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Abstract. Recognizing the activity performed by users is important
in many application domains, from e-health to home automation. This
paper explores the use of a fine-grained indoor localization system, based
on ultra-wideband, for activity recognition. The user is supposed to wear
a number of active tags. The position of active tags is first determined
with respect to the space where the user is moving, then some position-
independent metrics are estimated and given as input to a previously
trained system. Experimental results show that accuracy values as high
as ∼ 95% can be obtained when using a personalized model.
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1 Introduction and Related Work

Automatic recognition of user’s activity is useful in numerous application do-
mains. In e-health, activity recognition can be used to understand if the user is
characterized by a sedentary lifestyle or to automatically assess his/her training
sessions [1]. In home automation, services and applications can be customized ac-
cording to user’s activities [2]. In industrial environments, automatic recognition
of activities can be used to implement smart control systems or to put advanced
safety policies in place [3]. From a more general perspective, activity recognition
is considered a key element of context-aware computing, as it provides relevant
information about the user and the surrounding environment [4].

Given its relevance, research on activity recognition has been rather prolific
during the last years, both from the point of view of adopted technologies and
inference methods. In particular, a wide range of sensing mechanisms has been
explored to collect information about the user, from 3D cameras to smart tex-
tile [5, 6]. However, the vast majority of proposed approaches relies on wearable
devices equipped with inertial sensors like accelerometers and gyroscopes [7].
Sensors attached to users’ limbs are used to collect information about their raw
movements and then, at a higher level, to determine which activity is currently
performed [8].



In a seminal paper, Bao and Intille used five biaxial accelerometers to recog-
nize physical activities [9]. Devices were worn at the right wrist, right hip, left
arm, left tight, and right ankle, whereas classification was carried out using the
following methods: decision table, k-Nearest Neighbors, C4.5 decision tree, and
Naive Bayes. The methods that provided the best results were decision trees and
k-Nearest Neighbors.

In [10], a single triaxial accelerometer positioned on the belt was used to
recognize some activities of daily living. Classification was carried out using two
methods: Naive Bayes and k-Nearest Neighbors. A leave-one-person-out strategy
was adopted for validation: two users were involved in the training phase, and
five other users were recruited for the evaluation. The set of considered activities
included: jump, run, walk, sit, and the transitions from sitting to standing, and
from standing to kneel (and viceversa).

A comparison of different architectural solutions and the effects of parame-
ters of operation in activity recognition is presented in [11]. Solutions based on
both a single sensor and multiple sensors were evaluated. As far as classifica-
tion methods are concerned, Neural Network achieved the best accuracy results.
However, if also the training costs are considered, decision trees were identified as
one the best methods for the reference scenario. Additional experiments showed
that solutions based on multiple sensors are able to achieve better recognition
accuracy, even when using light-weight algorithms. Also the effects of sampling
rate on recognition accuracy were analyzed. Results showed that sampling rates
greater than 20 Hz may provide limited benefits.

Fusion of data originating from multiple accelerometers was studied also
in [12]. Data from two accelerometers significantly improves the accuracy of
activity recognition with respect to the use of a single device. Using three or
more sensors, on the contrary, seems to bring only limited benefits. When two
accelerometers are used, ankle and wrist were identified as particularly favorable
positions.

Given their popularity, smartphones and smartwatches have been frequently
considered as suitable sensing devices for recognizing human activities. In addi-
tion, smartphones and smartwatches are characterized by reduced invasiveness
and thus provide the opportunity to make the recognition system more accept-
able for the end users [13, 14]. Smartphones, for instance, were used to distinguish
falls from other activities of daily living [15]. A wrist-worn accelerometer proved
to be extremely effective in detecting gait segments, especially when used in com-
bination with a model tailored to the user [16]. Also the strength of the WiFi
signal received by a smartphone was used as a means for activity recognition [17].

This paper contributes to existing literature by showing that an indoor local-
ization system characterized by high resolution can be used for activity recog-
nition. Differently from the vast majority of known methods, the proposed ap-
proach does not rely on inertial sensors. The accurate position of a set of devices
worn by the user is first estimated and then used to extract some characteriz-
ing features. Experimental results show that, for the considered set of activities,
average accuracy values as high as ∼ 95% can be obtained. For some users the



Fig. 1. The global reference system and the set of computed distances.

method is able to obtain perfect, or close to perfect, results. A prototypical
implementation of the method based on IEEE 802.15.4-2011 Ultra-WideBand
(UWB) is also described.

2 Method

The proposed activity recognition method is based on the idea of observing
the user’s movements by means of a fine-grained indoor localization system.
A number of UWB-enabled devices with known position, called anchors, are
placed in the environment. Anchors are able to determine the distances between
themselves and tags, devices that are free to move in the considered space. Dis-
tances between tags and anchors are used to determine the tags’ position, e.g.
using a multi-lateration algorithm. We suppose that the user carries (wears) a
number of tags, which could represent smart devices like fitness tracking wrist-
bands, smartshoes, smartwaches, smartglasses or a simple smartphone carried
in a pocket. The basic idea is that the position of these devices (tags) in the
environment can be used to infer the activity currently performed by the user.
In particular this is achieved by means of three steps: first, the position of tags
in the environment1 is used to compute a set of metrics that do not depend on
the absolute position of the user; second, a set of features is extracted from these
metrics; third, a previously trained machine learning algorithm is fed with fea-
ture values to determine which activity is currently performed. The three steps
are detailed in the following.

2.1 From global positions to local metrics

Let us call A1, A2, ..., An the n anchors, and T1, T2, ..., Tm the m active tags worn
by the user. Anchors periodically estimate the distances between themselves and

1 We will also use the term global to indicate the environment-based reference system,
as it is common to all the users.
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Fig. 2. Overview of the method

all the tags via UWB. The n distances between A1, ..., An and the ith tag
are used to derive the position of the latter in the global reference system. The
position of the ith tag in the global reference system at time t and its components
are indicated as gi(t) = {gXi (t), gYi (t), gZi (t)}. Global positions are not directly
used to infer the activity of the user, as they would make the activity recognition
process dependent on the specific environment. To make the recognition process
as general as possible, the position of tags in the global space is converted in a set
of metrics that do not depend on the absolute coordinates of the devices. First, a
set of differences between position vectors are calculated: dij(t) = gj(t)−gi(t) =
{gXj (t) − gXi (t), gYj (t) − gYi (t), gZj (t) − gZi (t)} with i, j ∈ 1..m, j 6= i. Then the
following position independent metrics (PIMs) are calculated:

Lij(t) = |dij(t)| with i, j ∈ 1..m, j > i

and

Θijk = arccos(
dji(t) · djk(t)

|dji(t)||djk(t)|
) with i, j, k ∈ 1..m, i 6= j, k 6= j, k > i

.
Hereafter, the two sets of PIMs will be indicated as L-PIMs and Θ-PIMs

respectively. Figure 1 shows an exemplificative scenario with four anchors and
four tags. The dashed lines represent the distances between one of the tags and
the anchors placed in the environment (for the sake of image clarity only the
distances between the head-mounted device and the anchors are shown). These
distances are used by the indoor localization system to estimate the position of
the tags in the global reference system. The four tags define a general tetrahe-
dron, with the tags placed at the vertices. L-PIMs correspond to the length of
the edges of the tetrahedron (the six continuous lines in the example), whereas
Θ-PIMs are equal to the angles on the faces of the tetrahedron. The total num-
ber of angles is equal to twelve, but the space of freedoms, for tetrahedra, is
five-dimensional [18]. Thus, the set of Θ-PIMs is not completely independent.
Similar considerations may be made when the number of tags is smaller/greater
than four.

2.2 Feature extraction

The set of PIMs is first preprocessed using a low-pass Butterworth filter. Pro-
cessed signals are then segmented using a window with fixed duration R. Let



Fig. 3. Volunteer wearing four tags (head, right wrist, left pocket, right ankle)

us indicate the kth window concerning Lij as Wij(k) (i.e. Lij(t) with t ∈
[(k − 1)R, kR)). A set of functions is used to extract F characteristic indica-
tors from Wij(k), for every k. In summary, a vector vL(k), the feature vector,
is produced with period R. The same is done with Θ-PIMs, thus generating an
analogous vΘ(k) feature vector.

2.3 Inferring activities

The vector of feature values (vL(k), vΘ(k), or both) is given as input to a pre-
viously trained machine learning classifier. For the training phase we explored
two possible solutions, one based on a single model for all users and the other
based on a personalized model. Both solutions have advantages and drawbacks:
the first is characterized by a simpler training phase, as it does not require
user-dependent customization; the second relies on a training phase that is user
specific, but it is expected to provide better results.

An overview of the method is provided in Figure 2.

3 Prototype and Data Collection

A prototype of the system has been implemented using a Decawave MDEK1001
kit [19]. The kit is composed by a set of Decawave DWM1001-DEV boards, and a
real-time localization application. Each DWM1001-DEV board is equipped with
a DW1000 IEEE 802.15.4-2011 UWB transceiver and a Nordic nRF52832 BLE
microcontroller (based on ARM Cortex M4). The Bluetooth connection was used
only to define a network and to set the parameters of operation. Four boards
were used as anchors and attached to the walls at the corners of a square area



User ID Age (yr) Weight (kg) Height (m) Gender (M/F)

1 24 79 1.72 M
2 24 55 1.66 F
3 25 76 1.87 M
4 33 74 1.72 M
5 24 80 1.80 M
6 25 80 1.80 M
7 25 77 1.82 M
8 26 45 1.43 F
9 24 80 1.82 M
10 23 66 1.75 M

Table 1. Ten users participated in the data collection phase
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Fig. 4. 3D trajectories of the four worn devices when the volunteer is walking in circle

of 3.60 m x 3.60 m (corresponding to a ∼ 13 m2 room). Anchors were placed
2 meters above the ground. Four other boards were used as tags and attached
at the head, right wrist, left pocket, and right ankle of the user. Figure 3 shows
a volunteer wearing the prototype. Another board operating as a listener was
attached to a common PC, where the position of tags was logged. The position of
tags was estimated with 10 Hz frequency, the maximum allowed by the current
version of the kit.

Ten volunteers participated in the data collection phase. Their main charac-
teristics are listed in Table 1. Each volunteer was asked to perform the following
activities: standing, sitting, walking in circle, laying on the floor, and crouch-
ing. Each activity was performed for 60 s. The activities of all volunteers were
video recorded. This was done to simplify the subsequent manual labeling of ac-
quired traces and to document the whole process in case of unexpected results.
Figure 4 shows a 3D representation of the walking activity of one of the users
(approximately 12 seconds, corresponding to an almost-complete circle). The
trajectory of the ankle-worn device is not always visible because of positioning
errors producing negative values on the Z axis.

All traces were segmented using 3 s windows (R = 3 s). Traces were then
manually annotated assigning one of the following labels to each window: stand-



Mean Max-Min Min AAV Std.Dev. RMS MCR Max MAD

L12 X X X
L13 X X X X X X
L14 X X X X X
L23 X X X
L24 X X X X X X
L34 X X X X X X X

Table 2. Selected features

ing, sitting, walking, lying, crouching, transition, and invalid. The first five labels
were used as ground truth during the training and evaluation phases. The tran-
sition label was used to identify the time windows containing multiple activities
(e.g. when the user stops walking and starts lying on the floor). The last label
was used to mark a limited number of segments containing data to be discarded
(in few occasions, one of the tags suffered from short disconnections).

Labeled traces are publicly available at the following address:
URL will be provided in case of publication

4 Results

The following set of statistical and signal processing functions was considered
for the feature extraction phase: mean, max-min, min, average absolute varia-
tion (AAV), standard deviation, root mean square (RMS), mean crossing rate
(MCR), max, mean absolute deviation (MAD). AAV is a function successfully
used in similar contexts [20], and it is defined as follows:

AAV =
1

N

N∑
i=1

|ai+1 − ai|

where ai is the ith observed value and N is the number of values in the considered
window.

First, we evaluated the performance of the method using only the set of L-
PIMs. With m = 4, a vector vL with 54 features was produced every R seconds
(the size of vL is equal to the number of functions multiplied by the number
of different L-PIMs). The number of features was then reduced to 30 using the
RELIEFF method [21]. The final set of features is shown in Table 2.

Transitions between different activities are not considered in this study, as
we are interested in understanding which is the performance of the method in
steady conditions. However, an approach like the one proposed in [22] can be
possibly incorporated.

The reduced set of features was given as input to a number of machine learn-
ing methods (those available in the MATLAB classification learner toolbox).
Evaluation was carried out according to ten-fold cross validation. The dataset
was divided in ten disjoint subsets. Nine subsets were used to train the machine



Classification method Accuracy (%)

ENS 93.0
SVM 92.6
KNN 92.0

Table 3. Results obtained by some well-known classifiers

Fig. 5. Confusion matrix

learning method, and the left out subset was used to evaluate the method on pre-
viously unseen data. The process was repeated ten times using all the different
subsets for the evaluation phase and then averaging the results. Table 3 shows
the obtained accuracy values for the top three performing methods: Ensemble
Subspace KNN (ENS), Support Vector Machine (SVM), k-Nearest Neighbors
(KNN). The three classifiers provided very close results with 92-93% accuracy.
The confusion matrix for the set of considered activities is shown in Figure 5.

Such results were obtained training the system using the data of all users.
This approach corresponds to building a global model of users’ activities. We
then evaluated the possible benefits introduced by a personalized model. To
this aim, we performed the feature selection, training, and evaluation phases
again using the data of a single user at a time. Also in this case ten-fold cross
validation was used to avoid overfitting. Results are reported in Table 4. When
using a personalized model, accuracy values are generally better then the ones
obtained by the global model. On average, the personalized approach is able to
obtain accuracy values that are close to ∼ 95%. For some users, accuracy values
are equal, or very close to, 100%. In summary, the use of a personalized model
has a positive impact on the proposed method.

We then repeated the same analysis using the set of Θ-PIMS. In particular,
six different Θ values were computed and given as input to the same classification
algorithms (the number of degrees of freedom, as mentioned, is equal to five, but
we decided to include one more value to mitigate the effects of measurement



Accuracy (%)
User ID ENS SVM KNN

1 96.8 95.7 95.7
2 97.9 97.9 97.9
3 96.7 97.8 97.8
4 100.0 97.7 98.9
5 98.8 97.7 98.8
6 86.2 87.5 83.7
7 96.7 94.4 95.6
8 95.7 96.8 96.8
9 93.7 95.0 95.0
10 85.6 87.8 84.4

Mean 94.8 94.8 94.4

Table 4. Accuracy for the different users when using a personalized model

errors). The number of features was again limited to 30 using RELIEFF. The
set of selected features is similar to the one produced for L-PIMs, with mean,
min, RMS, max, and AAV the most popular functions (selected 6, 6, 6, 5, and 3
times respectively). Also in this case we considered both the approach based on
the definition of a global model and the one based on a personalized model. With
the global model, the following accuracy values were obtained by ENS, SVM,
and KNN respectively: 91.3%, 91.2%, and 91.9%. With the personalized model,
the obtained accuracy values were equal to 94.4%, 93.9%, and 94.0% Results
obtained with Θ-PIMs are thus approximately equal to the ones obtained with
L-PIMs. Finally, the same analysis was carried out using both L- and Θ-PIMs
(but still limiting the set of features to the best 30). With the global model, the
following accuracy values were obtained by ENS, SVM, and KNN respectively:
92.4%, 93.4%, and 93.8%. With the personalized model, the obtained accuracy
values were equal to 94.6%, 95.5%, and 94.9%, thus achieving slightly better
final results.

5 Conclusion

Recent advancements in communication technologies, e.g. IEEE 802.15.4-2011
UWB, not only make fine-grained localization of devices and people possible, but
also provide the opportunity to devise new applications or to improve existing
ones. This paper shows that an indoor localization system can be successfully
used for automatic activity recognition. To be as general as possible, the proposed
approach relies on a set of metrics and features that are not dependent on the
position of the user in the environment. Experimental results show that excellent
accuracy values can be achieved, especially when using a model tailored to the
user. Obviously, it is also possible to combine PIMs with the user’s position in
the environment (already provided by the indoor localization system), to further
improve the recognition process. For instance, if the user is in the kitchen the set



of possible activities could be expanded/reduced with respect to the one used in
this paper (e.g. adding cooking and removing lying).
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