
Research Article
An FPGA-Based Hardware Accelerator for CNNs Using On-Chip
Memories Only: Design and Benchmarking with Intel Movidius
Neural Compute Stick

Gianmarco Dinelli ,1 Gabriele Meoni ,1 Emilio Rapuano,1 Gionata Benelli ,2

and Luca Fanucci 1

1Department of Information Engineering, University of Pisa, Pisa 56122, Italy
2IngeniArs, Pisa 56121, Italy

Correspondence should be addressed to Gianmarco Dinelli; gianmarco.dinelli@ing.unipi.it

Received 2 May 2019; Revised 3 September 2019; Accepted 3 October 2019; Published 22 October 2019

Academic Editor: Martin Margala

Copyright © 2019GianmarcoDinelli et al.'is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

During the last years, convolutional neural networks have been used for different applications, thanks to their potentiality to carry
out tasks by using a reduced number of parameters when compared with other deep learning approaches. However, power
consumption and memory footprint constraints, typical of on the edge and portable applications, usually collide with accuracy
and latency requirements. For such reasons, commercial hardware accelerators have become popular, thanks to their architecture
designed for the inference of general convolutional neural network models. Nevertheless, field-programmable gate arrays
represent an interesting perspective since they offer the possibility to implement a hardware architecture tailored to a specific
convolutional neural network model, with promising results in terms of latency and power consumption. In this article, we
propose a full on-chip field-programmable gate array hardware accelerator for a separable convolutional neural network, which
was designed for a keyword spotting application. We started from the model implemented in a previous work for the Intel
Movidius Neural Compute Stick. For our goals, we appropriately quantized such a model through a bit-true simulation, and we
realized a dedicated architecture exclusively using on-chip memories. A benchmark comparing the results on different field-
programmable gate array families by Xilinx and Intel with the implementation on the Neural Compute Stick was realized. 'e
analysis shows that better inference time and energy per inference results can be obtained with comparable accuracy at expenses of
a higher design effort and development time through the FPGA solution.

1. Introduction

During the last years, convolutional neural networks
(CNNs) found application inmany different fields like object
detection [1, 2], object recognition [3, 4], and KeyWord
Spotting (KWS) [5, 6]. Although they proved excellent re-
sults on cloud, their applicability for portable systems is
challenging because of the additional constraints in terms of
memory footprint and power consumption, which generally
conflict with latency and accuracy requirements. In par-
ticular, in general purpose solutions based on the use of a
microcontroller, the limited available memory limits the
complexity of the network, with possible impact on the
accuracy of the system [7]. In the sameway, microcontroller-

based systems feature the worst trade-off between power
consumption and timing performances [8].

For this reason, commercial hardware accelerators for
CNNs such as Neural Compute Stick (NCS) [9], Neural
Compute Stick 2 (NCS2) [9], and Google Coral [10] were
produced. Such products feature optimized hardware ar-
chitectures that allow to realize inferences of CNN models
with low latency and reduced power consumption. Standard
communication protocols, such as Universal Serial Bus (USB)
3.0., are generally exploited for communication purposes.

Nevertheless, since they were designed for the imple-
mentation of generic CNNs, their architectures are ex-
tremely flexible at the expense of the optimization of the
single model.

Hindawi
International Journal of Reconfigurable Computing
Volume 2019, Article ID 7218758, 13 pages
https://doi.org/10.1155/2019/7218758

mailto:gianmarco.dinelli@ing.unipi.it
https://orcid.org/0000-0003-0123-7977
https://orcid.org/0000-0001-9311-6392
https://orcid.org/0000-0002-1723-7421
https://orcid.org/0000-0001-5426-4974
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7218758

For such a reason, hardware accelerators customized for
a specific application might offer an interesting alternative
for accelerating CNNs. In particular, field-programmable
gate arrays (FPGAs) represent an interesting trade-off be-
tween cost, flexibility, and performances [11], especially for
applications whose architectures have been changing too
rapidly to rely on application-specific integrated circuits
(ASICs) and whose production volumes might be not suf-
ficient. FPGAs offer high flexibility at the same time, which
permits the implementation of different models with a high
degree of parallelism [8] and the possibility of customizing
the architecture for a specific application.

'e aim of this paper is to investigate the use of custom
FPGA-based hardware accelerators to realize a CNN-based
KWS system, analysing their performances in terms of
power consumption, number of hardware resources, accu-
racy, and timing. A KWS system represents an example of
application whose porting on the edge requires much effort,
owing to the hard design trade-offs.

'e study involves the use of different FPGA families by
Xilinx and Intel, analysing design portability on devices with
different sizes and performances. 'is allowed to realize a
benchmark that compares the obtained results with the ones
presented in our previous work for the full-SCNN (separable
convolutional neural network) model [12], which imple-
ments the same architecture exploiting a NCS (version 1,
mounting Myriad 2 Vision Processing Unit (VPU)).

To realize the architecture implemented on-board
FPGA, a bit-true simulation was performed to appropriately
quantize the model, reducing the number of resources used,
saving power, and increasing throughput when compared
with a floating-point approach.

'e remainder of the paper is structured as follows: the
Kerasmodel used to describe the KWS system is presented in
Section 2. Section 3 presents the approach used to quantize
and compress the model to optimize its implementation on-
board FPGAs. In Section 4, the results of the quantization
analysis are provided and discussed. 'e preferred FPGA-
based accelerator architecture is then described in Section 5,
focusing on the analysis of design trade-offs. Results of the
implementation on the different FPGA families are pre-
sented in Section 6. In Section 7, results in terms of max-
imum achievable clock frequency, hardware resources, and
power consumption are presented and compared with the
NCS solution. In Section 8, the usability of FPGA devices to
accelerate the inference of CNNs is discussed with respect to
the presented solution and similar applications. Finally, in
Section 9, conclusions are given.

2. Architecture of the KWS System

KWS systems are a common component in speech-enabled
devices: they continuously listen to the surrounding envi-
ronment with the task to recognize a small set of simple
commands in order to activate or deactivate specific func-
tionalities. Commercial examples of KWS systems include
“OK Google” and “Hey Siri.” 'e proposed KWS system is
designed to operate inside a domotic installation for im-
proving the quality of life of people with disabilities. In

particular, it is able to recognize 10 different commands:
“yes,” “no,” “up,” “down,” “left,” “right,” “on,” “off,” “stop,”
and “go.” Moreover, it identifies two additional classes:
“silence,” when no word is pronounced, and “unknown,”
when the pronounced word does not belong to any class.

'e KWS system was pretrained in the Python frame-
work called Keras [13], using Google Speech Command
dataset.

'e proposed architecture is based on the SCNN de-
scribed in [12], whose architecture is shown in Figure 1.

'e input of the network is a 63×13 mel frequency
spectral coefficient (MFSC) matrix [14]. 'e bin (n, k) of the
matrix contains information over the spectral content at
frequency f, as shown in equation (1):

f � k ·
fsample

N + 1
, for k � 1, . . . , K, (1)

where fsample � 16 kHz is the sample rate and N� 512 (32ms)
is the number of bins used to calculate the fast fourier
transform (FFT), measured at the instant n/fsample, with
n ∈ [0, N − 1]. Every N-sample window is weighted through
a Hann window and overlapped with the previous N/2
samples for the calculation of the FFT.

'e input layer provides the 63×13 MFSC input matrix.
'en, three separable convolutional (SC) layers follow, and
their generic structure is shown in Figure 2.

SC layers improve standard convolutional layers by
reducing the number of parameters used to process the
inputs [12]. For this reason, SCNNs are particularly in-
teresting for the realization of FPGA-based hardware ac-
celerators because they reduce memory and computation
requirements in comparison with the classic CNN approach.

A standard convolutional layer contains cout(wfxhf)

filters that are convolved over.
cin(wcinxhcin) input channels, producing

cout(wcin − wf + 1)x(hcin − hf + 1) output channels. On the
contrary, a separable convolution is realized through two
distinct convolutions performed by means of filters, whose
dimensions are, respectively, (fwx1) and (1xfh). Figure 3
better illustrates the difference between these two
approaches.

Considering the structure of the MFCS input matrix,
each SC layer performs two separated convolutions, re-
alizing a “time” convolution followed by a “frequency”
convolution.

A batch normalization (BN) layer, which has the role to
accelerate deep network training by reducing internal co-
variance shift [15], follows the frequency convolution. Fi-
nally, the rectified linear unit (ReLU) is the activation
function of each SC layer. ReLU is defined in equation (2) as

fReLU(x) �
0, when x≤ 0,

k · x, when x> 0with k ∈ R.
 (2)

A classic convolutional layer follows the three SC layers.
Table 1 summarizes the dimension of time/frequency

filters, number of input channels (Cin), output channels
(Cout), and input/output matrix dimensions for each con-
volutional layer of the network. Time_0 and freq_0 are,

2 International Journal of Reconfigurable Computing

respectively, the temporal and frequency convolutional layer
of the hidden layer 0, and similarly time_1/freq_1 for the
hidden layer 1 and time_2/freq_2 for the hidden layer 2.
Final_conv refers to the last convolutional layer of the
network.

'e average pooling layer computes the average value of
each output channel of the final_conv layer, condensing
them in 12 values, one for each class of the KWS system.
Finally, a Softmax (or normalized exponential function)
layer activation function follows. It takes a vector ZJ as input
and produces an output vector in which each element
fsoftmax(ZJ) is normalized in the interval [0, 1] and can be
interpreted as the probability that input belongs to the class j.
'e standard Softmax function is described by equation (3):

fsoftmax ZJ �
ezj

K

i�1e
zj

, for j � 1, . . . , K. (3)

In this network, the Softmax input vector is composed of
12 elements, one for each of the class of the KWS system.

'e proposed SCNN model was implemented on the
Intel Movidius NCS, showing an accuracy of 87.77%. 'e
number of parameters necessary for its implementation is
15000, including bias, weights, and batch normalization
parameters.

3. Keras Model Optimization toward the
Hardware Implementation

In the next sections, methods to map the Keras–Python
model of the KWS system on an FPGA are analysed. In

fact, this model is implemented in a high-level language
and its parameters are based on the floating-point
representation.

'e main issue about the implementation of a CNN-
based model on an FPGA regards the limitation in terms of
available hardware resources (combinatorial elements, se-
quential elements, Digital Signal Processors (DSPs), ram
blocks, etc.) of such devices [11, 16, 17]. CNN algorithms are
based on Multiply-and-ACcumulate (MAC) operations that
require a large amount of combinatorial logic elements or
DSPs. Furthermore, CNNs are characterised by a great
number of parameters that shall be stored into off-chip
memories if exceeding the available on-chip memory. 'e
use of off-chip memory could be inevitable, complicating the
design and increasing the inference time. For these reasons,
the architecture of the hardware accelerator was carefully
designed considering the trade-off between inference time
and available resources.

3.1. Model Quantization. Before realizing the FPGA
implementation, a quantization of the SCNN model was
performed. In literature, there are many examples of
quantization applied to CNNs [18–21]. 'e main advantage
offered by a fixed-point representation is the possibility to
shrink the model dimension and complexity with a negli-
gible loss in accuracy [22]. In addition, fixed-point arith-
metic requires simpler calculation than floating-point
arithmetic, with advantages in terms of complexity and
power consumption [23].

'e quantization of the original floating-point model
was performed through a bit-true simulation. 'e aim of the
simulation is to determine the number of bits necessary to
represent numbers in every internal node of the network by
limiting the loss in accuracy.

'e fixed-point representation of the model weights (or
filter elements) wq was calculated by using the approach
described by the following equation:

wq � round
w

lsbw

 · lsbw,

lsbw �
|w|max

2bw− 1 ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

where w is the floating-point representation of the weight
and lsbw is the value of the least significant bit (lsb). 'e
latter is calculated by dividing |w|max, which represents the
absolute value of the maximum weight over each layer, by
2bw − 1, where bw is the number of bits used to represent
weights, as required by the 2’s complement format. In
particular, since the range of weights amplitude is roughly
the same for every layer, the same value of |w|max was used
for each layer. Such choices are due to the necessity to
reduce the conspicuous degrees of freedom in the simu-
lation. Furthermore, in order to reduce the number of
operations to implement in hardware, the effects of the BN
are included in weight and bias values (BN simply consists
in algebraic operations). In formulas, each weight w(i) and
each bias b(i) belonging to a frequency convolutional layer

Input layer Conv.
layer

SC layers

Average
pooling Softmax

Figure 1: SCNN architecture.

Batch
norm.

Time conv.

Freq. conv.

ReLU

Figure 2: SC hidden layer architecture.

International Journal of Reconfigurable Computing 3

or final_conv was modified as described by equations (5)
and (6):

w(i)′ �
w(i) · c

σ
, (5)

b(i)′ � β +
(b(i) − μ) · c

σ
, (6)

where c and β are the scaling factors and bias of the BN,
respectively, σ the standard deviation, and μ the average of
the weights of a given input channel.

At the end of each layer, the acceptable number of
truncated bits btri

and a saturation (truncation of the most
significant bits) of bsati bits were also studied through the bit-
true simulation to reduce the complexity of the hardware. In
terms of formulas, truncation consists in changing the value
of the lsb, as described by the following equation:

lsbw
′� lsbw · 2btri . (7)

Instead, saturating bsati bit means discarding the bsati
most significant bits. Such operation does not affect lsbw. For
this aim, the worst case (greatest value in absolute meaning)
of each layer output was considered so as to eliminate
unused bits that were previously added for avoiding over-
flow of arithmetic operations. To sum up, the accuracy of the

model for different sets of bw, btr1, bsat1, btr2, bsat2,

. . . , btr7, bsat7 was evaluated.
A possible optimization of the model consists in

quantizing separately the weights of the last convolutional
layer, by using bwlast

bits. Indeed, the coefficients of final_-
conv may be divided by the divisor of the average pooling,
saving hardware operations. 'is optimization significantly
changes the range of weights for the last layer and a different
quantization should be applied to it. For this reason, a
second model to evaluate the overall accuracy takes into
consideration different sets (bw, bwlast

, btr1, bsat1, btr2, bsat2,

. . . , btr7, bsat7).

3.2. Pruning. Another technique to reduce the complexity of
the hardware accelerator is pruning. It consists in dropping the
least important connections of the network [24, 25] by iden-
tifying the weights or biases with a magnitude smaller than a
given threshold. In this network, the biases of the temporal
convolutional layers have magnitudes in the order of
10− 9–10− 7. Considering their small values with respect to the
other network parameters, they were pruned to reduce the
model size. Indeed, it is possible to eliminate temporal bias
terms without significantly affecting accuracy and reducing the
number of sums to be computed.

hin

win

cin

fh
fw

hin – fh + 1

win – fw + 1

cout

(a)

hinhin

win

cincin f ′w

f ′h1

win – f ′w + 1

1 win – f ′w + 1

hin – f ′h + 1
cout

(b)

Figure 3: Convolutional layers: (a) classic CNN network and (b) SCNN network.

Table 1: Convolutional parameters for the network.

Layer Input matrix Filter Cin Cout Output matrix

Hidden layer 0 Time_0 63×13 5×1 1 1 59×13
Freq_0 59×13 1× 3 1 8 59×11

Hidden layer 1 Time_1 59×11 5×1 8 8 55×11
Freq_1 55×11 1× 3 8 16 55× 9

Hidden layer 2 Time_2 55× 9 11× 1 16 16 45× 9
Freq_2 45× 9 1× 3 16 192 45× 7

Final_conv 45× 7 1× 1 192 12 45× 7

4 International Journal of Reconfigurable Computing

4. Results of the Quantization Analysis

In this section, the results obtained from the quantization
process are presented and discussed.

'e SCNN model of this network has many degrees of
freedom. For this reason, the first simulation step is finalised to
identify a starting point for amore complex analysis, and it only
focuses on the quantization of input layer words and weights.

Figure 4 shows simulation results, in terms of accuracy
and mean square error (MSE) in relation to the floating-
point model, when only the number of bits for input words
representation is quantized. A number of 4 or 5 bits optimize
accuracy and minimize the MSE. 'is first analysis gives
intuitions about a possible optimization for the input layer:
in particular, the number of bits of every input can be forced
to be multiple of 4 bits, so that several inputs might be
contained in buses such as the Advanced eXtensible In-
terface 4 (AXI4) bus [26], whose size is usually amultiple of 8
bits.

Figure 5 shows simulation results, in terms of accuracy
and MSE, when only the number of bits for the represen-
tation of weights has been quantized. In this case, accuracy
rapidly grows between 8 and 12 bits, reaching even higher
values than the original ones in correspondence of 11 and 12
bits. Finally, accuracy saturates for 16 or more bits. 'is
parameter is crucial because it influences the number of bits
necessary to represent the result of MAC operations and,
consequentially, the complexity of the entire network.

'is first analysis was the starting point for a more
detailed design exploration, involving the number of bits for
the representation of the output of each layer.

Table 2 reports the best results obtained in terms of
accuracy. Only the number of bits of SC layers and
final_conv outputs are presented in the table, whereas data
regarding temporal convolutional sublayers are omitted.'e
parameters listed in the table are as follows:

(i) b_in: number of bits for the representation of input
words.

(ii) b_filter: number of bits for the representation of
filters.

(iii) bit_out_0: number of bits for the representation of
the outputs of the first hidden layer.

(iv) bit_out_1: number of bits for the representation of
the outputs of the second hidden layer.

(v) bit_out_2: number of bits for the representation of
the outputs of the third hidden layer.

(vi) bit_out_fc: number of bits for the representation of
the outputs of the last convolutional layer.

Collected data show that it is possible to increase model
accuracy through quantization. In fact, the best accuracy
obtained for the floating-point model is 87.77%, whereas for
the fixed-point representation, the highest accuracy is
90.23%.

'e second part of the simulation considers a different
quantization for the final_conv layer due to the inclusion of
the average pooling effects, as explained in Section 3.1. 'e
results of this simulation are summarized in Table 3.

'ese models show smaller hardware requirements than
the single-quantization versions presented in Table 2. Sets of
data are the same as those in Table 2, excepting for b_last that
represents the number of bits for the representation of
final_conv layer weights, whereas b_filter refers only to SC
layer weights. 'is second model allows to shrink weights
representation for all convolutional layers, significantly re-
ducing the impact of MAC operations on hardware resource
requirements. Furthermore, several quantized models have
an accuracy score higher than the original one (87.77%).

'e model chosen for the FPGA implementation
considers both accuracy and the possibility to shrink pa-
rameter representations. Model number (7) from Table 3
was selected: it has a higher accuracy than the Keras–
Python model (88.09 versus 87.77), and it minimizes the
number of bits necessary for the representation of layer
outputs and weights. Input layer results compatible with
AXI4 because Input words are represented on 4 bits. 'e
number of bits for the representation of temporal con-
volutional outputs of model (7) is 10 for time_0, 8 for
time_1, and 10 for time_2.

5. FPGA Hardware Architecture

'is section describes the architecture of the hardware ac-
celerator that was implemented on different FPGA families.
'anks to the reduced number of parameters of the SCNN
investigated in our previous work [12], it was possible to
realize a full on-chip design with high advantages in terms of
latency and energy per inference, avoiding accesses to off-
chip memories [11, 21].

Figure 6 shows the block diagram of the accelerator. 'e
number of bits of the words read from and written into the
Input memory and RAMs is related to our preferred model,
described in the previous section.

An input memory is used as an interface between the
hardware accelerator and the system that records and
elaborates the audio samples. 'e input memory stores 4-bit
input data. 'e time/frequency layers and final_conv layer
perform convolutional operations and store the results into a
RAM memory, used as a buffer. Once the previous layer
completes an entire convolution, the next one starts reading
out its input matrix from the memory.

Each of the seven convolutional layers has its own MAC
module to perform multiply-accumulate operations. Fig-
ure 7 shows the structure of the MAC module, designed to
compute one element of the output matrix per clock cycle.

It reads nelem elements from the RAM memory, where
the value of nelem is shown in the following equation:

nelem � Cin · felem, (8)

where Cin is the number of input channels and felem is the
number of elements composing a channel filter. 'e adder-
tree structure is used for accumulation, and it was chosen to
reduce the overall latency of the circuit. Considering this
configuration of the MACmodule, the total number of clock
cycles needed to complete an entire convolution for each
convolutional layer is Nclk, as shown in the following
equation:

International Journal of Reconfigurable Computing 5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 320

20

40

60

80

100

0
1
2
3
4
5
6
7

Accuracy
MSE

Figure 4: Accuracy and MSE to the change of the number of bits for input layer words.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

20

40

60

80

100

0
5
10
15
20
25
30
35
40

Accuracy
MSE

Figure 5: Accuracy and MSE to the change of the number of bits of filter elements.

Table 2: Results of the first quantization analysis.

b_in b_filter bit_out_0 bit_out_1 bit_out_2 bit_out_fc Accuracy (%)
5 12 10 8 10 10 90.23
5 12 8 8 10 10 90.14
5 12 8 8 10 8 89.74
5 11 8 8 10 10 88.91
4 12 8 8 10 12 88.87
4 12 8 8 10 10 88.78
5 11 8 8 10 8 88.60
4 12 8 8 10 8 88.46
5 11 8 8 10 8 88.40
4 11 8 8 10 12 87.84
4 11 8 8 10 10 87.61

Table 3: Results of the second quantization analysis.

No. b_in b_filter b_last bit_out_0 bit_out_1 bit_out_2 bit_out_fc Accuracy (%)
1 5 8 6 8 8 10 12 89.88
2 5 8 6 8 8 10 10 89.74
3 4 12 6 8 8 10 12 88.87
4 4 12 6 8 8 10 10 88.75
5 4 12 6 8 8 10 12 88.21
6 4 12 6 8 8 10 10 88.09
7 4 8 6 8 8 10 10 88.09
8 4 8 6 8 8 10 10 87.61
9 4 11 6 8 8 10 12 87.55
10 4 8 6 8 8 10 10 87.43
11 5 8 6 8 8 8 10 87.39
12 4 12 6 8 8 10 8 87.36
13 4 11 6 8 8 10 10 87.29
14 5 8 6 8 8 8 8 86.93

6 International Journal of Reconfigurable Computing

Nclk � Cout · Wout · Hout, (9)

where Cout is the number of output channels and Wout and
Hout are the dimensions of the output matrix. Table 4 shows
Nclk of each convolutional layer of the network considering
the values of Cout, Wout, and Hout listed in Table 1. Finally,
819 clock cycles shall be added in order to store the 63×13
input matrix in the Input memory. A total of 90278 clock
cycles are required to complete an inference.

A major parallelization of MAC operations would offer
the opportunity to speed-up accelerator performances, re-
ducing the inference time. On the other hand, it is not
generally possible to perform an arbitrary number of op-
erations per clock cycle because of the limited number of
FPGA resources (combinatorial logic, DSPs, etc.). Fur-
thermore, if the level of parallelism is too high, routing can
become the bottleneck of the implementation.

It is possible to boost MAC module operations, in-
creasing the number of output elements n computed per
clock cycle. In particular, for n> 1, Nclk is reduced of a factor
1/n, as described by the following equation:

Nclk �
Cout · Wout · Hout

n
. (10)

Whilst this strategy leads to better timing optimization, it
increases the design effort necessary to find the best com-
bination that can fit on a specific FPGA device. Indeed, the
appropriate value of n for each layer should be tuned
depending on the size of the target FPGA, in order to
guarantee design implementability. Furthermore, paralleliz-
ing each layer guarantees negligible advantages in terms of
inference time when the number of operations necessary to
carry out an entire convolution is strongly different for every
layer. Considering the limitation of FPGA hardware

resources, it results appropriate to parallelizeMAC operations
only for the layers with the highest values of Nclk. In this
specific case, freq_2 layer contributes to 60460 over 90278
total number of clock cycles due to the very high number of
output channels (192). For this reason, the MAC module of
the freq_2 layer was customized so that it calculates 4 values of
the output matrix per clock cycle. According to equation (10),
this allows to drastically reduce freq_2 Nclk from 60480 to
15120 and consequently the total inference time from 90278
to 44918 clock cycles, halving the inference time. If a similar
parallelization was realized for the other convolutional layers
of the network, it would increase hardware resources without
a significant improvement of timing performances because of
their limited effect on the overall inference time.

As previously specified, batch normalization operations
were absorbed in the frequency convolutional layer of each
SC layer. 'e average pooling layer was included in
final_conv that provides 12 outputs, corresponding to the
sum of all the elements belonging the output matrix of each
output channel. Finally, Softmax layer can be omitted. In-
deed, to provide a direct decision on the pronounced word, it
is sufficient to select the maximum value among the twelve
outputs of final_conv.

'is architecture was chosen because its simplicity
heightens the possibility to fit the hardware accelerator in a
target FPGA, reducing design time and increasing design
portability among devices with different sizes.

6. Hardware Implementation Results

'is section describes the performances of the hardware
accelerator on different FPGA families. 'e presented ar-
chitecture was implemented on several Xilinx and Intel
devices to analyse its design portability on FPGAs with
different sizes and performances. Results are presented in
terms of hardware resource occupation, maximum achiev-
able clock frequency, inference time, and power con-
sumption. Finally, an analysis of how MAC module

Input
memory RAM RAM

4

… . .4
4

10 10
10

10

Time_0 Freq_0 Final_conv

Max
selection

... 10
10

...4

Figure 6: SCNN architecture for FPGA implementation.

+

+
+

+

+
+

.

.

.

+

+
+

x f1

x f0

x fn–2

x fn–1

.

.

.

D0

D1

Dn–2

Dn–1

Constant
multipliers

Adder-tree

Figure 7: MAC module architecture.

Table 4: Nclk values for the various layers.

Layer Nclk

Input memory 819
Time_0 767
Freq_0 5192
Time_1 4840
Freq_1 7920
Time_2 6480
Freq_2 60480
Final_conv 3780
Total 90278

International Journal of Reconfigurable Computing 7

parallelization influences design portability on smaller
FPGAs is provided.

'e devices included in the analysis are as follows:

(i) Zynq UltraScale+ (US+), xczu9eg-ffvb1156-2-e
[27]

(ii) Virtex UltraScale+, xcvu3p-ffvc1517-2-e [28]
(iii) Virtex UltraScale (US), xcvu065-ffvc1517-2-e [29]
(iv) Zynq-7000, xc7z045ffg900-1 [30]
(v) Virtex-7, xc7vx330tffg1157-2 [31]
(vi) Kintex-7 low voltage (lv), xc7k160tfbg484-2L [31]
(vii) Artix-7 low voltage (lv), xc7a200tfbg484-2 [31]
(viii) Arria 10 GX, 10AX027H3F35E2SG [32]
(ix) Stratix V GS, 5SGSMD4E1H29C1 [33]
(x) Stratix V GX, 5SEE9F45C2 [33]
(xi) Stratix V E, 5SEE9H40C2 [33]
(xii) Cyclone V, 5CEFA9U19C8 [34]

All the implementations were realized by using Vivado
design suite for Xilinx devices and Quartus Prime Software
for Intel devices.

Table 5 shows the hardware resources needed for the
implementation of the accelerator on Xilinx FPGAs. Results
are presented in terms of combinatorial elements, sequential
elements, BRAMs, and LUTRAMs (LRAMs). 'e percent-
age of used resources out of the total is also indicated. Table 6
shows hardware resources needed for the implementation of
the accelerator on Intel FPGAs. In this case, results are
presented in terms of combinatorial elements, sequential
elements, BRAMs, and DSPs.

All the implementations refer to the version of the ac-
celerator in which the MAC module of the freq_2 layer was
parallelized to compute 4 elements of its output matrix per
clock cycle. 'e structure and the number of combinatorial/
sequential elements and memory dimensions and typologies
are specific for each device. Please refer to FPGA datasheets
for more information about the architecture of Xilinx de-
vices [27–31] and Intel devices [32–34].

Figures 8 and 9 show the maximum achievable clock
frequency and the inference time for Xilinx and Intel
FPGAs, respectively. 'e minimum inference time for each
layer can be calculated taking into consideration MAC
module optimizations for the freq_2 layer and Nclk values
listed in Table 4. 'e best result is obtained for the Zynq
UltraScale+ with a maximum clock frequency of
116.2MHz and a corresponding inference time of less than
0.4ms.

A power analysis was performed for both Xilinx and
Intel FPGAs. To obtain a more accurate estimation of the
power consumption for Xilinx devices, a post-
implementation timing simulation was carried out by using
Questa® Advanced Simulator to extract information about
the switching activity of the internal nodes of the circuit.
Since Intel devices do not support postlayout simulation,
only a RTL-level estimation of the switching activity has
been included in the power consumption analysis as sug-
gested by Intel guidelines [35]. Results are shown in Table 7.

In general, Xilinx devices show a lower power consumption
than Intel devices for both static and dynamic power. 'e
only exception is the Arria 10, featuring a power con-
sumption of 1W and resulting the second best device after
the Kintex-7 lv.

6.1. Design Portability. An analysis of the hardware accel-
erator portability has been carried out in order to investigate
how the proposed design fits in smaller FPGAs. In particular,
the freq_2 layer has been customized to compute 1, 2, 4, and
8 elements (n_out) of a given output channel per clock cycle.
Results are presented in terms of hardware resources,
maximum clock frequency, and inference time.

Two FPGAs with different sizes belonging to the same
family were selected:

(i) xc7z045ffg900-2 (xc7z045) and xc7z030fbg484-2
(xc7z030) for the Zynq-7000 family [30]

(ii) xczu9eg-ffvb1156-2-e (xczu9eg) and xczu3eg-
sfva625-2L-e (xczu3eg) for the Zynq UltraScale+
family [27]

Tables 8 and 9 show the results in terms of hardware
resource occupation for the Zynq-7000 FPGAs and for the
Zynq-US+ FPGAs, respectively.

'e xc7z030 and the xczu3eg have a limited number of
hardware resources and only the version of the accelerator
with n_out equal to 1, 2, and 4 can be implemented in these
devices; the version with n_elem equals to 8 fits only in the
xc7z045 and in the xczu9eg. Owing to the limited number of
LUTs available on-board xc7z030 and xczu3eg DSPs are
included to perform MAC operations. In addition, xczu3eg
implementations exploit all the available BRAMs on-board,
and LRAMs have to be included. Versions of the hardware
accelerator with a lower level of MAC parallelization have
worst performance in terms of inference time but can fit in
smaller devices because their requirements in terms of
combinatorial elements are more relaxed. Unfortunately, the
number of RAMs required does not change because
intralayer RAM dimensions and the number of parameters
of the network do not, and it can represent a bottleneck for
the implementation of the not-customized version of the
accelerator on smaller FPGAs.

Figures 10 and 11 show the performance in terms of
clock frequency and inference time for Zynq-7000 and
Zynq-US+ FPGAs, respectively. For the xc7z045 and the
xczu9eg, the maximum achievable clock frequency does not
show large variation increasing the level of MAC parallelism.
For the xc7z030 and the xczu3eg, maximum achievable clock
frequency tends to decrease because the limited size of these
devices leads to a less optimized routing and consequently to
worse timing performances. For this reason, inference times
for xc7z030 with n_mac equals to 4 and n_mac equals to 2
are almost the same.

Similarly, when n_out is equal to 4, timing performance
of the xc7z030 solution features an implementation loss of
the 31% with respect to the solution on-board the xc7z045,
and the xczu3eg solution features an implementation loss of
47% with respect to the one on-board the xczu9eg.

8 International Journal of Reconfigurable Computing

7. Comparison with Intel Movidius Neural
Compute Stick

In this section, the FPGA-based accelerator is compared
with a commercial hardware accelerator for machine

learning on the edge: the Intel Movidius Neural Compute
Stick.

'e same model of SCNN keyword spotting was
implemented on the NCS in our previous work [12], and a
direct comparison between the performances of the two

Table 5: Hardware accelerator implementation on Xilinx FPGAs.

FPGA family Comb. elem. Comb. elem. (%) Seq. elem. Seq. elem. (%) BRAM BRAM (%) LRAM LRAM (%)
Zynq US+ 81345 30 860 <1 228 25 2560 2
Virtex US+ 81367 21 864 <1 228 32 2560 1
Virtex US 81427 23 952 <1 228 18 2560 3
Zynq-7000 76283 35 632 <1 244 45 0 0
Virtex-7 76163 37 632 <1 244 33 0 0
Kintex-7 lv 81737 81 633 <1 244 75 0 0
Artix-7 lv 87406 86 1081 <1 228 70 0 0

Table 6: Hardware accelerator implementation on Intel FPGAs.

FPGA family Comb. elem. Comb. elem. (%) Seq. elem. Seq. elem. (%) BRAM BRAM (%) DSP DSP (%)
Arria 10 GX 23722 23 296 <1 344 46 323 39
Stratix V GS 25532 18 2851 <1 344 36 323 31
Stratix V GX 23370 7 1860 <1 344 13 323 92
Stratix V E 23099 7 1843 <1 344 13 323 92
Cyclone V 24111 21 2911 <1 392 32 323 94

47.6 48.2
63.5 67.8

78.4

104.2
116.2

0.94 0.93

0.71

0.57

0.66

0.43 0.39

Artix-7 (lv) Kintex-7 (lv) Virtex-7 Zynq-7000 Virtex
UltraScale

Virtex
UltraScale+

Zynq
UltraScale+

Max frequency (MHz)
Inference time (ms)

0

20

40

60

80

100

120

140

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 8: Maximum clock frequency and inference time for different Xilinx FPGA families.

31.4

57.4 60.3 61

801.43

0.78
0.74 0.73

0.56

Cyclone V Stratix V E Stratix V GS Arria 10 GX Stratix V GX
0

10
20
30
40
50
60
70
80
90

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Max frequency (MHz)
Inference time (ms)

Figure 9: Maximum clock frequency and inference time for different Intel FPGA families.

International Journal of Reconfigurable Computing 9

solutions, in terms of inference time, power consumption,
and energy per inference, is now presented.

'e NCS is a commercial deep learning hardware ac-
celerator hosting the Myriad 2 VPU by Intel Movidius [9].
'e VPU includes the following:

(i) 4Gb of LPDDR3 DRAM
(ii) 12 very long instruction word (VLIW) streaming

hybrid architecture vector engine (SHAVE) pro-
cessors optimized for machine vision used to run
parts of a neural network in parallel

(iii) 2MB on-chip memory shared between SHAVE
processors and fixed-function accelerators

(iv) 2 Leon microprocessors that coordinate the re-
ception of the network graph file and of inputs via
USB connection

'e Myriad 2 VPU supports fully connected, convolu-
tional (with arbitrary sized kernel), and depthwise con-
volutional layers.

'e NCS implements the floating-point version of the
SCNN model with a maximum accuracy of 87.77. Quan-
tization allows to increase this value to 90.23%, even if our
preferred implementation has an accuracy of 88.09%.

'e inference time for the SCNN implemented on the NCS
is approximately 10ms. 'e FPGA-based accelerator has a
lower inference time for all the FPGA implementations pre-
sented, swinging from 1.45ms for the Cyclone V to 0.39ms for
the Zynq-US+. Finally, the NCS power consumption is 0.81W.
Such a result is provided by considering the hardware setup of
our previous work [12], featuring a Rasperry PI 3B [36]
connected to theNCS. Power consumption can be estimated by
subtracting the Raspeberry PI 3B power consumption in the
absence of the NCS (1.3W) to the total power consumption of
the system during an inference (2.11W).

As shown in Table 7, power consumption for the design
implemented on-board all FPGAs is higher than that for the
NCS one. Nevertheless, for all the implementations, the
energy dissipated during an inference (Einf) is lower than the
one of NCS. In fact, it is possible to calculate Einf as shown in
the following equation:

Einf � P · tinf , (11)

Table 7: Power consumption for Xilinx and Intel FPGAs.

Device Static power
(W)

Dynamic power
(W)

Total power
(W)

Artix 7 0.151 0.892 1.043
Kintex-7 lv 0.110 0.859 0.969
Zynq-7000 0.215 1.172 1.387
Virtex 7 0.204 1.147 1.351
Virtex-US 0.626 1.235 1.861
Virtex-US+ 0.839 1.302 2.141
Zynq-US+ 0.627 1.532 2.259
Cyclone V 0.570 1.731 2.301
Stratix V E 1.607 2.150 3.757
Stratix V GS 0.857 3.153 4.010
Arria 10 0.272 0.730 1.002
Stratix V GX 1.244 2.141 3.385

Table 8: Design portability analysis for Zynq-7000 family.

Zynq-7000
family

Num
mac.

Comb.
elem. (%)

Seq. elem.
(%)

BRAM
(%)

DSP
(%)

xc7z030

1 85 <1 92 0
2 88 <1 92 0
4 55 <1 92 100
8 — — — —

xc7z045

1 33 <1 45 0
2 35 <1 45 0
4 38 <1 45 0
8 44 <1 45 0

Table 9: Design portability analysis for Zynq-US+ family.

Zynq-
US+
family

Num
mac.

Comb.
elem. (%)

Seq.
elem.
(%)

BRAM
(%)

LRAM
(%)

DSP
(%)

xczu3eg

1 54 <1 100 16 92
2 64 <1 100 16 100
4 70 <1 100 16 100
8 — — — — —

xczu9eg

1 25 <1 27 0 0
2 26 <1 27 0 0
4 30 <1 27 0 0
8 36 <1 27 0 0

67.8 67.8

0.89

67.81.33

0.66 0.58
64.9

1 2 4 8

xc7z045 max frequency (MHz)
xc7z045 inference time (ms)

63
63.5

64
64.5

65
65.5

66
66.5

67
67.5

68
68.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a)

67.8
1.33

61.7 0.97 0.95
47.2

1 2 4

xc7z030 max frequency (MHz)
xc7z030 inference time (ms)

0
10
20
30
40
50
60
70
80

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b)

Figure 10: Max frequency and inference time for the Zynq-7000
family.

10 International Journal of Reconfigurable Computing

where P is the average power consumption during an in-
ference and tinf is the inference time.

Indeed, even if Xilinx and Intel devices show a higher
power consumption, the significantly lower tinf leads to a
reduced Einf .

Table 10 shows a comparison among FPGAs and NCS in
terms of inference time, power, and energy, by using model
(7) of Table 3. 'e power analysis was performed by con-
sidering the maximum achievable clock frequency (fclk) of
each FPGA in order to minimize the inference time.

Results show that FPGAs offer great design flexibility,
allowing to tune inference time and power consumption
through the choice of the different platforms. FPGAs are
promising devices for the implementation of CNN-based
hardware accelerators for portable applications and in
particular for those requiring low latency and high accuracy.
Indeed, inference time results to be diminished approxi-
mately of a factor between 7 and 25 and energy per inference
is reduced, respectively, of a factor between 2.5 and 9 in the
investigated cases.

Finally, Figure 12 provides a graphical representation of
the power consumption/inference time results shown in
Table 10. It is evident from results that all FPGA solutions
feature a reduced inference time with respect to the NCS

implementation at expense of a higher power consumption,
even if comparable for some devices.

8. Discussion

'e results presented in this work highlight the value of the
FPGA solutions to accelerate inference of CNNs.'ey offer a
remarkable trade-off between power consumption and

116.2 116.20.78

0.52

116.2

0.39 107.5 0.35

1 2 4 8

zu9eg max frequency (MHz)
zu9eg inference time (ms)

102
104
106
108
110
112
114
116
118

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a)

1 2 4

99
0.91

81.9
0.73

76.3 0.59

zu3eg max frequency (MHz)
zu3eg inference time (ms)

0

20

40

60

80

100

120

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b)

Figure 11: Max frequency and inference time for the Zynq-US+
family.

Table 10: Performance comparison between Xilinx FPGAs, Intel
FPGAs, and NCS.

Device fclk
(MHz)

Inference time
(ms)

Total power
(W)

Energy
(mJ)

Xilinx FPGA families
Artix 7 47.6 0.94 1.043 0.98
Kintex-7 lv 48.2 0.93 0.969 0.90
Zynq-7000 67.8 0.65 1.387 0.90
Virtex 7 63.5 0.71 1.351 0.96
Virtex-US 78.4 0.57 1.861 1.01
Virtex-US+ 104.2 0.43 2.141 0.92
Zynq-US+ 116.4 0.39 2.259 0.88

Intel FPGA families
Cyclone V 31.4 1.43 2.301 3.29
Stratix V E 57.4 0.78 3.757 2.9
Stratix V GS 60.3 0.74 4.010 2.96
Arria 10 61 0.73 1.002 0.73
Stratix V GX 80 0.56 3.385 1.9

Intel movidius neural compute stick
NCS 600 10 0.810 8.1

Cyclone V
Artix-7 (lv)
Kintex-7 (lv)
Stratix VE
Stratix VGS

Arria 10 GX
Virtex-7
Zynq-7000
Virtex UltraScale

Stratix VGX
Virtex UltraScale+
Zynq UltraScale+
NCS

0

2

4

6

8

10

12

In
fe

re
nc

e t
im

e (
m

s)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.50.0
Power (W)

Figure 12: Inference time/power consumption trade-off analysis.

International Journal of Reconfigurable Computing 11

inference time, resulting in interesting solutions for on the
edge computing.

It is necessary to underline that these results were
possible, thanks to the use of a CNN model optimized for
resource-constrained devices [12], featuring a reduced
number of parameters and layers. In view of that, a full
on-chip design was achievable, with strong advantages in
terms of latency and power consumption. Consequently,
results are pertinent for applications requiring relatively
small models, such as digit and letter recognitions sys-
tems [37, 38], audio [39], and mobile vision applications
[40].

Finally, the proposed full on-chip design guarantees a
straightforward processing architecture (i.e., no data
scheduling from external memories and no management of
shared inference processing elements), further reducing the
overall system design time. However, when compared with
NCS and other plug and play solutions, the use of FPGA still
requires much more design effort and competences, in view
of the higher and heterogeneous design steps (i.e., model
quantization and architecture definition) and of the broader
design space.

9. Conclusions

'is article presents a full on-chip FPGA-based hardware
accelerator for on the edge keyword spotting. 'e KWS
system is described focusing on its realization through a
machine-learning algorithm and on traducing AI on the
edge paradigm.

Starting from a Keras–Pythonmodel of a KWS based on
a SCNN, the parameters of the network were quantized in
order to shrink the hardware resources needed for its re-
alization. CNNs have a large number of parameters and are
characterized by multiplying and accumulating operations
that make their implementation on an FPGA device chal-
lenging. Quantization analysis shows that fixed-point rep-
resentation does not significantly affect model accuracy. On
the contrary, it is possible to increase it for particular
combinations of input words, weight, and layer output
representations. 'en, the accelerator architecture is de-
scribed, focusing on design effort to exploit the intrinsic
parallelism of these devices. 'e SCNN accelerator was
implemented on several Xilinx and Intel FPGAs to analyse
design portability on different families. 'e obtained results
are presented in terms of maximum achievable clock fre-
quency, hardware resources needed for the network
implementation, energy per inference, and power con-
sumption. Finally, the proposed accelerator was compared
with a commercial solution for on the edge AI applications:
the Intel Movidius NCS. 'is analysis shows that with a
FPGA-based solution, it is possible to overcome NCS per-
formances in terms of inference time and energy per
inference.

Data Availability

'e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

'e authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] D. M. Ramı́k, C. Sabourin, R. Moreno, and K. Madani, “A
machine learning based intelligent vision system for auton-
omous object detection and recognition,” Applied Intelligence,
vol. 40, no. 2, pp. 358–375, 2014.

[2] H. Zhang, K.-F. Wang, and F.-Y. Wang, “Advances and
perspective on applications of deep learning in visual object
detection,” Acta Automatica Sinica, vol. 43, no. 8, pp. 1289–
1305, 2017.

[3] L. Zhang, Z. He, and Y. Liu, “Deep object recognition across
domains based on adaptive extreme learning machine,”
Neurocomputing, vol. 239, pp. 194–203, 2017.

[4] R. Nian, B. He, and A. Lendasse, “3D object recognition based
on a geometrical topology model and extreme learning ma-
chine,” Neural Computing and Applications, vol. 22, no. 3-4,
pp. 427–433, 2013.

[5] G. Retsinas, G. Sfikas, N. Stamatopoulos, G. Louloudis, and
B. Gatos, “Exploring critical aspect of CNN-based keyword
spotting. A phocnet study,” in Proceedings of the 13th IAPR
International Workshop on Document Analysis Systems,
pp. 13–18, Vienna, Austria, April 2018.

[6] Y. B. Ayed, D. Fohr, J. P. Haton, and G. Chollet, “Keyword
spotting using support vector machines,” in Proceedings of the
5th International Conference on Text, Speech and Dialogue,
vol. 2448, pp. 285–292, Brno, Czech Republic, September
2002.

[7] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge:
keyword spotting on microcontrollers,” 2017, https://arxiv.
org/abs/1711.07128.

[8] Q. Zhang, M. Zhang, T. Chen et al., “Recent advances in
convolutional neural network acceleration,” Neurocomputing,
vol. 323, pp. 37–51, 2019.

[9] Neural compute Stick Documentation. https://software.intel.
com/en-us/movidius-ncs.

[10] Google Coral Datasheet: https://coral.withgoogle.com/
tutorials/accelerator-datasheet/.

[11] S. Mittal, “A survey of FPGA-based accelerators for con-
volutional neural networks,” Neural Computing and Appli-
cations, pp. 1–31, 2018.

[12] G. Benelli, G. Meoni, and L. Fanucci, “A low power keyword
spotting algorithm for memory constrained embedded sys-
tem,” in Proceedings of the 26th IFIP/IEEE International
Conference on Very Large Scale Integration, Verona, Italy,
October 2018.

[13] Keras Documentation. https://keras.io/.
[14] A. Mohamed, “Deep neural network acoustic models for

ASR,” Doctoral thesis, Toronto University, Toronto, Canada,
2014.

[15] S. Ioffe and C. Szegedy, “Batch normalization: accelerating
deep network training by reducing internal covariate shift,” in
Proceedings of the 32nd International Conference on Machine
Learning, ICML, vol. 1, pp. 448–456, Lille, France, July 2015.

[16] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
“Optimizing FPGA-based accelerator design for deep con-
volutional neural network,” in Proceedings of the FPGA
2015—2015 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 161–170, Monterey, CA, USA,
February 2015.

12 International Journal of Reconfigurable Computing

https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/1711.07128
https://software.intel.com/en-us/movidius-ncs
https://software.intel.com/en-us/movidius-ncs
https://coral.withgoogle.com/tutorials/accelerator-datasheet/
https://coral.withgoogle.com/tutorials/accelerator-datasheet/
https://keras.io/

[17] J. Qiu, J. Wang, S. Yao et al., “Going deeper with embedded
FPGA platform for convolutional neural network,” in Pro-
ceedings of the International Symposium on Field-Pro-
grammable Gate Arrays, pp. 26–35, Monterey, CA, USA,
February 2016.

[18] E. Nurvitadhi, D. Sheffield, J. Sim et al., “Accelerating
binarized neural networks: comparison of FPGA, CPU, GPU
and ASIC,” in Proceedings of the International Conference on
Field-Programmable Technology (FPT), pp. 77–84, Tokyo,
Japan, December 2016.

[19] S. Moini, B. Alizadeh, M. Emad, and R. Ebrahimpour, “A
resource-limited hardware accelerator for convolutional
neural networks in embedded vision applications,” IEEE
Transactions on Circuits and Systems II Express Briefs, vol. 64,
no. 10, pp. 1217–1221, 2017.

[20] L. Jiao, C. Luo, W. Cao, X. Zhou, and L. Wang, “Accelerating
low bit-width convolutional neural networks with embedded
FPGA,” in Proceedings of the 27th International Conference on
Field Programmable Logic and Applications (FPL), pp. 1–4,
Leuven, Belgium, September 2017.

[21] J. Park and W. Sung, “FPGA based implementation of deep
neural networks using on-chip memory only,” in Proceedings
of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1011–1015, Shanghai, China,
March 2016.

[22] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient
processing of deep neural networks: a tuturial and survey,”
Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–2329, 2017.

[23] G. Feng, Z. Hu, S. Chen, and F. Wu, “Energy-efficient and
high-throughput FPGA-based accelerator for convolutional
neural networks,” in Proceedings of the 13th IEEE In-
ternational Conference on Solid-State and Integrated Circuit
Technology (ICSICT), pp. 624–626, Hangzhou, China, Octo-
ber 2016.

[24] X. Zhang, X. Liu, A. Ramachandran et al., “High-performance
video content recognition with long-term recurrent con-
volutional network for FPGA,” in Proceedings of the 26th
International Conference on Field Programmable Logic and
Applications (FPL), pp. 1–4, Leuven, Belgium, September
2017.

[25] J. H. Kim, B. Grady, R. Lian, J. Brothers, and J. H. Anderson,
“FPGA-based CNN inference accelerator synthesized from
multi-threaded C software,” in Proceedings of the 30th IEEE
International System-On-Chip Conference (SOCC), pp. 268–
273, Munich, Germany, September 2017.

[26] AMBAAdvanced Extensible Interface 4 Specifications. https://
www.arm.com/products/silicon-ip-system/embedded-system-
design/amba-specifications.

[27] Zynq UltraScale+ Family Datasheet. https://www.xilinx.com/
support/documentation/data_sheets/ds891-zynq-ultrascale-
plus-overview.pdf.

[28] Virtex UltraScale+ Family Datasheet. https://www.xilinx.com/
support/documentation/data_sheets/ds923-virtex-ultrascale-
plus.pdf.

[29] Virtex UltraScale Family Datasheet. https://www.xilinx.com/
support/documentation/data_sheets/ds890-ultrascale-overview.
pdf.

[30] Zynq-7000 Family Datasheet. https://www.xilinx.com/support/
documentation/data_sheets/ds190-Zynq-7000-Overview.pdf.

[31] Virtex-7, Kintex-7 and Artix-7 Families’ Datasheet. https://
www.xilinx.com/support/documentation/data_sheets/ds180_
7Series_Overview.pdf.

[32] Arria 10 Family Overview. https://www.intel.com/content/
dam/www/programmable/us/en/pdfs/literature/hb/arria-10/
a10_overview.pdf.

[33] Stratix V Family Datasheet. https://www.intel.com/content/
dam/www/programmable/us/en/pdfs/literature/hb/stratix-v/
stx5_51001.pdf.

[34] Cyclone V Family Datasheet. https://www.intel.com/content/
dam/www/programmable/us/en/pdfs/literature/hb/cyclone-
v/cv_51001.pdf.

[35] Quartus Prime Standard Edition. https://www.intel.com/
content/dam/www/programmable/us/en/pdfs/literature/hb/
qts/archives/qts-qps-handbook-16.0.pdf.

[36] Rasberrey PI 3B Datasheet. https://www.terraelectronica.ru/pdf/
show?pdf_file�%252Fds%252Fpdf%252FT%252FTechicRP3.pdf.

[37] Y. Hout and H. Zhao, “Handwritten digit recognition based
on depth neural network,” in Proceedings of the International
Conference on Intelligent Informatics and Biomedical Sciences
(ICIIBMS), Shanghai, China, November 2017.

[38] D. C. Ciresan, U. Meier, and J. Schmidhuber, “Transfer
learning for Latin and Chinese characters with deep neural
networks,” in Proceedings of the 2012 International Joint
Conference on Neural Networks (IJCNN), Brisbane, Australia,
June 2012.

[39] T. Secu, C. Puhrsh, B. Kingsbury, and Y. LeCun, “Very deep
multilingual convolutional neural networks for LVCSR,” in
Proceedings of the 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Shanghai,
China, March 2016.

[40] A. G. Howard, M. Zhu, B. Chen et al., “MobileNets: efficient
convolutional neural networks for mobile vision applica-
tions,” 2017, https://arxiv.org/abs/1704.04861.

International Journal of Reconfigurable Computing 13

https://www.arm.com/products/silicon-ip-system/embedded-system-design/amba-specifications
https://www.arm.com/products/silicon-ip-system/embedded-system-design/amba-specifications
https://www.arm.com/products/silicon-ip-system/embedded-system-design/amba-specifications
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-v/stx5_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-v/stx5_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-v/stx5_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/qts/archives/qts-qps-handbook-16.0.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/qts/archives/qts-qps-handbook-16.0.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/qts/archives/qts-qps-handbook-16.0.pdf
https://www.terraelectronica.ru/pdf/show?pdf_file=%252Fds%252Fpdf%252FT%252FTechicRP3.pdf
https://www.terraelectronica.ru/pdf/show?pdf_file=%252Fds%252Fpdf%252FT%252FTechicRP3.pdf
https://arxiv.org/abs/1704.04861

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

