Elsevier Editorial System(tm) for Journal of

Archaeological Science

Manuscript Draft

Manuscript Number:

Title: High resolution sourcing of pottery demonstrates long-distance mobility in the North Western Mediterranean during the Neolithic transition

Article Type: Research Paper

Keywords: Pottery analysis, ceramic petrography, geochemistry, provenance study, early Neolithic, Impressa Ware

Corresponding Author: Dr. Marzia Gabriele, Ph.D.

Corresponding Author's Institution: Université Côte d'Azur, CNRS, CEPAM

First Author: Marzia Gabriele, Ph.D.

Order of Authors: Marzia Gabriele, Ph.D.; Fabien Convertini; Chrystele Verati; Bernard Gratuze; Suzanne Jacomet; Giovanni Boschian; Gilles Durrenmath; Jean Guilaine; Jean-Marc Lardeaux; Louise Gomart; Claire Manen; Didier Binder

Abstract: The Neolithisation of the North-Western Mediterranean is still an open issue. New data recently enriched the chronological and cultural archaeological framework, bringing more precise absolute dates and showing a new and more complex process of expansion of farming in Southern Europe.

The Mediterranean route of colonization (6000-5600 BCE), is characterised by the so-called Impressed Wares (IW) or Impresso-Cardial Complex (ICC) showing a huge internal diversity in material culture, notably in pottery style and technology. This polythetic imprint of the ICC is intimately linked to dynamics of raw materials exploitation (such as obsidian) and interconnections within circulation and exchange networks of goods. Through a comparative and multi-analytical approach to pottery characterization, we demonstrate long-distance mobility of pottery between the Thyrrenian and the Languedoc regions during the Neolithic transition. Our study allows us to highlight an unexpected milestone in the first Neolithic migration in the North Western Mediterranean.

Suggested Reviewers: Italo M. Muntoni Soprintendenza Archeologia, Belle Arti e Paesaggio per le Province di Barletta - Andria - Trani e Foggia italomaria.muntoni@beniculturali.it Neolithic and archaeometry specialist

Michela Spataro Department of Conservation and Scientific Research, British Museum mspataro@thebritishmuseum.ac.uk Neolithic and archaeometry specialist

Sandro Conticelli Dipartimento Scienze della Terra, Università degli Studi di Firenze sandro.conticelli@unifi.it Geochemist, specialist in the Italian magmatic provinces Douglas T. Price Department of Anthropology, University of Wisconsin-Madison tdprice@wisc.edu Neolithic and archeological chemistry specialist Alasdair Whittle

School of History, Archaeology and Religion, Cardiff University whittle@cardiff.ac.uk Specialist of Neolithic period of Europe Dear Editor,

Would you please find our proposal of a manuscript submission to Journal of Archaeological Science.

There are four main reasons that allow us to think that this manuscript can be interesting for a possible publication in Journal of Archaeological Science:

- We report a new accurate analytical approach for Neolithic pottery sourcing.
- We were able to precisely circumscribe the source area for pottery production through discriminant geochemical proxies.
- Our petrographic and geochemical results on Impressa Neolithic potteries from two distant well-dated sites (France and Italy) provides the first evidence for interregional relationships over a span of more than 1000 km in the Western Mediterranean.
- These results allow us to propose an unexpected milestone in the first Neolithic migration path from Southern Italy, towards the Central and High Tyrrhenian, and further to the Mediterranean Languedoc.

For our group, the corresponding author is:

Marzia GABRIELE, Université Côte Azur-CNRS, UMR CEPAM, 24, avenue des Diables Bleus, F – 06357 Nice Cedex 4, France. Email: marzia.gabriele@gmail.com

We thank you in advance for considering our proposal,

With our best regards,

Marzia Gabriele

Highlights

- · High informative potential of multi-analytical approach for pottery sourcing
- · Geochemical proxies precisely circumscribe the source area for pottery raw material
- · The results provide the evidence for Neolithic interregional relationships
- · Unexpected milestone in the first Neolithic migration in the NW Mediterranean

Manuscript

Click here to view linked References

- 1 Title
- High resolution sourcing of pottery demonstrates long-distance mobility in the North Western Mediterranean during the Neolithic
 transition
- 4

5 Author names and affiliations

- Marzia Gabriele^{a,b}, Fabien Convertini^c, Chrystele Verati^a, Bernard Gratuze^d, Suzanne Jacomet^e, Giovanni Boschian^f, Gilles
 Durrenmath^b, Jean Guilaine^g, Jean-Marc Lardeaux^a, Louise Gomart^h, Claire Manenⁱ, Didier Binder^b.
- 8
- ^aUniversité Côte d'Azur, CNRS, IRD, OCA, GEOAZUR, 250, rue Albert Einstein, CS 10269, 06905 Sophia Antipolis Cedex,
 France
- ^bUniversité Côte d'Azur, CNRS, CEPAM, SJA3, Pôle Universitaire Saint Jean d'Angély, 24, avenue des Diables Bleus, 06357
 Nice Cedex 4, France
- 13 ^cUniversité Paul Valéry Montpellier, CNRS, Ministère Culture, ASM, route de Mende, 34199 Montpellier, France
- ^dUniversité Belfort-Montbéliard, Université Orléans, Université Bordeaux-Montaigne, CNRS, IRAMAT/CEB, 3 D rue de la
 Férollerie, 45071 Orléans Cedex 2, France
- ¹⁶ ^eMINES ParisTech, PSL Research University, CEMEF Centre de mise en forme des matériaux, CNRS UMR 7635, CS 10207,
- 17 rue Claude Daunesse 06904 Sophia Antipolis Cedex, France
- 18 ^fUniversity of Pisa, Department of Biology, 1, via Derna, 56100 PISA, Italy
- 19 ^gCollège de France, 11, Place Marcelin-Berthelot, 75005 Paris, France
- 20 ^hUniversité Panthéon Sorbonne, CNRS, Trajectoires. De la sédentarisation à l'État, Maison de l'Archéologie et de l'Ethnologie,
- 21 21, allée de l'Université, 92023 Nanterre Cedex, France
- ⁱUniversité Toulouse Jean-Jaurès, CNRS, Ministère Culture, TRACES, Maison de la Recherche, 5, allée Antonio-Machado, 31058
 Toulouse cedex 9, France
- 24
- 25 Corresponding Author: Marzia Gabriele
- 26 Université Côte d'Azur, CNRS, CEPAM, SJA3, Pôle Universitaire Saint Jean d'Angély, 24, avenue des Diables Bleus, 06357
- 27 Nice Cedex 4, France.
- 28 marzia.gabriele@gmail.com
- 29
- 30 Fabien Convertini, fabien.convertini@inrap.fr
- 31 Chrystele Verati, chrystele.verati@unice.fr
- 32 Bernard Gratuze, gratuze@cnrs-orleans.fr
- 33 Suzanne Jacomet, suzanne.jacomet@mines-paristech.fr
- 34 Giovanni Boschian, giovanni.boschian@unipi.it
- 35 Gilles Durrenmath, gilles.durrenmath@unice.fr
- 36 Jean Guilaine, jguilaine@wanadoo.fr
- 37 Jean-Marc Lardeaux, jean-marc.lardeaux@unice.fr
- 38 Louise Gomart, louise.gomart@cnrs.fr
- 39 Claire Manen, claire.manen@univ-tlse2.fr
- 40 Didier Binder, didier.binder@cepam.cnrs.fr
- 41

42 Abstract

- 43 The Neolithisation of the North-Western Mediterranean is still an open issue. New data recently enriched the chronological and
- 44 cultural archaeological framework, bringing more precise absolute dates and showing a new and more complex process of
- 45 expansion of farming in Southern Europe.
- 46 The Mediterranean route of colonization (6000-5600 BCE), is characterised by the so-called Impressed Wares (IW) or Impresso-
- 47 Cardial Complex (ICC) showing a huge internal diversity in material culture, notably in pottery style and technology. This
- 48 polythetic imprint of the ICC is intimately linked to dynamics of raw materials exploitation (such as obsidian) and
- 49 interconnections within circulation and exchange networks of goods.
- 50 Through a comparative and multi-analytical approach to pottery characterization, we demonstrate long-distance mobility of
- 51 pottery between the Thyrrenian and the Languedoc regions during the Neolithic transition. Our study allows us to highlight an
- 52 unexpected milestone in the first Neolithic migration in the North Western Mediterranean.
- 53

54 Keywords

- 55 Pottery analysis, ceramic petrography, geochemistry, provenance study, early Neolithic, Impressa Ware
- 56

57 1 Introduction

58 1.1 Tracking the farming pioneers in the N.W. Mediterranean

The spread of farming and neolithic ways of life from the Eastern Mediterranean and the Aegean towards Western Europe is well known for having followed two main routes (Childe, 1925). The continental one, through the Central Balkans and the Danube valley, which was at the origins of the Linearbandkeramik Complex (LBK), reached Northern France after 5350 BCE (Whittle, 2018). The Mediterranean route, linked to the Impressed Wares or Impresso-Cardial complex (ICC), reached Southern France at least five centuries before, c. 5850 BCE (Binder et al., 2017). Many issues are related to the social dynamics at the origin of erratic dispersal of the very first ICC farming communities in the Western Mediterranean, which highly contrasts with the LBK pioneer front.

66 In both cases, the role played by migrants within these processes has been demonstrated by genomics (Mathieson et al., 2018). 67 Concerning the ICC, the modelling of a large set of audited radiocarbon dates currently places its formative stage in Southern Italy 68 and Dalmatia during the very beginning of the 6th millennium BCE, mostly after 5950 BCE (Binder et al., 2017; McClure et al., 69 2014). Few genomic data are currently available for the earliest ICC aspects, i.e. in Croatia, from Zemunica cave between 6000 70 and 5750 BCE and from Kargadur, between 5670 and 5560 BCE: they strengthen the idea of a genetic connection with the 71 Balkans, Aegean and Anatolia, regarding the maternal and paternal lineages (Mathieson et al., 2018). These evidences raise new 72 issues about the possible roots of the ICC in the second half of the 7th millennium BCE, within the Southern Balkans and the 73 Aegean, in the contexts of the Monochrome or Proto-Sesklo Pottery which punctually reached the Ionian sea (Berger et al., 2014). 74 North and westwards, in Italy and France, analyses of Neolithic DNA are very rare and mostly concern later periods (Lacan et al., 75

75 2011; Rivollat et al., 2017). In this area, peopling dynamics are mainly demonstrated by transfers of material culture and domestic 76 taxa. For instance, it is now well known that domestic animals and crops are exogenous (mainly sheep, goat, wheat and barley) 77 and originated from Southwest Asia (Rowley-Conwy et al., 2013). This enables to study the spread of animal breeding and 78 agriculture and to observe their rhythms and pathways. In this framework, systemic studies of material culture also offers the 79 possibility to track the trajectories of the first farmers (Bernabeu Auban et al., 2017; Ibáñez-Estévez et al., 2017).

80 From each part of the Italian Apennine chain, peopling dynamics seem to be diverse regarding the cultural connections as well as 81 the diffusion tempo. On the Adriatic side, the ICC settlements kept highly concentrated in Apulia, Basilicate and East Calabria 82 during c. two centuries, crossing over the Tavoliere towards Central Italy at a rather late period: c. 5750 BCE in the Abruzzo and 83 c. 5600 BCE in the Marche. In contrast, on the Tyrrhenian side, the meshing of earliest settlements appears very sparse while the 84 diffusion speed appears to be very fast: actually the far Ligurian and French coasts were reached as soon as c. 5850 BCE (Binder 85 et al., 2017). Similarly, the first data on pottery technology indicate that different communities of practice occurred in the Adriatic 86 and Tyrrhenian sides. In the Adriatic area, the forming methods using coils and long slabs were clearly related to the Balkans' 87 tradition, whereas a distinctive Spiralled patchwork technology (SPT) was in use in the Tyrrhenian (Gomart et al., 2017).

88 Obsidian is well known for having played a great role during the earliest Eastern Mediterranean Neolithic (Dixon et al., 1968), and 89 especially a symbolic one (Cauvin, 1998). Totally ignored by the Late Hunter-Gatherers from Western Mediterranean, its use has 90 been transferred to the West as part of the Neolithic package. Most of the attractive sources of obsidian are located in the western 91 islands (Pantelleria, Lipari, Palmarola and Sardinia) where this glass was exploited and spread there from the earliest stage of the 92 ICC (Ammerman and Andrefsky, 1982; Muntoni, 2012; Tykot et al., 2013). Although there is currently no evidence of early ICC 93 settlements located close to the obsidian sources, tools made of obsidian from Palmarola and Sardinia have been identified in the 94 earliest ICC from the North-Western Mediterranean, especially at Arene-Candide in Liguria (Ammerman and Polglase, 1997), 95 Peiro Signado and Pont de Roque-Haute in the Mediterranean Languedoc (Briois et al., 2009; Binder et al., 2012).

96 Until now the obsidian transfers through the Western Mediterranean have been considered as the main evidence of maritime 97 voyaging since geochemical analyses provided unquestionable results for linking distant sites or people, compared to the simple 98 analogies suggested by pottery styles.

99 These data shed light on the Tyrrhenian as a specific cultural landscape where the sea could have played a central role during part 100 of the ICC. One of the key-issues in this context is related to the range and the regime of maritime mobility. Researches carried 101 out in the last couple of decades have shown that the Mediterranean area is a hot spot of cultural diversity (Rigaud et al., 2018). 102 Furthermore, this maritime area probably offered the possibility of multidirectional movements, but also different forms of 103 mobility (pioneering, travelling, interactions and exchanges) (Manen et al., 2018). Consequently it is still difficult to precisely 104 identify circulation routes, cultural filiations and origin of the incoming farmers. In this study a multi analytical approach to 105 pottery provenance through petrographic and geochemical analyses has been implemented to provide insight into the crucial 106 question of Neolithic dispersal routes.

107

108 *1.2 Pottery pastes as a proxy for human trajectories*

109 In this work we demonstrate that pottery sourcing analysis provides a major contribution for tracking ICC networking dynamics in110 the Western Mediterranean.

Pottery studies have been developed for long in the Mediterranean Neolithic contexts (Capelli et al., 2017, 2008; Convertini, 2010, 2007; Echallier, 1991; Ferraris and Ottomano, 1997; Gabriele, 2014, 2015; Gabriele and Boschian, 2009; Manen et al., 2010; Martini et al., 1996; Muntoni, 2003; Paolini-Saez, 2010; Spataro, 2002; Ucelli Gnesutta and Bertagnini, 1993). In most cases, analyses have indicated a local production of ICC pottery, while non-local ones are exceptions. The limited range of such transfers (10 to 100km) generally suggests that the pottery trade was embedded in functional networks, illustrating the logistical mobility of the first ICC farmers (Binder, 1991a; Capelli et al., 2017; Manen and Convertini, 2012).

However, previous studies have already highlighted the possibility of long distance pottery transfers in the Mediterranean Languedoc (Convertini, 2010, 2007), the Liguro-Provençal arch and Tuscany (Capelli et al., 2017, 2008; Gabriele, 2014, 2015), especially with regard to the presence of volcanic component of the paste (hereinafter referred as volcanic pottery and paste). The latter offer specific petrographic markers and geochemical features of a very high resolution, as demonstrated by a large set of pottery studies from distinct regions (Comodi et al., 2006; Barone et al., 2010; Brunelli et al., 2013; Palumbi et al., 2014; Belfiore et al., 2014; Scarpelli et al., 2015; La Marca et al., 2017). Furthermore, recent applications of in situ geochemical methods on nonvolcanic mineral inclusions allow to enhance the accuracy and reliability of provenance analyses (Gehres and Querré, 2018).

Here, we provide a multi analytical comparative approach to pottery characterization and provenance through petrographic and
geochemical analysis. Studying non-local volcanic pottery from the two ICC sites of Portiragnes – Pont de Roque-Haute
(Languedoc, France) (hereinafter referred as PRH) (Guilaine et al., 2007) and Giglio - Le Secche (Tuscany, Tuscan Archipelago,
Italy) (hereinafter referred as GLS) (Brandaglia, 2002) (Fig. 1), we demonstrate long-distance circulation of pottery – more than
1000 km following the coast or 600 km as a bird flies - between Central Italy and Languedoc.

129

130 2 Materials and Methods

131 *2.1 Sites and samples*

The open-air site of PRH, which offered a set of pits dug in a fluvial terrace, was interpreted as a short duration settlement in a ria (Guilaine et al., 2007). The modelled age of this occupation is estimated between 5860-5710 and 5800-5680 BCE, i.e. one of the earliest ICC settlements currently known in the Western Mediterranean (Binder et al., 2017). Together with domestic remains (mammals, seashells and tools including obsidian from Palmarola) a series of ca 603 sherds (at least 55 individuals) (Manen and Guilaine, 2007) indicates a local pottery production exploiting reworked alluvial Pliocene deposits (Convertini, 2010, 2007). Few individuals are characterized by volcanic aplastic components and among them one pot is impressed with the umbo of a *Cardidae*

138 shell (Fig. 2A).

The site of GLS is a shelter close to a north-western beach of Giglio Island. Rich deposits of well preserved pottery (Brandaglia, 1991) associated to a large set of Palmarola obsidian tools (Barone et al., 1996; Brandaglia, 1987) demonstrated its long attendance, starting during the earliest stage of ICC (5840-5540 BCE) and lasting at least during the second half of the 6th

142 millennium BCE (Binder et al., 2017). Most of the earliest pottery was built using local residual deposits on granite formation,

143 with the notable exception of few vessels shaped in a volcanic paste and decorated with the ventral margin of a *Cardidae* shell

144 (Fig. 2B,C) (Gabriele, 2014).

145

146 2.2 Analytical methods

Petrographic and chemical methods were performed through different scales of observations on each specimen *via* different
supports in order to have comparable and complementary data.

First, petrographic analysis were obtained by stereomicroscopy directly on the tree pottery fragments and by standard optical microscopy on six thin sections, whit support of scanner images, to characterized a-plastic inclusions and fabric textural features. For each archaeological samples two thin section are available, whose one covered and one uncovered, for elemental analysis too. Description of textures of inclusions, pores and matrix were performed following guidelines of soils micromorphology (Stoops, 2003) and ceramic description proposals (Quinn, 2013; Whitbread, 1989). The examinations were carried out at CEPAM's laboratory (CNRS, Nice, France).

Subsequently, to be able to verify the real compositional correspondence between potteries of both sites, chemical analysis on majors and trace elements were carried out to determine composition of whole pottery and mineral inclusions, such as clinopyroxene. Microchemical in-situ analysis on clinopyroxene are based on the assumption that its chemical composition is a marker of chemical composition of parental magma (Barone et al., 2010; Leterrier et al., 1982). Indeed, crystal-chemistry of clinopyroxene is related to different geochemical and petrological magma affinities (Cellai et al., 1994; Cundari and Salviulo, 1987; Gentili et al., 2014). Finally, for discerning our hypothetically petrographic and geochemical possible sources, data available in scientific literature are used.

162 The bulk pottery compositions were obtained by Inductively Plasma Atomic Emission Spectrometry (ICP-AES) and Inductively 163 Coupled Mass Spectrometry (ICP-MS), for major and trace elements respectively on two pottery powders at the Geochemical and 164 Petrographical Research Center in Nancy (SARM laboratory, CNRS-CRPG; Supplementary dataset) following the procedure 165 described in Carignan et al. (2001).

166 Chemical analysis by environmental scanning electron microscope (FEI PHILIPS XL30 ESEM) equipped with an Energy 167 Dispersive Spectroscopy (EDS) system for X-ray microanalysis (Quantax XFLASH6/30 silicon drift 10mm²) have been applied 168 on 74 clinopyroxene and 53 K-feldspar (sanidine) selected single crystal grain minerals found as inclusions in polished thin 169 section and mapping on scanner images. The analysis were carried out at the laboratory of the Centre for Material Forming 170 (CEMEF, Ecoles des Mines de Paris, Sophia Antipolis, France).

- 171 Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) examinations for estimating major and trace 172 elements have been applied on clinopyroxene single crystals found as inclusions in the epoxy impregnated ceramic samples, left 173 from the processing of thin sections, by stereomicroscopy observations and mapping on scanner images. LA-ICP-MS analysis 174 were undertaken on 78 selected clinopyroxene grain minerals, other than those of SEM-EDS investigations (Supplementary 175 dataset). The largest clinopyroxenes were selected in order to avoid possible contamination by other mineral species or clay paste 176 from the ceramic during the ablation process. To prevent any pollution of the argon/helium carrier gas flow during the ablation 177 process, the sherds were cleaned in an ultrasonic bath to remove the microscopic dust particles produced by polishing. LA-ICP-178 MS analysis was conducted at the laboratory of Centre Ernest-Babelon of the IRAMAT (Orléans, France).
- 179 The analytical protocol (pit ablation mode) developed for obsidian inclusions analysis (Palumbi et al., 2014) has been adapted to
- the analysis of clinopyroxenes by measuring magnesium on 25Mg instead of 24Mg. This allows sampling the clinopyroxenes with
 a larger laser beam diameter (up to 100 µm according to the mineral grain size) without saturation of the detector by this element
- and thus improving detection limits of elements such as the rare earths.

- 183 As encountered with the analysis of obsidian inclusions, one of the critical parameters of this type of analysis (pit mode) is the
- 184 thickness of the analysed clinopyroxene grains, owing to the fact that they were inserted in a ceramic paste and that they may 185 contain other mineral species included in their structure.
- 186 Consequently, in order to avoid overshooting the inclusions and to maintain a high signal level, a 10 Hz laser pulse frequency was
- used and the analytical time was reduced from 55 to 25 seconds (8 seconds for pre-ablation and 17 seconds for analysis), that is 8
 mass scans from lithium to uranium.
- 189 To ensure that the measured signal is not perturbed by the presence of other mineral species its evolution is systematically checked 190 during the whole ablation. If other mineral phases are encountered, the calculation protocol developed to study concentration 191 profiles in glass is applied to calculate the clinopyroxene composition and to identify the other mineral phase if it is possible 192 (Gratuze, 2016).
- 193 However, the contribution or the modification brought by another mineral species to the signal measured for a clinopyroxene may 194 not be always easy to detect if the composition of both species is fairly similar or if the proportion of the perturbating mineral 195 specie in the whole signal is weak. It is thus only when the chemical contrast between both species is important that the correction 196 of the signal is possible, as illustrated by the presence of a zircon grain in one of the recorded spectrum or by à transition between 197 a clinopyroxene and a feldspar. For most of the other cases the presence of another mineral specie may not be detected and will 198 just increase the dispersion or the variability of the calculated compositions. To avoid clay contaminations, the analysis were 199 carried out in the middle of the clinopyroxene grains. When possible the largest grains were selected for the analysis, however, 200 analysis of very small grains were also carried out by adapting the laser beam diameter.
- External calibration was performed using the National Institute of Standards and Technology Standard Reference Materials 610 (NIST SRM610), along with Corning reference glasses B and D. 28Si was used as an internal standard. Concentrations were calculated according to the protocol detailed in Gratuze (2016). Detection limits range from 0.01% to 0.1% for major elements, and from 20 to 500 ppb for minor and trace elements. Compatibility of data is monitored by the regular analysis of reference materials NIST SRM612 as unknown sample.
- 206

207 **3** Results and discussion of the comparative study

208 *3.1 Petrographic analysis of pottery pastes*

At a stereo-microscopic scale, pottery pastes are significantly characterised by sub-rounded/rounded green and dark-green clinopyroxene and colourless or whitish feldspar inclusions (Fig. 3A, B), up to very coarse sand size. However, more heterometric and larger lithic inclusions are also observable. Pastes are friable and not homogeneous in colours (Fig. 3A, B).

212 At thin sections optical-microscopic scale, porosity is characterised by meso- and macro planes and few macro vughs. The 213 porosity distribution and orientation are well expressed in the GLS samples, where have been recognised concentric features and 214 parallel, inclined and bow-like bands of oriented planes. A-plastic inclusions are common, mostly sub-rounded and rounded, 215 moderately sorted on fine-medium sand size, within elements more or less larger. Grain distribution and orientations are weakly-216 moderately expressed, up to single- and double-spaced relative distance. Clinopyroxene and K-feldspar (sanidine) are the most 217 common minerals (Fig. 3C, D). Clinopyroxene is frequently rounded, coloured whit green pleochroism and twinned (Fig. 3C-F). 218 Sanidine is generally less rounded and larger (up to very coarse sand size) than clinopyroxene, fresh and clear, Carlsbad twinned 219 (Fig. 3C-F). Other mineral grains are identified in different proportions and size, within oxides, quartz, plagioclase, black and 220 white micas. Lithic inclusions are generally rounded, heterometric, up to very coarse sand and very fine gravel size. Lithoclasts are 221 identified as alkaline volcanic rocks (Fig. 3G, H), sandstone, siliceous sedimentary rocks, and quartz-metamorphic rocks. Matrix is 222 optical active in GLS samples with stippled-speckled b-fabric and striated b-fabric. Colour is heterogeneous, linked to Fe 223 reduction on the margins and Fe oxidation on the core of the fragments.

- 224
- 225 *3.1.1 Petrographic possible volcanic source areas*

226 Because of petrographic and archaeological considerations, most likely source of raw materials are the Italian Miocene-Quaternary 227 potassic and ultrapotassic volcanic rocks from the so-colled Volcanic Provinces (hereinafter referred as VP) part of the Magmatic 228 Provinces of the Tyrrenian region (Fig. 1) (Conticelli et al., 2004; Peccerillo, 2017). Furthermore, petrographic pottery data, 229 namely characteristic association of sanidine and green clinopyroxene minerals with minor amount of volcanic, sedimentary and 230 metamorphic lithoclasts, suggests considering volcanic formations hydrographically or geomorphologically linked with ones of 231 different geological origins. In this perspective, more suitable volcanic centres are the Monte Amiata in the Tuscany VP 232 (hereinafter referred as TVP) (Conticelli et al., 2015; Cristiani and Mazzuoli, 2003), and Vulsini (Barton et al., 1982; Holm, 1982; 233 Palladino et al., 2014), Vico (Barbieri et al., 1988; Palladino et al., 2014; Perini et al., 2004; Perini and Conticelli, 2002) and 234 Sabatini (Conticelli et al., 1997; Del Bello et al., 2014; Palladino et al., 2014) districts in the Roman VP (hereinafter referred as 235 RVP). We cannot a priori exclude Roccamonfina (Ghiara et al., 1979), Phlegrean Fields (Armienti et al., 1983; Belkin et al., 2016; 236 Civetta et al., 1997; Fedele et al., 2009; Mollo et al., 2016) and Somma-Vesuvius (Bertagnini et al., 1998) districts in the 237 Campania VP (hereinafter referred as CVP) (in this paper Roccamonfina volcanic district is considered part of the CVP, Fig. 1; 238 moreover for the CVP we haven't been considered data on eruptions youngers than 8 ka).

In addition, for comparison we can consider same volcanic districts that can bring a similar K-feldspar-clinopyroxene mineralogical association than archaeological pottery samples. For example, the Italian Miocene-Quaternary volcanic rocks of San Vincenzo (Feldstein et al., 1994; Ferrara et al., 1989; Poli and Perugini, 2003a) and Monte Cimino districts (Perugini and Poli, 2003; Conticelli et al., 2013) in the TVP, Monte Vulture Volcano (Bindi et al., 1999) in the Apulian VP (hereinafter referred as AVP); the Miocene-Quaternary Monte Arci (Dostal et al., 1982) district and the Oligo-Miocene Bosa-Alghero, Anglona and Logudoro districts (Guarino et al., 2011) of the Sardinia VP (hereinafter referred as SVP) (in this paper the different Sardinian volcanic districts are considered in the same VP, Fig.1).

Conversely, because of their entirely volcanic origin, some thyrrenian islands such as Capraia (Tuscan archipelago, Tuscany) (Chelazzi et al., 2006; Poli and Perugini, 2003b), Ponza (Pontine archipelago, Latium) (Conte and Dolfi, 2002; Paone, 2013) and Vulcano (Aeolian archipelago, Sicily) (Faraone et al., 1988) are unsuitable, even if they can bring a K-feldspar-clinopyroxene mineralogical association. At the same time, the basaltic volcanic formations near the site of PRH can be excluded, mainly due to the lack of K-feldspar phenocrysts in this rock type (Dautria et al., 2010). For the same reasons others French and Italian volcanic districts, as Cap d'Ail, Alban hills (Boari et al., 2009) and Monti Ernici (Boari and Conticelli, 2007; Frezzotti et al., 2007), are not considered.

253

254 3.2 Major elements of single mineral inclusions

255 Data of SEM-EDS analysis show alkali-feldspar minerals compositionally homogenous whit Or_{67} to Or_{85} , only one case with Or_{50} 256 in GLS02 sample. Alkali-feldspar classification is represented in ternary diagram in supplementary figure 1.

257 Clinopyroxenes are predominantly composed of diopside and Fe-rich diopside; augite to Mg-rich augite and CaFe-rich 258 clinopyroxene are also presents (Supplementary dataset). Also in case of LA-ICP-MS analysis, clinopyroxenes are predominantly 259 composed of diopside and Fe-rich diopside with $F_{s_{13}}$ to $F_{s_{20}}$; augite ($Wo_{43}En_{54}Fs_4$) to Mg-rich augite ($Wo_{44}En_{33}Fs_{23}$) and CaFe-260 rich diopside ($Wo_{51}En_{38}Fs_{11}$ to $Wo_{52}En_{28}Fs_{20}$) are also presents (Supplementary dataset). Clinopyroxene classification is 261 represented in the QUAD diagram referring to Morimoto (1988) in supplementary figure 2. Major-element chemical composition 262 of clinopyroxene available in scientific literature allow us to differentiate within previously indicated petrographic possible 263 sources in the TVP (Aulinas et al., 2011; Conticelli et al., 2015, 2013; Feldstein et al., 1994), RVP (Barton et al., 1982; Comodi et 264 al., 2006; Conticelli et al., 1997; Cundari, 1975; Dal Negro et al., 1985; Del Bello et al., 2014; Gentili et al., 2014; Holm, 1982; 265 Kamenetsky et al., 1995; Palladino et al., 2014; Perini, 2000; Perini et al., 2004; Perini and Conticelli, 2002), CVP (Armienti et al., 266 1983; Aulinas et al., 2008; Belkin et al., 2016; Civetta et al., 1997; Fedele et al., 2009; Ghiara et al., 1979; Mollo et al., 2016; 267 Pappalardo et al., 2008), AVP (Bindi et al., 1999; Caggianelli et al., 1990), SVP (Dostal et al., 1982; Guarino et al., 2011). The 268 Quad diagrams show substantially correspondence between Mg-rich augite and diopside composition of clinopyroxenes in pottery

- (Fig. 4A) and volcanic rocks of RVP, CVP and AVP (Fig. 4B, C, E). Instead, partially correspondence with rocks of TVP and SVP, especially due to the lack of clinopyroxene with augite composition in pottery pastes (Fig. 4D, F). Moreover, pottery clinopyroxenes are characterized by limited compositional variations in major elements, considered as cationic values. In Ti_{tot} vs Al_{tot} binary diagrams (Supplementary Figure 3), the cluster of pottery clinopyroxene composition fits in the field of clinopyroxenes of the RVP, TVP and CVP (Supplementary Figure 3B, C, D), instead partially fits in the clinopyroxene compositionally fields of the AVP and SVP (Supplementary Figure 3E, F).
- 275

276 *3.3 Trace Element Analysis of Whole Pottery*

277 We realized ICP-MS trace element analysis on two bulk ceramics samples from the two archaeological sites. A soil sample from 278 the PRH site (Sedimentary Pliocene deposits) was also analyzed. Results were reported in Supplementary Dataset. In the spider 279 diagram (Fig. 5A) PRH and GLS potteries are geochemically indistinguishable. Their spectra display the same Large Ion 280 Lithophile Elements (LILE) enrichment, the same high negative Ta and Ti anomalies, and the same slight Sr anomaly. 281 Furthermore, trace element contents of rocks from the Languedoc Volcanic Province (Agde volcano and lava at the PRH site) do 282 not display Ta, Sr and Ti anomalies (Fig. 5A), suggesting that volcanic minerals of ceramics are not derived from southern France. 283 Indeed, Languedoc Volcanic Province corresponds to homogeneous alkali basaltic geochemistry (Dautria et al., 2010), different 284 from typical calc-alkaline geochemistry of the subduction zones (Italian Volcanic Provinces) (Peccerillo, 2017; Gasperini et al., 285 2002).

PRH soil shows the same pattern than the potteries excepted for Sr with a major negative anomaly. Furthermore, PRH soil spectrum is different from the regional lavas (Fig. 5A). The PRH alluvial soil geochemistry can be interpreted as a mixing of sedimentary, metamorphic, plutonic and volcanic rocks. The absence of sanidine mineral grains suggesting that it was not used for PRH and GLS pottery.

Trace element contents from rocks of RVP, TVP and CVP are also reported (Fig. 5B). Although PRH and GLS ceramic samples match Italian Volcanic Province spectra, differences remain apparent especially for Sr, High Rare Earth Elements (HREE, i.e. Tb, Dy, Ho, Tm, Yb) and High Field Strength Elements (HFSE, i.e. Ta, Zr, Hf). Significant negative Ta and Ti anomalies are present as well in Italian Magmatic Provinces and in bulk archaeological ceramics, supporting Italian volcanic rocks as potential sources for the archaeological materials. The CVP and TVP display strong negative Sr anomaly unlike the RVP. Taking into account the Sr contents, ceramic samples are more in agreement with the RVP. Furthermore, archaeological samples display a depleted HREE content like the RVP and TVP, while the CVP provides slight HREE enrichment.

297

298 *3.4 Trace Element Analysis of Clinopyroxene inclusions*

299 LA-ICP-MS trace element analysis were performed on clinopyroxenes included in pottery paste from the PRH and GLS sites. 300 Trace element contents are reported in Supplementary Dataset. Our data were confronted with data available in literature (i.e. trace 301 element contents from RVP (Comodi et al., 2006; Gentili et al., 2014; Scarpelli et al., 2015) and CVP (Arienzo et al., 2009; 302 Civetta et al., 1997; Fedele et al., 2009; Mollo et al., 2016; Pappalardo et al., 2008; Scarpelli et al., 2015) pyroxenes. In the spider 303 diagram, PRH and GLS ceramics display the same spectra pattern, with pronounced Ta, Sr, Zr and Ti negative anomalies (Fig. 304 6A). Although clinopyroxenes from RVP and CVP show also similar spectra, small variance appears for Sr, Light Rare Earth 305 Elements (LREE, La, Ce, Pr) and HREE contents (Fig. 6B). The RVP pyroxenes reach higher values for LREE, while the CVP 306 pyroxenes can reach higher values for HREE and smaller values for Sr contents. However, spectra of archaeological pyroxene 307 chemistry do not allow us to decipher the volcanic source accurately. For further, we investigated precise trace element contents 308 which could be specific proxies for the sourcing. First, in the diagram Eu^* vs Sm_N , we reported our data and those of the Italian 309 Volcanic Provinces (Supplementary Figure 4). The pyroxenes of the PRH and GSL sites display similar variability and 310 indistinguishable Eu^* or Sm_N values, strengthening an identical geological source for the ceramics. Although the ceramic 311 pyroxenes fit better with the geochemical field of the RVP, we reliably cannot exclude the potential provenance of the

- archaeological pyroxenes from the CVP. Further tests were made in order to find geochemical discriminant parameters (Fig. 7; Supplementary Figures 5; 6). Finally, many content data on pyroxenes demonstrate the pottery pyroxenes origin and confirm their equivalent composition. The Nd/Lu vs Ce/Lu, Sm/Yb vs La/Yb, Nd/Tm vs Ce/Tm and Zr/Y vs Ce/Y, diagrams allow to discriminate the geochemical field of RVP and CVP pyroxenes (Supplementary Figures 5B-E; 6B). For our study, the most accurate diagram is Y vs Ce where the pyroxenes from archaeological samples match the unique geochemical field of the RVP pyroxenes (Fig. 7B).
- 318

319 *3.5 A unique source area for long distance exogenous pottery*

- 320 Our study shows a clear correspondence between the three archaeological pottery samples at each levels of each method of 321 analysis. This petrographic and chemical evenness suggests the exact same provenance for the volcanic pottery of both sites of 322 PRH and GLS, confirming the non-local origin of the vessels. The basaltic volcanic formations near the site of PRH can be 323 excluded, both through petrographic and geochemical analyses. Moreover, Giglio Island is not a suitable source due to the 324 exclusive presence of granitic and metamorphic formations and the absence of volcanic formations (Capponi et al., 1997; 325 Westerman et al., 2003). Petrographic investigations allow us to highpoint mineralogical and roundness textural features of the a-326 plastic inclusions of pottery pastes match of both sites. Instead, the diversity visible in the other textural features of the fabric 327 elements (i.e. granulometry) may depend on the internal variability of the deposits used as raw material. The roundness of 328 inclusion shows, indeed, that secondary sedimentary deposits have been used for pottery production (Capelli et al., 2008; 329 Convertini, 2007; Gabriele, 2014).
- 330 The correspondence between elemental compositions of pottery pastes of both sites is clearly demonstrated by the results of 331 chemical analysis of whole pottery and especially of a-plastic single mineral inclusions. In the ternary and binary diagrams the 332 clusters of pottery clinopyroxene composition in both major and trace elements matching the same field and trend of evolution. 333 LA-ICP-MS trace-element data of clinopyroxenes in pottery compared with literature data for clinopyroxenes in rocks of Roman 334 and Campanian VPs allow us to distinguish between the more likely sources areas for pottery production. The correspondence 335 between clinopyroxene compositions of archaeological and geological data is clearly demonstrated in Y vs Ce binary diagrams 336 (Fig. 7), where trends of distribution concentration of trace elements matching each other with Roman VP. Conversely, there is no 337 match with the cluster of Campanian VP.
- 338 These results well demonstrate the efficiency and reliability of our methodology based on consequently and complementary step 339 of analysis. Petrography (both macro and micro observations) is the first and essential step, and must be confirmed and detailed 340 with subsequent chemical analysis, in order to circumscribe real source areas of raw materials.
- 341

342 4 Unravelling early farming dynamics in the Western Mediterranean

343 This comparative and multi-analytical study provides the first evidence for interregional relationships over a span of more than 344 1000 km in the Western Mediterranean early Neolithic, through the circulation of pottery. We were moreover able to precisely 345 circumscribe the source area for this pottery production, between the Fiora and the Tiber river basins in the Southern Toscany and 346 Northern Latium.

- 347 These results show how pottery raw materials can act as a powerful proxy to grasp early Farmers strategies and dynamics. Such 348 long-distance pottery transfers are embedded in a wider framework during the very first stage of the W. Mediterranean Neolithic 349 dispersal. Its fast spread is interpreted as part of a pioneering colonization model based on the use of maritime routes, but whose 350 social drivers are still misunderstood.
- This model is suggested to be at the origin of the settlement of small Neolithic seafaring groups far from their origins. Through this process, the whole Neolithic practices and know-how were progressively transferred to an extended region. By this way, the technical traditions newly implemented in the North-Western Mediterranean are expected to be very similar to those of the origin area which is still controversial. However, PRH potters clearly belong to the community of practices developed west to the

- 355 Apennine and then significantly differ from the Adriatic and Balkans tradition (Gomart et al., 2017). Similar connections are
- observed in the field of cropping practices based on hulled wheats and barley and moreover in animal husbandry since PRH ewesexhibit the same morphology than most of the Tyrrhenian ones (Guilaine et al., 2007).
- Together with obsidian from Palmarola, the pottery originating from Latium can help to identify an unexpected milestone in the first Neolithic migration path from Southern Italy, towards the Central and High Tyrrhenian, and further to the Mediterranean Languedoc.
- 361 As a paradox, volcanic pastes and obsidian sources exploited during the earliest Impressa stages are situated in areas of Central 362 Italy where dwelling sites are poorly identified; the closest and earliest sites are in Latium, Settecannelle cave (Ucelli Gnesutta, 363 2002) in the Fiora Valley and La Marmotta on the banks of the Bracciano Lake (Fugazzola Delpino, 2002), and in Umbria, 364 Panicarola (De Angelis, 2003) on those of the Trasimene Lake (Fig. 8). A similar situation can be observed about the Sardinian 365 obsidian exploitation: despite the trade of Monte Arci glass towards Liguria (Arene Candide) (Ammerman and Polglase, 1997; 366 Maggi, 1997) and Languedoc (Pont-de-Roque-Haute and Peiro Signado) (Briois et al., 2009; De Francesco and Crisci, 2007) 367 appears from 5850-5750 BCE, only one early dwelling place has been recognized on this island and suspected, with question 368 marks, to be contemporary (Su Coloru) (Lugliè, 2018; Sarti et al., 2012). Similarly, evidences of the earliest impressed wares are 369 very rare in Corsica (Campu Stefanu, Cesari et al., 2014; Albertini rock-shelter, Binder and Nonza-Micaelli in press)
- Considering this scarcity, one could suspect that the area where raw materials have been collected was in some way *terra incognita* for the Neolithic pioneer groups. But the same lack of data could indicate as well that the territorial meshing of the early farmers is severely underestimated today, due to various hazards, as littoral submersion, sedimentary covering, sites destructions or research weaknesses... At least, these pottery analyses reveal invisible parts of the original meshing as well as pollen revealing very early cropping within areas where Neolithic sites are currently unknown (Branch et al., 2014; Guillon et al., 2010). This observation suggests a peopling discontinuity between Southern-Italy and the Franco-Ligurian region and lead to reassess the question of leapfrog dispersal (Zilhão, 2014).
- Among the issues which are opened by these results, a burning one concerns the nature and temporality of the processes occurring
 for acquiring various raw materials and for transferring pots or other goods at long-distance. This questions both the mobility
 regimes and the social interactions at the beginning of the Neolithic transition in the Western Mediterranean.
- 380 The hypothesis of short-term voyaging episodes, connecting the Northern Latium, the Tuscan Archipelago and the Mediterranean 381 Languedoc, is toughly supported by the data. Indeed, the chronological resolution of radiocarbon dating, as well as the vagueness 382 of stylistic comparisons, cannot allow linking those three regions throughout sole pioneer events. Actually, recent literature evokes 383 a long duration of the production and trade of pottery from RVP, for instance in northern Latium (Settecannelle) (Ucelli Gnesutta 384 and Bertagnini, 1993), Tuscan archipelago (Cala Giovanna Piano, Pianosa island) (Gabriele and Boschian, 2009), and Liguria 385 (Pian del Ciliegio) (Capelli et al., 2017, 2008). At the same time, all along the 6th millennium BCE, in the whole Tyrrhenian area 386 and Liguria, several networks are developed at a smaller range as highlighted for example by movements of wares with low 387 pressure ophiolitic components (Capelli et al., 2017; Gabriele and Boschian, 2009; Martini et al., 1996). In Provencal area, the site 388 of Nice - Caucade is a good example of regional multidirectional exploitation (early Impressa stage) (Convertini, 2010; Manen et 389 al., 2006).
- The multipolarity of the transfers observed for a large set of raw materials and goods have been considered as a strong argument for indirect acquisition and for the early setting of social networks (Binder and Perlès, 1990; Perlès, 2012). In the context of a pioneer colonization of the Western Mediterranean, this networking appears to be of a great spatial extension, which could indicate a very high level of maritime mobility, the development of sailing skills and durable connection.
- Surprisingly, during the following stage of the ICC, after 5500 BCE, this extended network seems to have collapsed. This is highlighted for instance by the general disappearance of the obsidian trade throughout Provence and Languedoc (Binder et al., 2012), by the increasing of the polymorphism of pottery styles (Manen, 2002), and by the diversification of economic patterns giving a wider place to hunting activities (Binder, 1991b). This break could be the result of an increasing admixture between

398 Farmers and local Hunter-Gatherers or of an economic and social reorganization of communities to face new environments and a

- **399** specific declension of the Neolithic Paradigm (Guilaine, 2018).
- 400

401

402 Acknowledgments

- 403 Authors wish to thanks Mario Brandaglia, Paola Rendini and the Soprintendenza Archeologica della Toscana for allow us to study
- 404 the ceramic materials from Giglio Island-Le Secche. The authors are also grateful to Antoine Pasqualini and Michel Dubar for 405 their availability and advices.
- 406 This work was supported by a grant from the Agence Nationale de la Recherche for the CIMO research project 'Western'
- 407 Mediterranean Impressed Wares. An interdisciplinary research on Early Neolithic pottery (6th millennium cal BCE): sourcing,
- 408 production, uses and transfers' (ANR-14-CE31-009, D. Binder dir.).
- 409

410 Author contributions

- 411 M.G., F.C., C.V. and D.B. designed research. M.G., C.V. and D.B. wrote the paper with B.G., L.G. and C.M. M.G., F.C., C.V.,
- 412 B.G., S.J. and G.B. performed research and analyzed data. M.G. and G.D. made the iconographic apparatus with C.V. and F.C. All
- 413 authors revising the work and approval the final version to be published.
- 414
- 415

416 **References**

- Ammerman, A.J., Andrefsky, Y., 1982. Reduction Sequences and the Exchange of Obsidian in Neolithic Calabria, in: Ericson,
 J.E., Earle, T.K. (Eds.), Contexts for Prehistoric Exchange. Academic Press, New York, pp. 149–172.
- Ammerman, A.J., Polglase, C., 1997. Analyses and descriptions of the obsidian collections from Arene Candide, in: Maggi, R.
 (Ed.), Arene Candide: A Functional and Environmental Assessment of the Olocene Sequence (Excavations Bernabò Brea-Cardini 1940-50), Memorie Dell'Istituto Italiano Di Paleontologia Umana. Il Calamo, Roma, pp. 573–592.
- Arienzo, I., Civetta, L., Heumann, A., Wörner, G., Orsi, G., 2009. Isotopic evidence for open system processes within the Campanian Ignimbrite (Campi Flegrei–Italy) magma chamber. Bull. Volcanol. 71, 285. https://doi.org/10.1007/s00445-008-0223-0
- Armienti, P., Barberi, F., Bizojard, H., Clocchiatti, R., Innocenti, F., Metrich, N., Rosi, M., Sbrana, A., 1983. The Phlegraean
 Fields: magma evolution within a shallow chamber. J. Volcanol. Geotherm. Res. 17, 289–311.
- Aulinas, M., Civetta, L., Di Vito, M.A., Orsi, G., Gimeno, D., Fernandez-Turiel, J.L., 2008. The "Pomici di mercato" Plinian
 eruption of Somma-Vesuvius: Magma chamber processes and eruption dynamics. Bull. Volcanol. 70, 825–840.
 https://doi.org/10.1007/s00445-007-0172-z
- Aulinas, M., Gasperini, D., Gimeno, D., Macera, P., Fernandez-Turiel, J.L., Cimarelli, C., 2011. Coexistence of calc-alkaline and ultrapotassic alkaline magmas at Mounts Cimini: evidence for transition from the Tuscan to the Roman Magmatic Provinces (Central Italy). Geol. Acta 9, 103–125. https://doi.org/DOI: 10.1344/105.000001642
- Barbieri, M., Peccerillo, A., Poli, G., Tolomeo, L., 1988. Major, trace element and Sr isotopic composition of lavas from Vico
 volcano (Central Italy) and their evolution in an open system. Contrib. Mineral. Petrol. 99, 485–497.
 https://doi.org/10.1007/BF00371939
- Barone, G., Belfiore, C.M., Mazzoleni, P., Pezzino, A., Viccaro, M., 2010. A volcanic inclusions based approach for provenance
 studies of archaeological ceramics: Application to pottery from southern Italy. J. Archaeol. Sci. 37, 713–726.
- Barone, G., Brandaglia, M., Pappalardo, L., Triscari, M., 1996. Caratterizzazione di ossidiane mediante spettrometria XRF con sorgenti radioattive. Plinius 16, 25–27.
- Barton, M., Varekamp, J.C., Van Bergen, M.J., 1982. Complex zoning of clinopyroxenes in the lavas of Vulsini, Latium, Italy:
 Evidence for magma mixing. J. Volcanol. Geotherm. Res. 14, 361–388. https://doi.org/10.1016/0377-0273(82)90070-1
- Belfiore, C.M., La Russa, M.F., Barca, D., Galli, G., Pezzino, A., Ruffolo, S.A., Viccaro, M., Fichera, G.V., 2014. A trace element study for the provenance attribution of ceramic artefacts: the case of Dressel 1 amphorae from a late-Republican ship. J. Archaeol. Sci. 43, 91–104. https://doi.org/10.1016/j.jas.2013.12.015
- Belkin, H.E., Rolandi, G., Jackson, J.C., Cannatelli, C., Doherty, A.L., Petrosino, P., De Vivo, B., 2016. Mineralogy and geochemistry of the older (>40ka) ignimbrites on the Campanian Plain, southern Italy. J. Volcanol. Geotherm. Res. 323, 1–18. https://doi.org/10.1016/j.jvolgeores.2016.05.002
- Berger, J.-F., Metallinou, G., Guilaine, J., 2014. Vers une révision de la transition méso-néolithique sur le site de Sidari (Corfou, Grèce). Nouvelles données géoarchéologiques et radiocarbone, évaluation des processus post-dépositionnels, in: Manen, C., Perrin, T., Guilaine, J. (Eds.), La Transition Néolithique En Méditerranée. Editions Errance & Archive d'Ecologie Préhistorique, Arles & Toulouse, pp. 213–232.

- Bernabeu Auban, J., Manen, C., Pardo-Gordó, S., 2017. Spatial and Temporal Diversity During the Neolithic Spread in the
 Western Mediterranean: The First Pottery Productions, in: Garcia-Puchol, O., Salazar-Garcia, D.C. (Eds.), Times of
 Neolithic Transition along the Western Mediterranean, Fundamental Issues in Archaeology. Springer International
 Publishing, pp. 373–397. https://doi.org/10.1007/978-3-319-52939-4_14
- Bertagnini, A., Landi, P., Rosi, M., Vigliargio, A., 1998. The Pomici di Base plinian eruption of Somma-Vesuvius. J. Volcanol.
 Geotherm. Res. 83, 219–239. https://doi.org/10.1016/S0377-0273(98)00025-0
- Binder, D., 1991a. La céramique. Etude stylistique, in: Binder, D. (Ed.), Une Économie de Chasse Au Néolithique Ancien. La Grotte Lombard à Saint-Vallier-de-Thiey (Alpes-Maritimes), Monographie du CRA. CNRS, Paris, pp. 90–96.
- Binder, D. (Ed.), 1991b. Une économie de chasse au Néolithique ancien. La grotte Lombard à Saint-Vallier-de-Thiey (Alpes-Maritimes), Monographie du CRA. Edition du CNRS, Paris.
- Binder, D., Gratuze, B., Vaquer, J., 2012. La circulation de l'obsidienne dans le sud de la France au Néolithique. Rubricatum Rev.
 Mus. Gavà 5, 189–200.
- Binder, D., Lanos, P., Angeli, L., Gomart, L., Guilaine, J., Manen, C., Maggi, R., Muntoni, I., Panelli, C., Radi, G., Tozzi, C.,
 Arobba, D., Battentier, J., Brandaglia, M., Bouby, L., Briois, F., Carré, A., Delhon, C., Gourichon, L., Marinval, P.,
 Nisbet, R., Rossi, S., Rowley-Conwy, P., Thiébault, S., 2017. Modelling the earliest north-western dispersal of
 Mediterranean Impressed Wares: new dates and Bayesian chronological model. Doc. Praehist. 44, 54–77.
 https://doi.org/10.4312/dp.44.4
- Binder, D., Nonza-Micaelli, A. in press. Aspects de l'horizon impresso-cardial de l'abri Albertini E Spilonche (Albertacce, Corse), in: Sicurani, J. (Ed.), L'Habitat Pré et protohistorique. Association de Recherches Préhistoriques et Protohistoriques Corses.
- 472 Binder, D., Perlès, C., 1990. Stratégies de gestion des outillages lithiques au Néolithique. Paléo 2, 257–283.
 473 https://doi.org/10.3406/pal.1990.1004
- Bindi, L., Cellai, D., Melluso, L., Conticelli, S., Morra, V., Menchetti, S., 1999. Crystal chemistry of clinopyroxene from alkaline
 undersaturated rocks of the Monte Vulture Volcano, Italy. Lithos 46, 259–274. https://doi.org/10.1016/S00244937(98)00069-3
- Boari, E., Avanzinelli, R., Melluso, L., Giordano, G., Mattei, M., De Benedetti, A.A., Morra, V., Conticelli, S., 2009. Isotope geochemistry (Sr–Nd–Pb) and petrogenesis of leucite-bearing volcanic rocks from "Colli Albani" volcano, Roman Magmatic Province, Central Italy: inferences on volcano evolution and magma genesis. Bull. Volcanol. 71, 977–1005. https://doi.org/10.1007/s00445-009-0278-6
- Boari, E., Conticelli, S., 2007. Mineralogy and petrology of associated Mg-rich ultrapotassic, shoshonitic, and calc-alkaline rocks:
 the middle Latin valley monogenetic volcanos, Roman Magmatic Province, southern Italy. Can. Mineral. 45, 1443–1469.
 https://doi.org/10.3749/canmin.45.6.1443
- Branch, N.P., Black, S., Maggi, R., Marini, N.A.F., 2014. The Neolithisation of Liguria (NW Italy): An environmental archaeological and palaeoenvironmental perspective. Environ. Archaeol. 19, 196–213.
- Brandaglia, M., 2002. Isola del Giglio. Toscana, in: Fugazzola Delpino, M.A., Pessina, A., Tiné, V. (Eds.), Le Ceramiche
 Impresse Nel Neolitico Antico. Italia e Mediterraneo, Studi Di Paletnologia. Istituto Poligrafico e Zecca dello Stato,
 Roma, pp. 407–423.
- 489 Brandaglia, M., 1991. Il Neolitico a Ceramica impressa dell'Isola del Giglio. La ceramica. Studi L'Ecologia Quat. 13, 43–104.
- Brandaglia, M., 1987. Il Neolitico a Ceramica impressa dell'Isola del Giglio. L'industria litica. II. Studi L'Ecologia Quat. 9, 51–
 61.
- Briois, F., Manen, C., Gratuze, B., 2009. Nouveaux résultats sur l'origine des obsidiennes de Peiro Signado à Portiragnes (Hérault). Bull. Société Préhistorique Fr. 106, 809–811.
- Brunelli, D., Levi, S.T., Fragnoli, P., Renzulli, A., Santi, P., Paganelli, E., Martinelli, M.C., 2013. Bronze Age pottery from the
 Aeolian Islands: Definition of Temper Compositional Reference Units by an integrated mineralogical and microchemical
 approach. Appl. Phys. Mater. Sci. Process. 113, 855–863.
- Caggianelli, A., De Fino, M., La Volpe, L., Piccarreta, G., 1990. Mineral chemistry of Monte Vulture volcanics: petrological
 implications. Mineral. Petrol. 41, 215–227. https://doi.org/10.1007/BF01168496
- Capelli, C., Cabella, R., Piazza, M., Starnini, E., 2008. Archaeometric analyses of Early and Middle Neolithic pottery from the
 Pian del Ciliegio rock shelter (Finale Ligure, NW Italy). ArchéoSciences 32, 115–124.
- Capelli, C., Starnini, E., Cabella, R., Piazza, M., 2017. The circulation of Early Neolithic pottery in the Mediterranean: A synthesis
 of new archaeometric data from the Impressed Ware culture of Liguria (north-west Italy). J. Archaeol. Sci. Rep. 16, 532–
 541. https://doi.org/10.1016/j.jasrep.2017.03.022
- Capponi, G., Cortesogno, L., Crispini, L., Gaggero, L., Giammarino, S., 1997. The Promontorio del Franco (Island of Giglio): a
 blueschist element in the Tuscan Archipelago (Central Italy). Atti Ticinensi Sci. Della Terra 39, 175–192.
- Carignan, J., Hild, P., Morel, J., Yeghicheyan, D., 2001. Routine analyses of trace elements in geological samples using flow injection and low-pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials
 BR, DR-N, UB-N, AN-G and GH. Geostand. Geoanalytical Res. 46, 187–198.
- Cauvin, J., 1998. La signification symbolique de l'obsidienne, in: Cauvin, M.-C., Gourgaud, A., Gratuze, B., Poidevin, J.-L.,
 Poupeau, G., Chataigner, C. (Eds.), L'obsidienne Au Proche et Moyen Orient Ancien : Du Volcan à l'outil. British archaeological reports, Oxford, pp. 379–382.
- 512 Cellai, D., Conticelli, S., Menchetti, S., 1994. Crystal-chemistry of clinopyroxenes from potassic and ultrapotassic rocks in central
 513 Italy: implications on their genesis. Contrib. Mineral. Petrol. 116, 301–315. https://doi.org/10.1007/BF00306499
- 514 Cesari, J., Courtaud, P., Leandri, F., Perrin, T., Manen, C., 2014. Le site de Campu Stefanu (Sollacaro, Corse-du-Sud): une occupation du Mésolithique et du Néolithique ancien dans le contexte corso-sarde Campu Stefanu (Sollacaro, Southern Corsica): a Mesolithic and Early Neolithic settlement in the Corso-sardinian context, in: Manen, C., Perrin, T., Guilaine,

- 517
- 518

J. (Eds.), La Transition Néolithique En Méditerranée. Editions Errance & Archive d'Ecologie Préhistorique, Arles & Toulouse, pp. 283–303.

- 519 Chelazzi, L., Bindi, L., Olmi, F., Menchetti, S., Peccerillo, A., Conticelli, S., 2006. A lamproitic component in the high-K calc-520 alkaline volcanic rocks of the Capraia Island, Tuscan Magmatic Province: evidence from clinopyroxene crystal chemical 521 data. Period. Mineral. 75, 75-94.
- 522 Childe, V.G., 1925. The Dawn of European Civilization, 6th ed. K. Paul, Trench, Trubner & Co, London.
- 523 Civetta, L., Orsi, G., Pappalardo, L., Fisher, R.V., Heiken, G., Ort, M., 1997. Geochemical zoning, mingling, eruptive dynamics 524 and depositional processes — the Campanian Ignimbrite, Campi Flegrei caldera, Italy. J. Volcanol. Geotherm. Res. 75, 525 183-219. https://doi.org/10.1016/S0377-0273(96)00027-3
- 526 Comodi, P., Nazzareni, S., Perugini, D., Bergamini, M., 2006. Technology and Provenance of roman ceramics from Scoppieto, 527 Italy: a mineralogical and petrological study. Period. Mineral. 75, 95–112.
- 528 Conte, A.M., Dolfi, D., 2002. Petrological and geochemical characteristics of Plio-Pleistocene volcanics from Ponza Island 529 (Tyrrhenian Sea, Italy). Mineral. Petrol. 74, 75–94. https://doi.org/10.1007/s710-002-8216-6
- 530 Conticelli, S., Avanzinelli, R., Poli, G., Braschi, E., Giordano, G., 2013. Shift from lamproite-like to leucititic rocks: Sr-Nd-Pb 531 isotope data from the Monte Cimino volcanic complex vs. the Vico stratovolcano, Central Italy. Chem. Geol. 353, 246-532 266. https://doi.org/10.1016/j.chemgeo.2012.10.018
- 533 Conticelli, S., Boari, E., Burlamacchi, L., Cifelli, F., Moscardi, F., Laurenzi, M.A., Ferrari Predaglio, L., Francalanci, L., 534 Benvenuti, M.G., Braschi, E., Manetti, P., 2015. Geochemistry and Sr-Nd-Pb isotopes of Monte Amiata Volcano, Central 535 Italy: Evidence for magma mixing between high-K calc-alkaline and leucititic mantle-derived magmas. Ital. J. Geosci. 536 134, 266–290. https://doi.org/10.3301/IJG.2015.12
- 537 Conticelli, S., Francalanci, L., Manetti, P., Cioni, R., Sbrana, A., 1997. Petrology and geochemistry of the ultrapotassic rocks from 538 the Sabatini Volcanic District, central Italy: the role of evolutionary processes in the genesis of variably enriched alkaline 539 magmas. J. Volcanol. Geotherm. Res. 75, 107-136. https://doi.org/10.1016/S0377-0273(96)00062-5
- 540 Conticelli, S., Melluso, L., Perini, G., Avanzinelli, R., Boari, E., 2004. Petrologic, geochemical and isotopic characteristics of 541 potassic and ultrapotassic magmatism in central-southern Italy: inferences on its genesis and on the nature of mantle 542 sources. Period. Mineral. 73, 135-164.
- 543 Convertini, F., 2010. Déplacements de terres ou de vases ? Le cas des matériaux d'origine volcanique, in: Manen, C., Convertini, 544 F., Binder, D., Sénépart, I. (Eds.), Premières sociétés paysannes de Méditerranée occidentale: structures des productions 545 céramiques, Mémoire de la Société préhistorique française. Société préhistorique française, Paris, pp. 105-113.
- 546 Convertini, F., 2007. Les matières premières argileuses, in: Guilaine, J., Manen, C., Vigne, J.-D. (Eds.), Pont de Roque-Haute. 547 Nouveaux regards sur la Néolithisation de la France méditerranéenne. Archives d'Écologie Préhistorique, Toulouse, pp. 548 133 - 140.
- 549 Cristiani, C., Mazzuoli, R., 2003. Monte Amiata volcanic products and their inclusions. Period. Mineral. 72, pp. 169-181.
- 550 Cundari, A., 1975. Mineral chemistry and petrogenetic aspects of the Vico lavas, Roman volcanic region, Italy. Contrib. Mineral. 551 Petrol. 53, 129-144. https://doi.org/10.1007/BF00373127
- 552 Cundari, A., Salviulo, G., 1987. Clinopyroxenes from Somma-Vesuvius: Implications of Crystal Chemistry and Site Configuration 553 Parameters for Studies of Magma Genesis. J. Petrol. 28, 727-736. https://doi.org/10.1093/petrology/28.4.727
- 554 Dal Negro, A., Carbonin, S., Salviulo, G., Piccirillo, E.M., Cundari, A., 1985. Crystal Chemistry and Site Configuration of the 555 Clinopyroxene from Leucite-bearing Rocks and Related Genetic Significance: the Sabatini Lavas, Roman Region, Italy. 556 J. Petrol. 26, 1027–1040. https://doi.org/10.1093/petrology/26.4.1027
- 557 Dautria, J.-M., Liotard, J.-M., Bosch, D., Alard, O., 2010. 160Ma of sporadic basaltic activity on the Languedoc volcanic line 558 (Southern France): A peculiar case of lithosphere–asthenosphere interplay. Lithos 120. 202 - 222.559 https://doi.org/10.1016/j.lithos.2010.04.009
- 560 De Angelis, M.C., 2003. Il Neolitico antico del lago Trasimeno (Umbria): il sito di Panicarola (La Lucciola). Rassegna Archeol. 561 20A, 117-140.
- 562 De Francesco, A.M., Crisci, G.M., 2007. Provenance de l'obsidienne, in: Guilaine, J., Manen, C., Vigne, J.-D. (Eds.), Pont de 563 Roque-Haute. Nouveaux regards sur la Néolithisation de la France méditerranéenne. Archives d'Écologie Préhistorique, 564 Toulouse, pp. 83-85.
- 565 Del Bello, E., Mollo, S., Scarlato, P., von Quadt, A., Forni, F., Bachmann, O., 2014. New petrological constraints on the last 566 eruptive phase of the Sabatini Volcanic District (central Italy): Clues from mineralogy, geochemistry, and Sr-Nd 567 isotopes. Lithos 205, 28–38. https://doi.org/10.1016/j.lithos.2014.06.015
- 568 Dixon, J.E., Cann, J.R., Renfrew, C., 1968. Obsidian and the origins of trade. Sci. Am. 218, 38-46.
- 569 Dostal, J., Dupuy, C., Venturelli, G., 1982. Geochemistry of volcanic rocks from the Monte Arci (west Sardinia, Italy). Chem. 570 Geol. 35, 247-264. https://doi.org/10.1016/0009-2541(82)90004-3
- 571 Echallier, J.-C., 1991. La céramique. Les matières premières, in: Binder, D. (Ed.), Une Économie de Chasse Au Néolithique 572 Ancien. La Grotte Lombard à Saint-Vallier-de-Thiey (Alpes-Maritimes), Monographie du CRA. CNRS, Paris, pp. 72-89.
- Faraone, D., Molin, G., Zanazzi, P.F., 1988. Clinopyroxenes from Vulcano (Aeolian Islands, Italy): Crystal chemistry and cooling 573 574 history. Lithos 22, 113-126. https://doi.org/10.1016/0024-4937(88)90020-5
- 575 Fedele, L., Zanetti, A., Morra, V., Lustrino, M., Melluso, L., Vannucci, R., 2009. Clinopyroxene/liquid trace element partitioning 576 in natural trachyte-trachyphonolite systems: insights from Campi Flegrei (southern Italy). Contrib. Mineral. Petrol. 158, 577 337-356. https://doi.org/10.1007/s00410-009-0386-5
- 578 Feldstein, S., Halliday, A., Davies, G., Hall, C., 1994. Isotope and chemical microsampling: Constraints on the history of an S-579 type rhyolite, San Vincenzo, Tuscany, Italy. Geochim. Cosmochim. Acta 58, 943-958. https://doi.org/10.1016/0016-580 7037(94)90517-7

- Ferrara, G., Petrini, R., Serri, G., Tonarini, S., 1989. Petrology and isotope-geochemistry of San Vincenzo rhyolites (Tuscany, Italy). Bull. Volcanol. 51, 379–388. https://doi.org/10.1007/BF01056898
- Ferraris, M., Ottomano, C., 1997. Pottery Analyses, in: Arene Candide: A Functional and Environmental Assessment of the
 Olocene Sequence (Excavations Bernabò Brea-Cardini 1940-50), Memorie Dell'Istituto Italiano Di Paleontologia
 Umana. Il Calamo, Roma, pp. 339–348.
- Frezzotti, M.L., De Astis, G., Dallai, L., Ghezzo, C., 2007. Coexisting calc-alkaline and ultrapotassic magmatism at Monti Ernici, Mid Latina Valley (Latium, central Italy). Eur. J. Mineral. 19, 479–497. https://doi.org/10.1127/0935-1221/2007/0019-1754
- Fugazzola Delpino, M.A., 2002. La Marmotta. Lazio, in: Fugazzola Delpino, M.A., Pessina, A., Tiné, V. (Eds.), Le Ceramiche
 Impresse Nel Neolitico Antico. Italia e Mediterraneo, Studi Di Paletnologia. Istituto Poligrafico e Zecca dello Stato,
 Roma, pp. 373–395.
- Gabriele, M., 2014. La circolazione delle ceramiche del Neolitico nel medio e alto Tirreno e nell'area ligure-provenzale. Studi di provenienza. Unpublished PhD Thesis, University of Pisa & University of Nice Sophia Antipolis.
- Gabriele, M., 2015. La circolazione delle ceramiche del Neolitico nel medio e alto Tirreno e nell'area ligure-provenzale. Studi di provenienza. La circulation des céramiques néolithiques dans l'aire tyrrhénienne et dans l'aire liguro-provençale. Étude de provenance. Bull. Société Préhistorique Fr. 112, 567–568.
- 597 Gabriele, M., Boschian, G., 2009. Neolithic pottery from Pianosa Island (Tyrrhenian Sea), preliminary provenance data. Old
 598 Potter's Alm. 14, 8–14.
- Gasperini, D., Blichert-Toft, J., Bosch, D., Del Moro, A., Macera, P., Albarède, F., 2002. Upwelling of deep mantle material
 through a plate window: Evidence from the geochemistry of Italian basaltic volcanics. J. Geophys. Res. Solid Earth 107,
 ECV 7-1. https://doi.org/10.1029/2001JB000418
- 602 Gehres, B., Querré, G., 2018. New applications of LA–ICP–MS for sourcing archaeological ceramics: microanalysis of inclusions
 603 as fingerprints of their origin. Archaeometry 60, 750–763. https://doi.org/10.1111/arcm.12338
- 604 Gentili, S., Comodi, P., Nazzareni, S., Zucchini, A., 2014. The Orvieto-Bagnoregio Ignimbrite: pyroxene crystal-chemistry and
 605 bulk phase composition of pyroclastic deposits, a tool to identify syn- and post-depositional processes. Eur. J. Mineral.
 606 26, 743–756. https://doi.org/10.1127/ejm/2014/0026-2404
- 607 Ghiara, M.R., Lirer, L., Munno, R., 1979. Mineralogy and geochemistry of the "low-potassium series" of the Campania volcanics
 608 (south Italy). Chem. Geol. 26, 29–49. https://doi.org/10.1016/0009-2541(79)90028-7
- Gomart, L., Weiner, A., Gabriele, M., Durrenmath, G., Sorin, S., Angeli, L., Colombo, M., Fabbri, C., Maggi, R., Panelli, C.,
 Pisani, D., Radi, G., Tozzi, C., Binder, D., 2017. Spiralled patchwork in pottery manufacture and the introduction of
 farming to Southern Europe. Antiquity 91, 1501–1514. https://doi.org/10.15184/aqy.2017.187
- Gratuze, B., 2016. Glass Characterization Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Methods, in:
 Dussubieux, L., Golitko, M., Gratuze, B. (Eds.), Recent Advances in Laser Ablation ICP-MS for Archaeology. Springer Verlag, Berlin, Heidelberg, pp. 179–196. https://doi.org/10.1007/978-3-662-49894-1_12
- Guarino, V., Fedele, L., Franciosi, L., Lonis, R., Lustrino, M., Marrazzo, M., Melluso, L., Morra, V., Rocco, I., Ronga, F., 2011.
 Mineral compositions and magmatic evolution of the calcalkaline rocks of northwestern Sardinia, Italy. Period. Mineral.
 80, 517–545.
- Guilaine, J., 2018. A personal view of the neolithisation of the Western Mediterranean. Quat. Int. 470, 211–225.
 https://doi.org/10.1016/j.quaint.2017.06.019
- Guilaine, J., Manen, C., Vigne, J.-D. (Eds.), 2007. Pont de Roque-Haute. Nouveaux regards sur la néolithisation de la France
 méditerranéenne. Archives d'Écologie Préhistorique, Toulouse.
- Guillon, S., Berger, J.-F., Richard, H., Bouby, L., Binder, D., 2010. Analyse pollinique du bassin versant de la Cagne (Alpes-Maritimes, France): dynamique de la végétation littorale au Néolithique., in: Delhon, C., Théry-Parisot, I., Thiébault, S.
 (Eds.), Des Hommes et Des Plantes. Exploitation Du Milieu et Des Ressources Végétales de La Préhistoire à Nos Jours. APDCA, Antibes, pp. 391–406.
- Holm, P.M., 1982. Mineral chemistry of perpotassic lavas of the Vulsinian District, the Roman Province, Italy. Mineral. Mag. 46, 379–386. https://doi.org/10.1180/minmag.1982.046.340.14
- Ibáñez-Estévez, J.J., Bao, J.F.G., Gassin, B., Mazzucco, N., 2017. Paths and Rhythms in the Spread of Agriculture in the Western Mediterranean: The Contribution of the Analysis of Harvesting Technology, in: García-Puchol, O., Salazar-García, D.C.
 (Eds.), Times of Neolithic Transition along the Western Mediterranean. Springer International Publishing, Cham, pp. 339–371. https://doi.org/10.1007/978-3-319-52939-4_13
- Kamenetsky, V., Métrich, N., Cioni, R., 1995. Potassic primary melts of Vulsini (Roman Province): evidence from mineralogy
 and melt inclusions. Contrib. Mineral. Petrol. 120, 186–196. https://doi.org/10.1007/BF00287116
- La Marca, C., Eramo, G., Muntoni, I.M., Conati Barbaro, C., 2017. Early Neolithic potters of the Italian Middle Adriatic region.
 Archeol. Rozhl. LXIX, 227–245.
- Lacan, M., Keyser, C., Ricaut, F.-X., Brucato, N., Duranthon, F., Guilaine, J., Crubézy, E., Ludes, B., 2011. Ancient DNA reveals
 male diffusion through the Neolithic Mediterranean route. Proc. Natl. Acad. Sci. 108, 9788–9791.
 https://doi.org/10.1073/pnas.1100723108
- Leterrier, J., Maury, R.C., Thonon, P., Girard, D., Marchal, M., 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth Planet. Sci. Lett. 59, 139–154. https://doi.org/10.1016/0012-821X(82)90122-4
- Lugliè, C., 2018. Your path led trough the sea ... The emergence of Neolithic in Sardinia and Corsica. Quat. Int. 470, 285–300.
 https://doi.org/10.1016/j.quaint.2017.12.032
- Maggi, R. (Ed.), 1997. Arene Candide: a functional and environmental assessment of the Olocene sequence (Excavations Bernabò Brea-Cardini 1940-50), Memorie dell'Istituto Italiano di Paleontologia Umana. Il Calamo, Roma.

- Manen, C., 2002. Structure et identité des styles céramique du Néolithique ancien entre Rhône et Èbre. Gall. Préhistoire 44, 121–
 165.
- Manen, C., Convertini, F., 2012. Neolithization of the Western Mediterranean: Pottery productions, circulation and recombination.
 Rubricatum Rev. Mus. Gavà 5, 363–368.
- Manen, C., Convertini, F., Binder, D., Beeching, A., Briois, L., Bruxelles, L., Guilaine, J., Sénépart, I., 2006. Premiers résultats du projet ACR. «Productions céramiques des premières sociétés paysannes». L'exemple des faciès Impressa du Sud de la France, in: Fouere, P., Chevillot, C., Courtaud, P., Ferullo, O., Leroyer, C. (Eds.), Paysages et peuplement. Aspects culturels et chronologiques en France méridionale. ADRAHP & PSO, Périgueux, pp. 233–246.
- Manen, C., Convertini, F., Binder, D., Sénépart, I. (Eds.), 2010. Premières sociétés paysannes de Méditerranée occidentale:
 structures des productions céramiques. Mémoire de la Société préhistorique française. Société préhistorique française,
 Paris.
- Manen, C., Guilaine, J., 2007. La céramique: présentation du corpus, in: Guilaine, J., Manen, C., Vigne, J.-D. (Eds.), Pont de Roque-Haute. Nouveaux regards sur la néolithisation de la France méditerranéenne. Archives d'Écologie Préhistorique, Toulouse, pp. 47–49.
- Manen, C., Perrin, T., Guilaine, J., Bouby, L., Bréhard, S., Briois, F., Durand, F., Marinval, P., Vigne, J.-D., 2018. The Neolithic transition in the western Mediterranean: a complex and non-linear diffusion process—The radiocarbon record revisited. Radiocarbon 1–41. https://doi.org/10.1017/RDC.2018.98
- Martini, F., Pallecchi, P., Sarti, L. (Eds.), 1996. La ceramica preistorica in Toscana. Artigiani e materie prime dal Neolitico all'Età
 del Bronzo. Garlatti e Razzai Editori, Firenze.
- Mathieson, I., Alpaslan-Roodenberg, S., Posth, C., Szécsényi-Nagy, A., Rohland, N., Mallick, S., Olalde, I., 665 666 Broomandkhoshbacht, N., Candilio, F., Cheronet, O., Fernandes, D., Ferry, M., Gamarra, B., Fortes, G.G., Haak, W., 667 Harney, E., Jones, E., Keating, D., Krause-Kyora, B., Kucukkalipci, I., Michel, M., Mittnik, A., Nägele, K., Novak, M., 668 Oppenheimer, J., Patterson, N., Pfrengle, S., Sirak, K., Stewardson, K., Vai, S., Alexandrov, S., Alt, K.W., Andreescu, 669 R., Antonović, D., Ash, A., Atanassova, N., Bacvarov, K., Gusztáv, M.B., Bocherens, H., Bolus, M., Boroneant, A., 670 Boyadzhiev, Y., Budnik, A., Burmaz, J., Chohadzhiev, S., Conard, N.J., Cottiaux, R., Čuka, M., Cupillard, C., Drucker, 671 D.G., Elenski, N., Francken, M., Galabova, B., Ganetsovski, G., Gély, B., Hajdu, T., Handzhyiska, V., Harvati, K., 672 Higham, T., Iliev, S., Janković, I., Karavanić, I., Kennett, D.J., Komšo, D., Kozak, A., Labuda, D., Lari, M., Lazar, C., 673 Leppek, M., Leshtakov, K., Vetro, D.L., Los, D., Lozanov, I., Malina, M., Martini, F., McSweeney, K., Meller, H., 674 Menđušić, M., Mirea, P., Moiseyev, V., Petrova, V., Price, T.D., Simalcsik, A., Sineo, L., Šlaus, M., Slavchev, V., 675 Staney, P., Starović, A., Szeniczey, T., Talamo, S., Teschler-Nicola, M., Thevenet, C., Valchev, I., Valentin, F., Vasilyev, 676 S., Veljanovska, F., Venelinova, S., Veselovskaya, E., Viola, B., Virag, C., Zaninović, J., Zäuner, S., Stockhammer, 677 P.W., Catalano, G., Krauß, R., Caramelli, D., Zarina, G., Gaydarska, B., Lillie, M., Nikitin, A.G., Potekhina, I., 678 Papathanasiou, A., Borić, D., Bonsall, C., Krause, J., Pinhasi, R., Reich, D., 2018. The genomic history of southeastern 679 Europe. Nature 555, 197-203.
- McClure, S.B., Podrug, E., Moore, A.M.T., Culleton, B.J., Kennett, D.J., 2014. AMS 14C Chronology and Ceramic Sequences of
 Early Farmers in the Eastern Adriatic. Radiocarbon 56, 1009–1017.
- McDonough, W.F., Sun, S.-S., 1995. The composition of the Earth. Chem. Geol. 120, 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
- Mollo, S., Forni, F., Bachmann, O., Blundy, J.D., De Astis, G., Scarlato, P., 2016. Trace element partitioning between clinopyroxene and trachy-phonolitic melts: A case study from the Campanian Ignimbrite (Campi Flegrei, Italy). Lithos 252–253, 160–172. https://doi.org/10.1016/j.lithos.2016.02.024
- 687 Morimoto, N., 1988. Nomenclature of Pyroxenes. Mineral. Petrol. 39, 55–76. https://doi.org/10.1007/BF01226262
- Muntoni, I.M., 2012. Circulation of raw materials, final products or ideas in the Neolithic Communities of Southern Italy: The contribution of archaeometric analyses to the study of pottery, flint and obsidian. Rubricatum Rev. Mus. Gavà 5, 403–412.
- Muntoni, I.M., 2003. Modellare l'argilla. Vasai del Neolitico antico e medio nelle Murge pugliesi, Origines. Istituto Italiano di
 Preistoria e Protostoria, Firenze.
- Palladino, D.M., Gaeta, M., Giaccio, B., Sottili, G., 2014. On the anatomy of magma chamber and caldera collapse: The example
 of trachy-phonolitic explosive eruptions of the Roman Province (central Italy). J. Volcanol. Geotherm. Res. 281, 12–26.
 https://doi.org/10.1016/j.jvolgeores.2014.05.020
- Palumbi, G., Gratuze, B., Harutyunyan, A., Chataigner, C., 2014. Obsidian-tempered pottery in the Southern Caucasus: a new approach to obsidian as a ceramic-temper. J. Archaeol. Sci. 44, 43–54. https://doi.org/10.1016/j.jas.2014.01.017
- Paolini-Saez, H., 2010. Les productions céramiques du Néolithique ancien tyrrhénien, in: Manen, C., Convertini, F., Binder, D.,
 Sénépart, I. (Eds.), Premières sociétés paysannes de Méditerranée occidentale: structures des productions céramiques,
 Mémoire de la Société préhistorique française. Société préhistorique française, Paris, pp. 89–104.
- Paone, A., 2013. Petrogenesis of trachyte and rhyolite magmas on Ponza Island (Italy) and its relationship to the Campanian
 magmatism. J. Volcanol. Geotherm. Res. 267, 15–29. https://doi.org/10.1016/j.jvolgeores.2013.09.008
- Pappalardo, L., Ottolini, L., Mastrolorenzo, G., 2008. The Campanian Ignimbrite (southern Italy) geochemical zoning: insight on the generation of a super-eruption from catastrophic differentiation and fast withdrawal. Contrib. Mineral. Petrol. 156, 1– 26. https://doi.org/10.1007/s00410-007-0270-0
- Peccerillo, A., 2017. Cenozoic Volcanism in the Tyrrhenian Sea Region, Advances in Volcanology. Springer International
 Publishing.
- Perini, G., 2000. Sr-isotope and micro-isotope analyses of minerals: examples from some mafic alkaline potassic rocks. Period.
 Mineral. 69, 107–124.

- Perini, G., Conticelli, S., 2002. Crystallization conditions of leucite-bearing magmas and their implications on the magmatological
 evolution of ultrapotassic magmas: the Vico Volcano, Central Italy. Mineral. Petrol. 74, 253–276.
 https://doi.org/10.1007/s007100200006
- Perini, G., Francalanci, L., Davidson, J.P., Conticelli, S., 2004. Evolution and Genesis of Magmas from Vico Volcano, Central Italy: Multiple Differentiation Pathways and Variable Parental Magmas. J. Petrol. 45, 139–182. https://doi.org/10.1093/petrology/egg084
- Perlès, C., 2012. Quand "diffusion" ne veut pas dire "interaction." Rubricatum Rev. Mus. Gavà 5, 585–590.
- 717 Perugini, D., Poli, G., 2003. The Monte Cimino volcano. Period. Mineral. 72, pp. 203–210.
 - 718 Poli, G., Perugini, D., 2003a. San Vincenzo volcanites. Period. Mineral. 72, pp. 141–155.
 - Poli, G., Perugini, D., 2003b. The Island of Capraia. Period. Mineral. 72, pp. 195–201.
 - Quinn, P.S., 2013. Ceramic Petrography: The Interpretation of Archaeological Pottery and Related Artefacts in Thin Section,
 British Archaeological Reports Limited. Archaeopress, Oxford.
 - Rigaud, S., Manen, C., García-Martínez de Lagrán, I., 2018. Symbols in motion: Flexible cultural boundaries and the fast spread of the Neolithic in the western Mediterranean. PLOS ONE 13, e0196488. https://doi.org/10.1371/journal.pone.0196488
 - Rivollat, M., Rottier, S., Couture, C., Pemonge, M.-H., Mendisco, F., Thomas, M.G., Deguilloux, M.-F., Gerbault, P., 2017.
 Investigating mitochondrial DNA relationships in Neolithic Western Europe through serial coalescent simulations. Eur. J.
 Hum. Genet. 25, 388_392.
 - Rowley-Conwy, P., Gourichon, L., Helmer, D., Vigne, J.-D., 2013. Early domestic animals in Italy, Istria, the Tyrrhenian islands
 and Southern France, in: College, S., Conolly, J., Dobney, K., Manning, K., Shennan, S. (Eds.), The Origin of Spread of
 Domestic Animals in Southwest Asia and Europe. Left Coast Press, Walnut Creek, California, pp. 161–194.
 - Sarti, L., Fenu, P., Martini, F., Mazzucco, N., Pitzalis, G., Romagnoli, F., Rosini, M., 2012. Il Neolitico di Grotta Su Coloru (Laerru, Sassari): nuovi dati, in: La preistoria e la protostoria della Sardegna, Firenze, pp. 455–462.
 - Scarpelli, R., De Francesco, A.M., Gaeta, M., Cottica, D., Toniolo, L., 2015. The provenance of the Pompeii cooking wares: Insights from LA-ICP-MS trace element analyses. Microchem. J. 119, 93–101.
 https://doi.org/10.1016/j.microc.2014.11.003
 - Spataro, M., 2002. The first farming communities of the Adriatic: pottery production and circulation in the Early and Middle
 Neolithic, Quaderni della Società per la Preistoria e Protostoria della Regione Friuli-Venezia Giulia. Edizioni Svevo,
 Trieste.
 - Stoops, G., 2003. Guidelines for Analysis and Description of Soil and Regolith Thin Sections. Soil Science Society of America,
 Inc., Madison.
 - Tykot, R.H., Freund, K.P., Vianello, A., 2013. Source Analysis of Prehistoric Obsidian Artifacts in Sicily (Italy) Using pXRF, in:
 Armitage, R.A., Burton, J.H. (Eds.), Archaeological Chemistry VIII, ACS Symposium Series. American Chemical
 Society, pp. 195–210. https://doi.org/10.1021/bk-2013-1147.ch011
 - Ucelli Gnesutta, P., 2002. Grotta di Settecannelle. Lazio, in: Fugazzola Delpino, M.A., Pessina, A., Tiné, V. (Eds.), Le ceramiche
 impresse nel Neolitico Antico. Italia e Mediterraneo, Studi di Paletnologia. Istituto Poligrafico e Zecca dello Stato, Roma,
 pp. 341–349.
 - 746 Ucelli Gnesutta, P., Bertagnini, A., 1993. Grotta delle Settecannelle (Ischia di Castro-Viterbo). Rassegna Archeol. 11, 67–112.
 - 747 Westerman, D.S., Innocenti, F., Rocchi, S., 2003. Giglio Island: intrusive magmatism. Period. Mineral. 72, pp. 119–126.
 - Whitbread, I.K., 1989. A proposal for the systematic description of thin sections towards the study of ancient ceramic technology,
 in: Archaeometry: Proceedings of the 25th International Symposium, Athens 1986. Elsevier, Amsterdam, pp. 127–138.
 - Whittle, A., 2018. The times of their lives. Hunting history in the archaeology of Neolithic Europe. Oxbow Books, Oxford &
 Philadelphia.
 - Zilhão, J., 2014. Early prehistoric voyaging in the Western Mediterranean: Implications for the Neolithic transition in Iberia and the Maghreb. Eurasian Prehistory 11, 185–200.
 - 755

756 Figure captions

757 Figure 1

758 Map of north western Mediterranean studied area showing distribution of archaeological sites and geological formations of the

- 759 Volcanic Provinces considered for this study.
- 760
- 761 Figure 2
- 762 Archaeological studied potteries from (A) Pont de Roque-Haute (drawn by J. Coularou in Manen and Guilaine 2007, fig. 49) and
- from (B-C) Le Secche (B macrophotography and C stereo-microphotography).
- 764
- 765 Figure 3

- Microphotography comparison of pottery samples. Arrows point out the main mineral components of pottery pastes: rounded
 clinopyroxene (Cpx), K-feldspath (Kfs) and volcanic rock (VR). A, C, E and G from Le Secche (GLS); B, D, F, H from Pont de
 Roque-Haute (PRH). A-B stereomicroscopic observations; C-H thin section microscopic observations.
- 769
- Figure 4

QUAD classification diagram of Wollastonite (Wo), Enstatite (En), Ferrosilite (Fs) for (A) clinopyroxenes from archaeological samples analysed by SEM-EDS and LA-ICP-MS and for (B-F) archaeological samples and selected Italian volcanic provinces (Armienti et al., 1983; Aulinas et al., 2008; Barton et al., 1982; Belkin et al., 2016; Bindi et al., 1999; Caggianelli et al., 1990; Civetta et al., 1997; Comodi et al., 2006; Conticelli et al., 2015, 2013, 1997; Del Bello et al., 2014; Dostal et al., 1982; Fedele et al., 2009; Feldstein et al., 1994; Ghiara et al., 1979; Guarino et al., 2011; Holm, 1982; Mollo et al., 2016; Palladino et al., 2014; Pappalardo et al., 2008; Perini et al., 2004; Perini and Conticelli, 2002). A to F diagrams corresponds to the enlarged part of the QUAD diagram (grey coloured area).

778

Figure 5

Primitive mantle normalised trace-element spider diagram for (A) bulk archaeological samples, PRH soil and Languedoc volcanic
formations (Dautria et al., 2010) and for (B) bulk archaeological samples and selected Italian volcanic formations (Gasperini et al.,
2002; Peccerillo, 2017). Normalisation values from McDonough and Sun (1995).

- 783
- Figure 6

Primitive mantle normalised trace-element spider diagram for (A) clinopyroxenes from archaeological samples analysed by LAICP-MS and for (B) clinopyroxenes from archaeological samples and selected Italian volcanic provinces (Arienzo et al., 2009;
Civetta et al., 1997; Comodi et al., 2006; Fedele et al., 2009; Gentili et al., 2014; Mollo et al., 2016; Pappalardo et al., 2008;
Scarpelli et al., 2015). Normalisation values from McDonough and Sun (1995).

- 789
- 790 Figure 7

Binary diagram Y vs Ce where concentration in ppm are reported for (A) clinopyroxenes of archaeological samples and for (B)
clinopyroxenes of archaeological samples and selected Italian volcanic provinces (Arienzo et al., 2009; Civetta et al., 1997;
Comodi et al., 2006; Fedele et al., 2009; Gentili et al., 2014; Mollo et al., 2016; Pappalardo et al., 2008; Scarpelli et al., 2015).

794

Figure 8

Map of north western Mediterranean studied area showing the identified volcanic source area for pottery provenance and location
 of neolithic archaeological sites. Tyrrhenian geological obsidian outcrops are also reported.

Campania Volcanic Province

Apulian Volcanic Province

Sardinia Volcanic Province

А

GLS

PRH

Supplementary Material Click here to download Supplementary Material: Gabriele et al_SupplementaryFigures.pdf Supplementary Material Click here to download Supplementary Material: Gabriele et al_SupplementaryDataset.xlsx

*Declaration of Interest Statement

1 Title

- High resolution sourcing of pottery demonstrates long-distance mobility in the North Western Mediterranean during the Neolithic
 transition
- 4

5 Author names and affiliations

- Marzia Gabriele^{a,b}, Fabien Convertini^c, Chrystele Verati^a, Bernard Gratuze^d, Suzanne Jacomet^e, Giovanni Boschian^f, Gilles
 Durrenmath^b, Jean Guilaine^g, Jean-Marc Lardeaux^a, Louise Gomart^h, Claire Manenⁱ, Didier Binder^b.
- 8
- ^aUniversité Côte d'Azur, CNRS, IRD, OCA, GEOAZUR, 250, rue Albert Einstein, CS 10269, 06905 Sophia Antipolis Cedex,
 France
- ^bUniversité Côte d'Azur, CNRS, CEPAM, SJA3, Pôle Universitaire Saint Jean d'Angély, 24, avenue des Diables Bleus, 06357
 Nice Cedex 4, France
- 13 ^cUniversité Paul Valéry Montpellier, CNRS, Ministère Culture, ASM, route de Mende, 34199 Montpellier, France
- ¹⁴ ^dUniversité Belfort-Montbéliard, Université Orléans, Université Bordeaux-Montaigne, CNRS, IRAMAT/CEB, 3 D rue de la 15 Férollerie, 45071 Orléans Cedex 2, France
- ¹⁶ ^eMINES ParisTech, PSL Research University, CEMEF Centre de mise en forme des matériaux, CNRS UMR 7635, CS 10207,
- 17 rue Claude Daunesse 06904 Sophia Antipolis Cedex, France
- 18 ^fUniversity of Pisa, Department of Biology, 1, via Derna, 56100 PISA, Italy
- 19 ^gCollège de France, 11, Place Marcelin-Berthelot, 75005 Paris, France
- 20 ^hUniversité Panthéon Sorbonne, CNRS, Trajectoires. De la sédentarisation à l'État, Maison de l'Archéologie et de l'Ethnologie,
- 21 21, allée de l'Université, 92023 Nanterre Cedex, France
- ⁱUniversité Toulouse Jean-Jaurès, CNRS, Ministère Culture, TRACES, Maison de la Recherche, 5, allée Antonio-Machado, 31058
 Toulouse cedex 9, France
- 24
- 25 Corresponding Author: Marzia Gabriele
- 26 Université Côte d'Azur, CNRS, CEPAM, SJA3, Pôle Universitaire Saint Jean d'Angély, 24, avenue des Diables Bleus, 06357
- 27 Nice Cedex 4, France.
- 28 marzia.gabriele@gmail.com
- 29
- 30 Fabien Convertini, fabien.convertini@inrap.fr
- 31 Chrystele Verati, chrystele.verati@unice.fr
- 32 Bernard Gratuze, gratuze@cnrs-orleans.fr
- 33 Suzanne Jacomet, suzanne.jacomet@mines-paristech.fr
- 34 Giovanni Boschian, giovanni.boschian@unipi.it
- 35 Gilles Durrenmath, gilles.durrenmath@unice.fr
- 36 Jean Guilaine, jguilaine@wanadoo.fr
- 37 Jean-Marc Lardeaux, jean-marc.lardeaux@unice.fr
- 38 Louise Gomart, louise.gomart@cnrs.fr
- 39 Claire Manen, claire.manen@univ-tlse2.fr
- 40 Didier Binder, didier.binder@cepam.cnrs.fr
- 41 42
- 42 43
- 44 Declarations of interest: none