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Abstract. This paper contributes to the generalization of Rademacher’s differentiability
result for Lipschitz functions when the domain is infinite dimensional and has nonabelian
group structure. We introduce an infinite-dimensional analogue of Carnot groups that are
metric groups equipped with dilations (which we call metric scalable groups) admitting
a dense increasing sequence of finite-dimensional Carnot subgroups. For such groups, we
show that every Lipschitz function has a point of Gâteaux differentiability. As a step in
the proof, we show that a certain σ-ideal of sets that are null with respect to this sequence
of subgroups cannot contain open sets. We also give a geometric criterion for when such
Carnot subgroups exist in metric scalable groups and provide examples of such groups.
The proof of the main theorem follows the work of Aronszajn [Aro76] and Pansu [Pan89].
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1. Introduction

Rademacher’s theorem states that Lipschitz maps from Rn to R are differentiable almost
everywhere. This result has far-reaching consequences in Geometric Measure Theory and has
been generalized in many ways over the past few decades. In the case of considering domains
more general than Rn, there have been two distinct branches. On the one side, extensions
of Rademacher’s theorem have been studied in infinite-dimensional vector spaces, where
there does not exist a Lebesgue-like measure. On the other side, there has been interest in
removing the vector-space assumption but preserving the structure of metric measure space.
Extensions to more general target spaces have also been considered, but is not the focus of
this paper.
Our goal is to extend the theorem to domains that are nonabelian and infinite dimensional.

We will concentrate on R-valued functions, although the results will hold for more general
targets like RNP Banach spaces. We now quickly review previous results, discuss the issues
present in both branches, and provide some references.
For the case of Banach space domain X, derivatives of a function f are linear mappings.

However, in infinite-dimensional case there are two ways this may be interpreted. A function
is Gâteaux differentiable at x0 ∈ X if there exists a linear function T : X → R satisfying

T (v) = lim
t→0

f(x0 + tv)− f(x0)

t

for every v ∈ X. Instead, a function is Fréchet differentiable at x0 if the map T satisfies

f(x0 + v) = f(x0) + T (v) + o(‖v‖) as ‖v‖ → 0.

Thus, for Gâteaux differentiability, the rate of convergence as t → 0 can depend on v
whereas it only depends on ‖v‖ for Fréchet differentiability. Fréchet differentiability clearly
implies Gâteaux differentiability, but the opposite does not hold in general in the infinite
dimensional setting. In fact, Lipschitz functions f : X → R always have points of Gâteaux
differentiability whereas they may lack any point of Fréchet differentiability [Aro76].
In infinite-dimensional settings, one also needs to find a good notion of “almost every-

where”. One can reinterpret Rademacher’s theorem as stating that the nondifferentiability
points lie in the σ-ideal of Lebesgue null sets. Thus, one aims to prove that the nondifferen-
tiability points of Lipschitz functions lie in some suitable σ-ideal N . To guarantee at least
one point of differentiability, the σ-ideal N should not contain open sets. Results of this type
have been found for both Gâteaux differentiability and Fréchet differentiability, although the
Fréchet differentiability results are far harder and less broad [Aro76, Man73, LP03, Pre90].
When considering domains without a linear structure, one typically works in a metric mea-

sure space where “almost everywhere” has natural meaning. But resolving what a derivative
means becomes more involved, and one requires some additional structure on the domain.
For general metric spaces, one needs a collection of Lipschitz charts —which may not, in gen-
eral, exist— to differentiate the given function f against as it was done by Cheeger in [Che99].
Other works expanding on this theory of differentiation include [BL18, CK09, EB16, Sch16].
In the special case of Carnot group domains, there are in addition group structure as well
as a family of scaling automorphism. This allows us to define a derivative as the limit of
rescaled difference ratios converging to a homomorphism as it was done by Pansu in [Pan89].
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This paper seeks to bridge the infinite-dimensional framework with the Carnot group set-
ting. Specifically, we will define infinite-dimensional variants of Carnot groups and consider
Gâteaux differentiability in this context. We will show that if G is a metric group with a
family of dilations (or metric scalable group, as we will call them) and has a dense collection
of finite-dimensional Carnot subgroups, then there is a nontrivial σ-ideal N so that the
Gâteaux non-differentiability points of any Lipschitz function f : G → R form an element
in N .
We remark that there have been previous studies of infinite-dimensional variants of Carnot

groups. Notably, in [MR14], the authors defined so-called Banach homogeneous groups and
showed that Lipschitz functions from R to these groups are almost everywhere differentiable
in the notion of Pansu. Metric scalable groups include these groups as special cases, but
they also contain other examples.
Our investigations leave open several natural questions. Most notably, one can ask how

small the points of Fréchet nondifferentiability of Lipschitz functions are for metric scalable
groups. Even in Banach space domains, this problem is very hard and depends on fine
geometric properties of the norm, and so we leave this problem for the future. One can also
ask if there are infinite-dimensional variants of Cheeger differentiability. Here, the question
becomes more subtle as the differentiability charts must take value in an infinite-dimensional
Banach space for which there is no canonical choice. Finally, one would like to know when
a metric scalable group is generated by its finite-dimensional subgroups. Specifically, are
there geometric properties (geodicity, for example) that tell us when this is the case?
We begin by introducing the notion of scalable group that is the underlying structure of

the metric groups with which we will be concerned.

Definition 1.1 (Scalable group). A scalable group is a pair (G, δ), where G is a topological
group and δ : R × G → G is a continuous map such that δλ := δ(λ, ·) ∈ Aut(G) for all
λ ∈ R \ {0},
(1.2) δλ ◦ δµ = δλµ, ∀λ, µ ∈ R,
and δ0 ≡ eG, where eG is the identity element of G.

Property (1.2) can be rephrased as follows: for every p ∈ G, the map δ(·)(p) : (R\{0}, ·)→
Aut(G) is a homomorphism. Hence it follows that δ1 is the identity map of G.
In an obvious way, in the setting of scalable groups, one can consider the notion of scalable

subgroups; a subgroup H of a scalable group (G, δ) is called a scalable subgroup if G if
δλ(H) = H for all λ ∈ R \ {0}. We denote then H < G. In order to talk about Lipschitz
functions, we will endow these groups with metrics that make the dilation automorphisms
δλ metric scalings in the following sense.

Definition 1.3 (Metric scalable group). A metric scalable group is a triple (G, δ, d) where
(G, δ) is a scalable group and d is an admissible left-invariant distance on G such that

d(δt(p), δt(q)) = |t|d(p, q), ∀ t ∈ R.

By admissible, we mean that the metric induces the given topology.
Every Carnot group naturally has structure of a scalable group, where by Carnot group

G we mean a simply connected Lie group whose Lie algebra Lie(G) is equipped with a



DIFFERENTIABILITY ON INFINITE-DIMENSIONAL CARNOT GROUPS 5

stratification Lie(G) = V1 ⊕ · · · ⊕ Vs. The stratification is unique up to an isomorphism,
see [LD17], and it defines a family of dilations on G. Indeed, one considers the Lie group
homomorphisms corresponding to the Lie algebra scalings defined by δ∗λ(X) = λkX for
X ∈ Vk and λ ∈ R \ {0}. Such a group can be metrized as a metric scalable group, and
the metric is unique up to biLipschitz equivalence. Vice versa, we say that a scalable group
(G, δ) has a Carnot group structure if there exists a Carnot group that is isomorphic to G
as a topological group and whose dilations given by the stratification coincide with δ.
Given a group structure with a dilation, we can define derivatives as done by Pansu

[Pan89]. First, for any g ∈ G, let Lg : G → G be the left multiplication operator. As
mentioned before, in the infinite-dimensional case, we need to take care of the distinction
between Gâteaux and Fréchet differentiability. Here, we define Gâteaux differentiability.

Definition 1.4 (Gâteaux differentiability). Given two scalable groups G and H, a map
f : G → H is Gâteaux differentiable at a point p ∈ G if, as λ → 0, the maps f̂p,λ :=

δ 1
λ
◦L−1

f(p) ◦ f ◦Lp ◦ δλ pointwise converge to a continuous homomorphism from G to H. We
denote this map by Dfp and it is called the Gâteaux differential of f at p.

Notice that if Dfp exists, then it is 1-homogeneous in the sense that Dfp(δλ(u)) =
δλ(Dfp(u)) for all λ ∈ R and u ∈ G.
We now introduce a notion requiring that our groups, which are possibly infinite dimen-

sional, are generated by finite-dimensional Carnot subgroups. This will be needed to show
that the σ-ideal we define later is not trivial.

Definition 1.5 (Filtration by Carnot subgroups). We say that a scalable group G is filtrated
by Carnot subgroups if there exists a sequence (Nm)m∈N of scalable subgroups of G such that
each Nm has a Carnot group structure, Nm < Nm+1, and G is the closure of ∪m∈NNm. In
this case, we say that the sequence (Nm)m∈N is a filtration by Carnot subgroups of the scalable
group G.

We have now all the necessary data to give the definition of infinite-dimensional Carnot
group.

Definition 1.6. We call a complete metric scalable group that admits a filtration by Carnot
subgroups an infinite-dimensional Carnot group.

Necessarily, a metric scalable group that admits a filtration by Carnot subgroups is sep-
arable. Note that an infinite-dimensional Carnot group G cannot be equal to its filtration
∪m∈NNm unless G = Nm for some m ∈ N. Indeed, each Nm ⊆ G is nowhere dense and
hence the union ∪m∈NNm is of first category in G. We define next what it means for a set
to be null (that is, it lies in our σ-ideal).

Definition 1.7 (Filtration-negligible). Given a filtration (Nm)m∈N by Carnot subgroups of
a scalable group G, we say that a Borel set Ω ⊆ G is (Nm)m-negligible if Ω is the countable
union of Borel sets Ωm such that

volNm(Nm ∩ (gΩm)) = 0, ∀m ∈ N,∀g ∈ G,
where volNm denotes any Haar measure on Nm.
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We can now state the main theorem of this paper, which is the following generalization
of Aronszajn’s differentiability result [Aro76], and the one of Pansu [Pan89].

Theorem 1.8. Let G be an infinite-dimensional Carnot group. If f : G→ R is a Lipschitz
map, then there exists a Borel subset Ω ⊆ G that is (Nm)m-negligible for every filtration
(Nm)m∈N by Carnot subgroups of G and such that for every p /∈ Ω the map f is Gâteaux
differentiable at p.

Notice that the above statement is meaningful already within the class of metric scalable
groups. However, be aware that a scalable group may not admit any filtration (for example,
if the group is not separable), in which case the above theorem has no content, e.g., one can
take Ω = G. Nonetheless, there are large classes of scalable groups that admit filtrations (see
Proposition 1.10 below for a general criterion and Section 5 for more examples). The first
thing to clarify is that, as soon as there is one filtration, the whole scalable group cannot be
negligible, as the next proposition states.

Proposition 1.9. If (Nm)m∈N is a filtration by Carnot subgroups of an infinite-dimensional
Carnot group G and Ω ⊆ G is a Borel (Nm)m-negligible set, then Ω has empty interior.

As mentioned before, this allows us to conclude that, for groups admitting at least one
filtration by Carnot subgroups, every Lipschitz function f : G → R has at least one point
of Gâteaux differentiability.
Finally, we would like to have geometric conditions that tell us when our group admits

filtrations by Carnot subgroups. For a scalable group G define its first layer as

V1(G) := {p ∈ G : t ∈ R 7→ δt(p) is a one-parameter subgroup},
where by one-parameter subgroup we mean that for all t, s ∈ R,

δt+s(p) = δt(p)δs(p).

Note that if p ∈ V1(G), then δr(p) ∈ V1(G) for all r ∈ R, since
δt+s(δr(p)) = δtr+sr(p) = δtr(p)δsr(p) = δt(δr(p))δs(δr(p)),

We say that a set A ⊆ G generates G as a scalable group or simply that A generates G if G is
the closure of the group generated by {δt(a) : a ∈ A, t ∈ R}. Note that V1(G) is completely
analogous to the generating first layer of a finite-dimensional Carnot group. Moreover, the
following proposition holds.

Proposition 1.10. Let G be a scalable group. If G admits a filtration by Carnot subgroups
then V1(G) generates G as a scalable group. Vice versa, if G is nilpotent, V1(G) is separable,
and V1(G) generates G as a scalable group, then G admits a filtration by Carnot subgroups.

We point out that the nilpotency assumption in the previous proposition cannot be re-
moved, since there exist scalable groups with generating first layer that do not admit fil-
trations (see Proposition 5.11). However, not every metric scalable group having filtrations
is nilpotent, as shown in Proposition 5.10. We will discuss this relation in more detail in
Section 2.
Relying on the result of Siebert, it is rather straightforward to show that scalable groups

having Carnot group structure are exactly those scalable groups that are locally compact
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and have generating first layer (see Theorem 2.14 and the proof of Proposition 2.2). There-
fore, keeping Proposition 1.10 in mind, our definition for infinite-dimensional Carnot groups
(Definition 1.6) appears in this sense to be a natural non-locally compact generalization of
Carnot groups.
We begin by proving Proposition 1.10 in Section 2. The crucial observation is that any

nilpotent group generated by finitely many elements of V1(G) has structure of a Carnot
group. In Section 3 we make a closer study of filtration-negligible sets and prove Proposition
1.9. Section 4 is devoted to the proof of Theorem 1.8 and finally in Section 5 we give examples
and introduce a class of metric scalable groups that admit filtrations by Carnot subgroups.

2. Carnot groups generated

The aim of this section is to prove the following proposition, which easily implies Propo-
sition 1.10.

Proposition 2.1. Let G be a scalable group. The following are equivalent:

i) G admits a filtration by Carnot subgroups;
ii) there exists a sequence (an)n ⊆ V1(G) such that {an}n∈N generates G as a scalable

group and the group generated by {a1, . . . , am} is nilpotent for every m ∈ N.

The challenging part is to prove that ii) implies i). In the core of the argument there is
the following result, which we state as a proposition.

Proposition 2.2. Let (G, δ) be a scalable group that is generated by x1, . . . , xr ∈ V1(G),
with r ∈ N. If G is nilpotent, then it has structure of a Carnot group.

We give now a proof of Proposition 2.1 using Proposition 2.2 and devote the rest of the
section for the proof of Proposition 2.2.

Proof of Proposition 2.1. Assume first that (Nm)m is a filtration by Carnot subgroups of G
and denote by nm the corresponding Lie algebras. Since the groups (Nm)m are Lie subgroups
of each others, we may define inductively a basis {e1, . . . , eim} for V1(nm) as an extension
of the basis for V1(nm−1). By Chow-Rashevskii theorem, the set {exp(e1), . . . , exp(eim)}
generates Nm as a scalable group, and since ∪mNm is dense in G we may take (exp(en))n
as the desired sequence.
Next, let (an)n∈N ⊆ V1(G) be the sequence given by ii). This sequence generates a dense

subgroup of G, and choosing Nm to be the scalable group generated by {a1, . . . , am} gives
G a filtration by Carnot groups by Proposition 2.2. �

We begin by fixing the notation in Section 2.1. Analogously to Definition 1.1, one can
consider Q-scalable groups for which the dilation automorphism is defined on the rationals:
δ : Q × G → G. In Section 2.2 we prove that if G is a nilpotent Q-scalable group of step
s that is generated by finitely many elements, then G(s) has structure of finite-dimensional
Q-vector space. Here G(s) is the last element of the lower central series of the nilpotent
group G. Some of the simple commutator identities that we use are proved in Appendix A.
In Section 2.3 we use the result of Section 2.2 to show that under the assumption that

G is a nilpotent scalable group generated by finitely many elements, the last layer G(s) is
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a real finite-dimensional topological vector space, and in particular it is locally compact.
Consequently, see Theorem 2.11, also G is locally compact. The proof of Proposition 2.2 is
concluded by the result of Siebert (Theorem 2.14), which says that any connected, locally
compact, contractible group is a positively gradable Lie group. Namely, we find a gradation⊕
t>0 Vt of the Lie algebra Lie(G) such that V1 generates Lie(G), and hence

⊕
t>0 Vt is a

stratification of G.

2.1. Notation. For a group G and elements g, h ∈ G we define the group commutator by

[g, h] := ghg−1h−1.

The elements of lower central series are defined by G(1) = G and G(k) is the group generated
by [G,G(k−1)]. We say that G is nilpotent of step s if G(s+1) = {e} but G(s) 6= {e}. Notice
that in this case G(s) is an abelian subgroup of G. We denote by Z(G) the center of G.
We follow the terminology of [Khu98] and define recursively commutators of weight k

for k ∈ N in the variables x1, x2, . . . as formal bracket expressions. The letters x1, x2 . . .
are commutators of length one; inductively, if c1, c2 are commutators of weight k1 and k2,
then [c1, c2] is a commutator of weight k1 + k2. We also call the commutator of the form
[x1, [x2, . . . , [xk−1, xk] . . .]] a simple commutator of x1, . . . , xk.
During this section, it is useful to keep in mind the following lemma. We remark that

in [Khu98] the definition of commutator is related to our notation by [a, b]Khu = [a−1, b−1].
However, since in the following lemma the generating set can equivalently be taken sym-
metric, it applies in our case without modifications.

Lemma 2.3 (Lemma 3.6(c) in [Khu98]). Let G be a group and M ⊆ G a subset of G. If
M generates G as a group, then G(k) is generated by simple commutators of weight ≥ k in
the elements m±1, m ∈M .

We also write down the definition of vector space to ease the discussion later on.

Definition 2.4. Let K be a field. A K-vector space is an abelian group G equipped with
an operation σ : K×G→ G satisfying

(i) σ(q, σ(p, g)) = σ(qp, g)
(ii) σ(q, g)σ(p, g) = σ(q + p, g)
(iii) σ(1, g) = g
(iv) σ(q, g)σ(q, h) = σ(q, gh),

for all q, p ∈ K and g, h ∈ G. We denote the map σ(q, ·) by σq.

2.2. Q-scalable groups. In this section, G will always denote a nilpotent Q-scalable group
of step s with dilations δt, generated by x1, . . . , xr ∈ V1(G). We will show that the last
element G(s) of the lower central series admits a structure of finite-dimensional Q-vector
space.

Lemma 2.5. Let m ∈ N and y ∈ G(k) be a simple commutator of k elements of V1(G) for
some k ∈ {1, . . . , s}. Then δm(y) = hym

k for some h ∈ G(k+1).
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Proof. The proof is by induction on k. If k = 1, then δm(y) = ym since t 7→ δt(y) is a
one-parameter subgroup. Assume that the claim holds for k − 1 and let y ∈ G(k). Now
y = [x,w], where x ∈ V1(G) and w ∈ G(k−1) is a simple commutator of k − 1 elements of
V1(G). Hence

δm(y) = [δm(x), δm(w)] = [xm, zwm
k−1

],

where z ∈ G(k). By Lemma A.1 and Corollary A.3, we get

δm(y) = h1[xm, z][xm, wm
k−1

] = h1[xm, z]h2[x,w]mm
k−1

= h[x,w]m
k
,

where h = h1[xm, z]h2 ∈ G(k+1). �

Lemma 2.6. The abelian group G(s) is a Q-vector space with the scalar multiplication
σ n
m

(z) := δ−1
m (znm

s−1
). Moreover, if z = [x,w] ∈ G(s) with x ∈ V1(G) and w ∈ G(s−1), then

σq(z) = [δq(x), w].

Proof. If the step s = 1, the group G(s) = G and the Q-vector space structure is given
by the dilation automorphisms δ : Q × G → G, as the maps t 7→ δt(xi) are one-parameter
subgroups.
For step s ≥ 2, let first z ∈ G(s) be a simple commutator of s elements of V1(G). In

particular, z = [x,w], where x ∈ V1(G) and w ∈ G(s−1) is a simple commutator of s − 1

elements of V1(G). Define σ : Q×G(s) → G(s) for simple commutators by

σq([x,w]) = [δq(x), w].

If z is a product of simple commutators z1, . . . , zk ∈ G(s), we set

σq(z1 · · · zk) = σq(z1) · · ·σq(zk).

By Lemma 2.3, this is enough to define the map σ for all z ∈ G(s).
We show next that

σ n
m

(z) = δ−1
m (znm

s−1
),

which proves that the map is well defined. Let first z = [x,w], where x ∈ V1(G) and
w ∈ G(s−1) is a simple commutator of s− 1 elements of V1(G) and q = n

m ∈ Q+, n,m ∈ N.
Lemma 2.5 gives us that

δm(σq([x,w])) = [δm(δn/m(x)), δm(w)] = [xn, hwm
s−1

] = [xn, wm
s−1

],

where h ∈ G(s) ⊆ Z(G). Since [x,w] ∈ Z(G) as well, we get by iterating Corollary A.2 that

δm(σq([x,w])) = [x,w]nm
s−1

= znm
s−1
.

If q ∈ Q−, we replace x by x−1 in the above calculation as δ−q(x) = δq(x
−1) and use

Lemma A.4, which gives
[x−1, w] = [x,w]−1,

since now [x−1, [w, x]] = eG.
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If z ∈ G(s) is a product of simple commutators z1, . . . , zk ∈ G(s),

δm(σq(z1 · · · zk)) = δm(σq(z1)) · · · δm(σq(zk))

= znm
s−1

1 · · · znms−1

k

= (z1 · · · zk)nm
s−1

= znm
s−1

since zi ∈ Z(G) for all i.
Finally, let z = [x,w] be such that x ∈ V1(G) and w is an arbitrary element of G(s−1).

Then, by Lemma 2.3 there exist simple commutators v1, . . . , vl of length s − 1 such that
w = v1 · · · vl. By Corollary A.2,

σq([x, v1 · · · vl]) = σq([x, v1] · · · [x, vl]) = σq([x, v1]) · · ·σq([x, vl])
= [δq(x), v1] · · · [δq(x), vl] = [δq(x), v1 · · · vl].

It remains to check that the map σ : Q × G(s) → G(s) satisfies the conditions (i)–(iv) in
the Definition 2.4. Condition (iv) is true by construction. The conditions (i) and (iii) follow
from the fact that δ : (Q∗, ·)→ Aut(G) is a group homomorphism:

δqp = δq ◦ δp and δ1 = id,

so
σq(σp([x,w])) = [δq ◦ δp(x), w] = [δqp(x), w] = σqp([x,w])

and
σ1([x,w]) = [δ1(x), w] = [x,w].

Condition (ii) holds by Corollary A.2 and because t 7→ δt(x) is a one-parameter subgroup
for all x ∈ V1(G), namely

σq+p([x,w]) = [δq+p(x), w] = [δq(x)δp(x), w] = [δq(x), w][δp(x), w] = σq([x,w])σp([x,w]).

Hence the map σ defines a Q-vector space structure on G(s). �

Lemma 2.7. The group G(s) equipped with the Q-vector space structure of Lemma 2.6 is
finite dimensional.

Proof. The proof is by induction on the step s. If step s = 1, G = V1(G) is commutative and
the set {x1, . . . , xr} is a basis for V1(G). Suppose that the claim holds for any Q-scalable
group of step s− 1. Let K := G/G(s) and define

δ̂ : Q×K → K, δ̂q(gG
(s)) := δq(g)G(s).

This map is well defined since δ(G(s)) = G(s). Hence the group K is a Q-scalable group of
step s− 1 and it is generated by {x1G

(s), . . . , xrG
(s)}. Notice that

[xG(s), yG(s)]K = [x, y]GG
(s).

Let σ̂ : Q × K → K be the map from Lemma 2.6, which makes K(s−1) a Q-vector space.
By induction hypothesis, there exists a basis {k1, . . . , kl} of K(s−1). Let π : G → K be
the projection and choose ui ∈ π−1(ki) ⊆ G(s−1) for all 1 ≤ i ≤ l. We show that the set
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{[xi, uj ] : 1 ≤ i ≤ r, 1 ≤ j ≤ l} spans G(s). Since G(s) commutes, it is enough to show that
{[xi, uj ]} spans all the elements of the form [x, u], where x ∈ V1(G) and u ∈ G(s−1).
Fix z = [x, u] ∈ G(s) such that x ∈ V1(G) and u ∈ G(s−1). There exist q1, . . . , ql ∈ Q,

qi = ni
mi

, such that

π(u) = σ̂q1(k1) · · · σ̂ql(kl)

= δ̂−1
m1

((u1G
(s))n1m

s−2
1 ) · · · δ̂−1

ml
((ulG

(s))nlm
s−2
l )

= δ−1
m1

(u
n1m

s−2
1

1 ) · · · δ−1
ml

(u
nlm

s−2
l

l )G(s)

=: vG(s).

Hence there exists an element h ∈ G(s) ⊆ Z(G) such that u = vh. Therefore

[x, u] = [x, vh] = [x, v]

= [x, δ−1
m1

(u
n1m

s−2
1

1 ) · · · δ−1
ml

(u
nlm

s−2
l

l )]

= [x, δ−1
m1

(u
n1m

s−2
1

1 )] · · · [x, δ−1
ml

(u
nlm

s−2
l

l )]

= δ−1
m1

([xm1 , u
n1m

s−2
1

1 ]) · · · δ−1
ml

([xml , u
nlm

s−2
l

l ])

= δ−1
m1

([x, u1]n1m
s−1
1 ) · · · δ−1

ml
([x, ul]

nlm
s−1
l )

= σq1([x, u1]) · · ·σql([x, ul]),

where we used Corollaries A.2 and A.3. Since x ∈ V1(G), there exists q ∈ Q and i ∈
{1, . . . , r} such that x = δq(xi). Thus, by the second part of Lemma 2.6,

[x, u] = σq1([δq(xi), u1]) · · ·σql([δq(xi), ul])
= [δq1q(xi), u1] · · · [δqlq(xi), ul]
= σq1q([xi, u1]) · · ·σqlq([xi, ul]).

�

2.3. Proof of Proposition 2.2. Our first task is to prove that G is locally compact. To
show this, we consider the Q-scalable subgroup GQ of G that by definition is generated as a
group by {δt(xi) : t ∈ Q, 1 ≤ i ≤ r} =: VQ. Let σ : Q×G(s)

Q → G
(s)
Q be the continuous map

from Lemma 2.7 which makes G(s)
Q a k-dimensional Q-vector space for some k ∈ N. We use

the following facts about topological groups to show that G(s) is a finite-dimensional real
topological vector space.

Theorem 2.8 (Theorem 1.22 in [Rud91]). A Hausdorff topological vector space is locally
compact if and only if it is finite dimensional.

Lemma 2.9. Every locally compact subgroup of a topological group is closed.

Proof. This proof is adapted from a Mathematics Stack Exchange post by Eric Wofsey [hw].
Let H be a topological group and let K be a locally compact subgroup of H. Then K is
also a subgroup of H, and K is dense in K. We claim that every locally compact dense
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subset of a Hausdorff space is open. Indeed, let S be a locally compact dense subset of a
Hausdorff space X and take x ∈ S. Let also U be open in S such that x ∈ U , U ⊆ S, and
U is compact. Take then an open set V ⊆ X such that V ∩ S = U . Since X is Hausdorff,
U is closed in X and therefore V \ U is open in X. But

(V \ U) ∩ S = (V ∩ S) \ U = U \ U = ∅,
and hence V \ U = ∅ as S is dense in X. We conclude that V ⊆ S, which proves the claim.
Hence, by the previous claim K is open in K. Recall that every open subgroup of a

topological group is closed since the complement Kc of an open subgroup K is the union of
open sets; Kc = ∪x∈KcxK. Hence K is closed in K and therefore also in H. �

Lemma 2.10. G(s) equals to G(s)
Q and it is a k-dimensional real topological vector space.

Proof. Let {v1, . . . , vk} be a basis for G(s)
Q . We claim that since G(s)

Q ⊆ Z(G), we may assume

that each vi is of the form [xi, wi] with xi ∈ VQ and wi ∈ G(s−1)
Q . Indeed, recall that by

Lemma 2.3 any element of G(s)
Q is a product of simple commutators of elements of VQ of

weight s, which proves the claim. Let

W := {[δt1(x1), w1] · · · [δtk(xk), wk] | ti ∈ R},
which is a group by Corollary A.2 and since t 7→ δt(xi) is a one-parameter subgroup for each

i ∈ {1, . . . , k}. Now G
(s)
Q ⊆ W by definition of σ and W ⊆ G

(s)
Q by continuity of dilations.

We define σ̃ : R×W →W by

σ̃λ([δt1(x1), w1] · · · [δtk(xk), wk]) = [δλt1(x1), w1] · · · [δλtk(xk), wk].

This map is continuous and it defines an R-vector space structure on W : since σ̃ is a
continuous extension of σ, it is easy to show that σ̃ fulfills the conditions in Definition 2.4.
Hence W is a k-dimensional real topological vector space. Therefore, by Theorem 2.8 and
Lemma 2.9, W is closed and so W = G

(s)
Q . We conclude the proof by noting that G = GQ,

and hence G(s) = GQ
(s)

= G
(s)
Q , where the last equality follows form the continuity of the

group operation. �

The following statement on topological groups will allow us to conclude that G is locally
compact.

Theorem 2.11 ([MZ74] p. 52). If a topological group G has a closed subgroup H such that
H and the coset-space G/H are locally compact, then G is locally compact.

Lemma 2.12. Let (G, δ) be a nilpotent scalable group that is generated by x1, . . . , xr ∈ G
as a scalable group over R. Then G is locally compact.

Proof. The proof is again by induction on the step s. If s = 1, the group G is a real
topological vector space with basis {x1, . . . , xr} and hence locally compact by Theorem 2.8.
Assume that the claim holds for step s − 1 and consider K := G/G(s), which is generated
by x1G

(s), . . . , xrG
(s) with dilations δ̂t(xG(s)) := δt(x)G(s). Now K is indeed an R-scalable

topological group, since G(s) is a closed normal subgroup of G by Lemma 2.10. Hence K is
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locally compact by the induction hypothesis, and by Theorem 2.8 the group G(s) is locally
compact as well. Finally Theorem 2.11 proves the claim. �

To prove Proposition 2.2, we use the result of Siebert below.

Definition 2.13. Let G be a topological group. A continuous automorphism ζ of G is said
to be contractive if limn→∞ ζ

n(x) = eG for all x ∈ G. A group that admits a contractive
continuous automorphism is called contractible.

Theorem 2.14 (Corollary 2.4 in [Sie86]). A topological group G is a positively gradable
Lie group if and only if it is connected, locally compact and contractible. In particular, if
ζ ∈ Aut(G) is contractive, then the gradation

⊕
t>0 Vt given by ζ is such that

{X ∈ Lie(G) | (dζ − α id)X = 0} ⊆ V− ln |α|

Proof of Proposition 2.2. We proved in Lemma 2.12 that the group G is locally compact. It
is also connected, since the map γx : [0, 1]→ G, γx(t) = δt(x) is a continuous path between
eG and x for every x ∈ G. Additionally, the group G is contractible as the automorphisms
δt are contractive for all t ∈ (0, 1); for a fixed t ∈ (0, 1),

lim
n→∞

δnt (x) = lim
n→∞

δtn(x) = δ0(x) = eG

for all x ∈ G. Hence by Theorem 2.14 the group G is a Lie group and each δt, t ∈ (0, 1),
defines a positive gradation for Lie(G). We claim that, in order to prove that G admits a
structure of Carnot group, it is enough to find a gradation of Lie(G) such that V1 generates
the whole of Lie(G). Indeed, a stratification of a Lie algebra Lie(G) is equivalent to a positive
gradation whose degree-one layer generates Lie(G) as a Lie algebra.
Let us consider the gradation given by δ1/e. By Theorem 2.14,

{X ∈ Lie(G) | (dδ1/e −
1

e
id)X = 0} ⊆ V− ln(1/e) = V1.

Let x ∈ {x1, . . . , xr}. Since the map t 7→ δt(x), t ∈ R, is now a one-parameter subgroup of
a Lie group, there exists X ∈ Lie(G) such that

δt(x) = exp(tX)

for all t ∈ R. Additionally, on the one hand, since exp: Lie(G) → G is a global diffeomor-
phism,

log(δt(x)) = tX.

On the other hand

log(δt(x)) = log(δt(exp(X))) = log(exp(dδt(X))) = dδt(X).

Hence
dδ1/e(X) =

1

e
X

and X ∈ V1. Therefore log(xi) ∈ V1 for all i ∈ {1, . . . , r}. Notice that, for any Y ∈ Lie(G),
we have for some l ∈ N and il ∈ {1, . . . , r} that

exp(Y ) = δt1(xi1) · · · δtl(xil) = exp(t1 log(xi1)) · · · exp(tl log(xil)).
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Hence {log(x1), . . . , log(xr)} generates Lie(G) as a Lie algebra by the Baker-Campbell-
Hausdorff formula and V1 = span(log(x1), . . . , log(xr)). Thus the gradation given by δ1/e is
a stratification and G has structure of a Carnot group.
We still need to verify that the one-parameter family (δt)t∈R of Lie group automorphisms

are the Carnot group dilations given by the stratification. The Carnot group dilation of
factor t 6= 0 is by definition the unique map ζt ∈ Aut(G) such that

(2.15) dζt(X) = tkX for all X ∈ Vk,
and dζ0 is the zero map. Obviously dδ0 = 0, so consider the case t 6= 0. Recall that each Vk
is spanned by simple commutators of log(xi), i ∈ {1, . . . , r} that span the first layer. Since
dδt is a Lie algebra homomorphism, we get for these elements that

dδt([log(xik), . . . , [log(xi2), log(xi1)]]) = [dδt(log(xik)), . . . , [dδt(log(xi2)), dδt(log(xi1))]]

= [t log(xik), . . . , [t log(xi2), t log(xi1)]]

= tk[log(xik), . . . , [log(xi2), log(xi1)]].

By linearity of dδt we conclude that the maps dδt satisfy condition (2.15). Hence the scalable
group (G, δ) is a Carnot group and the dilations δt, t ∈ R, are the unique Carnot group
dilations given by the stratification. �

It would be interesting to find geometric conditions that allow us to conclude that V1(G)
generates G. Indeed, in the case of simply connected nilpotent Lie groups admitting dila-
tions, geodicity implies that the first layer generates the entire group since rectifiable curves
can be approximated by horizontal line segments. Thus, we make the following conjecture.

Conjecture 2.16. If G is a metric scalable group that is separable and nilpotent and its
distance is geodesic, then its first layer V1(G) generates G.

3. Negligible sets of metric scalable groups

In this section (G, d, δ) denotes a metric scalable group (according to Definition 1.3).
We begin by giving some auxiliary lemmas and then prove Proposition 1.9, which states
that filtration-negligible sets always have empty interior. After that we introduce another
notion of null-sets following [Aro76] and prove that it agrees with the definition of filtration-
negligible sets. This result is formulated in Theorem 3.6.

3.1. Elementary properties of metric scalable groups.

Lemma 3.1. For each v ∈ V1(G), v 6= e, the map t 7→ δt(v) is a homothetic embedding
from R to G.

Proof. Let c = d(0, δ1(v)) > 0. We claim that d(δα(v), δβ(v)) = c|α− β|. Indeed, as δt(v) is
a one parameter subgroup, we get by left-invariance that

d(δα(v), δβ(v)) = d(0, δβ−α(v)) = |β − α|d(0, v) = c|β − α|. �

Lemma 3.2. Let K ⊂ G be a totally bounded set and ε > 0. There exists δ > 0 so that

d(hk, k) < ε, ∀h ∈ B(0, δ), k ∈ K.



DIFFERENTIABILITY ON INFINITE-DIMENSIONAL CARNOT GROUPS 15

Proof. As K is totally bounded, there is a finite number of points {y1, ..., yn} ∈ G so
that K ⊆ ⋃n

j=1B(yj , ε/4). Choose δ small enough so that for any h ∈ B(0, δ), we have
max1≤j≤n d(yj , hyj) < ε/4. Now let k ∈ K and yi be so that d(k, yi) < ε/4. Then for any
h ∈ B(0, δ), we get

d(hk, k) ≤ d(hk, hyi) + d(hyi, yi) + d(yi, k) = 2d(yi, k) + d(hyi, yi) < ε,

where we used the left-invariance of the metric. �

Lemma 3.3. Let G be a complete metric scalable group. For every i ∈ N, let ψi : R→ G be
continuous such that ψi(0) = eG. Then for every non-empty open set U containing eG there
exists a sequence of positive numbers α1, α2, ... > 0 so that the map

φ :
∞∏
i=1

[0, αi]→ G

(t1, t2, ...) 7→ · · ·ψ2(t2)ψ1(t1)

is well defined and has range in U .

Proof. We may assume that U contains the unit ball at eG. Note that for each k ∈ N,
Kk := φ(

∏k
i=1[0, αi] × (0, 0, ...)) is a compact set in G. We can construct αi recursively.

First choose α1 > 0 small enough so that K1 ⊂ B(eG, 1/2). Now having chosen αi, we
choose αi+1 > 0 so that

sup
g∈Ki

sup
t∈[0,αi+1]

d(g, ψi+1(t)g) < 2−i−1.

This is possible by Lemma 3.2 and the fact that ψi+1(0) = eG is continuous at 0. Then each
sequence defining a φ(t1, t2, ...) is Cauchy and so the limit exists. The fact that the image
is in U also follows immediately. �

Here, ψi can be anything, but in the application of Lemma 3.3, we will take each ψi(t) to
be exp(t log(vi)) for some vi ∈ V1(G).

3.2. Non-negligibility of open sets: Proof of Proposition 1.9. Let (Nm)m∈N be a
filtration of G by Carnot groups. Assume for contradiction that an (Nm)m-negligible set Ω
contains an open non-empty set U .
For every m ∈ N, choose {vkm−1+1, ..., vkm} ⊂ V1(G) so that {v1, . . . , vkm} generate Nm

as a basis. Let ψi : R→ G be ψi(t) := exp(t log(vi)). With the above choice of U , let (αm)

and φ be as in Lemma 3.3. Notice that the maps φ̃m : Rkm → Nm, φ̃m(t1, t2, . . . , tkm) :=
ψkm(tkm) · · ·ψ2(t2)ψ1(t1), are diffeomorphisms.
Let then

φm := φ̃m|∏km
i=1

[0,αi]
.

Let µ be the measure on G that is the pushforward via φ of the probability measure on∏∞
i=1[0, αi] that is the product of the rescaled probability Lebesgue measure on each of the

[0, αi].
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Since φ has image contained in U , µ(U) = 1 and hence µ(Ω) = 1. However, we shall show
that µ(Ω) = 0, which will be our contradiction. Since the set Ω is (Nm)m-negligible, then
Ω = ∪m∈NΩm for some Ωm such that for each m,

volNm(Nm ∩ gΩm) = 0, ∀g ∈ G.(3.4)

It is enough to show that µ(Ωm) = 0 for any arbitrary m. For doing so, fix m ∈ N and let ν1

and ν2 denote the product probability measures (again with respect to the rescaled Lebsgue
probability measures) on C1 =

∏km
i=1[0, αi] and C2 =

∏∞
i=km+1[0, αi], respectively. Notice

that (φm)#(ν1) is a smooth measure on some open set of Nm and hence it is absolutely
continuous with respect to volNm . In conjunction with (3.4), we get for any t2 ∈ C2,∫

C1

χφ−1(Ωm)(t1, t2) dν1(t1) =

∫
C1

χΩm(φ(0̄, t2)φm(t1)) dν1(t1)

=

∫
C1

χφ−1
m (φ(0̄,t2)−1Ωm)(t1) dν1(t1)

= ν1(φ−1
m (φ(0̄, t2)−1Ωm))

= (φm)#(ν1)(Nm ∩ φ(0̄, t2)−1Ωm)

� volNm(Nm ∩ φ(0̄, t2)−1Ωm) = 0.

Thus, µ(Ωm) =
∫
C2

∫
C1
χφ−1(Ωm) dν1 dν2 = 0. �

Remark 3.5. Note that the statement of Proposition 1.9 makes sense for scalable groups
without any metric. Indeed, the notion of filtrations (and thus also negligibility) only relies
on the topology. Thus, it may be possible that the result is true for all scalable groups
although we have not verified this.

In the rest of this section we make a closer study of filtration-negligible sets of metric
scalable groups. Below we define an exceptional class of null sets analogously to [Aro76] and
prove that it is equivalent to our notion of filtration-negligible sets.

3.3. The exceptional class U . Let G be a scalable group with identity element denoted
by eG and let B(G) be the Borel sets of G. For every a ∈ V1(G), with a 6= eG set

U(a) := {A ∈ B(G) : ∀g ∈ G, |A ∩ (g · Ra)| = 0},
where we denote by Ra the image of the curve t ∈ R 7→ δta and by | · | the 1-dimensional
Lebesgue measure on the curve. In other words,

|A ∩ (g · Ra)| = |{t ∈ R : gδta ∈ A}|.
For every countable set I and {an}n∈I ⊂ V1(G) \ {eG}, define

U({an}n) := {A ∈ B(G) : A = ∪n∈IAn, An ∈ U(an)}.
Finally, set U to be the intersection of all U({an}n) among all dense sequences {an}n ⊆
V1(G) \ {eG}.
Recall a class of sets F is hereditary if A ⊂ B and B ∈ F implies that A ∈ F . The classes
U(a),U({an}n), and U are σ-additive, hereditary, and do not contain any open non-empty
set (see the theorem below). Moreover, we have the property:

{a′n} ⊆ {an} =⇒ U({a′n}) ⊆ U({an}).
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Theorem 3.6. Let G be a metric scalable group and let {an} ⊂ V1(G) \ {eG} be a dense
sequence such that the group Nm generated by {a1, . . . , am} is nilpotent for all m ∈ N. Then
a set Ω ⊆ G is in the class U({an}) if and only if it is (Nm)m∈N -negligible.

Note that by Proposition 2.2, each Nm in the theorem above is a Carnot group and the
statement makes sense. The proof of the theorem will be a straightforward consequence of
Proposition 3.12. The proof of Proposition 3.12 needs some preparation, and we postpone
it to the end of this section.

Lemma 3.7. Let A ⊂ G be a bounded Borel set and choose a v ∈ V1(G). Then the function

fA(x) = |A ∩ (x · Rv)|
is Borel.

Proof. Let R > 0 be arbitrary and let A denote the set of all A ⊆ B(0, R) that satisfy
the conclusion. We will prove that A contains the Borel sets of B(0, R). We first prove
that the open sets in B(0, R) are in A. Indeed, let A be open and t ∈ R. We will show
A′ = f−1

A ((t,∞)) is open.
As fA is nonnegative, we may suppose without loss of generality that t ≥ 0. Let g ∈

f−1
A ((t,∞)) and δ = fA(g) − t > 0. Let E = {s ∈ R : gδs(v) ∈ A}, which is a bounded set
by boundedness of A and Lemma 3.1. For each s ∈ E define d(s) = d(gδs(v), Ac), a positive
continuous function on E. We can choose ε > 0 small enough so that

E′ = {s ∈ R : d(gδs(v)) > ε},

satisfies |E′| > fA(g)− δ
2 .

Note that E′ is totally bounded. By Lemma 3.1, the set {gδs(v) : s ∈ E′} is the isometric
image of the totally bounded set E′ and so it also is totally bounded. Thus by Lemma 3.2,
there exists η0 > 0 so that

sup
h∈B(0,η0)

sup
s∈E′

d(hgδs(v), gδs(v)) < ε.

Since G is topological, there exists some η > 0 small enough so that B(g, η) ⊆ B(0, η0)g.
This then gives that

sup
h∈B(g,η)

sup
s∈E′

d(hδs(v), gδs(v)) < ε.

This shows that hδs(v) ∈ A when h ∈ B(g, η) and s ∈ E′ and so

fA(h) ≥ |E′| > fA(g)− δ

2
> t,

which proves B(g, η) ⊆ f−1
A ((t,∞)) and so f−1

A ((t,∞)) is open.
We now show that A is a monotone class of sets, which will prove that A contains all

Borel sets. Let {Ei} be an increasing sequence in A and E =
⋃
iEi. Then E ∩ (x · Rv) =⋃

i(Ei∩(x·Rv)), which is also an increasing family and so by monotone convergence theorem
we get

fE(x) = lim
i→∞

fEi(x).
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Thus, fE , the increasing pointwise limit of fEi , must be Borel and so E ∈ A. Similarly, let
{Ei} be a decreasing sequence in A and let E =

⋂
iEi. Then E∩(x ·Rv) =

⋂
i(Ei∩(x ·Rv)),

which is another decreasing sequence. As E1 is bounded, fE1(x) <∞ and so by dominated
convergence theorem we conclude fE(x) = limi→∞ fEi(x). Thus, E ∈ A, which proves the
monotonicity property of A. �

Lemma 3.8. Let A ⊆ G be any Borel set and v ∈ V1(G). Then the set

{g ∈ A : |A ∩ (g · Rv)| > 0}
is Borel.

Proof. Let An = A∩B(0, n). By monotone convergence theorem, the set in question is equal
to
⋃∞
n=0{g ∈ An : |An ∩ (g · Rv)| > 0} =

⋃∞
n=0(f−1

An
((0,∞)) ∩ An), which, by the previous

lemma, is a countable union of Borel sets. �

3.4. Null decomposition. Let G be a Carnot group with dimV1 = n and suppose G is
homeomorphic to Rm. We let X1, ..., Xn be the vector fields in Rm that are given by left
translation of a basis in V1.

Lemma 3.9. Let M be an analytic manifold in Rm of dimension less than m. Then for
volM -almost every p ∈ M , there exists an open neighborhood U ⊆ M of p and an index
i ∈ {1, ..., n} for which Xi(q) /∈ TqM for any q ∈ U .

Proof. Let k = dimM < m. For each i ∈ {1, ..., n}, let Ai = {p ∈ M : Xi(p) ∈ TpM},
which are closed subsets of M . We claim that A =

⋂
iAi has measure zero.

Suppose not. Let f : U → V be the inverse of an analytic chart map where U ⊂ Rk and
V ⊂ M . We pushforward the basis vector fields of Rk via f to get vector fields Y1, ..., Yk
that form a basis of TV . As f is analytic, these are analytic vector fields.
Note that Ai ∩ V are precisely the points of V for which Xi(p) is in the span of the

Yj(p)’s. This is the same as the being in the zero set of the function gi(p) = |Xi(p) −
P〈Y1(p),...,Yk(p)〉Xi(p)|2 where P is the orthogonal projection map onto the span of the Yj(p)’s.
Note that each gi is an analytic function as projection is a combination of matrix multipli-
cation and inverses. Thus, A is the zero set of the product function g = g1 · · · gk, also an
analytic function. Finally, we consider the function g◦f : U → R, another analytic function.
If A has positive measure, then f−1(A) has positive measure and so g ◦ f is identically zero
[Mit15]. This means A ∩ U = U . By definition of the Ai’s, this means U is an integral
manifold. We now derive a contradiction.
This means that TU contains the vector fields {Xi|U}. If vector fields X,Y are tangent to

U , then so is [X,Y ]. As {Xi} are tangent to U and generate all of Rm under Lie brackets,
this means that TxU = Rm for all x ∈ U . However, this is a contradiction as dimU = k < m.
We have established that Ac is a full measure open set. Let p ∈ Ac. Then p ∈ Aci for some

i. As Aci is open, there then exists an open neighborhood p ∈ U ⊆ Aci . This neighborhood
satisfies the conclusion of the lemma with Xi. �

Given a Borel set A ⊆ Rm and i ∈ {1, ..., n} we define

Ai := {p ∈ A : |A ∩ (p · RXi)| > 0}.
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By p · RXi, we mean the 1-dimensional R-flow of the vector field Xi that passes through
p ∈ Rm. Note that this is an analytic submanifold.
Given a word w written in the alphabet {1, ..., n}, we define Aw = (Aw′)i where w = w′i

and A∅ = A. Note that Aw ⊆ Aw′ . Let w denote the word 123 · · ·n, the concatenation of
all the letters. Define the word wk to be the k-fold concatenation of w (so wk is kn letters
long).

Lemma 3.10. If A ⊂ Rm is a measure zero set, then Awm = ∅.

Proof. Suppose otherwise. There then exists a point p ∈ Awm = (Aw′)n and so

|Aw′ ∩ (p · RXn)| > 0.

We let H1 denote the analytic manifold p · RXn, which has dimension 1. As Aw′ ⊆ Awm−1 ,
|Awm−1 ∩H1| > 0.
Now suppose we have a k-dimensional analytic manifold Hk that intersects Awm−k in a

positive measure set (based on the surface area of Hk). Thus, we can find a density point of
Awm−k ∩Hk satisfying the previous lemma, i.e., there exists a density point p of Awm−k ∩Hk,
an open neighborhood U ⊆ Hk of p, and an index i ∈ {1, ..., n} so that Xi /∈ TqHk for all
q ∈ U .
Since Awm−k ⊆ (Awm−k−1)1···(i+1), by definition of the set (Awm−k−1)1···(i+1), for any q ∈

Awm−k ∩Hk,
|(Awm−k−1)1···i ∩ (q · RXi)| > 0.

Since (Awm−k−1)1···i ⊆ Awm−k−1 , we get for all q ∈ Awm−k ∩Hk that

|Awm−k−1 ∩ (q · RXi)| ≥ |(Awm−k−1)1···i ∩ (q · RXi)| > 0.

Let Hk+1 =
⋃
q∈U (q ·RXi). As Xi(q) /∈ TpU , we conclude that Hk+1 is a k + 1-dimensional

analytic manifold and |Hk+1 ∩Awm−k−1 | > 0.
We repeat until we obtain an m-dimensional analytic manifold for which |Hm ∩ A∅| =
|Hm ∩ A| > 0. But since Hm has the same dimension as Rm, it follows that |A| > 0,
contradicting our assumption. �

Proposition 3.11. Let A ⊂ Rm be a Borel set of zero measure. Then there exists a
decomposition A = C1 ∪ ... ∪ Cn into Borel sets

Ci =
m−1⋃
k=0

(Awk1···(i−1)\Awk1···i)

so that for each i ∈ {1, ..., n},
|Ci ∩ (x · RXi)| = 0, ∀x ∈ Rm.

Proof. Let B1 = {p ∈ A∅ : |A∅ ∩ (p · RX1)| = 0}. Then A = B1 ∪ A1 where A1 and B1 are
both Borel by Lemma 3.8, and so

|B1 ∩ (p · RX1)| = 0, ∀p ∈ Rm.
By induction, we obtain a Borel decomposition

A = B1 ∪B12 ∪B123 ∪ ... ∪Bwm−11···(n−1) ∪Awm = B1 ∪ ... ∪Bwm−11···(n−1).
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Note that for every Bw′i,

|Bw′i ∩ (p · RXi)| = 0, ∀p ∈ Rm.

We take Ci =
⋃m−1
k=0 Bwk1···i to finish the proof of the proposition. �

Proposition 3.12. Let H be a subgroup of G with a Carnot structure generated by a1, ..., ak ∈
V1(G) and A ⊂ G be Borel. Then volH(H ∩ gA) = 0 for all g ∈ G if and only if
A ∈ U({a1, ..., ak}).

Proof. The backwards direction is clear by Fubini. We will prove the forwards direction.
Let H be homeomorphic to Rm. We will reuse the notation of the previous section where
for each Borel set E ⊂ G and word w, we define Ewi = {g ∈ Ew : |Ew ∩ (g · Rai)| > 0}.
Lemma 3.8 yields that these are Borel sets whenever E is. By construction, Ewi ∈ U(ai).
We claim that A = C1 ∪ ... ∪ Ck where Ci =

⋃k−1
j=0

Ä
Awj1···(i−1)\Awj1···i

ä
, from which the

proposition easily follows. To prove the claim, we observe that for any g ∈ A, we have by
assumption that volH(H ∩ g−1A) = 0. As eH ∈ H ∩ g−1A, by Proposition 3.11, there exists
some i so that

eH ∈
k−1⋃
j=0

Ä
(H ∩ g−1A)wj1···(i−1)\(H ∩ g−1A)wj1···i

ä
⊆

k−1⋃
j=0

Ä
g−1Awj1···(i−1)\g−1Awj1···i

ä
.

This means that g ∈ Ci. �

4. Differentiability of Lipschitz maps

We prove now our main result, Theorem 1.8. Notice that if f : G→ H is a Lipschitz map
between metric scalable groups for which Dfg exists for some g ∈ G, then it is Lipschitz as
a function from G to H, with the same Lipschitz constant as f .

Lemma 4.1. Let f : G → R be Lipschitz and (Nm)m∈N be a filtration of G by Carnot
subgroups. Then there exists an (Nm)m-negligible set Ω ⊂ G so that if p /∈ Ω then for
every Nm, the limit limλ→0 f̂p,λ(u) exists for all u ∈ Nm and the resulting map on Nm is a
homomorphism.

Proof. Fix Nm and let A denote the set of points p ∈ G for which the limit limλ→0 f̂p,λ(u)
does not exist or the limit map is not a homomorphism. We will show volNm(gA∩Nm) = 0
for all g. This will prove the lemma.
Fix a g ∈ G and let p ∈ gA ∩ Nm. If Fg(u) := f(g−1u) as a map defined on Nm,

then gp ∈ Nm is a nondifferentiability point of F . However, by Pansu’s theorem [Pan89],
F is differentiable almost everywhere with respect to the Haar measure on Nm. Thus,
volNm(gA ∩Nm) = 0, which proves the lemma. �

With the previous lemma we get our differentiability result.

Proof of Theorem 1.8. As the theorem is vacuous if G does not admit a filtration by Carnot
subgroups, we may assume that there is a filtration (Nm)m. By the previous lemma, Dfg
exists and is a homomorphism when restricted to any Nm for g outside of an (Nm)-negligible
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set. Take such a g. We first claim that Dfg exists on all of G. Indeed, this follows from the
fact that the maps

u 7→ n(f(gδ1/n(u))− f(g))

are uniformly Lipschitz and converge, by assumption, on the dense subset
⋃
mNm.

As Dfg is a homomorphism when restricted to every Nm, an easy density argument yields
that Dfg is also a homomorphism. This proves the theorem. �

5. Examples

In this final section we show that our derivative existence result does not generalize to
general metric scalable groups and provide a constructive way to define infinite-dimensional
Carnot groups. We start by constructing a metric scalable group G that does not admit
filtrations by Carnot groups. We also construct a Lipschitz function f : G → R2 that
is nowhere differentiable. We then introduce Lp-sums of metric spaces when the indexing
set is an abstract measure space. After that we restrict the discussion to `p-sequences
of topological groups equipped with left-invariant metrics, and prove that this object is a
topological group whenever p ∈ [1,∞) (see Proposition 5.3). Finally, we prove that an `p-
sum of Carnot groups is an infinite-dimensional Carnot group for every p ∈ [1,∞) and give
some detailed examples.

5.1. A nowhere differentiable function on a metric scalable group. An example of
metric scalable groups not admitting filtrations by Carnot subgroups is the group (R,+)

endowed with the metric dγ(x, y) = |x − y|γ and scaling δλ(x) = λ1/γx where γ = log 3
log 4 .

One can also construct a Lipschitz function f : G→ R2 that is not differentiable anywhere.
Indeed, let K ⊂ R2 be the Koch snowflake built from an equilateral triangle of sidelength
1. We can first define a map g from ([0, 1], dγ) to one side of the Koch snowflake so that,
for each k ∈ {0, 1, 2, 3}, g|[0,1] is equivalent to 3g[k/4,(k+1)/4] up to postcomposition with an
affine isometry.
We now prove nowhere differentiability of g. Recall that the derivative of g at x0 is the

pointwise limit of

hr(y) :=
g(x0 + r1/γy)− g(x0)

r
(5.1)

as r → 0. If g were differentiable, then hr must converge to a homomorphism R→ R2.
For every n ≥ 0, there exists some k ∈ {0, ..., 4−n − 1} such that x0 resides in [k4−n, (k+

1)4−n]. Then h3−n |[k−4nx0,k+1−4nx0] is equivalent to g up to postcomposition by an affine
isometry as 3ng|[k4−n,(k+1)4−n] is from self-similarity. Note that the length 1 interval [k −
4nx0, k+ 1− 4nx0] lies in [−1, 1]. As g is not affine, we then get that hr cannot converge to
a homomorphism and so g is not differentiable anywhere.
To extend g to a nowhere differentiable function f on all of G, one can simply “wrap” g

periodically around K so that f |[n,n+1] = f |[n+3,n+4] for all n ∈ N.
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5.2. Lp- and `p-sums. Let Ω = (Ω, µ) be a measure space, e.g., the natural numbers N
with the counting measure. Fix p ∈ [1,∞). For each ω ∈ Ω fix a pointed metric space Xω =
(Xω, dω, ?ω). We first define the collectionM(Ω, (Xω)ω) of measurable sequences as the set
of those sequences (xω)ω∈Ω with xω ∈ Xω such that the function ω ∈ Ω 7→ d(xω, ?ω) ∈ R is
measurable. Then we define

Lp((Xω)ω) := {(xω)ω ∈M(Ω, (Xω)ω) :

∫
dω(xω, ?ω)pdµ(ω) <∞} .

and further Lp((Xω)ω) := Lp/N with

N := {{(xω)ω ∈M(Ω, (Xω)ω) :

∫
dω(xω, ?ω)pdµ(ω) = 0} .

We write Lp(Ω;X) for Lp((Xω)ω) if Xω = X for all ω ∈ Ω.

The distance function on Lp((Xω)ω) between (xω)ω∈Ω, (yω)ω∈Ω ∈ Lp((Xω)ω) is

d((xω)ω∈Ω, (yω)ω∈Ω) :=

Å∫
dω(xω, yω)pdµ(ω)

ã1/p

.

Proposition 5.2. The set Lp((Xω)ω) is naturally a pointed metric space, which is geodesic
if all Xω are geodesic.

Proof. The fact that d is a metric for Lp((Xω)ω) follows from the usual proof of Minkowski
inequality for the norm ‖(xω)ω∈Ω‖p := d((xω)ω∈Ω, (?ω)ω∈Ω).

Let us then show that Lp((Xω)ω) is geodesic if Xω is geodesic for each ω ∈ Ω. Let
(xω)ω, (yω)ω ∈ Lp((Xω)ω). Now for all ω ∈ Ω there exists a curve γω : [0, 1]→ Xω taking xω
to yω such that d(xω, yω) = L(γω). We may assume that γω are parametrized by constant
speed.

Let γ : [0, 1] → Lp((Xω)ω), γ(t) = (γω(t))ω. The curve γ is well defined, since for all
t ∈ [0, 1],

d(γ(t), (xω)ω)p =

∫
d(γω(t), xω)pdµ(ω) ≤

∫
d(yω, xω)pdµ(ω) = d((yω)ω, (xω)ω)p

and so

d(γ(t), (?ω)ω) ≤ d(γ(t), (xω)ω) + d((xω)ω, (?ω)ω) ≤ d((yω)ω, (?ω)ω) + 2d((xω)ω, (?ω)ω) <∞.

Let then 0 = t0 < t1 < . . . < tn = 1 be a partition of [0, 1]. Since γω are geodesics with
constant speed,

d(γω(ti−1), γω(ti)) = (ti − ti−1)d(xω, yω)
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for all ω ∈ Ω and i ∈ {1, . . . , n}. Therefore

n∑
i=1

d(γ(ti−1), γ(ti)) =
n∑
i=1

Å∫
d(γω(ti−1), γω(ti))

pdµ(ω)

ã1/p

=
n∑
i=1

Å∫
(ti − ti−1)pd(xω, yω)pdµ(ω)

ã1/p

=
n∑
i=1

(ti − ti−1) d((xω)ω, (yω)ω)

= d((xω)ω, (yω)ω).

Hence

L(γ) = inf
P

(
∑
ti∈P

d(γ(ti−1), γ(ti))) = d((xω)ω, (yω)ω),

where the infimum is taken over all partitions P of [0, 1]. The proof is complete. �

Notice that if each Xω admits a group structure we may define a group operation for
Lp((Xω)ω) element wise. We focus now on `p-sums of groups. For a countable family
{Gn}n∈N of groups we define `p((Gn)n) by

`p((Gn)n) := {(xn)n∈N : xn ∈ Gn,
∑
n∈N

d(xn, en)p <∞},

(xn)n · (yn)n := (xnyn)n.

We write `p(G) for `p((Gn)n) if Gn = G for all n ∈ N.

Proposition 5.3. Let (Gn)n∈N be a sequence of topological groups metrized by left-invariant
metrics and let p ∈ [1,∞). Then `p((Gn)n∈N) is a topological group.

Proof. We first show that the right translations are continuous. Fix (bn)n ∈ `p((Gn)n∈N),
that is, bn ∈ Gn and

∑∞
n=1 |bn|p < ∞, where |bn| := d(bn, e) and d is the distance on Gn.

Let (an,j)n be a sequence in `p((Gn)n∈N) converging to some (an)n. Fix some ε > 0. We
take N large enough so that

∑∞
n=N+1 |bn|p < ε. Then, being N fixed and being the right

translations Rb1 , . . . , RbN continuous, we take J large enough so that for all j > J and all
n = 1, . . . , N

d((an,j)n, (an)n) < ε(5.4)
d(Rbn(an,j), Rbn(an))p < ε/N.(5.5)
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Notice that consequently
∞∑

n=N+1

d(an,jbn, anbn)p ≤
∞∑

n=N+1

(d(an,jbn, an,j) + d(an,j , an) + d(an, anbn))p

=
∞∑

n=N+1

(|bn|+ d(an,j , an) + |bn|)p

≤ 2pd((an,j)n, (an)n) + 2p+1
∞∑

n=N+1

|b|

≤ 2p · 3ε,
where we used the trick∑

(a+ b)p ≤
∑

2p max{a, b}p ≤ 2p(
∑

ap +
∑

bp).

Then for all j > J

d(R(bn)n(an,j)n, R(bn)n(an)n) =
∞∑
n=1

d(an,jbn, anbn)p

=

(
N∑
n=1

d(Rbn(an,j), Rbn(an))p
)

+
∞∑

n=N+1

d(an,jbn, anbn)p

≤ Nε/N + 2p · 3ε = (1 + 3 · 2p)ε.

Therefore, the multiplication in `p((Gn)n∈N) is continuous since, if (an,j)n → (an)n and
(bn,j)n → (bn)n, as j →∞, then using left invariance we have

d((an,j)n(bn,j)n, (an)n(bn)n) ≤ d((an,j)n(bn,j)n, (an,j)n(bn)n) + d((an,j)n(bn)n, (an)n(bn)n)

≤ d((bn,j)n, (bn)n) + d(R(bn)n(an,j)n, R(bn)n(an)n)→ 0.

We then show that the inversion is also continuous. Let (an,j)n → (an)n. Take N large
so that

∑∞
n=N+1 |an|p < ε. Since the inversions in G1, . . . , GN are continuous, there exists

J such that for all j > J and all n = 1, . . . , N ,

d((an,j)n, (an)n) < ε(5.6)
d(a−1

n,j , a
−1
n )p < ε/N.(5.7)

Then for all j > J

d((a−1
n,j)n, (a

−1
n )n) =

N∑
n=1

d(a−1
n,j , a

−1
n )p +

∞∑
n=N+1

d(an,ja
−1
n , e)p

≤ Nε/N +
∞∑

n=N+1

(d(an,ja
−1
n , an,j) + d(an,j , an) + d(an, e))

p

≤ ε+ 2pd((an,j)n, (an)n) + 2p+1
∞∑

n=N+1

|an|p

≤ (1 + 3 · 2p)ε.
�
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Remark 5.8. In a similar manner as for Proposition 5.3, one can also show that

c0((Gn)n∈N) := {(xn)n ∈ `∞((Gn)n∈N) : lim
n→∞

d(xn, eGn) = 0}

is a topological group.

5.3. Examples of metric scalable groups. Using the previous subsection, we can build
examples of metric scalable groups starting with arbitrary sequences of Carnot groups
equipped with homogeneous distances.

Proposition 5.9. Let (Gn)n∈N be a sequence of metric scalable groups and let p ∈ [1,∞).
Then `p((Gn)n∈N) is a metric scalable group. Moreover, if each Gn is complete and admits
a filtration by Carnot subgroups, then `p((Gn)n∈N) is complete and admits a filtration by
Carnot subgroups.

Proof. We define the scaling map δ : R × `p((Gn)n) → `p((Gn)n) element wise using the
scalings of each scalable group Gn. By the previous proposition, `p((Gn)n) is a topological
group. Hence it remains to see that δ satisfies the conditions of a scalable group as in
Definition 1.1 and that the metric is homogeneous with respect to δ, which is straightforward
to check. The proof for the fact that `p((Gn)n∈N) is complete assuming that each Gn is
complete, is analogous to the proof of completeness of the classical `p spaces. Assume then
that (Nn

m)m is a filtration by Carnot subgroups for each Gn. Then letting

Nm = N1
m ×N2

m−1 × · · · ×Nm
1 × {e}N

for each m ∈ N defines a filtration by Carnot subgroups for `p((Gn)n∈N). Indeed, each
Nm is isomorphic to a finite product of Carnot groups, and the union ∪mNm is dense in
`p((Gn)n∈N) as the set of finite sequences is dense in `p((Gn)n∈N). �

Proposition 5.9 gives us a simple way to construct many different noncommutative and
infinite-dimensional metric scalable groups that admit filtrations by Carnot subgroups. In-
deed, we may consider examples where each Gn is a Carnot group, like Gn = H1 or Gn = Hn,
where Hn is the n-th Heisenberg group equipped with a homogeneous distance. We stress
that the last result does not require any bound on the nilpotency step of (Gn)n∈N, in case
they are Carnot groups. In fact, an interesting example is when Gn is the free Carnot group
of step n and rank 2, which we denote by F2,n. We state this example as a result.

Proposition 5.10. Even though `2((F2,n)n) is not nilpotent, it is a metric scalable group that
is complete and admits a filtration by Carnot groups. Moreover, the subset V1(`2((F2,n)n))
generates `2((F2,n)n) and is separable.

Proof. The space `2((F2,n)n) is a metric scalable group by Proposition 5.9 and the filtration
is simply given by

Nm = F2,1 × · · · × F2,m.

The first layer V1(`2((F2,n)n)) is given by `2((V1(F2,n))n) as we defined the dilation map on
`2((F2,n)n) component wise. Indeed, a sequence (xn)n ∈ `2((F2,n)n) is a one-parameter
subgroup if and only if each xn ∈ F2,n is a one-parameter subgroup. The fact that
V1(`2((F2,n)n)) generates follows from Proposition 1.10. Moreover, V1(`2((F2,n)n)) = `2((V1(F2,n))n)
is separable since now each V1(F2,n) is separable. �
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The property of having a filtration by Carnot subgroups is not, however, stable under
taking subgroups, as shown by the following example in `2((F2,n)n). It also proves that the
assumption of nilpotency cannot be removed in Proposition 1.10.

Proposition 5.11. There exists a scalable subgroup of `2((F2,n)n) that is generated by its
first layer but which does not admit a filtration by Carnot subgroups.

Proof. Denote for every n ∈ N by X(n)
1 , X

(n)
2 the two generators of F2,n. Let x = ( 1

nX
(n)
1 )n

and y = ( 1
nX

(n)
2 )n and consider the (non-nilpotent) scalable group H generated by x and y.

Now both x, y ∈ V1(H) but H does not admit a filtration by Carnot groups. Indeed, any
scalable group having Carnot group structure is generated by its first layer, but the only
nilpotent subgroups of H generated by one-parameter subgroups are one-dimensional. �

If H1 is the first Heisenberg group, then by Proposition 5.9, for all p ∈ [1,∞), the space
`p(H1) is a metric scalable group admitting filtration by Carnot subgroups. The space
`2(H1) has the extra property of being a Banach Lie group. Indeed, it can be modelled on
`2(R2) + `1(R), following [MR14]. However, we shall show that there are metric scalable
groups, e.g. `1(H1), admitting filtrations by Carnot groups that are not Banach manifolds.
Hence the notion of metric scalable group strictly extends the one of Banach homogeneous
group as defined in [MR14] and studied later in [MPS17].

Proposition 5.12. The topological group `1(H1) is not a Banach Lie group.

Proof. Suppose by contradiction that `1(H1) is a Banach Lie group and let Z be the center
of H. One sees that

Z = {(exp(αiZi))i : αi ∈ R},
where Zi is the center of the ith Heisenberg Lie algebra. As Z is a closed subgroup of a
Banach Lie group, Z is a Banach Lie group as well. However, recall that the center of the
Heisenberg group is isometric to (R,

√
dE) and therefore

`1(Z) = {(an)n∈N :
∑
n

»
|an| <∞} = `1/2(R).

Hence also `1/2(R) has a structure of a Banach Lie group and its Lie algebra is a Banach
space. Since `1/2(R) is a vector space, the exponential map exp: Lie(`1/2(R))→ `1/2(R) is
a linear isomorphism. But this is a contradiction as `1/2(R) is not even locally convex (to
be proven) and so not a normed space.
That `1/2(R) is not locally convex follows simply from the fact that the convex hull of any

ball is unbounded. Indeed, consider any ball around the origin

B(0, r) = {(a1, a2, ...) :
∑
n

»
|an| < r}.

Then xn = (r/2n, r/2n, ..., r/2n, 0, ...) is in the convex hull of B(0, r) (where the first n
coordinates are nonzero), but

d(xn, 0) = n

…
r

2n
=

…
nr

2

diverges as n→∞. �
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Appendix A. Some useful commutator identities

Lemma A.1. Let G be a group and x, y, z ∈ G. Then
[xy, z] = [x, [y, z]][y, z][x, z] and [z, xy] = [z, x][z, y][[y, z], x] = h[z, x][z, y],

where h is a product of commutators of x, y, z of weight ≥ 3.

Proof. For the first equation,

[y, z][x, z] = [y, z]xzx−1z−1 = [[y, z], x]xyzy−1z−1zx−1z−1 = [[y, z], x][xy, z].

Since [a, b] = [b, a]−1,
[xy, z] = [x, [y, z]][y, z][x, z].

Using this and the identity [a, b] = [b, a]−1,

[z, xy] = [z, x][z, y][[y, z], x].

The last equation follows by reordering the terms, which produces some higher order com-
mutators into h. �

Corollary A.2. If [y, z] ∈ Z(G), then

[xy, z] = [x, z][y, z] and [z, xy] = [z, x][z, y].

Corollary A.3. Let n,m ∈ N. Then
[xn, ym] = h[x, y]nm,

where h is a product of commutators of x and y of weight ≥ 3.

Proof. The proof is by iterating Lemma A.1 for nm times and reordering the terms, which
produces some additional higher order commutators into h. �

Lemma A.4. Let G be a group, x, y ∈ G. Then
[x−1, y] = [x−1, [y, x]][x, y]−1.

Proof. The statement follows from

[x−1, [y, x]] = x−1yxy−1x−1x[y, x]−1 = [x−1, y][x, y].

�
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