
Fluid structure of 1D spinful Fermi gases with

long-range interactions

E Colella1, M L Chiofalo2, M Barsanti3, D Rossini2, R Citro4

1Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 21/3,

A-6020 Innsbruck, Austria
2Dipartimento di Fisica “Enrico Fermi” and INFN, Università di Pisa, Largo Bruno
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Abstract. We discuss the fluid structure in the quantum phases of a 1D spinful

Fermi gas of atoms interacting via an infinitely long-range coupling, as it may result

from a photon-mediated two-body coupling in optical cavities. The system reveals

a rich physics, where spin/charge-density wave and superfluid-like order compete

with each other. Following our previous work based on a combined mean-field, exact

diagonalization and bosonization analysis, we provide the phase diagram of the system

and discuss the structure of the fluid, addressing the main features in momentum

space of the order parameters, momentum distribution and two-body correlations. We

enlighten that the nesting of the Fermi surface in 1D ultimately drives the formation of

periodic structures commensurate with the cavity-induced mean-field potential.
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1. Introduction

Quantum-degenerate ultracold gases represent an optimal platform for the simulation of

problems which are interesting for different areas of physics, ranging from the fundamental

to the many-body realm. Due to the possibility of careful handling of temperature,

statistics, dimensionality, strength and range of the atomic interactions, they allow to

reach extreme quantum conditions [1–3]. Among current, and most relevant, many-body

problems, the relation between spin-density wave (SDW), charge-density wave (CDW),

and superfluid (SF) order in FeAs-based superconductors [4–6] is recently attracting

a great deal of experimental and theoretical interest. Indeed, synthetic engineering

of systems which display similar behaviour will lead to a better understanding of the

important microscopic mechanisms beyond high-temperature superconductivity [7, 8],

characterized by non-Fermi liquid behavior in the non-superconducting phase. On

general grounds, the interplay between spin and density excitations is central to the

physics of quantum fluids confined in reduced dimensions. It is especially interesting

to disentangle the underlying physics in the one-dimensional (1D) case. Here, the

spin-charge separation leads to the concept of the Luttinger-liquid quantum fluid, which

represents the ideal framework where to search for novel quantum phase diagrams in

the presence of long-range interactions, doping, incommensurations, and magnetic-like

effects [9].

Among all the possible quantum gases platforms, optical cavities stand as particularly

versatile realizations where to explore this rich phenomenology. In such a kind of setups,

the atom-photon scattering probability is enhanced with respect to free space by the

many round-trips of the photons in the cavity [10]. Cavity photons can indeed mediate

interactions between atoms, originally characterized by an infinite range driven by

characteristic mode function of the cavity field, i.e. the stationary or running waves

for a linear or ring cavity, respectively [11]. The effective interaction may in principle

affect both the internal and motional degrees of freedom, depending on the particular

pumping configuration and original atomic structure [12–16]. In addition, the optical

cavity parameters can also be tailored to tune the effective interactions in strength and

sign [17], or even to tune short-range interactions in multi-mode cavities [18].

In this framework, a considerable research activity has been devoted to the effects

of cavity photons on either spin or momentum degrees of freedom. With these tools at

hand, a number of investigations have been conducted, including the study of the density

properties of superradiant systems in thermal atoms [19, 20], BECs [21–23], and Fermi

gases [24–26], topological phase transitions [14, 13], artificial gauge fields [27–29] and

supersolidity [30, 31]. The more recent experimental realization of magnetic phases in

spinor BECs [32, 18, 33] motivates theoretical studies on superradiant systems with spin

dynamics, spin-orbit coupling [34, 35] and the crossover from a Bardeen-Cooper-Schrieffer

(BCS) superfluidity of Cooper pairs to a BEC of composite bosonic pairs mediated by

cavity photons [36].

Actual implementations of many-body physics in optical cavities require a careful
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handling of the unavoidable dissipation processes and non-equilibrium dynamics. Even

with this in mind, the tools offered by cold atoms in optical resonators represent a

reference framework to investigate the nature of the quantum phases of 1D Fermi

systems with tunable interactions, in terms of the combined action of spin and density

excitations.

Along these lines, using combined mean-field (MF), exact diagonalization (ED)

and bosonization methods, in reference [37] we explored the quantum phases of a 1D

spinful Fermi fluid in the presence of a photon-mediated two-body effective interaction of

strength g among the atoms, obtained after adiabatic elimination of the cavity photons

within a single-mode approximation, so that the effective interaction turns out to be

infinitely long ranged. We found that, as expected in 1D, cavity photons drive strong

correlations independently of the interaction strength |g|. On the other hand, the sign

of g, which can in principle be modified turning from red to blue the cavity detuning

from the pump frequency, determines whether an instability occurs in the particle-hole

(g < 0) or particle-particle (g > 0) channel. The resulting phase diagram is composed

by a Spin-Density-Wave (SDW)-like ordering directly induced by the interaction of the

two-level atoms with cavity photons, as well as Atomic Density Wave (ADW)-like and

superfluid (SF) ordering indirectly induced via spin fluctuations.

The study performed in reference [37] deliberately uses a combination of methods,

since a direct simulation by, e.g. Density-Matrix Renormalization Group-like methods in

the presence of long-range interactions is not straightforward. First, a MF analysis was

conducted, in order to get a qualitative guide to the underlying physics. In fact, it is

generally found [9] that in the presence of (infinitely) long-range interactions as in our

case, the MF approximation in 1D is able to capture the qualitative picture of the system

properties. The conclusions drawn from the MF analysis were then checked against an

ED method, suited to explore the correlation functions and the momentum distribution.

On the other hand, ED does not yield immediate access to the SF order parameter.

Therefore, we have also resorted to bosonization methods to infer the occurrence of

SF ordering from the divergence of the appropriate susceptibilities, as anticipated in

the MF analysis. The bosonization analysis has also provided a cross-checking with

the ED results on the appearance of SDW and ADW orderings. Overall, our combined

methods lead to the conclusion that, as expected for 1D systems in the presence of

(infinitely) long-range interactions, the MF approximation is able to provide a picture

which qualitatively agrees with the main conclusions drawn with ED and bosonization

methods. Here, we provide a detailed account of the spectral properties of the fluid,

which helps to clarify the nature of the different phases. We discuss detailed results

obtained within the MF analysis, remarking the comparison with the results from ED

and bosonization methods whenever needed.

The paper is organized as follows. In sections 2 and 3 we summarize the essentials

of our model and the methods used to obtain the phase diagram, which is discussed

in section 4. This material is mainly summarized from reference [37]. In section 5,

we illustrate the fluid structure, as it emerges from the analysis of the gaps and pair-
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correlation functions across the phase diagram. Concluding remarks and perspectives

are presented in section 6.

2. Model

We consider the following many-body Hamiltonian for 1D fermions with mass m, placed

in two spin levels ↑, ↓:

Ĥ =
∑
σ=↑,↓

∫
dx Ψ̂†σ(x)

[
−~2∇2

2m

]
Ψ̂σ(x) + ~g

∫
dx dx′ V (x, x′) Ψ̂†↓(x) Ψ̂↑(x) Ψ̂†↑(x

′) Ψ̂↓(x
′),

(1)

in terms of destruction (creation) fermionic field operators Ψ̂
(†)
σ (x). While referring

to Appendix A for details, the above effective Hamiltonian (1) can be obtained by

transversally pumping N three-level atoms in an optical cavity. By eliminating the

far-detuned excited level and the cavity fields in the bad cavity regime, an effective

Hamiltonian for interacting fermions can be realized. The fermions in the two remaining

ground states can be treated as a spin-1/2 system interacting via the infinitely long-range

potential

V (x, x′) = cos(kLx) cos(kLx
′), (2)

due to the cavity electromagnetic field with wavevector kL. Here, we assumed that the

classical energy shift induced by the two-photon transition can be compensated by an

external light shift. The coupling

g = g2
eff

∆c

κ2/4 + ∆2
c

(3)

can be, in principle, varied with the cavity detuning ∆c = ωp − ωc, where ωc is the

frequency of the cavity mode and ωp the one of the transversal pump laser. Here, κ is

the cavity-loss parameter and the effective two-photon Rabi coupling ~geff ≡ ~g0Ω/∆e is

given in terms of the original cavity-mode strength ~g0, and the Rabi frequency Ω of the

classical field transversely pumping the atomic transition. Finally, ∆e = ωp − ωe, is the

detuning of the upper (eliminated) level from the pump frequency.

A glance at all the different possible pairings in the interaction term of Hamiltonian

(1), suggests that the relevant processes to expect can be driven by spin and density

fluctuations, and by superfluid pairing. We have determined the ground-state properties

of equation (1) while varying g, by means of a combination of standard MF treatment,

ED, and bosonization analysis.
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3. Methods

3.1. Mean-field approach

Let us start to discuss the MF method, temporarily leaving the density fluctuations on a

side. The SF gap is defined as:

∆(k) = −g
∑
k′

Vk,k′〈ĉ−k′,↓ĉk′,↑〉, (4)

where Vk,k′ = δ(k′ − k + kL) + δ(k′ − k − kL) is the Fourier transformed microscopic

interaction potential in equation (1), and ĉ
(†)
k,σ the destruction (creation) operators in

k space. Notice that hereafter we adopt the notation 〈 · 〉 to indicate ground-state

expectation values of any operator. Likewise, we introduce the SDW gap:

S(Q) = −g
∑
k

〈ĉ†k,↓ĉk+Q,↑〉, (5)

which is related to spin waves propagating at the wave-vector Q = ±kL of the cavity

field.

We derive the coupled equations of motion in imaginary time for the four Green’s

functions,−
〈
~Tτ
[
ĉp,σ(τ) ĉ†p,σ(τ ′)

]〉
, −
〈
~Tτ
[
ĉp,↑(τ) ĉ−p,↓(τ

′)
]〉

, −
〈
~Tτ
[
ĉp,↑(τ) ĉ†p+Q,↓(τ

′)
]〉

, and

−
〈
~Tτ
[
ĉk,↑(τ) ĉ−k−Q,↑(τ

′)
]〉

, from which the self-consistent equations for the number of

particles N , and the two superfluid ∆(k) and spin S(Q) gaps can be obtained.

Though the resulting equations are still quite involved, the formulation can be

greatly simplified after considering one characteristic peculiarity of 1D systems, that is

the nesting property ε(k + 2kF ) = −ε(k) which in 1D characterizes the single-particle

excitation energy εk ≡ ~2k2/(2m) − µ referred to the chemical potential µ, with kF
being the Fermi momentum. In fact, in 1D the Fermi surface is given by the two points

±kF , which are entirely nested, i.e. connected by a single wave-vector, here given by

Q = 2kF . As is well-known, this condition is responsible for diverging susceptibilities

in the particle-hole and, possibly, particle-particle channel, in analogy with Cooper

instability [9]. Then, we get additional physical insight by considering the two gap

equations obtained for ∆SF ≡
∑

k ∆(k) after setting ∆2
SDW ≡

∑
Q=±2kF

[S(Q)]2 = 0, and

vice versa. When setting the spin-gap parameter to zero, one has [37]:

∆(k) = g
∑
k′

Vkk′
∆(k′)

2ESF(k′)
tanh

(βESF(k′)

2

)
(6)

with the excitation energy

ESF (k) ≡
√
ε2k + ∆(k)2, (7)

and the number equation

N = 2
∑
k

[
1

2
− εk

2ESF(k)
tanh

(βESF(k)

2

)]
≡ 2

∑
l

n(k). (8)
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On the other hand, when setting the superfluid gap to zero, one obtains:

S(Q) = −g
∑
k

S(Q)

2ESDW(k)
tanh

(βESDW(k)

2

)
, (9)

with the excitation energy

ESDW(k) ≡
√
ε2k + ∆2

SDW, (10)

∆2
SDW ≡

∑
Q=±2kF

[S(Q)]2, and the number equation

N = 2
∑
k

[
1

2
− εk

2ESDW(k)
tanh

(βESDW(k)

2

)]
. (11)

The sign consistency between both members in the SF equation (6) is only fulfilled

for g > 0. For analogous reasons, the SDW equation (9) admits solutions only for g < 0.

If this property persists in the coupled equations, where both gaps are set to non-zero

values, this would imply that SF and SDW ordering cannot coexist. This is indeed the

case, as we have numerically checked by solving the full set of coupled equations [37]. In

order to be self-contained, we have reported in Appendix B the details of the derivation.

Let us finally note that, although the MF equations above are derived at finite

temperature, we are interested in the solution at T = 0 where the effect of fluctuations

can be neglected.

3.2. Exact diagonalization

Even though the long-range nature of the interactions usually preludes to qualitatively

reliable MF solutions, in order to check the MF results and also to include atomic-density

wave (ADW) fluctuations into play, we have employed an ED analysis in momentum space.

We diagonalize the Hamiltonian for a system of length ` at fixed density nkF = 2/π. We

adopted a Lanczos-based algorithm, enabling the diagonalization of up to ∼ (107 × 107)

matrices on a laptop computer. These sizes allow us to perform the computation for

systems with N = 4 and L = 21, N = 8 and L = 19, N = 12 and L = 15. Here, L

denotes the number of discretized k-points adopted in the simulation. We employ a

constant mesh ∆k = 2π/` for the grid in momentum space.

Besides the ground-state energy and the momentum distribution function, we have

computed density-density and spin-spin structure factors, i.e. the Fourier transform of

the correlation functions [9] 〈Ôρ(x) Ôρ(0)〉 and

〈Ôσ(x) Ôσ(0)〉 ≡
∑
α=x,y

〈Ôα
s (x) Ôα

s (0)〉, (12)

with the definitions

Ôρ(x) ≡
∑
σ

Ψ̂†σ(x) Ψ̂σ(x), (13a)

Ôx
s (x) ≡ Ψ̂†↑(x) Ψ̂↓(x) + Ψ̂†↓(x) Ψ̂↑(x), (13b)

Ôy
s (x) ≡ − i

[
Ψ̂†↑(x) Ψ̂↓(x)− Ψ̂†↓(x)Ψ̂↑(x)

]
. (13c)
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3.3. Bosonization method

Unfortunately, the applicability of ED is restricted to small N and L values, and

to the microcanonical ensemble, where the phase-locked SF ground state is not

retrievable. In order to explore possible SF phases beyond MF, we applied a

bosonization technique. We introduced the bosonized fields for the fermionic operators [9],

Ψ̂σ(x) = e−ikF xΨ̂Rσ(x) + eikF xΨ̂Lσ, where Ψ̂rσ(x) are the right/left movers (r = R,L or

idem r = ± below) with spin σ = ↑, ↓:

Ψ̂rσ(x) =
1√
2πα

e
i√
2
[θ̂ρ(x)−rφ̂ρ(x)+σ(θ̂σ(x)−rφ̂σ(x))], (14)

while α is the cutoff of the theory, in particular α ∼ a, a being the lattice spacing. The

bosonic fields (φ̂ρ, θ̂ρ) and (φ̂σ, θ̂σ) are linked to the charge and spin channel, respectively.

Retaining only the slowly oscillating terms of the bosonized expansion, the bosonized

Hamiltonian for kL = 2kF , , becomes:

ĤB ∼
∑
l=ρ,σ

1

2π

∫
dx
[
ulKl(πΠ̂l(x))2 +

ul
Kl

(∇φ̂l(x))2
]

+
g

4π2α2

∫ ∫
dx dx′e−i

√
2(θ̂σ(x)−θ̂σ(x′)) cos

[√
2(φ̂ρ(x)− φ̂ρ(x′))

]
, (15)

with Π̂l = ∇θ̂l, and (ul, Kl) being the Luttinger parameters for the corresponding two

channels. Here, ul = vF is the Fermi velocity and Kl = 1 for non-interacting fermions.

We notice that the intrinsically non-local nature of the interaction Hamiltonian, due to

the long-range nature of photon-mediated interaction, emerges in the coupling of the

fields from the spin θ̂σ and charge φ̂ρ sectors at different positions. Let us also note that

the longer-range interaction does not invalidate the Luttinger liquid description as long

as V (x) has a finite Fourier transform for q → 0. In fact, since we are interested in the

long-range part of the interaction, one can keep in the density only the q ∼ 0 part and if

V (x) has a finite Fourier transform for q → 0, then the Luttinger parameters tend to

a constant at very small q. Thus the asymptotic form of the correlation functions is

exactly identical to the ones of a Luttinger liquid.

In order to infer the phase diagram of the model, we look at the analytic continuation

of the Fourier transforms of the following correlation functions:

χa(k, ωn) ≡
∫
dr

∫ β

0

dτe(−ikr+iωnτ)
〈
Ô†a(r) Ôa(0)

〉
(16)

characterizing SDWx−y, ADW and singlet (SS)/triplet (TS) superfluidity [9]:〈
Ôx−y†

SDW(r) Ôx−y
SDW(0)

〉
,
〈
Ô†ADW(r) ÔADW(0)

〉
, (17a)〈

Ô†SS(r) ÔSS(0)
〉
,

〈
Ô†TS(r) ÔTS(0)

〉
, (17b)
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with the operators defined as

Ôx
SDW = Ψ̂†R↑Ψ̂L↓ + Ψ̂†R↓Ψ̂L↑, (18a)

Ôy
SDW = − i(Ψ̂†R↑Ψ̂L↓ − Ψ̂†R↓Ψ̂L↑), (18b)

ÔADW = Ψ̂†R↑Ψ̂L↑ + Ψ̂†R↓Ψ̂L↓, (18c)

ÔSS = Ψ̂†R↑Ψ̂
†
L↓ + Ψ̂†L↑Ψ̂

†
R↓, (18d)

ÔTS = Ψ̂†R↑Ψ̂
†
L↓ − Ψ̂†L↑Ψ̂

†
R↓, (18e)

For a qualitative comparison with the ED and MF outcomes, it is sufficient to look

at the behaviour of the correlation functions (17) as described in terms of the Luttinger

parameters. Since we know the long wavelength behavior of the correlation functions, for

a qualitative comparison it is sufficient to infer the behaviour of the Luttinger parameters

Kρ and Kσ, while varying the interaction strength. Indeed, the most diverging correlation

functions reveal whether the system is unstable towards an Atomic-Density Wave (ADW),

a Spin-Density Wave (SDW) or a Superfluid phase, either with singlet (SS) or triplet

(TS) order parameter. To start with, we approach the problem within a mean-field

scheme and decouple the interaction term in (15) considering separately the cases where

either one of the fields θ̂σ or φ̂ρ becomes massive. When the term ∆ = 〈eiθ̂σ〉 acquires

an average different from zero, the system will open a gap in the charge sector when

the operator cos(
√

2φ̂ρ) becomes relevant, i.e. Kρ < 3 and this behavior is independent

on the sign of the interaction g. On the other hand, when φ̂ρ becomes massive and

is trapped in one of the minima of the cosine, or equivalently, Γ = 〈cos(
√

2φ̂ρ)〉 is

nonzero, a gap in the spin sector is opened when the operator eiθ̂σ becomes relevant.

This happens when Kσ > 1/3 for g > 0. Thus one expects the instabilities of the system

be different depending on the sign of the interaction g. A more refined analysis is given

by a Renormalization Group (RG) study which gives the renormalized values of the

Luttinger parameters Kρ, Kσ, allowing to evaluate the regions where the susceptibilities

diverge as a function of Luttinger parameters. Appendix C details the derivation of the

RG equations. Notwithstanding its qualitative character, the bosonization approach is

consistent with and supports the outcomes of the MF and ED studies addressing the

channel where the instability preferably manifests.

4. Phase Diagram

We are now in the position to review the basic results for the phase diagram and the

fluid structure of the model. Let us remind that, while this has been already discussed

in reference [37], for the sake of clarity in our presentation, it is however helpful to

provide the reader with an excerpt of the main findings, as summarized in Figure 1.

Here, the two different order parameters ∆SDW and ∆SF are displayed, at the MF level,

as a function of the coupling strength g in EF units. We first notice that, based on these

results, ∆SDW ordering in the particle-hole channel develops for negative g values, while

∆SF ordering in the particle-particle channel shows up at g > 0. In close analogy to
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references [16, 38–40], on the side g < 0 an antiferromagnetic structure is found to be

stabilized. In this regime, the system exhibits superradiance and the fluctuations of the

cavity field can be neglected [39]. In contrast, in the regime g > 0, atoms are trapped in

a dark state. While we found that, at the MF level, the induced interaction can lead in

this case to superconducting ordering, in this regime quantum fluctuations can play a

fundamental role, leading to density waves [39] or ferromagnetic and incommensurate

magnetic phases [38].

In order to address some of the physics beyond MF, we carried out a bosonization

analysis, which supports the MF findings, and provides information on the ADW phase

which was left on a side in the MF calculation. In fact, the RG analysis on the

susceptibilities (17) establishes that, for g < 0, Kρ and Kσ get values leading to divergent

behavior SDWx−y ∼ ωKρ+K−1
σ −2 of the SDWx−y susceptibility for k = 2kF , while all the

others turn out to be well behaved. For g > 0 the singlet superfluid correlation function

gets the most diverging behavior χSS ∼ ωK
−1
ρ +Kσ−2. This suggests that the dominant

instability may be in the form of singlet superfluidity. No sign of ADW is found in this

low-order bosonization analysis, signaling the necessity of expanding the bosonized fields

beyond the lowest order and include the effects of the fast modes, up to kL = 2kF and

of doing higher-order renormalization group. As it will be shown in the following, an

indication of ADW can be traced in the emergence of peaks at kL = 2kF and 2kL = 4kF ,

in the density-density correlation function calculated via ED. This is especially relevant,

since it was shown that quantum measurements in 1D lattices can lead to excitations far

from the Fermi surface [41]. Overall, the MF results and the bosonization analysis seem

to support the idea that spin-density fluctuations and superfluidity do not coexist. In

addition, ED confirms the magnetic phases arising from SDW for g < 0 and hints the

presence of ADW at g > 0, which was indeed also found in [39].

Second, we notice that the size of the order parameters increases with increasing

|g| > 1 values, but in a very asymmetric manner. We believe that this behavior can be

traced back to the physics of the original system, where the spin-flip processes are a direct

consequence of the emission or absorption of a cavity photon. In many-body physics, this

is what one would call a spin-density fluctuation, which is indeed the original mechanism

inducing, only at a second stage, SF or (even higher in order) ADW fluctuations. It is

interesting to notice that trace of this asymmetric behavior can be found also in the

dependence of the ground-state energy on the interaction strength, as computed from

ED methods [37].

Additional insight can be inferred from the behavior of the chemical potential µ

and fraction of particles in the lowest energy state,

N0 ≡
∑
k,Q

|〈ĉ†k+Q↓ĉk↑〉|
2, (19)

in the SDW region with g < 0, in analogy with the usual BCS definition N0 =∑
k |〈ĉ−k↓ĉk↑〉|2, used in the SF region with g > 0. From the insets of figure 1, we

see that the chemical potential is at the Fermi energy level EF in the SF region with
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g > 0, decreasing in the SDW region with g < 0 up to get negative values around

|g| ' 8EF . Correspondingly, N0 increases while |g| > 1, but in a similar very asymmetric

manner as the order parameters, i.e. to significantly larger values on the SDW than on

the SF side.

5. Structure of the fluid

We now proceed to characterize the nature of the ground states emerging in the phase

diagram of figure 1, by analyzing the structure of the gaps, the excitation spectra, the

momentum distributions, and the pair-correlation functions, as they result from the MF

solution. Whenever useful, we provide additional information which can be extracted

from ED and bosonization analysis.

5.1. Order parameters

Let us start with the order parameters. In the SDW region (g < 0), the MF result for

the gap function S(Q) is a delta function of the cavity wave-vector Q = ±kL = ±2kF .

In fact, the order parameter S(Q) is associated to particle-hole excitations propagating

at the momentum of the cavity photons ±kL. For weak interactions, these excitations

are created at the Fermi surface. However, as the interaction strength is increased, more

particles below the Fermi surface are scattered to higher momentum states. This can be

Figure 1. Mean-field phase diagram of the model as a function of the coupling

strength g, from reference [37]. The MF order parameters ∆SDW and ∆SF are plotted

against g/EF . Insets: chemical potential µ/EF (top) and fraction N0/N of particles in

the lowest energy state, as functions of g/EF . Adapted from [37].
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examined in the momentum dependent order parameter SQ(k), which is given by the

normalized pairing function

SQ(k) =
〈ĉ†k+Q↓ĉk↑〉
S(Q)

=
1

2ESDW(k)
tanh

{
βESDW(k)

2

}
. (20)

As it is shown in figure 2, for weak interactions SQ(k) is seen to develop two peaks at

±kF , signaling the occurrence of spin ordering. The peaks broaden up to merging, when

the chemical potential becomes negative at g ∼ −8EF .

Coming to the SF region (g > 0), we first notice that in standard BCS theory

the superfluid order parameter represents the energy required to break a Cooper pair.

The symmetries of the interatomic potential directly affect those of the gap function.

In our case, the microscopic interaction resulting from the coupling with photons is

characterized by a sinusoidal modulation in real space, and therefore in momentum

space by a sum of peaks at the momentum of the exchanged photon. At variance with

standard treatments of the BCS equations where the gap is constant, here we expect a k

dependence with the periodicity driven by the cavity photon momentum.

Figure 2. Pairing function SQ(k), as defined in the main text, as a function of k/kF .

The values of the coupling strength, g < 0, are indicated in the legend

.

Figure 3 displays the behavior of the superfluid order parameter ∆(k) at different

values of the coupling strength g > 0, as mediated by the interaction with the cavity

photons. We recall that ∆(k) = 0 at all k, in the g < 0 side. Notice first that the

superfluid gap is characterized by peaks separated by Q = 2kF and at odd multiples of the

kF Fermi momentum, since the first peaks are located at k = ±kF . These repetitions can
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Figure 3. Superfluid order parameter ∆(k) as a function of k/kF , for different values

of the coupling strength g > 0, as indicated in the legend.

be interpreted as the usual peaks arising from excitations near the Fermi level, shifted by

the momentum recoil due to the exchanged photon Q = 2kF . Their width increases while

the interaction g becomes stronger. In other words the recoil energy, which represents

the difference of kinetic energy of the atom after a scattering with a photon, introduces

an additional energy scale in our system. In particular, this is responsible for the number

of visible peaks in the k-structure of the order parameter, while the interaction strength

drives their width and height. The stability of the solution has been checked while trying

different initial guesses of regular shape, starting the simulation from large values of g

going towards small values of g, and vice versa. Notice also that the overall plateau

envelope characterizes ∆(k), which crashes down (exponentially, from our fits) already

after the second peak.

5.2. Excitation spectrum

The same physics is reflected in the excitation spectra calculated within the MF approach,

as shown in figure 4. The top panel displays the behavior in the SDW region (g < 0),

where a gap is seen to open up at the Fermi level, which then progressively shifts

toward k = 0. Together with the fact that the chemical potential gets negative around

g ∼ −8EF , and that the condensate fraction changes its convexity, this supports the

conclusion that the system is evolving towards a bosonic-like condensation regime. In

fact, when the chemical potential turns negative, the kinetic energy cannot compensate

it any longer at any value of k and the chemical potential acts as a constant shift. On

the other hand, the contribution of the spin gap to the excitation energy extends over all
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the Fermi surface: therefore, it is not surprising that the minimum of the energy shifts

to zero when the kinetic contribution is at its minimum value.

Figure 4. Excitation spectrum E(k) as a function of the momentum, for different

values of the interaction strength g as indicated in the legend. Top: SDW region with

g < 0. Bottom: SF region with g > 0. Energies and momenta are in units of EF and

kF .

The bottom panel of figure 4 focuses on the behavior of the excitation spectrum in

the SF region (g > 0). In this case, the multiple peaks determine the particular structure

around kF with the double minima just below and just above kF , where the chemical

potential compensates the kinetic energy of the atoms and the gaps are visible. Notice

that in standard s-wave superfluidity the gap would open up just at the Fermi level. Here

instead, two minima manifest, one on the hole side of the spectrum with k < kF and the

other on the particle side with k > kF . These minima gradually move away from the

Fermi level with increasing interactions. In particular, the first minimum shifts towards

k = 0 as the interactions are increased, while the other washes away. This means that

more and more particles with smaller momenta are involved in the pairing process, in



Fluid structure of 1D spinful Fermi gases with long-range interactions 14

contrast with standard superfluidity where only the particles around the Fermi level are

interested.

5.3. Momentum-distribution function

Figure 5. Momentum distribution for different values of the interaction strength g as

in the legend. Top: SDW region with g < 0. Bottom: SF region with g > 0. Energies

and momenta are in units of EF and kF .

Additional insight is provided by an analysis of the momentum distribution n(k),

which is shown in figure 5 for different values of the interaction strength g, and has been

obtained within a MF approach. The top panel illustrates the behavior in the SDW

region with g < 0. Drastic differences are found with respect to a conventional Fermi

distribution. While the fermionic nature of the fluid remains essentially unchanged for

weak interaction strengths g ≈ −1, at larger values of g the attractive interaction in

the particle-hole channel progressively digs inside the Fermi surface and pairs up the

particles into composite bosons. This phenomenon is reminiscent of the crossover from

a BCS-like to a BEC-like condensation in fermionic systems, originally speculated by

Leggett [42] to describe the continuous evolution of the superfluid characteristics with
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increasing the strength of the attractive interaction between fermions in the Cooper pair,

and later on demonstrated experimentally in ultracold atoms [1]. However, here the

bosonic-like particles are each composed of one particle and one hole. Their possible

Bose-Einstein condensation would share analogies with the condensation of excitons, i.e.,

electron-hole pairs, realized in semiconductor engineered nanostructures.

The bottom panel of figure 5 focuses on the SF region (g > 0). The shape of

the distribution initially reminds the fermionic nature of the particles. In fact, for low

interaction strengths, the momentum distribution shows the discontinuity with size 1

at kF , typical of the non-interacting Fermi system. The discontinuity smoothens away

after increasing the correlations: interactions drive an increasing number of excitations,

moving weight from below to above the Fermi surface. The same trend emerges also

in the ED analysis. Here we observed that the shapes of the numerically computed

momentum distributions support either a bosonic (g < 0) or a fermionic (g > 0) character

(further details are provided in reference [37]). Bosonization predicts that the momentum

distribution has a power-law discontinuity at kF depending on the interaction strength,

even at zero temperature [9], but such feature is not well captured by the MF approach.

5.4. Pair-correlation functions

We now consider the MF structure of the fluid in real space, as it can be represented by

pair-correlation functions of the same spins:

gσσ(x− x′) =
1

n2
〈Ψ̂†σ(x) Ψ̂†σ(x′) Ψ̂σ(x′) Ψ̂σ(x)〉, (21)

with σ = ↑, ↓, and of opposite spins:

g↑↓(x− x′) =
1

n2
〈Ψ̂†↑(x) Ψ̂†↓(x

′) Ψ̂↓(x
′) Ψ̂↑(x)〉, (22)

with g↑↓(x − x′) = g↓↑(x − x′). In order to better get the picture of the structure in

real space, we refer the space distance r to the average particle spacing r0, defined by

r0 = 1/n = πkF/2 in terms of the linear density n.

Let us start to discuss the behavior of the pair-correlation function for parallel

spins. In the SDW region (g < 0 – see top panel of figure 6), we can recognize a deep

well around r = 0, which is dug in by the Pauli principle and accompanied by Friedel

oscillations at 2r0; the latter tend to be flattened away for stronger couplings. With

respect to the SF side depicted in the bottom panel, on the spin-pairing side the Pauli

hole is more effectively replenished by the attractive interactions while the fluid develops

its bosonic character discussed so far and the average size of the correlation hole is even

shorter than r0. At the same time, the amplitude of the Friedel oscillations damps much

more rapidly in the strong coupling regime, where the correlation energy mostly resides

in the channel of the opposite spins.

Looking at the SF region (g > 0), —see bottom panel of figure 6— we observe

that, even if the pair-distribution function does not explicitly depend on the superfluid
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Figure 6. Spin-parallel pair-distribution function g↑↑(r/r0) = g↓↓(r/r0) at different

interaction strengths g, as indicated in the legend. Top: SDW region with g < 0.

Bottom: SF region with g > 0.

order parameter, effects of interactions are indirectly included in the occupation number,

and manifest themselves as a change in the width of the distribution, which is more

evident at strong coupling. At large distances the distribution tends to unity as expected

for homogeneous systems. The weakly oscillating behavior is instead a manifestation

of Friedel oscillations, ultimately connected to the existence of a Fermi surface and

of singular behavior in correspondence of kF . As in the SDW region discussed above,

for larger values of g and when the interaction energy prevails over the kinetic one,

the system tends to localize and oscillations are damped. Similar behaviors have been

predicted by simulational methods in the investigation of the 1D Hubbard model [43],

where actually a damping of Friedel oscillations at 2kF is also accompanied by a building

up of oscillations at 4kF while the system undergoes a Wigner crystallization, that is a

freezing of the quantum fluid into a crystal. Appropriate inclusion of density fluctuations,

here neglected, and a full numerical simulation in 1D would be needed to understand to

which extent such a prediction might apply to the present system as well.
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Figure 7. The spin-antiparallel pair-distribution function g↑↓(r/r0) = g↓↑(r/r0) in the

SDW regime, top panel for weak interaction and middle panel for strong interactions.

The correlation length is shown in the SDW regime in the bottom panel.
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Figure 8. The spin-antiparallel pair-distribution function g↑↓(r/r0) = g↓↑(r/r0) in the

SF regime.

Let us now come to the description of the opposite-spin pair-correlation function

g↑↓, which is depicted in figure 7 and figure 8. In the SDW region (g < 0, figure 7), it is

characterized by periodic peaks at odd multiples of the average interparticle distance r0,

thus shifted by r0 with respect to its superfluid counterpart in figure 8. This suggests

that spin ordering occurs, as expected, in antiferromagnetic configuration. In both

cases, the periodicity can be traced back to the long-range nature of the interactions.

However, here the rapid amplitude decay of the peaks even for weak couplings (top

panel in figure 7) suggests that the particle-hole channel to be favoured with respect the

superfluid one. This is not surprising, since the effective Hamiltonian privileges direct

coupling between spin rather than particle variables. At stronger coupling (middle panel

in figure 7) the well around r = 0 becomes even deeper and oscillations are enhanced,

hinting a stronger antiferromagnetic character of the fluid which self-organizes. However
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we note that, at strong interactions, the MF theory overestimates correlations, this can

be seen in the fact that for strong g the pair-correlation function becomes negative.

The increasing bosonic character appears evident from the analysis of the pair-

correlation length

kF ξ =

{∫
dxx2[g↑↓(x)− 1]

}1/2{∫
dx[g↑↓(x)− 1]

}−1/2

. (23)

The pair-correlation length is a quantitative measure of the average size of the pairs, in

fact the square root of the second moment of the pair-correlation function gσσ′(x). The

latter, in turn, represents indeed the probability of finding a second particle with spin

σ at distance x from a given first particle, given the positions of all the other particles

and the interactions among them. As shown in the bottom panel of figure 7, strong

attractive interactions tie up the particle-hole pairs in real space, resulting into tiny

pair-correlation lengths, while weak interactions favor delocalized periodic spin pairing

with large values of kF ξ. The pair-distribution function g↑↓ in the SF region, with g > 0,

is shown in the top panel of figure 8. Qualitative deep differences can be found with

respect to the standard BCS case, where the pair-distribution function consists of a

structure around r = 0, whose height increases with the interaction strength, its width

being the correlation length ξSF measuring the average size of the Cooper pair. Here,

the pair-distribution function is periodic with period 2r0, signaling —in accordance

with the results on the SF gap function— the emergence of nonlocal superfluidity with

periodic character similar to what is named Fulde-Ferrel-Larkin-Ovchinnikov (FFLO)

Figure 9. Correlation functions in k-space for different g values, as obtained with

ED (see reference [37]). Spin-spin correlation 〈Ôσ Ôσ〉 (left panel) and density-density

correlation 〈Ôρ Ôρ〉 (right panel). Data in the main panels are for N = 8, while the

same quantities with N = 4 are shown in the insets. Adapted from [37].
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phase [44, 45]. Similar inhomogeneous superconducting states were also studied via

bosonization for fermions with attractive interaction in a quasi 1D configuration [45].

Here, the oscillations are mainly due to the characteristic long-range nature of the

interactions in our system. The height of the replicas at multiples of twice r0 appears

only weakly decreasing for weak coupling strengths g < 1. We see that the heights

significantly drop down for stronger interactions, while the oscillations in the same-spin

pair-correlation function damps down. Overall, such a behavior suggests that SF ordering

has a delocalized nature, which is progressively lost while the coupling strength increases.

This can be viewed also in terms of the pair-correlation length kF ξ, which we find to

symmetrically parallel the behavior in the SDW region, that is diverging while the

interaction parameter vanishes, and fast dropping down at larger g values, see bottom

panel in figure 8.

Finally, figure 9 displays the k-space correlation functions for density 〈Ôρ Ôρ〉 and

spin 〈Ôσ Ôσ〉 fluctuations. Such results come from an ED analysis, and have been detailed

in reference [37]. In order to make the presentation self contained, here we recall their

main features and complement them with an extended discussion. In the density-density

correlation function, we notice the peak developing at k = 0 for g < 0, and not for

g > 0; peaks at ±2kF emerge only for g > 0 signaling the setting of ADW processes.

In the spin-spin correlation function, we see the expected appearance of the peaks at

±2kF , driven by SDW and ADW processes. The SDW behavior is confirmed by the

bosonization analysis that confirms the opening of a gap in the spin sector for g > 0

and above a certain strength of g, based on a renormalization group analysis. In the

case of ADW ordering, the combination of ED and bosonization analysis suggests that

ADW is originated by higher-energy processes, in fact not captured at the lowest order

of renormalization group analysis. This conclusion supports the choice of leaving ADW

on a side in the simplest MF approach.

6. Conclusions

In conclusion, we have studied the fluid structure characterizing the quantum phases of

a 1D spinful atomic Fermi gas, where spin and motional degrees of freedom are both

relevant, and interacting via an infinitely long-ranged effective interaction with variable

strength and sign. Following our previous work [37], based on a combined mean-field,

exact diagonalization and bosonization analysis, we have discussed in detail the structure

of the quantum fluid in order provide additional insight on the phase diagram, including

spin- and atomic-density wave and by superfluid-like orderings, ultimately favored by

nesting of the Fermi points.

In particular, we have systematically analyzed the k-space structure of gaps,

excitation spectra, and momentum distribution, along with the same- and opposite-spin

pair-correlation functions expressing the structure of the fluid in real space. We have used

the mean-field analysis as a track for the discussion, due to its qualitative reliability in

the presence of (infinitely) long-range interactions, ex-post confirmed in the comparison
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with exact diagonalization and bosonization results. Whenever useful, the mean-field

outcomes have been complemented with those obtained from exact diagonalization and

from bosonization analysis. In particular, we have discussed the extent to which the

exact-diagonalization and bosonization analysis qualitatively support the mean-field

results.

The clues in our hands suggest that on the g > 0 side one might have a BCS-like

superfluid state, which evolves from an unconventional FFLO-like periodic character at

weak coupling strengths, towards a more conventional state for larger interactions. They

also suggest that the g < 0 side might be characterized, for weak coupling strengths, by

a spatially ordered state similar to the one for g > 0, but developing in the particle-hole

channel and in the form of an antiferromagnetic arrangement. In fact, looking again at

the pair-correlation function, we find periodic structures at r0 in the ones for opposite

spins and 2r0 in the ones for parallel spins. This can be interpreted as correlations

between particles characterized by an ordered structure, as if correlated fermions with

opposite spins arrange at relative distance of r0 (and multiples) while correlated fermions

with parallel spins are created at distance 2r0 (and multiples). With increasing strength

of the interactions, the antiferromagnetic spin ordering appears to be lost, evolving into

a structure where particles with opposite spins are tied to form composite bosonic pairs

with diamagnetic character, which Bose-Einstein condense. In any event, an evident

asymmetry characterizes the order parameter sizes on the two sides of the interaction

strength, since the photon scattering processes are directly coupled to spin fluctuations

and only indirectly lead to a superfluid pairing.

Our predictions can be in principle realized in quantum atomic Fermi gases in

optical cavities. However, a realistic implementation necessarily requires the inclusion

of the intrinsic out-of-equilibrium physics, to be tackled with methods different than

those exploited in the present work. The proper inclusion of optical-cavity dissipation

mechanisms is needed in order to establish the amount and conditions, which the physics

here discussed persists to.
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Appendix A. Adiabatic elimination of cavity fields

Consider N three-level atoms interacting with the electromagnetic field of a single-mode

linear cavity of frequency ωc. The existence of a privileged direction given by the cavity

axis, suggests to restrict the analysis to a one-dimensional geometry. As schematized in

figure A1, the atomic transition is transversely pumped by a classical field with frequency

ωp driving the |s〉 ↔ |e〉 transition. The cavity field induces a transition between a

second ground state and the same excited state, |g〉 ↔ |e〉. In terms of the atomic and
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photonic creation and annihilation operators, the Hamiltonian can be represented as:

Ĥ(t) =

∫
dx
[~ωgs

2

(
Ψ̂†s(x)Ψ̂s(x)− Ψ̂†g(x)Ψ̂g(x)

)
+ ~ωeΨ̂†e(x)Ψ̂e(x)

]
+ ~ωcâ†â

+ ~Ω

∫
dx
(
eiωptΨ̂†s(x)Ψ̂e(x) + e−iωptΨ̂†e(x)Ψ̂s(x)

)
+ ~g0

∫
dx cos(kLx)

(
Ψ̂†e(x)Ψ̂g(x)â+ â†Ψ̂†g(x)Ψ̂e(x)

)
. (A.1)

Here, the first line represents bare-atom and bare-photon Hamiltonian, where the motional

degrees of freedom are temporarily frozen. The energy difference between the two ground

states |s〉 and |g〉 is ωgs, and ωe is the energy of the excited level |e〉. The first term in

the second line is the classical pump with strength ~Ω, while the last term represents the

coherent interaction between the atom and cavity mode with strength ~g0, where the

mode function in one dimension is cos(kLx). After applying the unitary transformation

Û(t) = eiωp(
∫
dx[Ψ̂†sΨ̂s−Ψ̂†gΨ̂g+Ψ̂†eΨ̂e]+â†â)t, (A.2)

the time independent Hamiltonian, Ĥ → Û †(t)Ĥ(t)Û(t)− i~Û †(t)∂Û(t)/∂t, in the frame

rotating with the pump field ωp, is

Ĥ =

∫
dx
[
− ~∆gs

2

(
Ψ̂†s(x)Ψ̂s(x)− Ψ̂†g(x)Ψ̂g(x)

)
− ~∆eΨ̂

†
e(x)Ψ̂e(x)

]
− ~∆câ

†â

+ ~Ω

∫
dx
(

Ψ̂†s(x)Ψ̂e(x) + Ψ̂†e(x)Ψ̂s(x)
)

+ ~g0

∫
dx cos(kLx)

(
Ψ̂†e(x)Ψ̂g(x)â+ â†Ψ̂†g(x)Ψ̂e(x)

)
. (A.3)

Here, all energies are measured with reference to the cavity pump frequency: ∆c =

ωp − ωc,∆gs = ωp − ωgs and ∆e = ωp − ωe. In the large detuning regime for ∆e, the

Ψ̂e(x) state is only virtually populated and can be adiabatically eliminated. Thus, we

Figure A1. Pumping configuration leading to the Hamiltonian (1) in the main text.

The |g〉 ↔ |e〉 transition is driven by cavity photons and the |s〉 ↔ |e〉 by an external

transversal pump beam.
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can set to zero the fast time evolution of the excited state |e〉:

i~
∂Ψ̂e(x)

∂t
= −~∆eΨ̂e(x) + ~ΩΨ̂s(x) + ~g0 cos(kLx)âΨ̂g(x) = 0. (A.4)

Inserting the stationary value

Ψ̂e(x) =
Ω

∆e

Ψ̂s(x) +
g0

∆e

cos(kLx)Ψ̂g(x)â (A.5)

into equation (A.3), the following effective two-level Hamiltonian is obtained:

Ĥ3L =

∫
dx
[
Ψ̂†s(x)

(
δs −

~∆gs

2

)
Ψ̂s(x) + Ψ̂†g(x)

(~∆gs

2
+ V0(x)â†â

)
Ψ̂g(x)

]
− ~∆câ

†â+ ~geff

∫
dx cos(kLx)

(
Ψ̂†s(x)Ψ̂g(x)â+ â†Ψ̂†g(x)Ψ̂s(x)

)
. (A.6)

Notice that the two-photon transition induces a classical shift δs = ~Ω2/∆e

on the effective ground-state level, Ψ̂s. The other ground state, Ψ̂e, experiences a

periodic potential dependent on the number of photons within the cavity V0(x) =

~g2
0 cos2(kLx)/∆e. Coupling between the two levels is mediated via an effective two-

photon Rabi frequency, which now depends on the pump strength, that is geff = g0Ω/∆e.

When the cavity photons evolve over a faster time-scale compared to the atomic

dynamics, the photonic operators can be slaved to the atomic ones. This happens either

in the bad cavity regime or for large cavity detunings ∆c. In this case, the photonic

operator in equation (A.6) can be substituted by their stationary values obtained by

setting to zero the Heisenberg equation of motion for these operators

˙̂a = −
(

∆c + i
κ

2

)
â+ geff

∫
dx cos(kLx)Ψ̂†g(x)Ψ̂s(x) = 0. (A.7)

Here, κ is loss rate related to cavity dissipation. Note that the coupling to the ground

state density, V0 = ~g2
0/∆e, depends only on the dipole moment of the transition |g〉 ↔ |e〉

and is neglected in equation (A.7). In fact, this term is much smaller than the two-photon

Rabi frequency geff = g0Ω/∆e, which can become very large for high intensity of the

pumping laser, Ω. In order to obtain the Hamiltonian (1) in the main text, we first

plug equation (A.7) into (A.6) and include the kinetic energy of the atoms. Then, we

neglect the state-dependent light shift δs, which can be compensated by any additional

classical light-shift. We also neglect the optical lattice V0 cos2(kLx)â†â, which acts only

on the ground state |g〉, for the same reasons as above. Collecting together all these

approximations, the Hamiltonian (1) in the main text is obtained.

Appendix B. Fully coupled gap and number equations in mean-field theory

After having tested the solution of the problem in separate regimes as shown in the

main text, the fully coupled problem can be more easily addressed, where both order
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parameters are assumed to be nonzero. We report here from reference [37] the main

steps in the derivation.

First, an explicit ansatz for the superfluid gap function can be introduced, guided

by the fact that the superfluid gap equation (6) has solution only when the interaction

parameter g is positive, since the right-hand-side is a positive-definite quantity. The

opposite occurs for the spin-pairing gap equation (9), where g < 0 is required instead.

Therefore, at the present mean-field level, a first guess for the superfluid and spin order

parameters is the following: given the value of g, set ∆SF = 0 and ∆SP at the value

found from the solution of (9)-(11) if g < 0, and set ∆SP = 0 and ∆SF at the value

found from the solution of (6)-(8) if g > 0. For the determination of ∆(k), we therefore

assume that the function that expresses its dependence on k can be easily parametrized.

It is assumed that ∆(k) can be expressed as a product between a function having 4kF
periodicity and an envelope function consisting of a plateau for |k| ≤ 4kF , exponentially

dropping down in size at |k| > 4kF . The first factor can be extended to the whole k space

using the values of ∆ in the interval [−2kF , 2kF ] and the condition ∆(k) = ∆(k + 4kF ).

The resulting function can be inserted in the complete set of equations of the problem

and finally the following set of coupled equations for the three unknown quantities N , ∆

and S is obtained:

N = 2
∑
k

{
1

2
− 1

4

[
1 +

ε−(k)

Es(k)

]
εk

E+(k)
tanh

(βE+(k)

2

)
− 1

4

[
1− ε−(k)

Es(k)

]
εk

E−(k)
tanh

(βE−(k)

2

)}
, (B.1a)

∆(k) =
g

4

∑
k

Vkk′

{[
∆(k′) +

(
Es(k

′) +
(∆(k′))2 − (∆(k′ −Q))2

Es(k′)

)]
tanh

(
βE+(k)/2

)
E+(k′)

+

[
∆(k′)−

(
Es(k

′) +
(∆(k′))2 − (∆(k′ −Q))2

Es(k′)

)]
tanh

(
βE−(k)/2

)
E−(k′)

}
, (B.1b)

S(q) = −g
4

∑
k

{
S(q)

E+(k)
tanh

(βE+(k)

2

)
+

S(q)

E+(k)
tanh

(βE+(k)

2

)}
, (B.1c)

where we have defined ε±(k) ≡ ∆(k)±∆(k +Q), Es(k) ≡
√[

ε−(k)
]2

+ ∆2
SDW, and the

single-particle energies E±(k) ≡
√
ε2k +

[
ε+(k)± Es(k)

]2
.



REFERENCES 28

Appendix C. Bosonization method: Renormalization-Group equations

In this Appendix we derive the equations for the RG equations closely following

reference [9]. We start from the action

S =
∑
l=ρ,σ

1

2π

∫ ∫
dτ dx

{
ulKl[(∂τ θ̂l)

2 + (∂xθ̂l)
2] +

ul
Kl

[(∂τ φ̂l)
2 + (∂xφ̂l)

2
}

+
g

4π2α2

∫ ∫ ∫
dτ dx dx′ e−i(θ̂σ(x,τ)−θ̂σ(x′,τ)) cos(

√
2(φ̂ρ(x, τ)− φ̂ρ(x′, τ)). (C.1)

If one imposes a sharp momentum cutoff Λ and varies the cut-off between Λ and Λ′, the

field can be decoupled in slow modes, whose Fourier transform is limited to |q| < Λ′, and

fast modes where Λ′ < |q| < Λ .

After defining

φ̂l(r) = φ̂>l (r) + φ̂<l (r), θ̂l(r) = θ̂>l (r) + θ̂<l (r), (C.2)

where r = (x, τ),the quadratic part of the action can be decoupled, as well in S0 = S<0 +S<0 .

If one now takes the partition function

Z =

∫
DθρDφρDθσ Dφσ e−S[θ̂ρ,φ̂ρ,θ̂σ ,φ̂σ ], (C.3)

the exponential can be expanded in series of the interaction Hamiltonian up to the first

non-zero order

Z =

∫
DθρDφρDθσ Dφσ e−S0

[
1− g

4π2α2

∫ ∫ ∫
dτ dx dx′ e−i(θ̂σ(x,τ)−θ̂σ(x′,τ))×

× cos(
√

2(φ̂ρ(x, τ)− φ̂ρ(x′, τ))
]
. (C.4)

After averaging over the fast modes, we are left with an effective Hamiltonian for the

slow modes only, i.e.

Z =

∫
DθρDφρDθσ Dφσ e−S

<
0

[
1− g

4π2α2

∫ ∫ ∫
dτ dx dx′ e−i(θ̂

<
σ (x,τ)−θ̂<σ (x′,τ))×

× cos(
√

2(φ̂<ρ (x, τ)− φ̂<ρ (x′, τ))e−〈(φ̂
>
ρ (x,τ)−φ̂>ρ (x′,τ))2〉e−〈(θ̂

>
σ (x,τ)−θ̂>σ (x′,τ))2〉

]
.

We now define ∆θ̂σ =
√

2(θ̂<σ (x, τ)− θ̂<σ (x′, τ)) and ∆φ̂ρ =
√

2(φ̂<ρ (x, τ)− φ̂<ρ (x′, τ)). The

correction to the effective action is thus

S0 −
g

4π2α2

∫ ∫ ∫
dτ dx dx′ e−i∆θ̂σ(x,x′) cos(∆φ̂ρ(x, x

′))e−〈[∆φ̂ρ(x,x′)]2〉e−〈[∆θ̂σ(x,x′)]2〉
]
,

(C.5)

Here one has

e−〈[∆φ̂ρ(x,x′)]2〉e−〈[∆θ̂σ(x,x′)]2〉 = e
−
(
Kρ+ 1

Kσ

) ∫
Λ′<q<Λ[1−cos(q(x−x′)] 2πu

ω2+u2q2 , (C.6)
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where ω is a small quantity going to zero. The second term can be cast in the form

− g

4π2α2

∫ ∫ ∫
dτ dx dx′ e−i∆θ̂σ(x,x′) cos(∆φ̂ρ(x, x

′))e
−
(
Kρ+ 1

Kσ

) ∫
Λ′<q<Λ

2πu
ω2+u2q2

− g

4π2α2

∫ ∫ ∫
dτ dx dx′ e−i∆θ̂σ(x,x′) cos(∆φ̂ρ(x, x

′))e
−
(
Kρ+ 1

Kσ

) ∫
Λ′<q<Λ

2πu
ω2+u2q2×

×
[
− 1 + e

−
(
Kρ+ 1

Kσ

) ∫
Λ′<q<Λ cos(q(x−x′)) 2πu

ω2+u2q2

]
(C.7)

The first line in (C.7) represents the renormalization of the coupling constant. In

fact, it has the same shape of the bare interaction Hamiltonian for the slow modes with

an effective coupling constant. To recover the original action, one should rescale time

and space, and bring back the original cutoff so that dx = Λ/Λ′dx′ and dτ = Λ/Λ′/dτ ′.

One thus obtains:

g(Λ′) =
( Λ

Λ′

)3

g(Λ)e
−
(
Kρ+ 1

Kσ

) ∫
Λ′<q<Λ

2πu
ω2+u2q2 . (C.8)

With the parametrization Λ(l) = Λ0e
−l, we get the most general RG equation

dg(l)

dl
= g(l)

(
3−Kρ −

1

Kσ

)
. (C.9)

The second and third line in (C.7) lead to the renormalization of Kρ and Kσ. In order

to derive the corresponding relations, we introduce the center-of-mass R = (x+ x′)/2

and relative-motion r = x − x′ coordinates, and expand both cosine and exponential

terms in powers of r ∼ 0:

e−i∆θ̂σ(x,x′) cos(∆φ̂ρ(x, x
′)) ' 1− r2

2
(∇θ̂σ)2 − r2

2
(∇φ̂ρ)2. (C.10)

Consistently, the exponential in the third line is expanded in the cosine argument up to

first order. The correction to the action becomes

δI = g
(
Kρ+

1

Kσ

)∫ ∫
dτ dR [(∂Rθ̂σ)2 +(∂Rφ̂ρ)

2]

∫
drr2e−

(
Kρ+ 1

Kσ

)
FΛ(r)J0(Λr), (C.11)

with

FΛ(r) =

∫
|q|<Λ

[1− cos(q(x− x′))] 2πu

ω2 + u2q2
=

∫ Λ

0

dq

q
(1− J0(qr)), (C.12)

in the limit ω → 0. We are now in the position to write down the RG equations for both

Kσ and Kρ, after considering that the velocity ul is not renormalized as a consequence

of Lorentz invariance. Therefore we get

d(uρKρ)

dl
= 0, (C.13a)

d(uρ/Kρ)

dl
= 2πG

(
Kρ +

1

Kσ

)
f(Kρ, Kσ), (C.13b)

d(uσKσ)

dl
= 2πG

(
Kρ +

1

Kσ

)
f(Kρ, Kσ), (C.13c)

d(uσ/Kσ)

dl
= 0, (C.13d)
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so that uσ/Kσ = cost = cσ and uρKρ = cost = cρ and finally the complete set of RG

equations

dKρ

dl
= −

πGK3
ρ

cρ

(
Kρ +

1

Kσ

)
f(Kρ, Kσ), (C.14a)

dKσ

dl
=

πG

cσKσ

(
Kρ +

1

Kσ

)
f(Kρ, Kσ), (C.14b)

dG(l)

dl
= G(l)

(
3−Kρ −

1

Kσ

)
, (C.14c)

with

f(Kρ, Kσ) =

∫
drr2e

−
(
Kρ+ 1

Kσ

)
FΛ(r)

J0(Λr). (C.15)

From these equations one could get the RG flow lines and determine the values of Kρ

and Kσ at which the coupling G becomes relevant and the flow must be stopped.
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