel each other (N2 ¼ −N3

andNl ¼ N1), or (ii) they vanish identically, in which case it

is convenient to assign Nl ¼ N3 and, hoping that no
confusion will arise with generation ordering, require for
the heavier generationsN1 ¼ N2 ¼ 0. (This second casewas
also identified in Ref. [23].) Clearly, both cases require
generation-dependent PQ charges. A generic matrix of
charges for a LH or RH quark q can be written as XQ ¼
X0
qI þ X8

qλ8 þ X3
qλ3 with I ¼ diagð1; 1; 1Þ the identity in

generation space, while λ8 ¼ diagð1; 1;−2Þ and λ3 ¼
diagð1;−1; 0Þ are proportional to the corresponding SU(3)
matrices. Since we are mainly interested in a proof of
existence for nucleophobic axions, we introduce some
simplification: We assume just two Higgs doublets H1;2

(with PQ charges X1;2 and hypercharge Y ¼ −1=2), and we
consider only PQ charge assignments that do not forbid any
of the SM Yukawa operators. Under these conditions, it can
be shown that two generations must have the same charges
[24], and we can then drop the SU(2)-breaking λ3 term. The
matrix XQ ¼ X0

qI þ X8
qλ8 then respects a SU(2) symmetry

acting on the generation indices f1; 2g, and we henceforth
refer to such a structure as 2þ 1. To study which Yukawa
structures can enforce the condition N ¼ Nl, it is then
sufficient to consider just one generation in 2 together with
the generation in 1 carrying index f3g and write

q̄2u2H1; q̄3u3Ha; q̄2u3Hb; q̄3u2H1þa−b;

q̄2d2H̃c; q̄3d3H̃d; q̄2d3H̃dþa−b; q̄3d2H̃c−aþb;

ð5Þ

where H̃ ¼ iσ2H�. AssigningH1 to the first term iswithout a
loss of generality, while all the other Higgs indices must take
values in f1; 2g. It is easy to verify that in each line the
charges of the first three quark bilinears determine the fourth
one, e.g.,Xðq̄3u2Þ ¼ Xðq̄2u2Þ þ Xðq̄3u3Þ − Xðq̄2u3Þ, while
the third term in the second line is obtained by equatingXq3 −
Xq2 as extracted from the second and third terms of both lines.
It is now straightforward to classify all the possibilities that
yield Nl=N ¼ 1. Denoting the Higgs ordering in the two
lines of Eq. (5) with their indices, e.g., ðH1; H2; H1; H2Þu∼
ð1212Þu, we have, respectively, for ði1;2ÞN1 ¼ N2 ¼ −N3

and ðii1;2ÞN1 ¼ N2 ¼ 0

ði1Þ∶ ð1212Þuð2121Þd; ði2Þ∶ ð1221Þuð2112Þd;
ðii1Þ∶ ð1111Þuð1221Þd; ðii2Þ∶ ð1221Þuð1111Þd: ð6Þ

It is easy to verify that in ði1;2Þ 2Nl ¼ 2N2 ¼ Xu2R þ Xd2R −
Xu2L − Xd2L ¼ X2 − X1 with N3 ¼ −N2, in (ii1)
2Nl ¼ 2N3 ¼ X2 − X1, and in (ii2) 2Nl ¼ 2N3 ¼ −X2 þ
X1 with, in both of the last cases, N1 ¼ N2 ¼ 0. Let us now
discuss the second condition Cp − Cn ≈ 0. We denote by
tan β ¼ v2=v1 the ratio of theH1;2 VEVs, and we introduce
the shorthand notation sβ ¼ sin β, cβ ¼ cos β. The ratio
X1=X2 ¼ − tan2 β is fixed by the requirement that the PQ
Goldstone boson is orthogonal to the Goldstone boson eaten
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up by the Z boson [8], and the charge normalization is given
in terms of the light quark anomaly as X2 − X1 ¼ �2Nl.
Here and below, the upper sign holds for ði1;2Þ and (ii1) and
the lower sign for (ii2). From Eq. (6), it follows that in all
cases C0

u − C0
d ¼ −ð1=2NÞðX1 þ X2Þ ¼ �ðs2β − c2βÞ. The

second condition for nucleophobia C0
u − C0

d ¼ 1=3 is then
realized for s2β ¼ 2=3 in ði1;2Þ and (ii1) and for s2β ¼ 1=3 in
(ii2). We learn that, even under some restrictive assumptions,
there are four different ways to enforce nucleophobia. More
possibilities would become viable by allowing for PQ
charges that forbid some Yukawa operator [24]. Note that
Cp þ Cn ≈ 0 is enforced just by charge assignments, while
Cp − Cn ≈ 0 requires a specific choice tan β ≈ 2�1=2. For
both these values, the top Yukawa coupling remains pertur-
bative up to the Planck scale; however, we stress that they
should be understood as relative to the physical VEVs rather
than resulting from a tree-level scalar potential, since the
large va would destabilize any lowest-order result for v1;2.
This is, of course, a naturalness issue common to all invisible
axionmodels. Finally, to render the axion invisible,H1;2 need
to be coupled via a non-Hermitian operator to the scalar
singlet ϕ with PQ charge Xϕ. This ensures that the PQ
symmetry gets spontaneously broken at the scale va ≫ v1;2,
suppressing all axion couplings. There are two possibilities:
H†

2H1ϕ, inwhich case jXϕj ¼ 2Nl ¼ 2N, the axion field has
the same periodicity as the θ term, and the number of domain
walls (DWs) isNDW ¼ 1, orH†

2H1ϕ
2, in which case jXϕj ¼

Nl ¼ N and NDW ¼ 2. In contrast, in DFSZ models
jXϕj ¼ 2N=3, (2N=6) yield NDW ¼ 3, (6) and a DW
problem is always present.
Flavor-changing axion couplings.—Generation-depen-

dent PQ charges imply FVaxion couplings. Plugging XQ ¼
X0
qI þ X8

qλ8 into Eq. (1), it is readily seen that a misalign-
ment between the Yukawa and the PQ charge matrix
becomes physical. Since we are mostly interested in the
light quark couplings, we single out Xq1 for case (i) and Xq3
for (ii):

XQ ¼ Xq1I − 3X8
qΛ ¼ Xq3I þ 3X8

qΛ0; ð7Þ

with 3X8
q ¼ Xq1 − Xq3 , Λ ¼ 1

3
ðI − λ8Þ ¼ diagð0; 0; 1Þ, and

Λ0 ¼ 1
3
ð2I þ λ8Þ ¼ diagð1; 1; 0Þ. In case (i), the matrices of

couplings in the Yukawa basis read

C0V
Q ¼ −

3

2N
½X8

qRWQR
þ X8

qLWQL
�; ð8Þ

C0
Q þ ΔC0

Q ¼ C0
q1I −

3

2N
½X8

qRWQR
− X8

qLWQL
�; ð9Þ

where for C0V
Q the equations of motion imply vanishing

diagonal entries but do not imply vanishing off-diagonal
ones, C0

Q ¼ C0
q1I with C0

q1 defined below Eq. (2), and,

denoting by VQ the unitary rotations to the diagonal
Yukawa basis, WQ ¼ V†

QΛVQ. While in the models dis-
cussed here WQR

and WQL
are never simultaneously

present, this is possible in more general cases [24]. It is
now convenient to single out the diagonal (denoted by δ)
and off-diagonal (denoted by ω) entries inWQ ¼ δQ þ ωQ:

ðδQÞij ¼ δqiδij;
X
i

δqi ¼ 1;

ðωQÞii ¼ 0; jðωQÞijj2 ¼ δqiδqj ; ð10Þ

where the condition on δq follows from TrðWQÞ ¼ 1, the
one on ωQ from the vanishing of the principal minors for
the rank one matrix WQ, and δij in the first relation is the
usual Kronecker symbol. In (ii), the couplings are given by
Eqs. (8) and (9) by replacing C0

q1 → C0
q3 , ð−3Þ → ðþ3Þ,

and WQ → W0
Q ¼ V†

QΛ0VQ, while the two conditions readP
iδ

0
qi ¼ 2 and jðω0

QÞijj2 ¼ ð1 − δ0qiÞð1 − δ0qjÞ. Information
on the LH matrices can be obtained from the Cabibbo-
Kobayashi-Maskawa (CKM) matrix: V†

UL
VDL

¼ VCKM ≈ I
implies VUL

≈ VDL
and hence WUL

≈WDL
. Therefore, to a

good approximation we can define a single set of LH
parameters δL ¼ δuL ≈ δdL . In contrast, we have no infor-
mation about the RH matrices. In general, WUR

≠ WDR
so

that δuR , δdR are two independent sets. Corrections to the
diagonal axial couplings due to quark mixing are listed in
Table I. Corrections to the second condition for nucleo-
phobia can be always compensated by changing appropri-
ately the value of tan β to maintain Cp − Cn ≈ 0. However,
this is not so for the first condition, for which large
corrections would spoil Cp þ Cn ≈ 0. Actually, only for
(ii1) can a relatively small correction improve nucleopho-
bia, and this is because in this case C0

s , which determines
the sign of δs in Eq. (3), is negative (C0

s ¼ −s2β), rendering
possible a tuned cancellation −0.50δ0d3R þ 2jδsj ≈ 0. Thus,
nucleophobia generically requires quark Yukawa and PQ
charge matrices approximately aligned (for recent attempts
to connect axion physics to flavor dynamics, see [25–27]).
Electrophobia.—Electrophobia can be implemented

exactly (at the lowest loop order) or approximately (modulo

TABLE I. Contributions from the quarks to E=N and correc-
tions to the nucleophobic axion couplings due to quark mixings.
The (off-diagonal) vector couplings C0V

q are equal in modulus to
the axial-vector ones.

EQ=N ΔC0
u ΔC0

d jC0
uji≠j jC0

dji≠j
ði1Þ −4=3þ 6s2β −δ1L −δ1L ωL ωL
ði2Þ −4=3þ 6s2β −δu1R −δd1R ωuR ωdR
(ii1) 2=3þ 6s2β 0 −δ0d3R 0 ω0

dR
(ii2) 8=3 − 6s2β −δ0u3R 0 ω0

uR 0
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lepton mixing corrections) by introducing an additional
Higgs doublet uncharged under the PQ symmetry and by
coupling it, respectively, to all the leptons or just to the
electron. However, electrophobia can also be implemented
without enlarging the Higgs sector at the cost of tuning a
cancellation between C0

e and a mixing correction. This
requires large lepton mixings and one fine-tuning. Given
that large mixings do characterize the lepton sector, at least
the first requirement is not unnatural. It is easy to verify that
in all the following cases a cancellation is possible: We can
assign the electron ðilÞ to the doublet in 2þ 1 or ðiilÞ to the
singlet, and in both cases we can consider ð12…Þl or
ð21…Þl structures and combine these possibilities with the
four quark cases. Moreover, for ðababÞl type of structures
electrophobia is enforced by a cancellation from LH
mixing, while for ðabbaÞl from RH mixing. All in all,
there are 2 × 2 × 4 × 2 ¼ 32 physically different astropho-
bic models. However, as regards the axion-photon cou-
pling, there are only four different values of E=N. They are
listed in Table II for four representative models.
Phenomenology of the heavy axion window.—We denote

as gaf ¼ Cfmf=fa the axion coupling to f ¼ p, n, e,
including corrections from mixing effects, and by gaγ ¼
α=ð8πfaÞðE=N − fγÞ the coupling to photons. The most
relevant astrophysical bounds are [13,14] as follows:
(a) jgaγj < 6.6 × 10−11 GeV−1 (95% C.L.) from the evo-
lution of HB stars [28]; (b) jgaej < 2.7 × 10−13 ð< 4.3 ×
10−13Þ (95% C.L.) from the shape of the WD luminosity
function [29] (from RG evolution [30]); (c) g2ap þ g2an <
3.6 × 10−19 from the SN1987A neutrino burst duration [20]
—large uncertainties in estimating SN axion emissivity
[31,32] prevent assigning a reliable statistical significance
to this limit; (d) structure-formation arguments also provide
hot DM (HDM) limits on the axion mass: In benchmark
models, ma ≲ 0.8 eV [13,33,34]. However, nucleophobic
axions are also pionphobic, and the main thermalization
process ππ → πa is then suppressed, relaxing the HDM
bound. This implies that large-volume surveys like
EUCLID [35] cannot probe astrophobic axions.
Themain results for astrophobic axions are summarized in

Fig. 1 and compared to the KSVZ and DFSZ benchmarks.

The lines are broken at • marks, which indicate the upper
bounds on ma from SN1987A, and ⋆ marks, corresponding
to the combined SN and WD constraints for DFSZ models.
As anticipated, for the KSVZ and DFSZ models, axion
masses above ma ∼ 10−2 eV are precluded by the SN and
WD limits (dark brown bullet for theKSVZmodel and green
stars for the DFSZ model). For astrophobic axions, the SN
and WD bounds get significantly relaxed [they cannot
evaporate completely because of the contribution δs in
Eq. (3) to gaN]. We obtain ma < 0.20 eV for M1 and M2
(blue bullets),ma < 0.25 eV for M3, andma < 0.12 eV for
M4 (red bullets).
Searches with helioscopes.—Helioscopes are sensitive to

gaγ , which is not particularly suppressed in astrophobic
models. The solid black line in Fig. 1 shows the present limits
from the CERN Axion Solar Telescope (CAST) [36], while
the dotted black lines show the projected sensitivities of next-
generation helioscopes. While the improvement in mass
reach will be limited for the Troitsk Axion Solar Telescope
Experiment (TASTE) [37] and BabyIAXO [38], we see that
IAXO [15,39] and its upgrade IAXOþ [20] will be able to
cover the whole interesting region up to ma ∼ 0.2 eV.
Flavor violation.—The strongest limits on FV axion

couplings come from Kþ → πþa [40]. Comparing the
model prediction with the current limit [41] gives

BKþ→πþa ≃ 10−2
�

ma

0.2 eV

�
2

ω2
l2 ≲ 7.3 × 10−11; ð11Þ

where ω2
l2 ¼ jω12j2 ¼ δ1Lδ2L, δd1Rδd2R for ði1;2Þ and ω2

l2 ¼
jω0

32j2 for (ii1), while in (ii2) the branching ratio vanishes

TABLE II. Contributions of the leptons and total values of E=N
in four representative models, selected by the (arbitrary) choice
that the electron couples to H̃1. The numerical values of C0

e are
given in parentheses, and the corrections ΔC0

e can come from RH
or LH mixings.

EL=N E=N C0
e ΔC0

e

M1: ðiÞ þ ðilÞ 2 − 6s2β 2=3 −s2βð−2=3Þ þδe1
M2: ðii1Þ þ ðilÞ 2 − 6s2β 8=3 −s2βð−2=3Þ þδe1
M3: ðii2Þ þ ðiilÞ −4þ 6s2β −4=3 s2βð1=3Þ −δ0e3
M4: ðii1Þ þ ðiilÞ 4 − 6s2β 14=3 −s2βð−2=3Þ þδ0e3

FIG. 1. Axion-photon coupling jgaγ j for the astrophobic models
in Table II as a function of ma. The DFSZ-I,II (respectively, with
E=N ¼ 8=3, 2=3) and KSVZ benchmarks are also shown for
comparison.
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(see Table I). For models (i1;2), CKM-like entries in VdL;R

would yield ω2
12 ≳ 10−8 saturating the limit. This implies

that NA62, which is expected to improve the limit by a
factor of ∼70 [42,43], can probe these models (the
explorable “flavor window” corresponds to the vertical
magenta line in Fig. 1). For (ii1), assuming CKM-like
mixings the result would exceed the limit Eq. (11) by 6
orders of magnitude, so that this case is rather unrealistic. If
we allow for only two Higgs doublets, electrophobic
models necessarily have FV axion couplings to leptons.
The strongest limits come from searches for μ → eγa
[44,45]. They yield fa=ωeμ ≳ 2 × 109 GeV, which implies
ma ≲ 2.7 × 10−3=ωeμeV. Recalling that ωeμ ¼

ffiffiffiffiffiffiffiffiffi
δeδμ

p
and

that δe ∼Oð1Þ is needed to cancel C0
e, we need to impose

δμ ≲ 10−4 to avoid overconstraining the large mass win-
dow. This implies δτ ∼Oð1Þ, from which we can predict
Bτ→ea ≃ 7 × 10−6ðma=0.2 eVÞ2, about 3 orders of magni-
tude below the present bound [46].
Axion DM in the heavy mass window.—For

ma ∼ 0.2 eV, the misalignment mechanism cannot fulfill
Ωa ≃ΩDM. In postinflationary scenarios, if NDW > 1
[16,17], an additional contribution from topological defects
can concur to saturate ΩDM. This requires an explicit PQ
breaking to trigger DW decays and a fine-tuning not to
spoil the solution to the strong CP problem. For NDW ¼ 1,
a contribution to Ωa can come from axion production via
parametric resonance in the oscillations of the axion field
radial mode [18], in which case fa ≲ 1018 GeV is needed.
In both cases, the lower values of fa allowed by the
astrophobic models can help to match the required
conditions.
Stellar cooling anomalies.—Estimates for anomalous

star energy losses [19,20] can be more easily accommo-
dated in astrophobic axion models. Reference [20] finds the
best-fit point for extra axion cooling gaγ ∼ 0.14 ×
10−10 GeV−1 and gae ∼ 1.5 × 10−13, which is disfavored
in the DFSZ model but is comfortably within the allowed
parameter space of the astrophobic axion.
Conclusions.—We have discussed a class of DFSZ-like

axion models with generation-dependent PQ charges that
allows relaxation of the SN1987A bound on gaN and the
WD and RG limit on gae and to extend the viable axion
mass window up to ma ∼ 0.2 eV. This scenario is charac-
terized by compelling connections with flavor physics.
Complementary information for direct axion searches can
be provided by experimental searches for FV meson and
lepton decays, and, conversely, the discovery of this type of
astrophobic axion would provide evidence that the quark
Yukawa matrices are approximately diagonal in the inter-
action basis, conveying valuable information on the SM
flavor structure. While we have restricted our analysis to
PQ charge assignments which do not forbid any of the SM
Yukawa operators, it would be interesting to relax this
condition and explore the extent to which the PQ symmetry

could play a role as a flavor symmetry in determining
specific textures for the SM Yukawa matrices.
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