A coalgebraic approach to unification semantics
of logic programming *

Roberto Bruni', Ugo Montanari!, and Giorgio Mossa?

! Dipartimento di Informatica, Universita di Pisa, Italy
2 Dipartimento di Matematica, Universita di Pisa, Italy

Abstract. In the version of logic programming (LP) based on interpre-
tations where variables occur in atoms, a goal reduction via unification
can be seen as a transition labelled by the most general unifier. Categor-
ically, it is thus natural to model a logic program as a coalgebra. In the
paper we represent: (i) goals as the substitutive monoid freely generated
by the predicate symbols; (ii) the LTS as the structured coalgebra de-
fined by the SOS rules implicit in the LP semantics; (iii) the bisimulation
semantics of a logic program as its image on the final coalgebra.

1 Introduction

Logic programming is a paradigm based on first order Horn clauses and SLD
resolution. Its fundamental ingredient is to be equipped both with an opera-
tional semantics, based on goal reduction via resolution, and with a declarative
semantics. The second is defined both in terms of satisfaction (a la Tarski) of
the clauses on (standard) interpretations of the Herbrand base (minimal model),
and in terms of the least fix point of a transformation on interpretations.

The three approaches are proved equivalent, thus allowing for the famous
paradigm Algorithm = Logic + Control. We refer to [18] for the programming
motivation and to [22] for the underlying theory.

In the classical version, all the semantics are given as ground interpretations,
i.e. as sets of true atoms without variables. However, it is possible to extend
the basic approach to interpretations and refutations containing also atoms with
variables. Then also the meaning of a goal changes: it considers also refutations
of non-ground atoms. It is defined as the set of all the answer substitutions
(possibly with variables) computed by its refutations. It is easy to see that the
corresponding operational semantics is more informative, namely finer.

For instance, the goal P(x) is assigned the same semantics in the case of
ground interpretations for the two programs

{P(z):-0} and {P(z):-0, P(a):-0}

* Research supported by the MIUR PRINs 201784YSZ5 ASPRA: Analysis of pro-
gram analyses and by University of Pisa PRA_2018.66 DECLWARE: Metodologie
dichiarative per la progettazione e il deployment di applicazions.

2 R. Bruni, U. Montanari, G. Mossa

namely {(t/z) | t is a term} (typically an infinite set), while the semantics are
different when atoms with variables are considered, namely {(y/x)} (a singleton)
and {(y/z), (a/x)} (a two-element set) respectively. Here answer substitution
(y,z) is defined up to variable renaming ~, e.g. (y/z) ~ (z/x).

While from a logical point of view the classical semantics is satisfactory,
since it includes all the (ground) logical consequences of the clauses, the ex-
tended semantics is more convenient from a programming point of view: for in-
stance, for the query P(x) the former program cannot select any specific answer,
while the latter does. Thus the two programs should be regarded as different.
As for the classical version, also for the extended theory there are declarative
semantics based on suitable notions of S-interpretation, S-minimal model and
S-transformation which correspond to the extended operational semantics [12].

It is easy to see that the extended operational semantics can be seen as a
labelled transition system (LTS), where states are goals, transitions are goal
reductions and labels are the substitutions computed by unification in the cor-
responding reductions. The computed answer substitution corresponding to a
path is obtained by composing the substitutions of its transitions, while the se-
mantics of a goal G is the set of substitutions, projected on the variables of G,
computed by all the paths from G to the empty goal. In addition, both states
and transitions of the LTS have a simple algebraic structure.

The clean structure we outlined here has inspired several authors to take ad-
vantage of the universal constructions of category theory to embed operational
non-ground logic programming into other well-studied mathematical structures.
A general approach for equipping transition systems with an algebraic semantics
has been applied to logic programming in the seminal papers [10/8]. Generaliza-
tions to richer structures have been studied in [I3l2]. Coalgebras turn out to
be particularly fit [IBITTIT64I5], as it should be expected since they have been
particularly successful in modelling LTS with all kinds of structures. The meta
model of tile systems has been adopted in [7]. An important design point is to
choose the category where the coalgebra lives. If the coalgebra can be lifted from
category Set to a category of algebras (obtaining a structured coalgebra/bialge-
bra) then arrows become at the same time bisimulations and homomorphisms,
thus guaranteeing that bisimilarity is a congruence.

A critical point about categorical LTS for logic programming is about cor-
rectly modelling unification, in particular with the co/bialgebraic approach. The
universal property of most general unifiers (mgu’s) is essential: while restric-
tion to mgu’s is not necessary, since any unifier will derive correct answers, the
number of unifiers is often infinite, and unification matches completeness and
efficiency. Most general unifiers are perfectly representable in category theory:
they arise from the pushout construction in the category of substitutions. How-
ever to match unification with the homomorphism requirements of coalgebras is
difficult. To the authors’ knowledge, only [7] and [4] succeed in this task.

In this paper, we define a structured coalgebra for operational non-ground
logic programming, which correctly considers only reductions with mgu’s. Our
construction works as follows. First, we define goals as the algebra of substitutive

A coalgebraic approach to unification semantics of logic programming 3

monoids (SM) freely generated by the set of predicate symbols. The algebraic
specification of SM is obtained as the tensor product of the specifications of
monoids and of substitutions. The latter specification has natural numbers as
sorts (the number of variables) and contains all the substitutions as unary oper-
ations, with axioms for substitution composition and unity. The tensor product
construction automatically inserts all the exchange axioms, e.g. between the
monoidal operation (i.e. the logical conjunction) and substitutions. Second, as
base category for the coalgebra we choose the functor category of SM-algebras,
but without axioms. Third, we model the LTS as the structured coalgebra de-
fined by the SOS rules implicit in the logic programming semantics. Finally,
given a logic program, its image in the final coalgebra yields its bisimulation
semantics.

We emphasize the simplicity of our construction for assigning a natural al-
gebraic structure to goals: the ordinary logic representation as conjunction of
atomic goals becomes the standard form of the terms of our initial algebra,
equipped “automatically” by exchange axioms.

The above construction makes sure that the structural coalgebra we defined
fully corresponds to the operational semantics of non-ground logic programming.
However the situation is different when we consider abstract semantics. In fact,
for logic programming, as mentioned above, the semantics of a goal G is the set
of substitutions, projected on the variables of G, computed by all the paths from
G to the empty goal. This situation corresponds to a language semantics of LTS
(the set of labels of the paths to final states), with the additional difference that
the monoid of the labels (the subsitutions) is not free. In the case of coalgebras,
the abstract semantics of a LTS is represented by its image on the terminal
coalgebra, where all bisimilar states are identified. It is easy to see that the
categorical, bisimilar abstract semantics is finer than the non-ground semantics.

We are not aware of coalgebraic approaches which yield the classical non-
ground semantics. On the other hand, bisimilarity semantics may be natural
and convenient when considering LP-based process description languages. In this
context, we are not interested in logic computations as refutations of goals for
problem solving or artificial intelligence, but we consider LP as a goal rewriting
mechanism. We consider logic subgoals as concurrent communicating processes
that evolve according to the rules defined by the clauses and that use unification
as the fundamental interaction primitive. A presentation of this kind of use of
logic programming can be found in [7/T9].

Structure of the paper In Section [2] we fix the notation and recall the operational
semantics of logic programming (SLD derivation) together with some preliminar-
ies about coalgebraic representations of labelled transition systems. In Section
we characterize the algebra of goals as the initial model for the theory of sub-
stitutive monoids. In Section |4 we define the coalgebra for SLD derivation and
prove that it admits a terminal object. Some final remarks are in Section

4 R. Bruni, U. Montanari, G. Mossa

2 Background

In the next subsections we will recall the basic notions of logic programming and
structured coalgebras that we will need.

2.1 Operational semantics with non-ground atoms a la
Levi-Palamidessi-Falaschi-Martelli.

Definition 1 (Signatures). A logic signature is a pair of sets of symbols
(X, II) and an arity function ar: X' + IT — N associating with each symbol in
X and II a natural number, called its arity. The symbols in X are the operation
symbols and the symbols in II the predicates.

The set of operation symbols X with the relative restriction of the arity func-
tion form what is called an algebraic signature.

In general, given an algebraic signature X' and a set of variables X, we will
denote by T's(X) the set of terms with variables in X and by T's;, = Tx(0) the
set of ground terms.

Definition 2 (Atoms, goals). Atomic formulas, or atoms for short, are ex-
pressions of the form P(ty,...,t,) where P € II is a predicate symbol with arity
n, and the t;’s are just terms in the set Tx;(X), for some set variables X. A goal
G is a finite conjunction of atomic formulas over the same set of variables.

In what follows we will identify goals with finite lists of atoms, so we will
write G = A; ... Ay for the goal made of the conjunction of the atoms A;’s. We
will use the symbol [to denote the empty conjunction of atoms, the empty goal.

Definition 3 (Substitutions). Given two sets X and Y a substitution from
(terms over variables in) X to (terms over variables in) Y is a function of the
formo: X = Ts(Y).

Remark 1. These functions have a natural action on terms: for every o: X —
Tx(Y) and every term ¢t € T;(X) we have the term o(t) € Tx(Y') obtained by
replacing the variable occurrences in t with their images via o. Similarly, for
each atom A and each goal G in the set of variables X we have the atom and
goal o(A) and o(G), in the set of variables Y. These are obtained respectively
by A and G replacing the occurrences of the variables with their images via o.

Substitutions form the morphisms of a category whose objects are the sets of
variables. Given a pair of substitutions o: X — T (Y) and 7: ¥ — T'x(Z) their
composition is the substitution 7oo: X — T'x;(Z) defined as the function sending
every variable z € X into the term 7(o(z)), the result of applying 7 to the term
o(x). Identity substitutions are given by the functions idx : X — Tx(X) sending
each variable in itself, seen as an element of Tx(X).

Definition 4 (Substitutions preorder). Given two substitutions o and o’ we
say that o is more general than o’ if there is a substitution T such that o’ = To0.

A coalgebraic approach to unification semantics of logic programming 5

Table 1: Inference rules for SLD-resolution.

H:-BeP o=mgu(4,p(H))

P A=, o0(p(B)) Atomic goal
where p is a variable renaming such that
p(H) and p(B) have no variable in common with A

PEG=,F PEG=,F
P=EG,G=s0(G),F PEG,G =, F,0(G") Conjunctive goal
where the goal G’ and F have no variable in common

This relation induces a preorder on the substitutions.

Definition 5 (Most general unifier I). Given two terms/atoms/goals t1 and
to over the same set of variables, a unifier for them is a substitution o such
that o(t1) = o(t2). A most general unifier for ¢; and t5 is a unifier that is most
general in the sense of definition [§}

Remark 2. The mgu’s are unique up isomorphism, meaning that if ¢ and ¢’ are
two mgu’s for the same terms there is a unique substitution such that ¢’ = oo
and this « is an isomorphism in the above mentioned category of substitutions.

Next we introduce logic programs and their operational semantics.

Definition 6 (Horn clauses, logic programs). 4 Horn clause is an expres-
sion of the form H :- B where H is an atom and B is a goal called respectively
the head and the body of the clause. Without loss of generality we assume the
head and body are formulas over the same set of variables. A finite set of Horn
clauses is called a logic program.

A Horn clause is basically a formula stating that the head is a logical con-
sequence of the body, i.e., that every valuation satisfying the body satisfies the
head too. In particular any clause whose body is the empty goal [is a formula
stating that the head is satisfied by all valuations.

Logic programs are able to express computations; they do so via the (op-
erational) SLD-reduction semantics. This semantics is described in Table [I| via
inference rules that describe the transitions G =, F' of a labelled transition
system whose states are goals and whose labels are substitutions.

Each sequent of the form P = G =, F' asserts that the program P produces
a computation step from a state G to a state F' with an observation o. These
computation steps represent the classical behavior of logic program systems,
in which at each point of a computation the system selects an atom from the
current goal, it tries to unify the selected atom with the head of a clause in the

6 R. Bruni, U. Montanari, G. Mossa

Fig. 1: Mgu’s via pushout

program (up to a renaming with fresh names), and then it updates the current
goal, replacing the atom with the body of the clause and then applying the
computed unifier.

From a logic point of view the sequent P = G =, F states that every
substitution v which makes the goal y(F) a consequence of the axioms in P
makes also y(0(G)) a consequence of P.

We stress the fact that in logic programming we are always interested in uni-
fying goals and clauses with distinct names, which is the reason for the renaming
in the atomic goal rule in Table (1| It is possible to avoid this variable renaming
changing the definitions of unifiers and mgu’s.

Definition 7 (Most general unifier ITI). Given a pair of terms/atoms/goals
t1 and to, a unifier for them is a pair of substitutions (o1, 02) such that o1(t1) =
o2 (ta). Given two unifiers o = (01,02) and o’ = (0, 0h) we say that o is more
general than o’ if there is a substitution vy such that o = yoo; fori = 1,2.
As before, the relation of being more general induces a preorder on the unifiers.
A most general unifier (mgu) for the terms t1 and to is a unifier which is most
general among all the possible unifiers.

The notion of unifier and mgu admit a nice categorical description.

Remark 3. Every atom P(t1,...,t,) can be written in the form oy (P(x1, ..., 2y))
where {x1,...,2,} is a canonical set of variables, o;: {z1,...,z,} = Tx(X) is
the unique substitution such that o.(z;) = ¢; for each ¢ (where X is the set of
variables over which P(tq,...,t,) is defined).

Remark [3| provides a canonical decomposition of an atom as the result of a sub-
stitution to a canonical predicate, namely P(x1,...,x,). As a matter of notation,
in what follows we write just P for P(z1,...,x,).

Remark 4 (Mgu’s via pushout). Two atoms «(P) and 5(Q) unify only when
P = @, and in this case a unifier for them is a pair of substitutions o = (01, 02)
such that o1 o a« = 09 0 3, i.e. such that the square in Fig. commutes in the
category of substitutions. Such a square is an mgu if for any other commuting
square of the form in Fig. [T there is a, necessarily unique, v which makes

A coalgebraic approach to unification semantics of logic programming 7

commute the diagram in Fig. This is equivalent to say that (a, 8,01, 02) is
a pushout square. So, unifiers are commutative squares in the form above and
mgu’s are those squares that are pushouts.

Using this characterization of unification via pushouts we can modify the
Atomic goal rule of Table [I| with the following rule:

a(P):-BeP (a,3,01,02) is a pushout
P 8(P) =, 01(B)

In this way the LTS is not changed, but there is no need of creating new variables.

2.2 LTSs as coalgebras.

Definition 8 (F-coalgebra). Given a category C and an endofunctor F': C —
C a coalgebra for the functor F, or F-coalgebra for short, is a pair (X, a) with
X an object of C and a: X — F(X). Given two coalgebras (X, a) and (Y,)
a cohomomorphism A from (X, «) to (Y, 3), written as h: (X, o) — (Y, B), is
given by a morphism h: X — 'Y such that the following diagram commutes.

X —hr Ly

“| |
F(X) < F(Y)

F-coalgebras and relative cohomomorphisms form the category Coalg(F).

Coalgebras provide an elegant way to encode different notions of dynamic
systems in a categorical framework. As an example we can consider the case of
LTSs. We recall that a labeled transition system is a triple (S, L, —) where
S is a set of states, L is a set of labels, and —C S x L x S is a transition
relation. Every LTS (S, L, —) can be regarded as a coalgebra for the endofunctor
Pr: Set — Set defined on objects as Pr,(X) = P(Lx X) where P is the powerset
functor. If (S, L, —) is an LTS, the relation —C S x L x S gives the function
p: S — Pr(S) that sends every s € S into the set p(s) = {(l,t) | s SN t}.

One of the most interesting thing about coalgebras is that they give an ab-
stract semantics for dynamic systems in term of final objects: if (X, h) is a
coalgebra, we say that two states, i.e. two elements of X, are bisimilar if they
have the same image via the unique cohomomorphism ¢: (X, h) — (T, 7) into
a final coalgebra (T, 7). This definition of bisimilarity generalizes the classical
one for transition systems, meaning that two states are bisimilar in the classical
sense if and only if they are bisimilar in the coalgebraic sense.

The advantage of coalgebras over classical LTS is that the states’ space now
can be an object of a generic category, not just a set. Hence coalgebras allow
to work with states that have an additional structure. This justifies the name
structured coalgebras for coalgebras over categories of structures, in particular
we will be interested in coalgebras over categories of algebras.

8 R. Bruni, U. Montanari, G. Mossa

3 Algebraic Structures

In this section we introduce an algebraic structure over the goals of logic pro-
gramming. The main result is to provide a characterization of this algebra of
goals as the initial model for the theory of substitutive monoids. This theory is
many-sorted and its sorts represents the number of variables that can occur in
a goal. Each sort is equipped with a binary operation and a constant, represent-
ing the conjunction and the empty goal respectively, and there are unary typed
operations that correspond to substitution operations of logic programming.

Instead of presenting the theory of substitutive monoids directly, we first
recall the theory of monoids, then, we introduce the theory of substitutions, and
finally we take the tensor product of these theories and add some constants.
This way the different operations of substitutive monoids are presented to the
reader in a gradual way and the distributive axioms between the two algebras
are introduced automatically by the tensor product construction.

3.1 Monoids, substitutions and substitutive monoids

Definition 9 (The theory of monoids). We let I'vion = (SMon, 2Mon, FMon)
be the algebraic theory of monoids having a unique sort M, a binary operation
M x M — M and a constant O. The azioms of Enion are the following

x-(y-2)=(x-y)- 2z for all x,y, z (associativity);

x-O0=0- 2 =2 for all © (unit).

Algebras of this theory are monoids, i.e. algebraic structures with a binary
associative operation - whose unit is [J.

The monoidal structure captures the algebraic operation of goal conjunction.
Indeed, for every set of variables X, the goals having free variables in X form a

monoid with conjunction and the unit of the monoid is the empty goal.

Definition 10 (The theory of substitutions). Given a signature X', we let
I'sub = (SSub, Xsub, Fsub) be the algebraic theory of substitutions over X'. The
set of sorts is the countable set Ssup = {n: n € N}. For every substitution
o:{x1,...,xn} = Ts({x1,...,2m}) we have an operation symbol o € Xgup
with arity o: n — m and we have the following axioms

T(o(z)) =100(x) forallo: n — m and 7: m — k and any x;

id, () = x for any identity substitution id,,: n — n and any x.

The algebras for this theory are rather simple, they are basically Set-valued
functors (not necessarily cartesian ones) from the (opposite of the) Lawvere the-
ory over the signature X, that is functors from the category of finite sets of
variables and substitutions between them, in the sense of logic.

While the monoidal operation captures goal conjunction, the substitution op-
erations capture the operation of variable instantiation, which is fundamental for

A coalgebraic approach to unification semantics of logic programming 9

logic programming. Again the goals provide examples of this substitutive struc-
ture in which the operations of I'syp are interpreted with their corresponding
substitutions.

As seen above, goals mix together monoidal and substitutive structures, but
these structures interact with each other in a specific way. Their interaction gives
rise to a different algebraic structure which is captured by the so called tensor
product of the two theories.

Using the machinery of algebraic theories we can build a new theory as
the tensor product of I'nvon and I'sup, which we call the theory of substitutive
monoids and denote by I'sp. We will not describe the construction in details
(see e.g. [I4]), instead we describe the resulting theory.

Definition 11 (The theory of substitutive monoids). The theory of sub-
stitutive monoids I'spm = (Ssm, Zsm, Esm) has sorts those of I'syp, that is
Ssm = Ssub, each operation og: n — m in YXsup 1S also an operation of YXsm
with the same arity and for every sort n € Ssm we have a binary typed operation
‘n:nxXn —n and a constant Oy, : n. The azioms in Egn contain those in Egub,
with the addition, for every sort n, of the following monoid axioms

T (Ynz)=(@0ny) nz T Up=Uppo=x
and of axioms of the form

o(zny) =0a(x) maly) o(0n) =Um
for every substitution operation o: n — m in Xsym N Xsub-

We call the I'spi-algebras substitutive monoids or also SM-algebras. An al-
gebra for I'sy is basically a countable family of monoids (parametrized by the
sorts) with a family of monoid homomorphisms between them (parametrized
by the substitutions), whence the name substitutive monoids. Another way to
see these algebras is as functors from the above mentioned category of substi-
tutions into the category of monoids. Goals provide algebras for this algebraic
theory, the sorts are interpreted by sets of goals with fixed-finite sets of vari-
ables, the monoidal operations are given by conjunction operations and finally
the substitution operations are given by the variable substitutions.

Definition 12 (The theory of II-substitutive monoids). The theory of II-
substitutive monoids I'y_sm = (Sir-sm, X17-sm, Err-sm) has sorts and equa-
tions as those of I'snt but the operation symbols are given by X sy = YsmUIT,
that is they are those of Xsn plus the predicates of the logic signature. Each pred-
icate P € Il with arity n is interpreted as a constant symbol of type P: n. The
other operators, inherited from Xsnm, keep the signature they have in I'sh.-

The algebras of I';y.swm are substitutive monoids with selected constants
parametrized by predicates. In the next section we focus on the most important
IT - SM-algebra, the algebra of goals: this will show how I';_sm is actually the
theory of goals, meaning that it characterizes the algebraic structure of goals.

10 R. Bruni, U. Montanari, G. Mossa

3.2 The goal algebra as the initial IT - SM-algebra
Definition 13 (The goal algebra). Goals form a I - SM-algebra G such that

— G interprets sort n € Sir_sm into the set G, of the goals with free variables
in the canonical set {x1,...,z,};
— each predicate symbol P: n is interpreted in the atomic formula

P% = P(z1,...,20);

— each substitution symbol o: n — m is interpreted in the corresponding sub-
stitution operation o® = o: G, — G,,;

— each monoid operation -y is interpreted into goal conjunction, i.e. =
N: G, X G, — Gy

— each EQ is interpreted into the empty goal in G,,.

It is easy to prove that these data satisfy the axiom of I';;_gy hence that G
is indeed as I - SM-algebra.

Remark 5. Tt is not hard to see that every atomic formula P(ty,...,t,) can be
uniquely represented as the element @G(PG), where o is the unique substitution
sending the variable z; into the term ¢; (see Remark .

In the same way, if we have a goal G in the form G = A; A --- A A with
A; = Py(t},...,t},) we have the representation

G=AF S (..(AF FAD)...),

where we put A¥ = 0,.¢(PP).
This representation allows us to express any goal as a canonical term in the

language of I';;_gm, more specifically as a term in the form

a1(Pr) n (- on (Ok=1(Pi-1) 0 ok(Pr)) - -) -

In particular, the atomic formulas of the form P(x1,...,z,) can be expressed
via the term id,(P). We will exploit this representation in what follows.

The algebra of goals has an important characterization.
Theorem 1 (Initiality of G). The algebra G is the initial IT - SM-algebra.

Proof. We prove that for any other IT-SM-algebra A there is a unique homo-
morphism fu: G — A.

We start observing that for every goal G € G, in the form
every homomorphism f: G — A should satisfy the following equation

F(@) = (P48 (P

So the only possible homomorphism is given by the family of maps fé‘ 1 G, = A,
defined by the equation

F @1 (Py) e on ok(Pr)) = on (PP 4o ok (P

By calculations it is easy to prove that this indeed is an homomorphism. ad

A coalgebraic approach to unification semantics of logic programming 11

Table 2: SOS-rules for X' j7_gnm algebras.

o(P):-B€P ~ € Th(X)[m,m] is an isomorphism
P 5 4(B)

(constant-rule)

where o € Th(X)[n,m] is a substitution, P € IT has arity n and B € (T _sm)m

o 7N .
G — B (7,0,0',7") is a pushout (substitution-rule)

(@) 2> 7(B)

G- B G- B (monoid-rule)
G- -G -5 B-o(@) G -GS 0GB
where G and G’ are terms of the same type

4 Coalgebraic Semantics

In this section we introduce a structured coalgebra that provides the operational
semantics for logic programs. To this aim we proceed as follows: First we provide
a set of SOS rules which describe how to generate the transitions of the semantics
and then using the abstract machinery of structured coalgebras, developed by
Plotkin and Turi [25] (see also [9]), we show how the transitions form a structured
coalgebra over the algebra of goals G. In order to do that we need to prove that
the axioms of Iy, ,, bisimulate; this is an important property that we have
to prove, because our state-space is an algebra satisfying some axioms and not
just a syntactic (term) algebra. Next we prove that our SOS-rules generate the
transitions of the classical operational semantics for logic programs. Finally we
prove the existence of a terminal coalgebra: this result allows us to use the
coalgebraic-bisimulation semantics described in Section

4.1 SOS rules and coalgebras

In what follows we work in the category Alg(X' 7 _sm) of X7 _snm-algebra, that is
those algebras for the algebraic theory obtained by I'j7. sy dropping the axioms.
Working in this larger category allows us to reuse the results of Plotkin-Turi for
automatically generate endofunctors and coalgebras from an SOS specification.
This machinery does not generalize well to categories of algebras satisfying ax-
ioms, hence the choice to drop the axioms.

Tableprovides a set of SOS rules. These rules are in De Simone format [11],
whence the following result.

Proposition 1. The SOS-rules in Table@ induce a functor BY: Alg(Xr_sm) —
Alg(Xr_sm) and a coalgebra p: Ts,, oy — BY (Tsy ang)-

12 R. Bruni, U. Montanari, G. Mossa

The functor BT associates with each ¥ 17-sm-algebra A the algebra BP(A)
that interprets each sort n with the set

BY(A), = Ps ((]_[Th(Z)[n, m] x Am> II An>

whose elements are sets of substitutions’ labeled transitions (i.e. pairs of the
form (o,a) € [],, Th(X)[n,m] x A,,) and unlabeled (idle) transitions.

The coalgebra p associates with each term ¢ in Ty, _g,,, the initial X' _gm-
algebra, the set

p(t) = {(a, t): t -5 t' is a derivable sequent} u{t} .

The goal algebra G is a X_gm-algebra and so it has a natural (unique)
homomorphism 7: T'x,, ¢\, — G from the initial algebra T, ¢,,. Since G is the
initial I's;, <,,-algebra (as shown in Theorem 7 G is obtained from T's,, <\,
quotienting for the axioms in I's;, ., and 7 is a surjective homomorphism.

Since 7: Tx; oy, —+ G is a surjective homomorphism, there can be at most
only one p’': G — BF(G) such that the diagram below commutes

s
TEH.SM G

pi lp'

P P
B (TEH.SM) BT(7r)> B (G)

and such p’ exists if and only if the morphism BF(7) o p respects the axioms of
I's,, oum» that is if and only if for every equation t = ¢’ derivable from the axioms
of I's; o the sets BF(p(t)) and B¥(p/(#')) are equal.

By the definitions of the functor BF and the homomorphism p, this amounts
to prove that for every I's,, o,,-derivable equation t = ¢’ and every s € Ty, ou
such that ¢+ — s is derivable from the rules in Table [2| there is a s’ such that
t' -5 s’ is also derivable and s = s’ is an equation provable from the axioms
in I's,, <, and the symmetric property holds for every transition ¢’ — s'. We
say that an equation t = ¢’ bisimulates if it satisfies this property.

Theorem 2. Let I' be an algebraic theory and let R be a set of SOS rules defined
over the signature of I'. If every closed instance of the axioms in I bisimulates,
then every I'-derivable equation bisimulates as well.

Proof. Since every I'-derivable closed equation can be derived by reflexivity,
symmetry, transitivity, and congruence by the axioms, we can prove the thesis
by induction on these inference rules.

The proof is straightforward for all the rules with the exception of congruence,
which is the rule requiring that SOS-rules are in De Simone Format [11], that
is why we will focus only on this case.

A coalgebraic approach to unification semantics of logic programming 13

09001

o1 o2
e —— e —r e e ——> o L]

AR R R

o T} [] T} o L w L
(a) TQO0T]
(b)

Fig. 2: Pushout (de)composition

We recall that a rule is in De Simone Format if it is in the format

{xi LN yi}ie[

o(z1,. .. xn) == g(y1,. .. yn) (1)

where o is an operation symbol of the signature, g(y1, ..., y,) is a term containing
only the variables y;’s, and the variables x;’s and y;’s are all distinct with the
exception of the pairs (z;,y;) for the ¢ € I, in this case we have x; = y;.

Let assume we have a family of derivable equations t; = s; that bisimulate.
We want to prove that the equation o(ty,...,t,) = o(s1,...,s,), derived by
congruence-rule, bisimulates too.

Let o(t1,...,t,) —= u be a transition derived by the SOS-rules. We may
assume that such transition is derived by a rule as the one in formula , SO
there must exist a family of terms u; such that we have derivable transitions of
the form t; —% u;, for the i € I, t; = u; for the i & I, and with u = g(ug, ..., up).

By the hypothesis that the ¢; = s; bisimulate we can conclude that for every
index 7 € I there must be a u; such that s; iy Ui, and by letting u; = s; fori & I,
applying the De Simone rule, we get a transition o(s1,. .., Sp) SN g(t1, ..., Uy).

By theorems of equational logic, since the equalities u; = u; are derivable, it
follows that the equality

u=g(ul,...,un) =g(U1,...,0,)

is derivable. So by letting @ = g(@y, . . ., @,) we have found that for the transition
o(ty,... tn) — u there is a transition o(sy, ..., s,) —= @ with u = @ derivable.
By a symmetric argument we can prove the bisimulation property for tran-
sitions of the form o(s1, ..., s,) — 4.
As stated in the beginning of the proof, by induction on the inference rules
of equational logic it follows that every derivable equation bisimulates. a

Proposition 2 (Axioms in Iy, g, bisimulate). The azioms of I's, o
bisimulate with respect to the SOS rules of Table[d

14 R. Bruni, U. Montanari, G. Mossa

Proof. For each instance of the axioms in I'sx;, g,, one can prove by induction

on the inference rules (of the SOS specification in Table [2)) the thesis. As an

interesting case we consider the substitution axiom (o2(01(t)) = (o2 0 01)(t)).
First, we want to prove that for every closed term t and for every transition

09(01(t)) L= 8" there is a transition (o2 0 01)(t) —— 3 such that s” = 3 is a
I's;,, gm-derivable equation. The only rule in Table [2| that produces a transition
for terms of the form oy(0y(t)) is the substitution-rule, hence we may assume

that there is a transition o, (t) —— &' and a pushout square (v', 02, 72,7") such
that s” = m(s). For the same reason we may assume that there is a transition

t 5 s and a pushout square (v, o1, 71,v') such that s’ = 71(s). We have that, for
the diagram in Fig. [2a] the two internal squares are pushouts, hence the external
rectangle (y, 02001, T2 071,7") is a pushout as well. By the substitution rule we

have the transition (o3 0 01)(t) = (75 0 71)(s), and by the substitution axiom
(o 011)(s) = T2(11(8)), so letting §" = (12 0 71)(s) we get our claim.

Second, for any transition (g 0 01)(t) —— s” we want to prove that there is
a transition og(0y(t)) = 3 such that s” = 5 is a derivable equation. Indeed
every transition for a term of the form (o3 0 01)(¢) can be only derived by the
substitution rule, hence we may assume that there is a transition ¢t — s and a
pushout square (v, 09 0 01,7”,7) such that s” = 7(s). It is well known that the
pushout square can be decomposed in two pushouts as shown in Fig. where
7 = 7907 It follows that oy (t) —= 71(s) and o9(0y(t)) —— a(71(s)). By the
substitution axiom we also have 1(71(s)) = (72 0 71)(s). O

Combining Theorem [2] with Proposition [2] we get:

Corollary 1 (Equalities in Iy, ,, bisimulate). All I's;,, 4,,-derivable equa-
tions bisimulate.

From the above discussion it follows that:

Theorem 3 (Coalgebraic semantics of G). There is a unique BF -coalgebra
p': G — BY(G) that makes the diagram below commute:

Tsp sy ——— G
pl lp'
BP(TEH-SM) BT(‘IT)> BP(G)
Remark 6. The coalgebra p’: G — BF(G) associates with every goal g those

transitions (o, g’) such that g -7+ ¢’ is an instance of a derivable sequent of our
SOS rules in the algebra G.

The following theorem establishes the relation between our coalgebra and the
operational semantics of logic programs, the SLD-reduction.

A coalgebraic approach to unification semantics of logic programming 15

Theorem 4 (SLD-reduction as a coalgebra). The LTS underlying the coal-
gebra p': G — BF(G) is the same generated by the rules for the SLD derivation.

Proof. The LTS generated by the SLD-reduction is the one generated by the
SOS-rules obtained via the application of the syntactic transformation that turns
every sequent of the form P = G =, G’ into a sequent of the form G %+ G'.
It can be shown that these SOS-rules can be derived by the SOS-rules of
Table 2] and vice versa. O

4.2 Final BP-coalgebra

We conclude this section with a proof of the existence of the terminal BF-
coalgebra. This allows to use the bisimulation semantics via terminal-coalgebra
as described in Section [2] We need the following result.

Theorem 5. For every locally presentable category C and every accessible end-
ofunctor B: C — C the forgetful functor Vg : Coalg(B) — C is a left adjoint.

Proof. The proof is basically the same as the one presented in [3, Theorem 1.2].
It follows from the Special Adjoint Functor Theorem using the fact that C and
Coalg(B) are locally small and locally presentable, hence cocomplete and with
a generating set, that Coalg(B) is cowellpowered, for [I Theorem 1.58], and
that the forgetful functor Vg preserves colimits. O

Corollary 2. With the hypothesis of Theorem [3, if C has a terminal object,
Coalg(B) has a terminal object as well.

Proof. If Fp: C — Coalg(B) is the right adjoint of Vg, which exists for Theo-
rem [5] it preserves limits and so, letting T € C be a terminal object, Fg(T) is
a terminal object too. ad

Theorem 6 (BF is accessible). The functor BY is accessible.

Proof. Since Alg(X7_sm) is an algebraic category BF is accessible if and only
if for every sort n € Sx,_ s\ the functor Bg: Alg(X_sm) — Set such that

B}, (A) = BF(A), is accessible. Remember that

B} (A ((HTh [n,m] x A)HAn> :

This equation shows that B is obtained combining the valuation functors (those
the sends algebras in their carriers), that are accessible, with accessible functors,
namely the finite powerset P, and the multiplication functors Th(X)[n, m] x —.
Since these functors are composed via coproduct and functor composition, that
preserve accessibility, it follows that BE is accessible as well.

Since this holds for every n € Sx,, «,, by the above mentioned property of
algebraic categories, it follows that BF is accessible. O

By Theorem [6] with Corollary [2] it follows that
Proposition 3 (Finality). The category Coalg(BF) has a terminal object.

16 R. Bruni, U. Montanari, G. Mossa

4.3 Examples
We conclude this section by showing some examples of (in)equivalence.

Ezample 1. Let us consider the logic program:

P(x? y7 Z) - Q('r7 y)7R(y’ Z) S(Jj7y7 Z) B T(x7 y’ Z)
Qa,c) :-O T(a,c,z):-V(z) V() :-O
R(c,b) :-0O T(x,c,b) :- U(x) U(a):-O

The goals P(x,y, z) and S(z,y, 2) are bisimilar: they yield isomorphic LTSs.

Ezample 2. Let us consider the logic program:

P(f(z)):- P(x) Q(f(2)):- R(x) R(f(z)):- Qx)

The goals P(z), Q(z) and R(z) are all bisimilar. They are logic perpetual pro-
cesses [2I]: even with the impossibility to terminate, at each transition new
substitutions of the form f(y)/z are computed to approximate the result.

Ezample 3. Let us consider the logic program:

Pla,y):-Qy) QM) :-0 S(a,y):-T(y) T(b):-0O
P(a,y) :- R(y) R(c) :-O T(c):-0O

The goals P(x,y) and S(z,y) have the same answer substitutions but are not
bisimilar, because the choice to substitute b or ¢ for y is done by P implicitly at
the first step while it is postponed to the second transition by S.

5 Conclusion

When exploiting LP as a process description language defined by an LTS, it is
natural to look for a structured coalgebraic semantics.

In the paper, states, i.e. goals, are represented as the substitutive monoids
freely generated by predicate symbols, and transitions are goal reductions via
unification. The construction guarantees the existence of a final coalgebra yield-
ing the abstract semantics. More precisely, coalgebras live in the category of al-
gebras equipped with the operations of substitutive monoids, but without their
axioms. Thus goal bisimulations respect monoidal and substitution operations.

In [4] the authors introduced a structured coalgebra that models the opera-
tional semantics of logic programming in order to apply the theory of reactive
systems [20]. Their coalgebra uses a presheaf to model the state-space, which
can be viewed as a multisorted-algebra having only unary-typed operations in-
dexed by a family of substitutions. We have chosen a different algebraic structure
that seems closer to the natural structure of goals of logic programming. For in-
stance, to define the coalgebraic endofunctor we refer to an original, suggestive
SOS specification quite close to the rules for SLD derivation (see Table . Nev-
ertheless the two approaches are related. It is possible to obtain two forgetful

A coalgebraic approach to unification semantics of logic programming 17

functors from the two categories of algebras in the category N-Set, of families
of sets indexed by natural numbers, and an endofunctor B over N- Set such that
the forgetful functors send the coalgebras into the same B-coalgebra in N- Set,
up to some technicalities due to differences into the behavioural endofunctors
used for the structured coalgebras. Thus the two constructions can be considered
as consisting of two different enrichments applied to the same coalgebra in Set.

Our construction could be adapted to simulate other models of computation
which are structurally similar to LP, importing the well known properties of
coalgebras regarding congruence, logic semantics and higher order. For instance,
in [I9] two process calculi, Fusion Calculus (a variant of pi-calculus) and Synchro-
nized Hyperedge Replacement with Hoare Synchronization (a graph rewriting
calculus with synchronization and mobility) are mapped into LP. Implementa-
tion efficiency can also get involved: constraint problems may be described by
networks of constraints with an algebraic specification similar to our substitutive
monoids; interestingly, an additional operation of restriction [24] allows to equip
the networks with a hierarchical structure, which allows often to decompose the
constraint problem and to solve it by means of an efficient dynamic programming
algorithm. Moreover, in a Datalog-style setting [23], the decomposition process
is automatically suggested by the goal reductions themselves.

We plan to study the relations between these models of computation taking
advantage of the well known expressive power of the categorical approach.

In the present work we modeled the coalgebra in the category of algebras
for a given signature—without axioms—to use the machinery of [25]. In [6] the
authors provide some tools to generate behavioural endofunctors over categories
of algebras with axioms. It could be interesting to investigate how to use these
tools to turn our bi-algebraic semantics in a coalgebra over the category of
substitutive monoids, instead of the wider category of algebras that are not
required to respect the axioms of I's,, .. However, one of the advantages of
the current presentation is to be self-contained and more concrete than the
framework in [6], so to be possibly accessible to a wider audience.

Acknowledgement. We thank Andrea Corradini who read a preliminary version
of this paper and helped us to improve the presentation. We also thank the
anonymous referees for their useful remarks and pointers to the literature.

References

1. J. Adamek and J. Rosicky. Locally Presentable and Accessible Categories. London
Mathematical Society Lecture Note Series. Cambridge University Press, 1994.

2. G. Amato, J. Lipton, and R. McGrail. On the algebraic structure of declarative
programming languages. Theor. Comp. Sci., 410(46):4626-4671, 2009.

3. M. Barr. Terminal coalgebras in well-founded set theory. Theor. Comp. Sci.,
114(2):299-315, June 1993.

4. F. Bonchi and U. Montanari. Reactive systems, (semi-)saturated semantics and
coalgebras on presheaves. Theoretical Computer Science, 410(41):4044 — 4066,
2009. Festschrift for Mogens Nielsen’s 60th birthday.

18

10

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.
23.

24.

25.

R. Bruni, U. Montanari, G. Mossa

. F. Bonchi and F. Zanasi. Bialgebraic semantics for logic programming. Logical

Methods in Computer Science, 11(1), 2015.

M. M. Bonsangue, H. H. Hansen, A. Kurz, and J. Rot. Presenting distributive laws.
In R. Heckel and S. Milius, editors, Algebra and Coalgebra in Computer Science,
pages 95-109, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

R. Bruni, U. Montanari, and F. Rossi. An interactive semantics of logic program-
ming. Th. and Pract. of Logic Prog., 1(6):647-690, 2001.

A. Corradini and A. Asperti. A categorial model for logic programs: Indexed
monoidal categories. In Semantics: Foundations and Applications, REX Workshop,
volume 666 of LNCS, pages 110-137. Springer, 1992.

A. Corradini, R. Heckel, and U. Montanari. From SOS specifications to structured
coalgebras: How to make bisimulation a congruence. ENTCS, 19:118-141, 1999.
A. Corradini and U. Montanari. An algebraic semantics for structured transition
systems and its applications to logic programs. Theor. Comp. Sci., 103(1):51-106,
1992.

R. de Simone. Higher-level synchronising devices in meije-sccs. Theor. Comput.
Sci., 37:245-267, 1985.

M. Falaschi, G. Levi, C. Palamidessi, and M. Martelli. Declarative modeling of the
operational behavior of logic languages. Theor. Comp. Sci., 69(3):289-318, 1989.
S. E. Finkelstein, P. J. Freyd, and J. Lipton. Logic programming in tau categories.
In CSL’9/, volume 933 of LNCS, pages 249-263. Springer, 1994.

J. Gray. The category of sketches as a model for algebraic semantics. In Categories
in Computer Science and Logic, volume 92 of Contemp. Math. AMS, 1989.

E. Komendantskaya and J. Power. Coalgebraic semantics for derivations in logic
programming. In CALCO’11, volume 6859 of LNCS, pages 268-282. Springer,
2011.

E. Komendantskaya and J. Power. Logic programming: Laxness and saturation.
J. Log. Algebr. Meth. Program., 101:1-21, 2018.

E. Komendantskaya, J. Power, and M. Schmidt. Coalgebraic logic programming;:
from semantics to implementation. J. Log. Comput., 26(2):745-783, 2016.

R. A. Kowalski. Algorithm = logic + control. Comm. ACM, 22(7):424-436, 1979.
I. Lanese and U. Montanari. Mapping fusion and synchronized hyperedge replace-
ment into logic programming. Th. and Pract. of Logic Prog., 7(1-2):123-151, 2007.
J. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems.
In C. Palamidessi, editor, CONCUR’00, volume 1877 of LNCS, pages 243-258.
Springer, 2000.

G. Levi and C. Palamidessi. Contributions to the semantics of logic perpetual
processes. Acta Inf., 25(6):691-711, 1988.

J. W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer, 1987.

U. Montanari and F. Rossi. Perfect relaxation in constraint logic programming.
In ICLP’91, pages 223-237. MIT Press, 1991.

U. Montanari, M. Sammartino, and A. T. Siwe. Decomposition structures for soft
constraint evaluation problems: An algebraic approach. In Graph Transformation,
Specifications, and Nets, volume 10800 of LNCS, pages 179-200. Springer, 2018.
D. Turi and G. D. Plotkin. Towards a mathematical operational semantics. In
LICS’97, pages 280-291. IEEE Computer Society, 1997.

	A coalgebraic approach to unification semantics of logic programming

