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Abstract: We use the theory of stochastic variational inequalities to develop a network
equilibrium model of the whole supply chain of electricity markets: power generation, supply,
transmission, and consumption. In particular, we take into account the case where the market
demand functions are not exactly known but are affected by some kind of uncertainty. A
discretization and truncation procedure is used to numerically solve the stochastic variational
inequality model. Monotonicity properties of the operator are investigated and the affine case
is analyzed in detail. Finally, numerical experiments show the impact of different probability
densities of the random variables on the approximated solutions and the scalability of the
proposed numerical method for real-world sized problems.
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1 Introduction

Electricity market models have been developed at a very high pace in the last fifteen years,
also due to the fact that in many countries the electricity power industry has undergone a
transformation from a government-regulated to a competitive regime. In such a regime there
are several classes of decision makers: power generators, power suppliers and consumers.
Providers that ensure the power transmission can also be included in the modeling but usually
they are not considered as decision makers. The complexity of the interaction among these
three different groups in the decision process has thus required advanced mathematical tools.
Two main approaches have been developed in the literature to address the deregulated electric
power markets: deterministic equilibrium models (where the power demand is known in
a deterministic manner) and stochastic programming models (where the power demand is
affected by some kind of uncertainty).

The first approach is based on complementarity and variational inequality models that
describe in a unified way the simultaneous optimization problems which arise at the different
decision tiers. The reader interested in complementarity models for energy markets can refer
to the excellent tutorial [26] which also provides numerous related references. A detailed
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variational inequality model of the restructured electricity system can be found in [7], while
for models which utilize both Nash equilibrium concepts and variational inequalities we refer
to [23]. In [22], the authors provide a network variational inequality model which simul-
taneously describe both the optimization problems of the power generators and the power
suppliers, and the equilibrium conditions at the consumer markets.

The second approach is based on the use of stochastic programming techniques in order
to take into account the uncertainty of the power demand. In [27], nonlinear stochastic pro-
gramming methods are used to provide a decision support tool for optimizing the expansion
planning of a semi-liberalized electricity market. In [6], the authors consider a game model
of electricity markets with one Gaussian random demand, where each player solves an op-
timization problem under chance constraints. The book [5] contains a detailed survey on
electricity market models with uncertain data, with stochastic programming techniques, but
does not cover the variational inequality approach. In [1], stochastic programming techniques
are used to incorporate uncertain wind generation into the European market electricity. In
the very recent paper [11], the authors investigate a stochastic oligopoly model which takes
into account long-term infrastructure investment decisions. They used the so called open-loop
approach, meaning that investments and market operation (daily) decisions are assumed to
be made simultaneously. From the technical point of view, their approach is a generalization
of the classical two-stage stochastic programming to the case of multiple decision makers.

The first approach has the advantage of considering the equilibrium conditions of the whole
chain of generation, supply and consumption of electric power, but has the inconvenience of
assuming that the demand for electricity can be predicted with certainty. On the other hand,
the second approach takes into account the inherent uncertainty of the power demand, but
has the drawback of using stochastic optimization techniques instead of general equilibrium
conditions that are more suitable to describe the whole system.

The aim of our paper is to merge the best features of both approaches, that is we introduce
a stochastic equilibrium model for the whole chain of generation, supply and consumption of
electric power, assuming that the power demand is uncertain. In particular, we model the
stochastic equilibrium as the solution of a system of three stochastic variational inequalities;
such a system is proved to be equivalent (under mild assumptions) to a single stochastic varia-
tional inequality; we show that the stochastic variational inequality model can be numerically
solved by a well-known approximation/discretization procedure; we investigate in detail the
monotonicity properties of the map of the stochastic variational inequality, which are useful
to prove the convergence of the approximation procedure; the affine variational inequality
case, which is the most common in applications, is deeply analyzed. Finally, several numeri-
cal experiments show the viability of our approach: we show the convergence of mean values
and standard deviations of the approximated solutions, the impact of different probability
densities of the random variables on the approximated solutions and how the approximation
procedure is able to solve real-world size problems.

The modeling of market demands as random variables is well established in Economics
and in Finance, as is shown by numerous papers addressing this topic in the last decades (see
e.g. [8, 12, 24]). The causes of demand uncertainty may result from specific aspects of the
business and its customers or from external factors. Moreover, any innovation in technology
or service will face a great deal of demand uncertainty, simply because there is no previous
statistical analysis from which to draw conclusions about demand. Demand can also be
reallocated, in an uncertain way, by the entry of new competitors into the industry. Natural
or human-caused disasters and times of political unrest are examples of external factors that
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contribute to both demand and supply uncertainty. In the specific case of electricity markets,
random fluctuations of the temperature in summer or winter cause an increase in the electricity
power needed to run heating and air conditioning or cooling systems. By using historical time
series analysis, temperature probability distributions can be derived and possibly used to
model the random demand of electric power. This is particularly relevant for those countries
where heating is mostly based on electricity (for example France). Moreover, malfunctions
or disruptions of technical nature occur randomly and can be modeled if detailed knowledge
of the robustness and reliability of the various parts of the generation-distribution chain is
available.

Let us recall that while the theory of stochastic programming is a well established field
of optimization [25], stochastic (or random) formulations of variational inequalities are much
more recent although this topic has undergone a great development in the last decade. In
particular, we exploit in this paper the rigorous approach to random variational inequalities
which has been put forward in [13, 14, 15, 16] and applied to several equilibrium problems [4,
9, 17]. Stochastic variational inequalities have also been considered as particular applications
of the methodology of variational convergence for bifunctions studied in [18], but in a finite
dimensional setting.

This paper is organized as follows. In Section 2, we describe in detail the model, define an
equilibrium for the whole chain of generation, supply and consumption of electric power, and
derive the random variational inequality that describes the equilibrium conditions of the mar-
kets involved. In Section 3, we summarize the theoretical framework of random variational
inequalities and outline an approximation procedure for their solution. Section 4 is devoted
to investigate the monotonicity properties of the operator which appears in the variational
inequality, which are useful to prove the convergence of our approximation procedure. Sec-
tion 5 analyzes in detail the affine case, while Section 6 is devoted to numerical experiments.
Conclusions are finally drawn in Section 7.

2 The model

In this section, we describe the whole chain of generation, supply and consumption of elec-
tric power with random demand and derive a stochastic variational inequality model that
describes the equilibrium conditions of the markets involved. A detailed economic explana-
tion of all the processes involved in the electricity market, assuming that the power demand
is known in a deterministic manner, can be found in [22]. We also remark that the model
proposed in [22] includes some constraints in the operator, while in our approach we prefer
to explicitly consider the constraints, both to reduce the number of variables involved and to
make the study of monotonicity properties of the operator clearer and more connected with
the economic model.

The markets’ structure is modeled by a network with three tiers of nodes representing the
different decision makers: power generators, power suppliers and consumers (see Figure 1).
The network flows do not describe the physical electric power flows, but the corresponding
economic transactions. Moreover, we do not take into account the physical power transmis-
sion network, which makes our model particularly suitable for long-term planning problems.
However, the random demand functions to be introduced in the sequel (or possible random
upper bounds on the flows) could incorporate (although in an aggregate, not explicit manner)
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Figure 1: The electric power supply chain.

the effect of possible issues connected to malfunctions in the physical network.
Power distribution is ensured by transmission service providers which do not take part in

the decision process. There are G power generators in the first tier of nodes and S power
suppliers in the second tier. The role of suppliers is to intermediate the transactions between
generators and consumers, which are described by the third tier. Suppliers pay the transmis-
sion services to ensure the physical distribution of electric power. There are T transmission
services, K demand markets and the decision makers of each tier are in competition.

Let g denote a power generator, Q1
gs the power transacted from generator g to supplier s

and ρ1
gs the unit price that g charges s. The flows and prices between power generators and

suppliers are grouped in two vectors Q1, ρ1 ∈ RGS+ , respectively. Let Q2
skt denote the amount

of electricity transacted between supplier s and consumer k via the link corresponding to the
transmission provider t and ρ2

skt the unit price associated with the transaction from s to k via
t. The transaction flows and prices are grouped in two vectors Q2, ρ2 ∈ RSKT+ , respectively. In
the following, we describe the optimization problems and the related equilibrium conditions
for each tier.

2.1 Equilibrium conditions for the consumers

We start from the bottom level of the network, i.e. the consumers, since we assume that their
demand functions are uncertain and this will affect the equilibrium values of variables (flows
and prices) of the other tiers. Let ρ3

k denote the unit price of electric power associated with
the demand market k and assume that its demand dk can depend in general on the prices at
all markets ρ3 = (ρ3

1, . . . , ρ
3
K), so as to model competition. As explained in the introduction,

seasonal fluctuations in the temperature, possible malfunctions in the network, or changes in
the buying strategy of consumers, suggest that the demand can fluctuate randomly.

Hence, we assume that dk is a random variable, that is dk : Ω× RK → R, where Ω is the
sample space with a probability measure P . Let ĉskt = ĉskt(Q

2) denote the unit transaction
cost between the demand market k and the supplier s via the transmission provider t. Since
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the demand functions are random variables, an equilibrium between the demand markets and
the suppliers can be defined as a random vector (Q2∗(ω), ρ3∗(ω)) such that for each s, k, t and
for P -almost every ω ∈ Ω the following relations hold:

dk(ω, ρ
3∗(ω))


=

S∑
s=1

T∑
t=1

Q2∗
skt(ω) if ρ3∗

k (ω) > 0,

≤
S∑
s=1

T∑
t=1

Q2∗
skt(ω) if ρ3∗

k (ω) = 0,

and

ρ2∗
skt(ω) + ĉskt(Q

2∗(ω))

= ρ3∗
k (ω) if Q2∗

skt(ω) > 0,

≥ ρ3∗
k (ω) if Q2∗

skt(ω) = 0.

Equilibrium conditions of this kind (in a deterministic setting) are quite standard in the
modeling of spatially distributed markets (see e.g. [21, Chapter 3]). We remark that prices
are not random variables in our model, but equilibrium prices at the consumer markets ρ3∗

k (ω)
are random because the demand is random. Moreover, notice that also the equilibrium prices
ρ1∗
gs(ω) and ρ2∗

skt(ω) are considered as random variables because of the uncertainty of the
demand functions. Anyhow, the values of ρ1∗(ω) and ρ2∗(ω) can be derived from the solution
of the variational inequality (4) introduced at the end of this section through the relations (5)
and (6), hence in the above equations they have the role of random parameters.

The above equilibrium conditions can be expressed in a compact form as the following
stochastic variational inequality: for P -almost every ω ∈ Ω, find (Q2∗(ω), ρ3∗(ω)) ∈ RSKT+K

+

such that

S∑
s=1

K∑
k=1

T∑
t=1

[
ρ2∗
skt(ω) + ĉskt(Q

2∗(ω))− ρ3∗
k (ω)

]
· [Q2

skt −Q2∗
skt(ω)]

+
K∑
k=1

[
S∑
s=1

T∑
t=1

Q2∗
skt(ω)− dk(ω, ρ3∗(ω))

]
· [ρ3

k − ρ3∗
k (ω)] ≥ 0, ∀ (Q2, ρ3) ∈ RSKT+K

+ .

(1)

2.2 Equilibrium conditions for the power suppliers

The suppliers acquire electricity from the power generators and sell it to the consumers via
the transmission providers. There are several kinds of costs which are faced by a supplier s
and are globally referred to as operating costs and denoted by cs. Assume that the operating
costs depend on both Q1 and Q2, that is cs = cs(Q

1, Q2). Moreover, we denote the part of
transaction cost with the power generator g paid by the supplier s with ĉgs = ĉgs(Q

1). We
also consider the transaction cost cskt = cskt(Q

2) paid by the supplier s to the transmission
service t in order to dispatch the power to the consumer k. The above cost functions are
assumed to be convex and continuously differentiable.

Since each supplier s is a profit-maximizer, it aims to solve, for every ω ∈ Ω, the following
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optimization problem:

max

K∑
k=1

T∑
t=1

ρ2∗
skt(ω)Q2

skt − cs(Q1, Q2)−
G∑
g=1

ρ1∗
gs(ω)Q1

gs −
G∑
g=1

ĉgs(Q
1)−

K∑
k=1

T∑
t=1

cskt(Q
2)

subject to:
K∑
k=1

T∑
t=1

Q2
skt ≤

G∑
g=1

Q1
gs

Q1
gs ≥ 0 ∀ g = 1, . . . , G,

Q2
skt ≥ 0 ∀ k = 1, . . . ,K, t = 1, . . . , T.

The objective function represents the difference between the revenue due to the sell to the
consumers and the total cost, while the first constraint imposes that the total quantity of
electricity sold to the consumers is compatible with that bought from the generators.

The equilibrium conditions for all the suppliers can be equivalently described by the
following stochastic variational inequality: for P -almost every ω ∈ Ω, find (Q1∗(ω), Q2∗(ω)) ∈
Cs such that:

G∑
g=1

S∑
s=1

[
∂cs(Q

1∗(ω), Q2∗(ω))

∂Q1
gs

+
∂ĉgs(Q

1∗(ω))

∂Q1
gs

+ ρ1∗gs(ω)

]
· [Q1

gs −Q1∗
gs(ω)]

+

S∑
s=1

K∑
k=1

T∑
t=1

[
∂cs(Q

1∗(ω), Q2∗(ω))

∂Q2
skt

+
∂cskt(Q

2∗(ω))

∂Q2
skt

− ρ2∗skt(ω)

]
· [Q2

skt −Q2∗
skt(ω)] ≥ 0

(2)

holds for any (Q1, Q2) ∈ Cs, where

Cs =

(Q1, Q2) ∈ RGS+SKT
+ :

K∑
k=1

T∑
t=1

Q2
skt ≤

G∑
g=1

Q1
gs, ∀ s = 1, . . . , S

 .

2.3 Equilibrium conditions for the power generators

Let qg denote the power output (expressed in watts) of generator g and the power outputs of
all generators are grouped in a vector q ∈ RG+. The cost of power generation is given by the
function fg = fg(q) which is assumed to be convex and continuously differentiable for any
g = 1, . . . , G. The generators also pay part of the cost associated to power transmission to
the suppliers. These costs are described by the convex and continuously differentiable cost
functions cgs = cgs(Q

1) for any g and s. The flow conservation law qg =
∑S

s=1Q
1
gs allows

writing fg = fg(Q
1) for any g. Since each generator g is a profit-maximizer, it wants to solve,

for every ω ∈ Ω, the following optimization problem:

max

S∑
s=1

ρ1∗
gs(ω)Q1

gs − fg(Q1)−
S∑
s=1

cgs(Q
1)

subject to: Q1
gs ≥ 0 ∀ s = 1, . . . , S.

The simultaneous solution of the above optimization problems for all the generators is equiv-
alent to the following stochastic variational inequality: for P -almost every ω ∈ Ω, find
Q1∗(ω) ∈ RGS+ such that

G∑
g=1

S∑
s=1

[
∂fg(Q

1∗(ω))

∂Q1
gs

+
∂cgs(Q

1∗(ω))

∂Q1
gs

− ρ1∗
gs(ω)

]
· [Q1

gs −Q1∗
gs(ω)] ≥ 0, ∀ Q1 ∈ RGS+ . (3)
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2.4 Equilibrium conditions for the whole chain

The variational inequalities (1), (2) and (3) describe the noncooperative behavior of the
decision makers at each tier and the economic subjects at different tiers share some groups
of variables. The following equilibrium definition for the whole supply chain is then natural.

Definition 2.1. A random vector (Q1∗(ω), Q2∗(ω), ρ3∗(ω)) is a supply chain equilibrium if
(1), (2) and (3) hold simultaneously for some prices ρ1∗(ω), ρ2∗(ω).

The supply chain equilibria are related to the solutions of a single stochastic variational
inequality, as the following result shows.

Theorem 2.1. If (Q1∗(ω), Q2∗(ω), ρ∗3(ω)) is a supply chain equilibrium, then it solves the fol-
lowing stochastic variational inequality: for P -almost every ω ∈ Ω, (Q1∗(ω), Q2∗(ω), ρ∗3(ω)) ∈
C := Cs × RK+ and

G∑
g=1

S∑
s=1

[
∂fg(Q

1∗(ω))

∂Q1
gs

+
∂cgs(Q

1∗(ω))

∂Q1
gs

+
∂cs(Q

1∗(ω), Q2∗(ω))

∂Q1
gs

+
∂ĉgs(Q

1∗(ω))

∂Q1
gs

]
· [Q1

gs −Q1∗
gs(ω)]

+

S∑
s=1

K∑
k=1

T∑
t=1

[
∂cs(Q

1∗(ω), Q2∗(ω))

∂Q2
skt

+
∂cskt(Q

2∗(ω))

∂Q2
skt

+ ĉskt(Q
2∗(ω))− ρ3∗k (ω)

]
· [Q2

skt −Q2∗
skt(ω)]

+

K∑
k=1

[
S∑

s=1

T∑
t=1

Q2∗
skt(ω)− dk(ω, ρ3∗(ω))

]
· [ρ3k − ρ3∗k (ω)] ≥ 0, ∀ (Q1, Q2, ρ3) ∈ C.

(4)

Conversely, if (Q1∗(ω), Q2∗(ω), ρ3∗(ω)) solves the stochastic variational inequality (4) and
the prices ρ1∗(ω) and ρ2∗(ω) are defined as follows:

ρ1∗
gs(ω) :=

∂fg(Q
1∗(ω))

∂Q1
gs

+
∂cgs(Q

1∗(ω))

∂Q1
gs

, ∀ g = 1, . . . , G, s = 1, . . . , S, (5)

ρ2∗
skt(ω) := ρ3∗

k (ω)− ĉskt(Q2∗(ω)), ∀ s = 1, . . . , S, k = 1, . . . ,K, t = 1, . . . , T, (6)

then (Q1∗(ω), Q2∗(ω), ρ3∗(ω)) is a supply chain equilibrium.

Proof. The first part follows from the hypotheses in a straightforward fashion since (4) is the
sum of variational inequalities (1), (2) and (3).

For the second part, if in (4) we set Q1 = Q1∗(ω) and Q2 = Q2∗(ω), then

K∑
k=1

[
S∑
s=1

T∑
t=1

Q2∗
skt(ω)− dk(ω, ρ3∗(ω))

]
· [ρ3

k − ρ3∗
k (ω)] ≥ 0,

holds for any ρ3 ≥ 0. Therefore, the validity of (1) follows from (6). Moreover, if in (4) we
set ρ3 = ρ3∗(ω), then

0 ≤
G∑

g=1

S∑
s=1

[
∂fg(Q1∗(ω))

∂Q1
gs

+
∂cgs(Q

1∗(ω))

∂Q1
gs

+
∂cs(Q

1∗(ω), Q2∗(ω))

∂Q1
gs

+
∂ĉgs(Q

1∗(ω))

∂Q1
gs

]
· [Q1

gs −Q1∗
gs(ω)]

+

S∑
s=1

K∑
k=1

T∑
t=1

[
∂cs(Q

1∗(ω), Q2∗(ω))

∂Q2
skt

+
∂cskt(Q

2∗(ω))

∂Q2
skt

+ ĉskt(Q
2∗(ω))− ρ3∗k (ω)

]
· [Q2

skt −Q2∗
skt(ω)]

=

G∑
g=1

S∑
s=1

[
∂cs(Q

1∗(ω), Q2∗(ω))

∂Q1
gs

+
∂ĉgs(Q

1∗(ω))

∂Q1
gs

+ ρ1∗gs(ω)

]
· [Q1

gs −Q1∗
gs(ω)]

+

S∑
s=1

K∑
k=1

T∑
t=1

[
∂cs(Q

1∗(ω), Q2∗(ω))

∂Q2
skt

+
∂cskt(Q

2∗(ω))

∂Q2
skt

− ρ2∗skt(ω)

]
· [Q2

skt −Q2∗
skt(ω)]
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holds for any (Q1, Q2) ∈ Cs, that is (2) holds. Finally, (3) directly follows from (5).

We remark that the economic meaning of condition (5) is that, at equilibrium, the price
that a power generator charges a power supplier must be equal to the sum of the marginal
production cost plus the marginal transaction cost.

In the following, it will be useful to rewrite the variational inequality (4) in a compact
form. We denote by 〈a, b〉 the Euclidean scalar product between two vectors a, b and by ‖a‖
the Euclidean norm of a. We define the vector of variables x = (Q1, Q2, ρ3) and the operator
F : Ω× RGS+SKT+K → RGS+SKT+K as follows:

F (ω, x) :=
(
F 1(Q1, Q2), F 2(Q1, Q2, ρ3), F 3(ω,Q2, ρ3)

)
, (7)

where

F 1
gs(Q

1, Q2) =
∂fg(Q

1)

∂Q1
gs

+
∂cgs(Q

1)

∂Q1
gs

+
∂cs(Q

1, Q2)

∂Q1
gs

+
∂ĉgs(Q

1)

∂Q1
gs

,

F 2
skt(Q

1, Q2, ρ3) =
∂cs(Q

1, Q2)

∂Q2
skt

+
∂cskt(Q

2)

∂Q2
skt

+ ĉskt(Q
2)− ρ3

k,

F 3
k (ω,Q2, ρ3) =

S∑
s=1

T∑
t=1

Q2
skt − dk(ω, ρ3).

Then, the compact form of (4) is the following: for P -almost every ω ∈ Ω, find a random
vector x∗(ω) ∈ C such that

〈F (ω, x∗(ω)), x− x∗(ω)〉 ≥ 0, ∀ x ∈ C. (8)

Following [13, 15], instead of (8) we consider its integral version: find x∗ ∈ Lp, with p ≥ 2,
such that x∗(ω) ∈ C for P -almost every ω ∈ Ω and∫

Ω
〈F (ω, x∗(ω) ), x− x∗(ω)〉 dP (ω) ≥ 0 (9)

holds for any x ∈ Lp such that x(ω) ∈ C for P -almost every ω ∈ Ω. The reason to consider (9)
is that since its solution x∗ = x∗(ω) belongs to some Lp space, (where p ≥ 2 depends on
F (ω, ·)) it has finite first and second order moments. In particular, we are interested in
computing the approximated mean value and variance of the solution with respect to the
probability measure P . Notice that if problems (8) and (9) are uniquely solvable, then they
are equivalent provided that the solution of (8) is an Lp function (see Remark 3.1).

For the reader’s convenience, we now recall the following general result (see, e.g., [20])
that ensures the solvability of an infinite dimensional variational inequality like (9).

Theorem 2.2. Let E be a reflexive Banach space and let E∗ denote its topological dual space.
We denote the duality pairing between E and E∗ by 〈·, ·〉E,E∗. Let K be a nonempty, closed,
and convex subset of E and A : K → E∗ be monotone and continuous on finite dimensional
subspaces of K. Consider the variational inequality problem of finding u ∈ K such that

〈Au, v − u〉E,E∗ ≥ 0, ∀ v ∈ K.

Then, a necessary and sufficient condition for the above problem to be solvable is the existence
of δ > 0 such that at least a solution of the variational inequality:

find uδ ∈ Kδ such that 〈Auδ, v − uδ〉E,E∗ ≥ 0, ∀ v ∈ Kδ

satisfies ‖uδ‖ < δ, where Kδ = {v ∈ K : ‖v‖ ≤ δ}.
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3 Methodology

In this section, we briefly recall some basic notions about random variational inequalities of
the kind (9) (see [13, 15] for more details). For the sake of simplicity, in what follows we set
N := GS + SKT +K so that x ∈ RN and F : Ω× RN → RN . In our model we assume that
the random and the deterministic variables appearing in F are separated, i.e.,

F (ω, x) = Z(ω)G(x) +H(x)− b−R(ω)c, (10)

where (Ω,A, P ) is a probability space, R and Z are given real random variables defined on
Ω, the maps G,H : RN → RN are given and b, c ∈ RN are two given vectors.

Consider the following stochastic variational inequality: for P -almost every ω ∈ Ω, find
x̂ := x̂(ω) ∈ C such that

〈Z(ω)G(x̂) +H(x̂), x− x̂〉 ≥ 〈R(ω) c+ b , x− x̂〉, ∀ x ∈ C, (11)

where C is a closed convex subset of RN . We assume that Z,G and H are such that F is a
Carathéodory function, that is, for each fixed x ∈ RN the function F (·, x) is measurable with
respect to A, whereas for P -almost every ω ∈ Ω the function F (ω, ·) is continuous.

Definition 3.1. Given any ω ∈ Ω, the map F (ω, ·) is monotone if and only if

〈F (ω, x)− F (ω, x̃), x− x̃〉 ≥ 0, ∀ x, x̃ ∈ RN ;

F (ω, ·) is strongly monotone uniformly with respect to ω ∈ Ω if and only if there exists α > 0
such that

〈F (ω, x)− F (ω, x̃), x− x̃〉 ≥ α‖x− x̃‖2, ∀ ω ∈ Ω, ∀ x, x̃ ∈ RN .

The strong monotonicity of F (ω, ·) is sufficient to ensure the existence of a unique solution
to (11). Other sufficient conditions can be given to guarantee the existence of solutions, but
the strong monotonicity also plays a crucial role in the convergence theorem at the end of
this section and it is verified in several applications as shown in Section 4.

Since we are only interested in solutions with finite first and second order moments, we
consider an integral variational inequality instead of the variational inequality (11). For a
fixed p ≥ 2, we consider the reflexive Banach space Lp(Ω, P,RN ) of random vectors V from
Ω to RN such that the expectation (p-moment) is finite, that is

EP (‖V ‖p) =

∫
Ω
‖V (ω)‖pdP (ω) <∞.

For subsequent developments, we need the following growth condition

‖F (ω, x)‖ ≤ α(ω) + β(ω)‖x‖p−1, ∀ x ∈ RN , (12)

where α ∈ Lq(Ω, P ) with p−1 + q−1 = 1 and β ∈ L∞(Ω, P ). Due to the above growth
condition, the Nemytskii operator F̂ associated to F , acts from Lp(Ω, P,RN ) to Lq(Ω, P,RN )
and is defined by

F̂ (V )(ω) := F (ω, V (ω)), ω ∈ Ω.

9



We introduce the following closed and convex set:

CP := {V ∈ Lp(Ω, P,RN ) : V (ω) ∈ C for P -almost every ω ∈ Ω}.

We assume that R ∈ Lq(Ω, P ) and, without any loss of generality, it is nonnegative (otherwise
we can use the standard decomposition in the positive part and the negative part). Moreover,
we assume that Z ∈ L∞(Ω, P ) and its support, i.e. the set of possible outcomes, is the interval
[z, z) ⊂ (0,∞). Equipped with these notations, we consider the following Lp formulation
of (11): find Û ∈ CP such that∫

Ω
〈Z(ω)G(Û(ω)) +H(Û(ω)), V (ω)− Û(ω)〉 dP (ω)

≥
∫

Ω
〈b+R(ω) c, V (ω)− Û(ω)〉dP (ω), ∀ V ∈ CP .

(13)

The integrals above are well posed due to the growth condition (12).

Remark 3.1. Problems (8) and (9) (and hence in particular problems (11) and (13)) are
equivalent if their solution is unique, in the sense that from the integral formulation we obtain
a pointwise solution that is only defined P -a.s. on the sample space Ω and that coincides there
with the pointwise (i.e. parametric) solution of (8). Conversely, if the solution of (8) belongs
to Lp, it also solves (9).

Furthermore, if F (ω, ·) is strictly monotone, so is F̂ , hence both (11) and (13) have a
unique solution. If F (ω, ·) is strongly monotone, uniformly with respect to ω ∈ Ω, then F̂ is
strongly monotone and, again, both (11) and (13) have a unique solution. In the latter case,
we can also prove norm convergence of our approximation procedure (see Theorem 3.1). It
is also worth noticing that the uniform strong monotonicity holds in the affine case under
suitable assumptions (see Section 5).

To get rid of the abstract sample space Ω, we consider the joint distribution P of the ran-
dom vector (R,Z) and work with the special probability space (R2,B(R2),P). For simplicity,
we assume that R and Z are independent random variables. We set

r = R(ω), z = Z(ω), y = (r, z).

The variational inequality (11) reads: for P-almost every y ∈ R2, find x̂(y) ∈ C such that

〈z G(x̂(y)) +H(x̂(y)), x− x̂(y)〉 ≥ 〈rc+ b, x− x̂(y)〉, ∀ x ∈ C. (14)

In order to obtain the integral formulation of (14), consider the space Lp(R2,P,RN ) and
introduce the closed and convex set

CP := {v ∈ Lp(R2,P,RN ) : v(y) ∈ C for P-almost every y ∈ R2}.

We also assume that the probability measures PR and PZ of R and Z have the probability
densities ϕR and ϕZ , respectively. Therefore, we have

dPR(r) = ϕR(r) dr, dPZ(z) = ϕZ(z) dz.

Notice that v ∈ Lp(R2,P,RN ) means that the function (r, z) 7→ ϕR(r)ϕZ(z) belongs to the
Lebesgue space Lp(R2,RN ) with respect to the Lebesgue measure.

10



Therefore, we can define the probabilistic integral variational inequality: find û := û(y) ∈
CP such that ∫ ∞

0

∫ z

z
〈z G(û) +H(û), v − û〉ϕR(r)ϕZ(z) dy

≥
∫ ∞

0

∫ z

z
〈b+ r c, v − û〉ϕR(r)ϕZ(z) dy, ∀ v ∈ CP.

(15)

For the reader’s convenience, we now provide some details on the numerical approximation of
the solution û and show how to compute a sequence of step functions {ûn} which converges
strongly in Lp to û. First, we need a discretization of the space X := Lp(R2,P,RN ). We
introduce a sequence {πn} of partitions of the support

Υ := [0,∞) · [z, z)

of the probability measure P induced by the random variables R and Z. For this, we set
πn = (πRn , π

Z
n ), where

πRn := (r0
n, . . . , r

NR
n

n ),

πZn := (z0
n, . . . , z

NZ
n

n ),

0 = r0
n < r1

n < . . . rN
R
n

n = n,

z = z0
n < z1

n < . . . zN
Z
n

n = z,

|πRn | := max{rin − ri−1
n : i = 1, . . . , NR

n } → 0 for n→ +∞,
|πZn | := max{zjn − zj−1

n : j = 1, . . . , NZ
n } → 0 for n→ +∞.

These partitions give rise to the exhausting sequence {Υn} of subsets of Υ, where each Υn is
given by the finite disjoint union of the intervals:

Inij := [ri−1
n , rin)× [zj−1

n , zjn)

For each n ∈ N, we consider the space of the RN -valued step functions on Υn, extended by 0
outside of Υn:

Xn :=

vn : R2 → RN : vn(r, z) =

NR
n∑

i=1

NZ
n∑

j=1

vnij 1Inij (r, z), with vnij ∈ RN
 ,

where 1I denotes the {0, 1}-valued characteristic function of the subset I. To approximate
an arbitrary function w ∈ Lp(R2,P,R), we employ the mean value truncation operator µn0
associated to the partition πn given by

µn0w :=

NR
n∑

i=1

NZ
n∑

j=1

(µnijw) 1Inij ,

where

µnijw :=


1

P(Inij)

∫
Inij

w(y) dP(y) if P(Inij) > 0 ;

0 otherwise.

11



Analogously, for a Lp vector function v = (v1, . . . , vN ), we define

µn0v := (µn0v1, . . . , µ
n
0vN ),

for which one can prove that µn0v converges to v in Lp(R2,P,RN ). Since our objective is to
approximate the random variables R and Z, we introduce

ρn =

NR
n∑

i=1

ri−1
n 1Inij , σn =

NZ
n∑

j=1

zj−1
n 1Inij ,

then

ρn(r, z) → ρ(r, z) = r, in Lq(R2,P),

σn(r, z) → σ(r, z) = z, in L∞(R2,P).

Combining the above ingredients, for n ∈ N, we consider the following discretized variational
inequality: find ûn ∈ Xn ∩ CP such that for every vn ∈ Xn ∩ CP, we have∫ ∞

0

∫ z

z
〈σn(y)G(ûn) +H(ûn), vn − ûn〉 dP(y) ≥

∫ ∞
0

∫ z

z
〈b+ ρn(y) c, vn − ûn〉 dP(y).

The above approximated variational inequalities can be split in a finite number of finite
dimensional variational inequalities, one for each interval Inij , that is for every n ∈ N and for
every i, j find ûnij ∈ C such that

〈zj−1
n G(ûnij) +H(ûnij), v

n
ij − ûnij〉 ≥ 〈b+ ri−1

n c, vnij − ûnij〉, ∀ vnij ∈ C. (16)

Clearly, we can reconstruct the solutions ûn as follows:

ûn =

NR
n∑

i=1

NZ
n∑

j=1

ûnij 1Inij ∈ Xn.

We recall the following convergence result (see [15]).

Theorem 3.1. If F (ω, ·) is strongly monotone uniformly with respect to ω ∈ Ω and the
growth condition (12) holds, then the sequence {ûn} converges strongly in Lp(R2,P,RN ) to
the unique solution û of (15).

A consequence of the norm convergence stated in Theorem 3.1 is that both the mean value
and variance of the solution û of (15) can be approximated through convergent sequences.
The knowledge of the mean value of the equilibrium solution has clear practical implications
for all the decision makers involved in the supply chain (generators, suppliers and consumers).
However, also the knowledge of the variance of the equilibrium solution can provide useful
information (e.g. to power generators and suppliers). In fact, it is well known that electric
power cannot be easily and efficiently stored and the purchased electricity must be completely
used or wasted so as to keep the distribution grid balanced. Thus, both shortage and surplus
may cause an additional cost: the former one because the missing electricity must be acquired
when needed, at a price usually greater than in the day ahead market, the latter because the
electricity must be sold at a price usually smaller than the purchase price, or, even worse,
wasted. Therefore, the variance of the equilibrium solution provides significant insights on the
risk of possible additional cost the producers and suppliers may incur in and may be helpful
in planning recovery strategies.
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4 Monotonicity properties

Since the theory of random variational inequalities outlined in the previous section is based
on the monotonicity properties of the operator, in this section we give sufficient conditions
to ensure the (strong) monotonicity of the map F defined in (7). We introduce three maps:
A : RGS → RGS defined as

Ags(Q
1) =

∂fg(Q
1)

∂Q1
gs

+
∂cgs(Q

1)

∂Q1
gs

− ρ1
gs,

B : RGS+SKT → RGS+SKT defined as

B(Q1, Q2) = (B1(Q1, Q2), B2(Q1, Q2)),

where

B1
gs(Q

1, Q2) =
∂cs(Q

1, Q2)

∂Q1
gs

+
∂ĉgs(Q

1)

∂Q1
gs

+ ρ1
gs,

B2
skt(Q

1, Q2) =
∂cs(Q

1, Q2)

∂Q2
skt

+
∂cskt(Q

2)

∂Q2
skt

− ρ2
skt,

and D : Ω× RSKT+K → RSKT+K defined as

D(ω,Q2, ρ3) = (D2(Q2, ρ3), D3(ω,Q2, ρ3))

where

D2
skt(Q

2, ρ3) = ρ2
skt + ĉskt(Q

2)− ρ3
k, D3

k(ω,Q
2, ρ3) =

S∑
s=1

T∑
t=1

Q2
skt − dk(ω, ρ3).

Notice that ρ1 and ρ2 have the role of parameters in the definition of the above three maps.
Then, it is easy to check that

F 1 = A+B1, F 2 = B2 +D2, F 3 = D3. (17)

Theorem 4.1.

a) If A, B and D(ω, ·) are monotone, then F (ω, ·) is monotone;

b) If D(ω, ·) is strongly monotone uniformly with respect to ω ∈ Ω, one out of A or B is
strongly monotone while the other is monotone, then F (ω, ·) is strongly monotone uni-
formly with respect to ω ∈ Ω.
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Proof. Let x = (Q1, Q2, ρ3) and x̃ = (Q̃1, Q̃2, ρ̃3). Then the following equalities hold:

〈F (ω, x)− F (ω, x̃), x− x̃〉 =〈F 1(x)− F 1(x̃), Q1 − Q̃1〉

+ 〈F 2(x)− F 2(x̃), Q2 − Q̃2〉
+ 〈F 3(ω, x)− F 3(ω, x̃), ρ3 − ρ̃3〉

=〈A(Q1)−A(Q̃1) +B1(Q1, Q2)−B1(Q̃1, Q̃2), Q1 − Q̃1〉

+ 〈B2(Q1, Q2)−B2(Q̃1, Q̃2) +D2(Q2, ρ3)−D2(Q̃2, ρ̃3), Q2 − Q̃2〉

+ 〈D3(ω,Q2, ρ3)−D3(ω, Q̃2, ρ̃3), ρ3 − ρ̃3〉

=〈A(Q1)−A(Q̃1), Q1 − Q̃1〉

+ 〈B(Q1, Q2)−B(Q̃1, Q̃2), (Q1, Q2)− (Q̃1, Q̃2)〉

+D(ω,Q2, ρ3)−D(ω, Q̃2, ρ̃3), (Q2, ρ3)− (Q̃2, ρ̃3)〉

a) It follows directly from the above equalities.

b) Assume that D(ω, ·) is strongly monotone uniformly with respect to ω ∈ Ω with constant
αD. If A is strongly monotone with constant αA and B is monotone, then we have

〈F (ω, x)− F (ω, x̃), x− x̃〉 ≥ αA‖Q1 − Q̃1‖2 + αD‖(Q2, ρ3)− (Q̃2, ρ̃3)‖2

≥ min{αA, αD} ‖x− x̃‖2,

that is F (ω, ·) is strongly monotone uniformly with respect to ω ∈ Ω with constant
min{αA, αD}. Similarly, if A is monotone and B is strongly monotone with constant
αB, we have

〈F (ω, x)− F (ω, x̃), x− x̃〉 ≥ αB‖(Q1, Q2)− (Q̃1, Q̃2)‖2 + αD‖(Q2, ρ3)− (Q̃2, ρ̃3)‖2

≥ min{αB, αD} ‖x− x̃‖2,

that is F (ω, ·) is strongly monotone uniformly with respect to ω ∈ Ω with constant
min{αB, αD}.

5 The affine case

In most applications the cost functions are quadratic and the demand functions are affine,
thus yielding to an affine variational inequality. In this case, it is important to verify under
which assumptions the monotonicity properties of F investigated in Section 4 are fulfilled. In
what follows, after specifying the functional form of all the cost and demand functions, we
derive the operators A, B and D introduced previously and analyze their matrix structure.
We recall that for an affine operator the strong monotonicity is equivalent to the positive
definiteness of its Jacobian matrix. Moreover, the boundedness of z = Z(ω) allows proving
that the strong monotonicity is uniform with respect to the random variable ω.
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Theorem 5.1. Assume that, for any g = 1, . . . , G, s = 1, . . . , S, k = 1, . . . ,K, t = 1, . . . , T ,
the cost and demand functions are defined as follows:

fg(Q
1) = 1

2(Q1)TΦgQ1 + (ϕg)T Q1 with Φg ∈ RGS×GS , ϕg ∈ RGS ,

cgs(Q
1) = 1

2γgs (Q1
gs)

2 + γ′gsQ
1
gs with γgs ≥ 0, γ′gs ∈ R,

cs(Q
1) = 1

2γs

(
G∑
g=1

Q1
gs

)2

with γs > 0,

ĉgs(Q
1) = 1

2 γ̂gs (Q1
gs)

2 + γ̂′gsQ
1
gs with γ̂gs ≥ 0, γ̂′gs ∈ R,

cskt(Q
2) = 1

2γskt (Q2
skt)

2 + γ′sktQ
2
skt with γskt ≥ 0, γ′skt ∈ R,

ĉskt(Q
2) =

(
Γ̂Q2 + γ̂

)
skt

with Γ̂ ∈ RSKT×SKT , γ̂ ∈ RSKT ,

d(ω, ρ3) = z∆ ρ3 + δ + r c with ∆ ∈ RK×K , δ, c ∈ RK , r, z ∈ R.

(18)

where, in the last line, r = R(ω) and z = Z(ω) are two random variables, with 0 < z < z < z.
Then, the following statements hold:

a) The maps A, B, D(ω, ·) and F (ω, ·) are affine for any ω ∈ Ω.

b) If the scalars γgs are sufficiently large, then A is a strongly monotone.

c) B is monotone. Moreover, if γ̂gs and γskt are sufficiently large, then B is strongly mono-
tone.

d) If T = 1, Γ̂ is positive definite and ∆ is negative definite, then D(ω, ·) is strongly monotone
uniformly with respect to ω ∈ Ω.

Proof.

a) For any g = 1, . . . , G the matrix Φg and the vector ϕg can be written as

Φg =


Φg

1

Φg
2

...

Φg
G

 , ϕg =


ϕg1

ϕg2
...

ϕgG

 , where Φg
i ∈ RS×GS , ϕgi ∈ RS , ∀ i = 1, . . . , G.

Then, the map A is affine with A(Q1) = ÃQ1 + a, where

Ã =


Φ1

1

Φ2
2

...

ΦG
G

+


γ11 0

. . .

0 γGS

 , a =


ϕ1

1

ϕ2
2

...

ϕGG

+


γ′11

...

γ′GS

− ρ1.
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The map B is affine with

B(Q1, Q2) =

 B̃1 0

0 B̃2

Q1

Q2

+

b1
b2


where

B̃1 =


Γ . . . Γ
...

. . .
...

Γ . . . Γ

+


γ̂11 0

. . .

0 γ̂GS

 , with Γ =


γ1 0

. . .

0 γS

 ,

B̃2 =


γ111 0

. . .

0 γSKT

 , b1 =


γ̂′11

...

γ̂′GS

+ ρ1, b2 =


γ′111

...

γ′SKT

− ρ2.

Finally, for any ω ∈ Ω, the map D(ω, ·) is affine with

D(ω,Q2, ρ3) = D̃

Q2

ρ3

+

 γ̂ + ρ2

−δ −R(ω) c

 , where D̃ =

 Γ̂ D23

D32 −Z(ω) ∆

 ,

where D23 and D32 are suitable matrices with 0, 1 or −1 entries.

Therefore, it follows from (17) that also the map F (ω, ·) is affine for any ω.

b) If the positive scalars γgs are given sufficiently large, then the matrix (Ã+ÃT )/2 is diagonal
dominant and positive definite, thus the map A is strongly monotone.

c) It is easy to check that the matrices B̃1 and B̃2 are positive semidefinite, thus the map B
is monotone. Furthermore, if the scalars γ̂gs and γskt are given sufficiently large, then B̃1

and B̃2 are diagonal dominant and positive definite, thus B is strongly monotone.

d) If T = 1, then the matrices D23 and D32 have a special structure, that is

D23 =


−IK×K

...

−IK×K

 = −DT
32,

where IK×K is the identity matrix of order K. Therefore the matrix

D̃ + D̃T

2
=

 (Γ̂ + Γ̂T )/2 0

0 −Z(ω)(∆ + ∆T )/2

 .

Since Γ̂ is positive definite, ∆ is negative definite and Z(ω) > z > 0, there exists α > 0
such that the minimum eigenvalue of (D̃ + D̃T )/2 is grater or equal to α for any ω ∈ Ω.
Therefore, the map D(ω, ·) is strongly monotone with constant α uniformly with respect
to ω ∈ Ω.
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6 Numerical experiments

We now report some numerical results for the stochastic network equilibrium model by ex-
ploiting the approximation procedure described in Section 3. The approximation procedure
has been implemented in MATLAB R2018a and tested on an Intel Core i7 system at 2.5 GHz
with 16 GB of RAM running under macOS 10.13. At each iteration n a finite dimensional
variational inequality as (16) has to be solved for any interval Inij . Since any of these prob-
lems has an affine and strongly monotone map, it has been reformulated as an equivalent
convex quadratic optimization problem (see [2]) and solved by means of the built-in function
quadprog from the optimization toolbox.

In the following, Section 6.1 considers two instances of the problem with three power
generators, two power suppliers, three demand markets and a single transmission service
provider for each supplier. The convergence of the mean values and the standard deviations
of the approximated solutions, according to Theorem 3.1, are shown. Section 6.2 shows the
impact of different probability densities of the random variables R and Z on the mean values
and the standard deviations of the approximated solutions. Finally, Section 6.3 shows the
scalability of the numerical approximation procedure for real-world sized problems.

6.1 Convergence of mean values and standard deviations of the approxi-
mated solutions

We consider two examples with three power generators, two power suppliers, three demand
markets and a single transmission service provider for each supplier, that is G = 3, S = 2,
K = 3 and T = 1. The cost and demand functions, inspired by [22], are defined as in (18) so
that the map F can be written in the form (10) and F (ω, ·) is affine for any ω ∈ Ω. Moreover,
it is easy to check that the map F (ω, ·) is strongly monotone uniformly with respect to ω,
hence the convergence of the approximation procedure is guaranteed by Theorem 3.1.
Example 1. The cost and demand functions are defined as follows:

f1 = 5(Q1
11 +Q1

12)2 + (Q1
11 +Q1

12)(Q1
21 +Q1

22) + 2(Q1
11 +Q1

12)
f2 = 2.5(Q1

21 +Q1
22)2 + (Q1

11 +Q1
12)(Q1

21 +Q1
22) + 2(Q1

21 +Q1
22)

f3 = 0.5(Q1
31 +Q1

32)2 + 0.5(Q1
11 +Q1

12)(Q1
31 +Q1

32) + 2(Q1
31 +Q1

32)
c11 = 0.5(Q1

11)2 + 3.5Q1
11

c12 = 0.5(Q1
12)2 + 3.5Q1

12

c21 = 0.5(Q1
21)2 + 3.5Q1

21

c22 = 0.5(Q1
22)2 + 3.5Q1

22

c31 = 0.5(Q1
31)2 + 2Q1

31

c32 = 0.5(Q1
32)2 + 2Q1

32

c1 = 0.5(Q1
11 +Q1

21 +Q1
31)2

c2 = 0.5(Q1
12 +Q1

22 +Q1
32)2

ĉgs = 0, ∀ g = 1, 2, 3, ∀ s = 1, 2
csk1 = 0, ∀ s = 1, 2, ∀ k = 1, 2, 3
ĉsk1 = Q2

sk1 + 5, ∀ s = 1, 2, ∀ k = 1, 2, 3
d1 = −2zρ3

1 + 1500 + r
d2 = −2zρ3

2 + 1100 + r
d3 = −2zρ3

3 + 1200 + r

where z = Z(ω) and r = R(ω) are two random variables. We assume that z is uniformly
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distributed in the interval [0.5, 1.5] and r is uniformly distributed in [−100, 100]. At each
iteration, each of the two intervals has been partitioned into Nd subintervals. Tables 1 and
2 show the convergence of the mean values and the standard deviations of the approximate
solution obtained for different values of Nd, respectively.

Table 1: Mean values of the approximated solution of Example 1.

Nd

Variables 16 32 64 128 256 512 1024

Q1
11 15.79 15.56 15.45 15.39 15.37 15.35 15.35

Q1
12 15.79 15.56 15.45 15.39 15.37 15.35 15.35

Q1
21 33.34 32.86 32.62 32.50 32.44 32.41 32.40

Q1
22 33.34 32.86 32.62 32.50 32.44 32.41 32.40

Q1
31 128.02 126.16 125.25 124.79 124.57 124.45 124.40

Q1
32 128.02 126.16 125.25 124.79 124.57 124.45 124.40

Q2
11 119.63 118.28 117.61 117.28 117.11 117.03 116.99

Q2
12 15.78 15.28 15.03 14.91 14.85 14.82 14.80

Q2
13 41.74 41.03 40.67 40.50 40.41 40.37 40.35

Q2
21 119.63 118.28 117.61 117.28 117.11 117.03 116.99

Q2
22 15.78 15.28 15.03 14.91 14.85 14.82 14.80

Q2
23 41.74 41.03 40.67 40.50 40.41 40.37 40.35

ρ3
1 705.65 695.91 691.12 688.74 687.56 686.96 686.67
ρ3

2 601.80 592.91 588.53 586.37 585.29 584.75 584.48
ρ3

3 627.77 618.66 614.18 611.96 610.85 610.30 610.03

Example 2. The data of Example 2 are the same of Example 1 except the demand functions
which are defined as

d1 = −2zρ3
1 − 1.5zρ3

2 + 1500 + r
d2 = −1.5zρ3

1 − 2zρ3
2 + 1100 + r

d3 = −1.5zρ3
1 − 2zρ3

3 + 1200 + r

where z is uniformly distributed in [0.5, 1.5] and r is uniformly distributed in [−100, 100].
Tables 3 and 4 show the convergence of the mean values and the standard deviations of the
approximate solution obtained for different values of Nd, respectively. Moreover, we remark
that the mean values of variables Q2

12, Q
2
13, Q

2
22, Q

2
23 are close to zero since the equilibrium

prices ρ3
2 and ρ3

3 of the demand markets 2 and 3 are very lower than the price ρ3
1 associated

with market 1.

6.2 The impact of the probability densities of the random parameters on
the solution

We now show how much the (approximated) solution of the stochastic variational inequality is
sensitive to the choice of the probability densities of the random variables z and r. We solved
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Table 2: Standard deviations of the approximated solution of Example 1.

Nd

Variables 16 32 64 128 256 512 1024

Q1
11 4.87 4.73 4.66 4.62 4.61 4.60 4.59

Q1
12 4.87 4.73 4.66 4.62 4.61 4.60 4.59

Q1
21 10.28 9.99 9.84 9.76 9.72 9.71 9.70

Q1
22 10.28 9.99 9.84 9.76 9.72 9.71 9.70

Q1
31 39.32 38.20 37.62 37.34 37.19 37.12 37.08

Q1
32 39.32 38.20 37.62 37.34 37.19 37.12 37.08

Q2
11 27.13 26.48 26.15 25.98 25.90 25.86 25.84

Q2
12 11.86 11.44 11.22 11.12 11.06 11.03 11.02

Q2
13 15.62 15.14 14.89 14.77 14.71 14.68 14.66

Q2
21 27.13 26.48 26.15 25.98 25.90 25.86 25.84

Q2
22 11.86 11.44 11.22 11.12 11.06 11.03 11.02

Q2
23 15.62 15.14 14.89 14.77 14.71 14.68 14.66

ρ3
1 204.37 198.66 195.75 194.29 193.55 193.19 193.00
ρ3

2 189.09 183.60 180.81 179.41 178.70 178.35 178.17
ρ3

3 192.90 187.36 184.54 183.12 182.41 182.05 181.88

Table 3: Mean values of the approximated solution of Example 2.

Nd

Variables 16 32 64 128 256 512 1024

Q1
11 11.03 10.91 10.85 10.82 10.81 10.80 10.79

Q1
12 11.03 10.91 10.85 10.82 10.81 10.80 10.79

Q1
21 23.28 23.03 22.90 22.84 22.81 22.80 22.79

Q1
22 23.28 23.03 22.90 22.84 22.81 22.80 22.79

Q1
31 89.55 88.58 88.10 87.86 87.75 87.69 87.66

Q1
32 89.55 88.58 88.10 87.86 87.75 87.69 87.66

Q2
11 123.18 122.01 121.43 121.14 121.00 120.92 120.89

Q2
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q2
13 0.68 0.50 0.42 0.39 0.37 0.36 0.35

Q2
21 123.18 122.01 121.43 121.14 121.00 120.92 120.89

Q2
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q2
23 0.68 0.50 0.42 0.39 0.37 0.36 0.35

ρ3
1 535.73 530.17 527.44 526.08 525.41 525.07 524.90
ρ3

2 222.43 216.48 213.56 212.12 211.40 211.04 210.86
ρ3

3 278.15 271.48 268.20 266.57 265.76 265.35 265.15
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Table 4: Standard deviations of the approximated solution of Example 2.

Nd

Variables 16 32 64 128 256 512 1024

Q1
11 2.34 2.28 2.25 2.23 2.23 2.22 2.22

Q1
12 2.34 2.28 2.25 2.23 2.23 2.22 2.22

Q1
21 4.95 4.82 4.75 4.72 4.70 4.69 4.69

Q1
22 4.95 4.82 4.75 4.72 4.70 4.69 4.69

Q1
31 18.92 18.42 18.17 18.04 17.98 17.95 17.93

Q1
32 18.92 18.42 18.17 18.04 17.98 17.95 17.93

Q2
11 24.81 24.45 24.26 24.16 24.11 24.09 24.08

Q2
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q2
13 2.71 2.26 2.02 1.90 1.84 1.81 1.79

Q2
21 24.81 24.45 24.26 24.16 24.11 24.09 24.08

Q2
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q2
23 2.71 2.26 2.02 1.90 1.84 1.81 1.79

ρ3
1 110.06 107.45 106.13 105.46 105.13 104.96 104.88
ρ3

2 130.43 125.53 123.05 121.80 121.17 120.86 120.70
ρ3

3 146.08 141.27 138.80 137.56 136.93 136.61 136.46

Example 1 described in Section 6.1 considering three different probability densities: uniform,
truncated normal and exponential. In particular, we assumed that z varies in the interval
[0.5, 1.5] with either uniform or truncated normal (with mean value 1 and standard deviation
0.125) distribution, while r varies in the interval [0, 200] with either truncated normal (with
mean value 100 and standard deviation 25) or exponential (with parameter equal to 0.1)
distribution. The four different combinations of probability densities of z and r are denoted
by U-N, U-E, N-N and N-E; for instance, U-N means that z has a uniform distribution, while r
has a truncated normal distribution and so on. Both intervals [0.5, 1.5] and [0, 200] have been
partitioned into 1024 subintervals in the approximation procedure. Tables 5 and 6 report the
mean values and the standard deviations of the approximated solution of Example 1 obtained
by using the four different combinations of probability densities.

As table 5 shows, the solutions can vary considerably from the first to the fourth column.
For instance, Q2

22 changes of about 36%, while ρ3
2 of about 23%. We assume that these

distributions are derived from collections of market’s data in a given time window and can
thus be used to analyze the average behavior of consumers and design future market strategies.
We recall that the flows Q1 and Q2 in our model represent the financial transactions flows
and the analysis of the mean values over a given time interval can provide information about
how the various companies in competition react to the demand perturbations.

As to the analysis of standard deviations, which is missing, to the best of our knowledge,
in most random models of electricity markets, we notice that, for a given pair of probability
distributions, the ratio between the standard deviation and the corresponding mean value is
approximately constant for all the variables. On the other hand, it can change considerably
according to different distributions. Indeed, this value is about 0.30 for columns 2–3 in
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Table 5: The impact of different probability densities on the mean values of the approximated
solution of Example 1.

Variables U-N U-E N-N N-E

Q1
11 16.58 15.47 15.54 14.50

Q1
12 16.58 15.47 15.54 14.50

Q1
21 35.00 32.65 32.80 30.61

Q1
22 35.00 32.65 32.80 30.61

Q1
31 134.34 125.39 125.96 117.55

Q1
32 134.34 125.39 125.96 117.55

Q2
11 121.58 117.45 116.68 112.80

Q2
12 19.39 15.26 16.26 12.38

Q2
13 44.94 40.80 41.36 37.48

Q2
21 121.58 117.45 116.68 112.80

Q2
22 19.39 15.26 16.26 12.38

Q2
23 44.94 40.80 41.36 37.48

ρ3
1 736.11 691.59 693.39 651.61
ρ3

2 633.92 589.39 592.98 551.19
ρ3

3 659.47 614.94 618.08 576.30

Table 6: The impact of different probability densities on the standard deviations of the
approximated solution of Example 1.

Variables U-N U-E N-N N-E

Q1
11 4.90 4.57 1.91 1.77

Q1
12 4.90 4.57 1.91 1.77

Q1
21 10.35 9.65 4.03 3.73

Q1
22 10.35 9.65 4.03 3.73

Q1
31 39.57 36.90 15.41 14.26

Q1
32 39.57 36.90 15.41 14.26

Q2
11 27.05 25.82 10.78 10.28

Q2
12 12.06 10.81 4.53 3.96

Q2
13 15.78 14.54 6.08 5.53

Q2
21 27.05 25.82 10.78 10.28

Q2
22 12.06 10.81 4.53 3.96

Q2
23 15.78 14.54 6.08 5.53

ρ3
1 205.45 192.20 80.26 74.57
ρ3

2 190.46 177.18 74.00 68.25
ρ3

3 194.20 180.93 75.56 69.83
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Tables 5 and 6, while it is about 0.10 for columns 4–5. Higher values of standard deviations
are associated to periods of strong volatility of markets, which are becoming more frequent,
because of the ever increasing connections among the economies of different countries.

6.3 Scalability of the proposed approach

In this section we show how the proposed numerical method scales for real-world sized prob-
lems. We consider a set of random generated instances, where the number G of power gener-
ators is between 3 and 8, the number S of power suppliers is between 2 and 25 (with a single
transmission service provider for each supplier, i.e., T = 1) and the number K of demand
markets is between 3 and 12 (see columns 1–3 of Table 7). The cost and demand functions
have been chosen as in (18), where the elements of matrices Φg are uniformly distributed in
the interval (0, 1/GS), the elements of vectors ϕg are uniformly distributed in (1, 2), γgs and
γ′gs are uniformly distributed in (2, 3), γs = 1 for any s, γ̂gs = γ̂′gs = γskt = γ′skt = 0 for any

g, s, k, t, the matrix Γ̂ is equal to the identity matrix, γ̂skt = 5 for any s, k, t, the matrix ∆ is
defined as

∆ = −


a1 b1 0

0
. . .

. . .
. . .

. . .
. . .

0 aK−1 bK−1

0 bK aK

 ,

where ak are uniformly distributed in (1, 2) and bk are uniformly distributed in (0, 1) for
any k = 1, . . . ,K; the elements of vector δ are uniformly distributed in (1000, 1300), while
c = (1, . . . , 1). In this framework, it is possible to verify that the assumptions of Theorems 4.1
and 5.1 are satisfied, hence the map F (ω, ·) is strongly monotone uniformly with respect to ω
and the convergence of the approximation procedure is guaranteed by Theorem 3.1. Finally,
random variables z and r are uniformly distributed in the intervals [0.5, 1.5] and [−100, 100],
respectively.

Table 7 shows the CPU times needed for solving the six random generated instances. In
particular, columns 1–3 report the number of power generators, power suppliers and demand
markets of each instance; column 4 reports the number of variables of the stochastic variational
inequality to be solved; columns 5–7 report the CPU times (in seconds) of the numerical
approximation procedure, where each interval of the random variables is divided in 64, 128
or 256 subintervals.

The numerical results show that the proposed numerical method solves real-world sized
problems with a good accuracy within satisfactory times. Moreover, we notice that the
approximation procedure has been implemented using a sequential algorithm, that is the
independent deterministic variational inequalities are solved one at a time. It is clear that
parallel computing techniques could be used profitably to improve the running times.

7 Conclusions

In this paper, we propose a stochastic variational inequality model for the whole chain of elec-
tricity markets, from generators to consumers. In particular, our approach takes into account
random perturbations of the consumers’ demand. Monotonicity properties of the operator of
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Table 7: Scalability of the discretization procedure (CPU times in seconds).

Nd

G S K # variables 64 128 256

3 2 3 15 5.49 20.59 81.94
4 5 4 44 10.06 40.21 160.68
5 10 6 116 38.04 152.20 609.29
6 15 8 218 115.49 462.00 1833.66
7 20 10 350 346.00 1391.17 5586.22
8 25 12 512 813.57 3232.08 12896.10

the variational inequality and the case of quadratic cost and linear demand functions are in-
vestigated in detail. Numerical experiments show the impact of different probability densities
of the random variables on the approximated solutions and the scalability of the numerical
approximation procedure for real-world sized problems. Our approximation procedure for
the stochastic variational inequality yields to a large number of deterministic and indepen-
dent variational inequalities, hence through parallelization one could increase the number of
independent random variables in the model. Moreover, the model could be further refined
by including the description of the physical network, or the investment strategies (see [11]).
These last points are beyond the scope of this paper and are left to future research.
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