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Abstract
We show that a hierarchy of topological phases in one dimension—a topological Devil’s staircase—
can emerge at fractional filling fractions in interacting systems, whose single-particle band structure
describes a topological or a crystalline topological insulator. Focusing on a specific example in the BDI
class, we present a field-theoretical argument based on bosonization that indicates how the system, as
a function of thefilling fraction, hosts a series of density waves. Subsequently, based on a numerical
investigation of the low-lying energy spectrum,Wilczek–Zee phases, and entanglement spectra, we
show that they are symmetry protected topological phases. In sharp contrast to the non-interacting
limit, these topological density waves do not follow the bulk-edge correspondence, as their edge
modes are gapped.We then discuss how these results are immediately applicable tomodels in theAIII
class, and to crystalline topological insulators protected by inversion symmetry. Ourfindings are
immediately relevant to cold atom experiments with alkaline-earth atoms in optical lattices, where the
band structure properties we exploit have been recently realized.

1. Introduction

In the last few years, a series of remarkable experiments has demonstrated how cold atomic gases in optical
lattices can realize topological band structures [1–7]with a high degree of accuracy and tunability [8–12]. In the
context of one-dimensional (1D) systems, ladders pierced by synthetic gaugefields [13–23] have been
experimentally shown to display a plethora of phenomena, including chiral currents [24] and edgemodes akin
to the two-dimensional Hall effect [7], accompaniedwith the long-predicted—but hard to directly observe—
skipping orbits [25, 26].While such phenomena have required relatively simplemicroscopicHamiltonians apt
to describe electrons in amagnetic field [27], theflexibility demonstrated in very recent settings utilizing
alkaline-earth-like atoms [28–33] has shownhow a new class ofmodelHamiltonians—where nearest neighbor
couplings onmulti-leg ladders can be engineered almost independently one from the other—is well within
experimental reach. Remarkably, theseworks have not only demonstrated the capability of realizing spin–orbit
couplings utilizing clock transitions [29, 30], but also the observation of band structures where topology is tied to
inversion symmetry [31, 34], a playground for crystalline topological insulators [35–37]. A natural question
along these lines is whether these new recently developed setups offer novel opportunities for the observation of
intrinsically interacting topological phases—e.g. symmetry-protected topological phases which appear at
fractionalfilling fractions.

In this work, we showhow, starting from experimentally realizedmicroscopicHamiltonians [31],
interactions can generically stabilize novel topological phases in regimeswhere single-particleHamiltonians
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cannot host any.We consider a 1D ladderwith two internal spin states, supporting a topological phase at integer
filling, andwe show that, when the particle filling is reduced to a fractional value, repulsive interactions can
stabilize a hierarchy of unconventional topological gapped phases, namely a topological Devil’s staircase [38, 39].
Such topological density-wave phases are characterized by awell-defined topological number, theWilczek–Zee
phase [40, 43], thus signaling that the topological properties of the non-interacting bands are inherited at
fractionalfillings in the presence of interactions. These gapped states present a degenerate entanglement
spectrum [44–46] and, in some regimes, an unconventional edge physics without zero-energymodes.

The appearance of these fractional topological phases is reminiscent of the quantumHall physics, where a
similar transition from the integer to the fractional regime is observedwhen interactions are considered. Owing
to the 1D context, here themain difference is that all the phases are symmetry-protected topological phases, as
true topological order cannot take place.We note that, for specific filling fractions, our results are closely related
to other topological density waves found in single-bandmodels [47, 48]. Themere existence of a full class of
topological density waves is surprising in view of the fact that, typically, non-interacting topological phases at
integerfilling appearing in the context of 1D systemswith two internal spin states such as the Su–Schrieffer–
Heggermodel [49] orCreutz ladders [50] are robust against weak interactions only, and disappear [51, 52] in the
strongly interacting regime11.

We illustrated the appearance of such phases by studying amodelHamiltonian description for the BDI
[49–51] andAIII symmetry classes [52, 54] of the Altland–Zirnbauer classification (AZc) [1, 6], and a crystalline
topological insulator case of a 1Dmodel supporting a spatial inversion symmetry protected topological phase at
filling one [35–37]. Our results are general in the sense that these fractional phases can be potentially observed in
all symmetry classes of the AZcwhich can be realized in a two-leg ladder. Ourwork is complementary to recent
approaches investigating interaction induced fractional topological insulators [55–63], which typically focus on
specific case scenarios that accuratelymimic the edge physics of quantumHall states or extend topological
superconductivity atfinite interaction strength.

From an experimental perspective, themodels we investigate are immediately relevant to cold gases
experiments. In particular, recent implementations using alkaline-earth-like atoms such as Yb [25, 29, 32] and
Sr [30] have demonstrated an ample degree offlexibility in tuning parameters (including static gaugefields) in
two-leg ladders, exploiting the concept of synthetic dimension [64, 65].Most importantly, the single particle
Hamiltonianwe discuss belowhas been realized in a 173Yb gas, see [32], and similar schemes shall be applicable
to 87Sr gases aswell.

This paper is organized as follows. In section 2we present themodel and discuss its fundamental
symmetries. sections 3 and 3.3 contain ourmain results. In particular, in section 3, we considermodels
belonging to the BDI andAIII symmetry classes andwe show the appearance of a topological fractional phase at
filling ν=1/2which can be viewed as a precursor of the topological Devil’s staircase.We discuss the topological
properties of this phase: theWilczek–Zee phase, and the entanglement spectrum in the ground-statemanifold,
using numericalmethods as Lanczos-based exact diagonalization [66] and density-matrix renormalization
group (DMRG) [67, 68] simulations. Finally, we discuss how this topological phase supports edgemodes, which,
while not at zero energy, can still be diagnosed by simple correlation functions. Then, in section 3.3, bymeans of
a bosonization approachwe discuss the appearance of the topological Devil’s staircase at lowerfillings andwe
explicitly address thefilling ν=1/3 case. Finally, in section 4we generalize our results to the case of a crystalline
topological insulator. Our conclusions are drawn in section 5.

2.Model and symmetries

Let us start by introducing theHamiltonianwe are going to focus on. For the sake of clarity, we also review the
main definitions of time-reversal, particle-hole, and chiral symmetry in the language of second quantization,
which is best suited to the case of interacting systems.

2.1.ModelHamiltonian
Weconsider a 1D chainwith L sites along the physical dimension. These are populated by fermionic particles
described by the canonical operators cj,sˆ(†), annihilating (creating) a fermion at site j=1,K, L, with two internal

degrees of freedom labeled by ,s =   (resp.+1,−1).

11
This last fact is instead not surprising, once one realizes that, in the presence of a strongly repulsiveHubbard interaction term, such kind

ofmodels with nearest-neighbor hopping terms can bemapped onto topologically trivial spin-1/2XYZmodels [53].
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The single-particle physics discussed in this work is fully captured by theHamiltonian (seefigure 1)

H H H , 1nn0 = + Dˆ ˆ ˆ ( )

where

H c c 2
j

j j
,

, , å s= D
s

s sDˆ ˆ ˆ ( )†

is a species-dependent chemical potential which induces an imbalance between spin up and spin down particles.
TheHamiltonian term

H t c c J c c h.c. 3nn
j

j j j j
,

1, , 1, ,å= + +
s

s s s s s+ + -ˆ ( ˆ ˆ ˆ ˆ ) ( )† †

describes spin-preserving and spin-flipping nearest-neighbor hoppings; the parameters tσ and J can be tuned
according to the prescriptions of table 1.

Crucial for the following discussion is the presence of repulsive density–density interaction terms

H U n n V n n , 4
j

j j
p

p
j

j j pint , ,å å å= +  +ˆ ˆ ˆ ˆ ˆ ( )

whereU>0 andVp>0with p=1, 2, ...; n c cj j j, , ,=s s sˆ ˆ ˆ† is the density operator and n nj j,= ås sˆ ˆ . The full
Hamiltonian is thus defined by

H H H H H H . 5nn0 int int= + = + +Dˆ ˆ ˆ ˆ ˆ ˆ ( )

Themodel we discuss has already been experimentally realized in [32].We refer to this work for specific details
on the experimentally achievable parameter regimes.

Hereafter wewill set ÿ=1 and express all energy scales in units of the hopping term t. In order to
understand the symmetry class towhich Ĥ belongs, it isfirst convenient to recall the three symmetries
classifying the ten classes of the AZc. Then, we also discuss the inversion symmetry operator.

Figure 1. Schematic representation of a 1D chainwith two internal spin states,  and . Curved arrows at the dots represent the
species-dependent chemical potentialΔòwhich induces an imbalance between spin up and spin down particles. As discussed in
table 1, by properly tuning the parameters tσ and J in equation (3), it is possible to realize non-interacting topological phases belonging
to the symmetry classes BDI andAIII of the AZc and an inversion symmetry protected topological phase supporting a non-trivial
phase at integer filling (crystalline topological insulator).

Table 1.By properly tuning the parameters tσ and J in equation (3), it is
possible to realize non-interacting topological phases belonging to the
symmetry classes BDI andAIII of the AZc and an inversion symmetry
protected topological phase supporting a non-trivial phase at integer
filling (crystalline topological insulator). A topological phase
belonging to the BDI symmetry class is endowedwith a time-reversal
T, a particle-holeC, and a chiral S symmetry; a topological phase in the
AIII symmetry class is endowedwith a chiral symmetry only; see also
equations (6)–(8).

t t J T C S

BDI t+ t- iJ+ zs xs ys
AIII it+ it- J- / / ys
inv t d+ + t d- + iJ+ / / /

3
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2.2. Fundamental symmetries
The symmetries playing a crucial role in the AZc are the time-reversal ̂ , the particle-hole ̂ , and the chiral ̂
symmetry. Their action on the fermionic operators cj,sˆ reads [6]:

c T c c c T 6j j j j,
1

, , ,
1

, ,*   = =s s s s s s s s
-

¢ ¢
-

¢ ¢
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† †

c C c c c C 7j j j j,
1

, , ,
1

, ,*   = =s s s s s s s s
-

¢ ¢
-

¢ ¢
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† †

c S c c c S , 8j j j j,
1

, , ,
1

, ,*   = =s s s s s s s s
-

¢ ¢
-

¢ ¢
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† †

whereT,C, and S are 2×2 unitarymatrices satisfyingTT*=CC*=±σ0 (σ0 being the 2×2 identitymatrix)
and S=TC*, up to an arbitrary phase factor such that S2=σ0. Furthermore, ̂ and ̂ are anti-unitary (i.e.

i i i
1 1   + = + = -

- -ˆ ( ) ˆ ˆ ( ) ˆ ), while ̂ is unitary (i.e. i i
1 + = +-ˆ ( ) ˆ ).We also introduce the unitary

inversion symmetry operator ̂ , which acts as [36]:

c I c c c I , 9j j j j,
1

, , ,
1

, ,*   = =s s s s s s s s
-

¢ - ¢
-

- ¢ ¢
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† †

where I is again a unitary 2 2´ matrix. TheHamiltonian Ĥ in equation (5) is invariant under a symmetry ̂,
with , ,   =ˆ ˆ ˆ ˆ , if and only if

H H. 10
1  =-ˆ ˆ ˆ ˆ ( )

Switching off the interaction term, the single-particleHamiltonian(1) can be conveniently rewritten as:

H C H k C , 11
k

k k0 0å=ˆ ˆ ( ) ˆ ( )†

with C c ck k k, ,=  
ˆ (ˆ ˆ )† † † bymeans of themomentum-space operators

c
L

c k
1

e , with , . 12k
j

kj
j,

i
,å p p= Î -s s

-ˆ ˆ [ ) ( )

Then the requirements (6)–(9) lead to themore familiar ones [6]:

H H T H k T H k 130
1

0 0 0*  =  = -
-ˆ ˆ ˆ ˆ ( ) ( ) ( )†

H H C H k C H k 140
1

0 0 0*  =  = - --ˆ ˆ ˆ ˆ ( ) ( ) ( )†

H H S H k S H k 150
1

0 0 0  =  = --ˆ ˆ ˆ ˆ ( ) ( ) ( )†

H H I H k I H k . 160
1

0 0 0  =  = --ˆ ˆ ˆ ˆ ( ) ( ) ( )†

According to the AZc, in 1Donly five symmetry classes (BDI, AIII, D, CII, andDIII) can support a topological
phase (assuming no spatial symmetry). In the next sectionwewill consider interacting topologicalmodels whose
single-particleHamiltonians belong to the symmetry classes BDI [51] andAIII [52, 54] andwhich can be realized
in two-leg ladders with nearest-neighbor couplings, by properly tuning the coefficients tσ and J in the
Hamiltonian term Hnn

ˆ of equation (3), according to the prescriptions of table 1.On the other hand, CII andDIII
models require ladders with a higher number of legs, or two-leg ladders in the presence of next-nearest-neighbor
hopping terms, andwill not be considered here.

At integer filling, ν=N/L=1 (whereN is the number of fermions), models in [51, 52, 54] can exhibit a
topological phase characterized by the presence of exponentially localized zero-energy edgemodes in the non-
interacting spectrum, a quantized Zak phase, and a doubly degenerate entanglement spectrum [44, 45].
Conversely, in the present context we are interested in investigating the topological properties when the particle
filling is fractional, i.e. ν=1/q, with q>1 integer.Wewill also consider ladders supporting a crystalline
topological phase protected by the spatial inversion symmetry, which cannot be understood in terms of the
standardAZc (section 4).

3. Topological phases emerging due to interactions at fractionalfillings inBDI andAIII
band structures

Firstly we focus on two-leg ladderwhose non-interactingHamiltonian is in the BDI symmetry class. In this case,
the various parameters arefixed (see table 1), and the resultingHamiltonian of equation (5) reads:

H t c c iJ c c c c Hh.c. . 17
j

j j j j
j

j j
,

1, , 1, ,
,

, , intå ås s= + + + D +
s

s s s s
s

s s+ + -ˆ ( ˆ ˆ ˆ ˆ ) ˆ ˆ ˆ ( )† † †

Using equations (6)–(8), and thematrices defined in table 1, it is easy to observe that H H
1  =

-ˆ ˆ ˆ ˆ , while
H H

1  =-ˆ ˆ ˆ ˆ and H H
1  =-ˆ ˆ ˆ ˆ up to constant terms,UL V4 p p+ å , and trivial chemical potential terms
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U V n2 p p j j- - å å( ) ˆ . In the followingwewill focus on fractional fillings ν=1/q, and consider repulsive
interactions. Our results for the BDI symmetry class are immediately applicable to themodel in the AIII class,
which can be obtained from to latter via the unitary transformation also known asKawamoto–Smit rotation in

the context of Lattice Field Theories [74] c cej j j
j

j,
1 i

,2  =s s
- pˆ ˆ ˆ ˆ (see again table 1).

3.1. Effective lowest-bandHamiltonian
The single-particle contributions of theHamiltonian(17), assuming periodic boundary conditions (PBC), can
be diagonalized as

H E k d d , 18
k

k k0 , ,åå h=
h

h hˆ ( ) ˆ ˆ ( )
†

with η=±1, kä [−π,π) and

E k t k J k2 cos 4 sin 192 2 2= + D +( ) ( ) ( )

bymeans of the unitary transformation R exp i 2k k yq s= [ ] such that R H k R E kk k z0 s=( ) ( )† with

J
k

E k

t k

E k
sin 2

sin
, cos

2 cos
; 20k k


q q= =
+ D

( ) ( )
( )

we stress here thatRk is defined up to an arbitrary complex phase ei kj . Consequently, the operators dk, 1+
ˆ and

dk, 1-
ˆ can be related to the original ones as

d c c

d c c

e cos
2

sin
2

e sin
2

cos
2

.

21
k

k
k

k
k

k
k

k
k

k

, 1
i

, ,

, 1
i

, ,

k

k

q q

q q

= +

= - +

j

j

-  

+  

⎜ ⎟

⎜ ⎟

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ˆ ˆ ˆ

ˆ ˆ ˆ
( )

In order to probe the existence of a hierarchy of fully gapped phases at fractionalfillings, we conveniently
introduce the real-space fermionic operators d L dej k

kj
k,

1 i
,= åh h

-ˆ ˆ built up from themomentum-space

operators dk,h
ˆ defined in equation (21). Thenwe remap the original fermionic operators cj,sˆ onto the newones

dj,h
ˆ as

c F j d F j d

c F j d F j d
, 22

j c s

j s c

, , 1 , 1

, , 1 , 1

å

å

= - - -

= - + -

 - +

 - +

⎧
⎨⎪

⎩⎪
ℓ ℓ

ℓ ℓ

ˆ [ ( ) ˆ ( ) ˆ ]

ˆ [ ( ) ˆ ( ) ˆ ]
( )ℓ

ℓ ℓ

ℓ
ℓ ℓ

where

F j
L

F j
L

1
e e sin

2

1
e e cos

2

23

s
k

k j k

c
k

k j k

i i

i i

k

k

å

å

q

q

- =

- =

j

j

- -

- -

⎧
⎨
⎪⎪

⎩
⎪⎪

ℓ

ℓ

( )

( )
( )

ℓ

ℓ

( )

( )

are theWannier functions of the tight-bindingmodel; in the following, we assumejk=0. For this choice ofjk,
theWannier functions Fc( j−ℓ) and Fs( j−ℓ) can be calculated exactly whenΔò=0, as shown in appendix A.
WhenΔò>0, the functions Fc( j−ℓ) and Fs( j−ℓ) can be calculated numerically. However, we have verified
that the functions Fc( j−ℓ) and Fs( j−ℓ) exhibit a weak dependence onΔò and their expressions calculated for
Δò=0 are a good approximation as long as tD áá .

To simplify the problem,we project on the lowest band by assuming that the interaction termsU andVp are
much smaller than the band gap, i.e.≈4Jwhen J=t andΔò=0. Sincewe are dealingwith lowfillings anyway,
it is reasonable to suppose that only the lower band is significantly populated (fromnowon, wewill thus omit the
index−1). In order to check the self-consistency of our predictions, numerical simulationswill nonetheless be
performedwith the full description of the system.Under these assumptions, H0

ˆ becomes

H j d d h.c. 24
j

j0
,

å= - +ℓˆ [ ( ) ˆ ˆ ] ( )
ℓ

ℓ
†

with j E k e
L k

k j1 i - = å -ℓ( ) ( ) ℓ( ). Of course, theHamiltonian(24) is highly non-local, since all sites are
coupled together by long-range termsHowever, as shown infigure 2, the coefficient j -ℓ( ) decays
exponentially withℓ−j and the lower band can be approximated by truncating to nearest-neighbor terms:

5
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H d d h.c. , 25
j

j j0 1 1 å» - ++
ˆ ( ˆ ˆ ) ( )

†

wherewe have defined 11 º - ( ) and neglected an inessential chemical potential. For J=t, it turns out that
21  = D .We stress here that, a truncation up to nearest-neighbor terms only breaks the symmetries of the

originalmodel and the newHamiltonian H0
ˆ is not topological. Nevertheless this approach is useful to show the

appearance of a hierarchy of fully gapped phases. Their topological properties will be discussed in the following
(see below).

Let us focus on the interaction terms Bymeans of themapping(22) and considering the dominant
contributions, it is possible to approximate c F d F d1 1j c j c j, 1 1*» + + -ˆ ( ) ˆ ( ) ˆ and c F d0j s j, »ˆ ( ) ˆ . Then, theHubbard
interaction termUn nj j, , ˆ ˆ ismapped onto a nearest-neighbor density–density interaction termof the form

n nj j 1+ˆ ˆ with n d dj j j=ˆ ˆ ˆ†
, plus additional contributions (see below). Similarly, the density–density termsV n np j j p+ˆ ˆ

in the originalmodel will bemapped onto density–density terms of the form n nj j p 1+ +ˆ ˆ . These density–density
interaction terms lead to a hierarchy of gapped phases supporting density-wave states at rational filling fractions
—thewell-knownDevil’s staircase [38, 39, 69], whichwe nowdiscuss in the context of ourmodel. In the next
paragraph 3.2we address in detail thefilling ν=1/2, thenwe generalize our results to lowerfillings andwe
explicitly consider thefilling ν=1/3 in section 3.3.

3.2. Topological density-wave atν=1/2: analytical and numerical characterization
In this paragraphwe focus on a fractional topological phase at filling ν=1/2whose appearance can be
discussed in a transparent way, both analytically (bymeans of amean-field approach) and numerically (using
exact diagonalization andDMRG). Firstly we estimate the critical interactionwhich stabilizes a gapped phase. To
this aimwe rewrite the interaction term n nj j, , ˆ ˆ using themapping(22) approximated at thefirst non-trivial

order, i.e. c F d F d1 1j c j c j, 1 1*» + + -ˆ ( ) ˆ ( ) ˆ and c F d0j s j, »ˆ ( ) ˆ and projecting on the lowest band.Omitting terms
which vanish because of the Pauli principle, we obtain

H U n n n d d
1

2
h.c. , 26U

j
j j j j j1 1 1å» - ++ + -

⎡
⎣⎢

⎤
⎦⎥ˆ ˜ ˆ ˆ ( ˆ ˆ ˆ ) ( )

†

withU U F F2 0 1c s
2 2=˜ ∣ ( )∣ ∣ ( )∣ .Within amean-field approach, the correlated hopping term n d dj j j1 1+ -ˆ ˆ ˆ†

can be
neglected (see appendix C for details), and the effectiveHamiltonian given by equation (25) plus the density–
density interaction termof equation (26) is equivalent to a spin-1/2XXZmodel, which can be exactly solved
[71]. The critical interactionUc stabilizing an antiferromagnetic gapped phase is

U
F F2 0 1

, 27
s

c
c

2 2


~

D
∣ ( )∣ ∣ ( )∣

( )

where the functions Fc and Fswere defined in equation (23); in the case offilling ν=1/2, a gapped phase can be
stabilized by theHubbard interaction only, for this reason, in the following, longer range interaction termsVp

are set to zero.
To substantiate our analytic predictions, assuming PBC conditions, we have numerically computed by

means of a Lanczos-based exact diagonalization approach the charge gap of the interactingHamiltonian(17)

Figure 2.The effective coupling j -ℓ( )with J=t for different values ofΔò; for j=ℓwe get a constant contributionwhich can be
neglected.
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E N E N E N
1

2
1 1 , 28charge 1 1 1d = - + + -( ) [ ( ) ( )] ( )

where Eα(N) is the energy of theαth state withN particles (E1 being the ground-state energy), and herewe set
N=L/2. Figure 3 displays δcharge as a function of the interaction parameterU/t, for different values of the
imbalance termΔò.We observe a good agreement of the analytic prediction(27) for the critical interactionUc,
with the point at which the charge gap closes.

Likewise, the charge neutral gap

E N E N 29spin, 1d = -a a ( ) ( ) ( )

can be obtained following a similar procedure. In particular, since the ground state always exhibits a two-fold
degeneracy (see below), we considerα=3. The behavior of the spin gap δspin,3 as a function of the interaction
parameterU/t is qualitatively analogous to the one of the charge gap (data not shown).

3.2.1. Ground-state degeneracy
Before addressing the topological properties of the fractional phase, it is worth investigating the spectrum
{Eα(N)}withα=1, 2, ...andN=L/2, for both PBC and open boundary conditions (OBC). Our numerics
evidences how the ground-state degeneracy does indeed depend on the choice of the boundary conditions: while
for PBC it is doubly degenerate, see figure 4(a), forOBC it is non-degenerate [45, 72, 73].

To explain the reason of this anomalous degeneracy, we perform the unitary transformation

c cej j j
j

j,
1 i

,2  =s s
- pˆ ˆ ˆ ˆ and introduce the ‘cage operators’

Figure 3.Charge gap δcharge atfilling ν=1/2 as a function ofU/t, for different values ofΔò, and assuming PBC. The gap δcharge is
obtained by performing a finite-size scaling [75] of numerical exact diagonalization data for L=4,K, 14, with
δcharge(L)=δcharge+b/L+c/L2. Inset:magnification of the region inside the box; arrows indicate the critical interactionUc, see
equation (27).

Figure 4. (a)Ground-state energies E1 andE2 as a function of the twisting angle nj . The inset displays the same plot, for thefirst three
levels, on an enlarged energy scale energies. As expected, the gap between E1 andE2 and thefirst excited stateE3 is preservedwhen

0nj ¹ . (b)The difference δE ≡ E2−E1 scales exponentially with the chain length L (herejn=π). (c)TheWilczek–Zee phase as a
function of the symmetry-breakingHamiltonian termM of equation (34). As expected, forM=0, theWilczek–Zee phase is
quantized to one. Data have been obtained through exact diagonalization, withU=0.4t,Δò=10−2t, andNj=100. Panel (a) is for
L=6, while panels (c)–(d) are for L=8.
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c c c c
1

2
i

1

2
i , 30j j j j j, , , 1, 1,g = + +   +  + ˆ ( ˆ ˆ ) (ˆ ˆ ) ( )† † † † †

which span four lattice sites (of shape 2×2). Then, in the simple case t J= ,Δò=0, theHamiltonian(17) can
be rewritten as

H t H2 . 31
j

j j j j U, , , ,å g g g g= - - +- - + +ˆ ( ˆ ˆ ˆ ˆ ) ˆ ( )† †

If we now consider the regimewhereU= t and get rid of the upper band, we realize that HU
ˆ corresponds to a

nearest-neighbor interaction termbetween the cages, i.e. n nj j, 1,- + -ˆ ˆ , with nj j j, , ,g g=- - -ˆ ˆ ˆ† (see also [52]). Then,
since the ground state atfilling ν=1/2 can be schematically represented via the occupation of local cages, we
observe that PBC can effectively fit two of those states (where the cages start at odd or even sites, respectively).
Conversely, OBC can only accommodate a single one (where the cages start at odd sites). This interpretation also
explains the robustness of the ground-state degeneracy when the boundary conditions are twisted in a closed
chain, as the rigid cage structure is not sensitive to such a twist—see next subsection. This behavior is akin to the
robustness of ground-state degeneracy in true topologically ordered states (see also [48]).

3.2.2.Wilczek–Zee phase
As discussed in the previous paragraph, when PBCor twisted boundary conditions are assumed the ground state
atfilling ν=1/2 is gapped and two-fold degenerate. For this reason the correct topological invariant which has
to be used to reveal its topological properties is theWilczek–Zee phase [40–42]

i
d Tr , 32

0

2
 òp

j j j= áY ¶ Y ñ
p

a j b[ ( )∣ ∣ ( ) ] ( )

where jY ña{∣ ( ) }are the different degeneratemany-body ground states labeled by the indexα=1,K,D, here
withD=2, whilej is the twisting angle;α andβ are the indices over which the trace is performed. Twisted
boundary conditions along the physical dimension can be implemented by taking t t Lexp ij ( ) and
J J Lexp ij ( ). The quantity in equation (32) can be numerically computed through the procedure of
[43]: onefirst discretizes the anglejä [0, 2π] inNj steps of δj=2π/Nj, each corresponding to the valuejn

(n=0,K,N−1). Then, after solving the Schrödinger equation H En n n n, ,j jY ñ = Y ña a aˆ ( )∣ ( )∣ at the nth step,
the obtainedmany-body ground states n,Y ña∣ can be used to build up the Berry connection

A D DIm log det with . 33n n n n n
, ,

, 1,= = áY Y ña b a b
a b+[ ] ∣ ( )

TheWZphase is defined by An
N

n0
1 = å =

- .
First of all, in figure 4(a)weplot the ground-state energies E n1 j( ) andE2(jn) as a function of the discretized

twisting anglejn and observe that the exact degeneracy atjn=0 is only apparently removedwhen 0nj ¹ .
Indeed, as shown infigure 4(b), the difference δE(jn=π)=E2(π)−E1(π) scales exponentially with the
system size L. As expected, the inset offigure 4(a) highlights that the neutral gap(29) does not closewhen twisted
boundary conditions are used, as it is essentially insensitive to boundary conditions. Figure 4(c)demonstrates
that, in the presence of a chiral symmetry-breakingHamiltonian term

H M c ci h.c. , 34
j

j jSB , ,å= - ˆ (ˆ ˆ ) ( )†

i.e. H HSB
1

SB  ¹-ˆ ˆ ˆ ˆ , theWZphase is not quantized anymore, thus signaling that the fractional gapped phase is
protected by the same symmetry of the integer case. On the contrary, for M 0= , theWZphase is strictly
quantized to one independently of the value ofΔò (as long as the interaction termU is sufficiently strong to
stabilize a gapped phase).

3.2.3. Entanglement spectrum
To substantiate the topological nature of the gapped phase discussed so far, we have investigated the
entanglement spectrumof theHamiltonian(17) bymeans ofDMRG simulations. Such quantity corresponds to
the set of the eigenvalues {λα} of the reduced densitymatrix Trr = YñáYˆ [∣ ∣]ℓ ℓ obtained from the system’s
ground state Yñ∣ . Herewe consider a subsystem containingℓ<L adjacent sites, and call ℓ its complement; we
note that the degeneracy of the entanglement spectrum is not alteredwhen other values ofℓ are considered. It is
well known [44, 45] that there exists a connection between the topological versustrivial nature of Yñ∣ and the
degeneracy of the eigenvalues of r̂ℓ. A topological phase corresponds to a degenerate entanglement spectrum:
this is indeedwhat we observe infigure 5, wherewe plot thefirst twelve eigenvalues of the entanglement
spectrum for a chain of L=100 sites,U=t andΔò=2×10−2t. The upper inset is amagnification of the two
largest eigenvalues, whose degeneracy is removed in the presence of the symmetry breakingHamiltonian
term(34)—see the lower inset.
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3.2.4. Unconventional edge physics at 1 2n =
Topological phases are typically characterized by the presence of zero-energymodes, whenOBC along the
physical dimension are assumed. A necessary but non sufficient condition for their presence is a vanishing (resp.
non-vanishing) single-particle charge gap atfilling ν=1/2withOBC (resp. PBC). Here, despite the topological
nature of themodel, zero-energymodes do not appear, since the single-particle charge gap remains finite even
withOBC, and exhibits a behavior qualitatively analogous to the PBC case—see figure 3.

Although zero-energymodes are absent, the topological nature of themodelmanifests itself in an
unconventional edge physics which can be revealed through the quantity

n L n L L n L2 1 2 1 2 2 , 35j j jd = á + + ñ - á ñ∣ ˆ ∣ ∣ ˆ ∣ ( )

measuring the difference between the expectation value of the density operator onto the state L 2ñ∣
corresponding tofilling ν=1/2, and its expectation value onto the state L 2 1+ ñ∣ corresponding tofilling
ν=1/2+1/L.

We start investigating the case where the spin imbalanceΔò vanishes. Infigure 6we plot the two density
profiles both in the non-interacting case where the phase is gapless, and in the interacting case, for a sufficiently
large interaction termUwhich stabilizes the topological gap. In the non-interacting case (panel (a)), where the
quantity δnj describes thewave-function of the added particle, no edge physics is observed, since δnj is
delocalized over the entire chain.On the contrary, in the interacting case (panel (b)), δnj displays two sharp peaks
close to the edges of the system.When a small imbalance termΔò is considered, the behavior of δnj changes
drastically. As shown infigure 7, we still observe some edge physics, but the quantity δnj is now spread over a
number of sites that increases with growingΔò.

We now give an intuitive picture of this spreading effect. To this aimwe consider the inset offigure 7(a)
where a qualitative picture of the spectrum {E1,E2, ...} of the interactingHamiltonian is shown at ν=1/2 and
at ν=1/2+1/L, withΔò=0 andOBC. In thefirst case L 2ñ∣ , there is a finite gap between the unique ground
state and thefirst excited state.When the local imbalance termΔò is added, the ground state is unmodified as
long asΔò is small with respect to the gap. In the second case L 2 1+ ñ∣ , the ground state is not protected by a

Figure 5.Entanglement spectrum for a chain of L=100 sites,U=t andΔò=2×10−2t; in the present caseℓ=L/2.Upper inset:
magnification of the two largest eigenvalues. Lower inset: the two largest eigenvalues in the presence of the chiral symmetry-breaking
term(34), withM=0.2t.
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finite energy difference. For this reason, in the presence of the imbalance termΔò, it is expected to be a quantum
superposition of the ground state L 2 1+ ñ∣ atΔò=0 plus pieces coming from the excited states which carry
bulk contributions, and originate the spreading of the quantity δnj shown infigure 7.However, the spreading of
δnj in the bulk becomes negligible in thermodynamic limit, as shown infigure 7(b) for different sizes of the
chain.

3.3.Devil’s staircase frombosonization
So farwe have considered the fractional topological phase atfilling ν=1/2. The appearance of a hierarchy of
topological gapped phases at lowerfillings can be explained in terms of a bosonization approach [69]. To this
aim,we consider the continuum limit of the fermionic operators dj

ˆ , definined by d d x aj ºˆ ˆ ( ) and

d d x a aj 1 º ++
ˆ ˆ ( ) , with a being a generic cut-off length (in the following, a= 1). This operator can be
expressed in terms of the bosonicfields xf̂ ( ) and xq̂ ( ) satisfying x x x x, ixf q pd¶ ¢ = - ¢¢[ ˆ ( ) ˆ ( )] ( ) as

d x A e e , 36
p

p
p k x x xi 2 1 iFå= f q- + -ˆ ( ) ( )( )[ ˆ ( )] ˆ ( )

with kF=πN/L being the Fermimomentum.Moreover, the density operator x d x d xr =ˆ ( ) ˆ ( ) ˆ ( )†
is given by

x
x

B e ; 37x

p
p

p k x x

0

2i Får
f
p

= -
¶

+ f

¹

-ˆ ( )
ˆ ( ) ( )[ ˆ ( )]

hereAp andBp are non-universal coefficients which depend on the cut-off length of the theory.Within
bosonization, theHamiltonian(25) plus the density–density interaction terms can be recast into a quadratic
form

Figure 6.Expectation value of the density operator njˆ at ν=1/2 (blue) and ν=1/2+1/L (red), forU=0 (panel (a), exact
diagonalization) and forU=t (panel (b), DMRG). The inset shows the quantity δnj. Here J=0.99t,Δò=0, and L=100.

Figure 7.The quantity δnj for different values of the imbalanceΔò andfixed L=100 (panel (a)), and for different sizes L andfixed
Δò=10−4t (panel (b)). Here J=0.99t,U=t. Data have been obtained bymeans ofDMRG.
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H
u

x
K

K
2

d
1

38x xbos
2 2òp

f q= ¶ + ¶
⎡
⎣⎢

⎤
⎦⎥ˆ ( ˆ ) ( ˆ) ( )

describing a critical gapless theory, plus a sumof sine-Gordon terms

H M x p x k xd cos 2 , 39
p

p Fsg
2

òå f= +
>

ˆ [ ( ˆ ( ) )] ( )

where u is an effective Fermi velocity,K is related to the strength of the interaction terms, while the coefficients
Mp represent the amplitudes of the sine-Gordon termsAn exactmapping of the quantities u,K, andMp onto the
microscopic parameters is beyond the scope of the present discussion and is generally challenging, due to the
complex non-local character of the effective interactions. Furthermore, as shown in appendix B, at filling ν=1/
2, all interaction termswhich cannot be recast into a density–density form andwhich have been so far neglected,
lead to a renormalization of the coefficients u,K andMp only.

Sine-Gordon terms(39) are responsible for the appearance of the gapped phases at fractionalfillings.
Indeed, when the space dependent 2pkFx term in the co-sinusoidal functions vanishes, i.e. 2p kF∝ 2π, they
become relevant forK< 2/p2 and open a gap.We stress that, within the present bosonization approach, we
cannot say anything about the topological properties of these phases. In the case offilling ν=N/L=1/2, i.e.
kF=π/2, themost relevant sine-Gordon term is the onewith p=2. All other phases at lowerfilling fractions
ν=1/q, with q>2, can be reached by considering sufficiently long-range density–density interaction terms, as
in the conventional Devil’s staircase scenario [38, 69, 70].We now explicitly consider theHamiltonian(17) and
discuss the fractional filling case ν=1/3 forwhich the topological phase is stabilized by a nearest-neighbor
interaction term in equation (4). Infigure 8, we plot thefirst ten eigenvalues of the entanglement spectrum for a
chain of L=60 sites,U=t,V1=t, andΔò=8×10−2t. As expected, the two highest eigenvalues are
degenerate due to the topological nature of the ground state. Similarly to the case studied previously, wefinally
observe that their degeneracy is removed in the presence of the symmetry breakingHamiltonian term(34), as
shown in the lower inset, signaling that the fractional topological phase is protected by the same symmetry that
protects the non-interacting topological phase at integerfilling.

4. Inversion symmetric topological phases at fractional fillings

It is a natural question to inquire whether themechanism for the stabilization of interaction-induced topological
phases at fractionalfilling fraction is interwoundwith spatial symmetries (which play a key role in the
establishment of conventional Devil’s staircase structures). In this section, we discuss an interacting, crystalline
topological insulator, where a fractional topological phase appears when considering interaction effects on the
top of partly filled topological bands.

In particular, we consider a two-leg ladderwhich supports, in the non-interacting regime, a crystalline
topological phase atfilling ν=1. Following the prescriptions given infigure 1(b), the resultingHamiltonian
reads [35]:

Figure 8.Entanglement spectrum for a chain of L=60 sites,U=0,V1=t andΔò=8×10−2t atfilling ν=1/3.Upper inset:
magnification of the two largest eigenvalues. Lower inset: the two largest eigenvalues in the presence of a chiral symmetry-breaking
term(34), withM=0.2t.
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H t c c J c c c ci h.c. , 40
j

j j j j
j

j j0
,

1, , 1, ,
,

, ,å ås d s= + + + + D
s

s s s s
s

s s+ + -ˆ [( ) ˆ ˆ ˆ ˆ ] ˆ ˆ ( )† † †

with 0d ¹ . ThisHamiltonian, which is not endowedwith a particle-hole symmetry nor a chiral symmetry, is
characterized by the presence of edge states, by a quantized Zak phase, and by a doubly degenerate entanglement
spectrum. Indeed the emerging topologcal phase atfilling one is protected by a spatial inversion symmetry [35]
̂ which acts onto the fermionic operators cj,sˆ as c I cj j,

1
, ,  =s s s s

-
¢ - ¢

ˆ ˆ ˆ ˆ such that H H
1  =-ˆ ˆ ˆ ˆ with I=σz.

In analogywith our previous discussion, we now show that an inversion symmetry protected topological
phase atfilling ν=1/2 is stabilized by an on-site repulsive interaction term HU

ˆ as in equation (4). In order to
probe the emerging topological properties, we calculate the ground-stateWZphase(32) following the same
procedure discussed for the BDI andAIII symmetry classes.

Infigure 9(a)weplot the energies E1(jn) andE2(jn) of the ground states as a function of the discretized
twisting anglejn for δ=0.1t,Δò=10−2t, andU=t. The inset shows that the first excited state E3(jn) is
separated from the ground state by a finite gap. Similarly to the previously studied cases, the exact double
degeneracy atjn=0 ofE1 andE2 is only apparently removedwhen 0nj ¹ . Indeed, the difference
δE(jn=π)=E2(π)−E1(π) scales exponentially with the system size (not shown).

Thenwe introduce anHamiltonian term

H M c c h.c. , 41
j

j jSB , ,å= + ˆ (ˆ ˆ ) ( )†

which explicitly breaks the inversion symmetry, i.e. H HSB
1

SB  ¹-ˆ ˆ ˆ ˆ , and consequently theWZphase is not
quantized anymore.

Infigure 9(b)we plot theWZphase as a function of the inversion symmetry breaking termM. As expected,
forM=0 it is quantized and equal to one, while for M 0¹ it is not quantized. This signals that the fractional
gapped phase is protected by same symmetry of the integer case, in complete analogywithwhat observed for the
BDI/AIII cases.

5. Conclusions

Wehave considered a 1D ladderwith two internal spin states supporting a topological phase at integerfilling and
we have shown that, when the particlefilling is reduced to a fractional value, repulsive interactions can stabilize a
hierarchy of fully gapped density-wave phases with topological features.

In particular we have focused on a specific example in the BDI class (unitarily equivalent to amodel in the
AIII symmetry class) of theAZc and on a crystalline topological insulator, i.e. a topologicalmodel protected by
the spatial inversion symmetry. Bymeans of a bosonization approachwe have discussed the appearance of a
gapped phase atfilllings ν=1/q and, using exact numericalmethods (DMRG simulations and exact
diagonalization), we have verified our analytical predictions andwe have also characterized the topological
properties of the gapped phases atfillings ν=1/2 and ν=1/3 by studying the topological quantumnumber
(Wilczek–Zee phase) and the degeneracy of the entanglement spectrum.Considering the effects of
perturbations, we have discussed how these fractional topological phases are protected by the same symmetry
that protects the non-interacting topological phase at integer filling.

Figure 9. Same plot as in figures 4(a) and (d), but for theHamiltonian of equation (40) and its symmetry-breaking termM of
equation (41). Notice that, analogously to the case studied before, the gap between E1 andE2 and thefirst excited stateE3 is preserved
when 0nj ¹ .Moreover, under the perturbationM, theWZphase is not quantized to one anymore. Data have been obtained through
exact diagonalization, with L=8, δ=0.1t,Δò=10−2t,U=t,Nj=100.

12

New J. Phys. 21 (2019) 043048 SBarbarino et al



Most importantly, we have shown that these topological density waves do not follow the bulk-edge
correspondence, in the sense that they exhibitmodes at finite energy localized close to the edges of the system.
Their presence has been diagnosed by studying the behavior of the density profile, when an extra particle is put in
the systemwith respect to the filling ν=1/2.Our results are immediately testable in cold atom experiments
described by the setup in [31, 32]: while the single particleHamiltonian has already been realized, a key
requirement is to reach density regimeswhere an incompressible phase is stabilized in the center of the
harmonic trap. Given that fractional phases appear already for quarter-filled band, we expect signal-to-noise not
to constitute a problem. Since the incompressible phase in this regime has a gap of orderU, this requires cooling
in the tens of nanokelvin regime, which is within current experimental reach in these systems [25].

We leave as an intriguing perspective the study of the appearance of these fractional topological phases in
topologicalmodels belonging to the symmetry classesD, CII, andDIII of theAZc.
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AppendixA. Analytical calculation of F jc - ℓ( )

In this appendixwe calculate analytically the functions
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Appendix B. Bosonization atfilling 1 2n =

Wediscuss how the effectiveHamiltonian

H H H d d U n n n d d
2

h.c.
1

2
h.c. , B.1U

j
j j

j
j j j j j0 1 , 1 1 1

 å å» + = -
D

+ + - ++ + + -
⎡
⎣⎢

⎤
⎦⎥ˆ ˆ ˆ ( ˆ ˆ ) ˜ ˆ ˆ ( ˆ ˆ ˆ ) ( )

† †

can be attacked bymeans of a bosonization approach.We introduce the continuum limit operators d xˆ ( ) and
d xˆ ( )†

such that d d x aj ºˆ ˆ ( ) and d d x a aj 1 º ++
ˆ ˆ ( ) , then theHamiltonian H0

ˆ becomes

H x d x a d x
2

d h.c. ; B.20

ò= -

D
+ +ˆ [ ˆ ( ) ˆ ( ) ] ( )†

while the interaction term H H HU U U
1 2

º +ˆ ˆ ˆ( ) ( )
becomes

H Ua x n x n x ad B.3U
1

ò= +ˆ ˜ ˆ ( ) ˆ ( ) ( )( )
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H Ua x n x d x a d x a
1

2
d h.c. B.4U

2

ò= - + - +ˆ ˜ [ ˆ ( ) ˆ ( ) ˆ ( ) ] ( )( ) †

hereU UF F2 0 1c s
2 2=˜ ( )∣ ( )∣ , while a is the cut-off length of the theory.

To pursue a bosonization approachwe introduce the linearized (around the Fermimomentum kF)
fermionic operators d xR̂ ( ) and d xL̂ ( ) such that the original fermionic operator d xˆ ( ) can be expanded as
d x d x d xe ek x

R
k x

L
i iF F» + -ˆ ( ) ˆ ( ) ˆ ( ) and rewritten as d x a2 eR

x x1 2 ip= f q- - +ˆ ( ) ( ) [ ˆ ( ) ˆ ( )] and

d x a2 eL
x x1 2 ip= f q- +ˆ ( ) ( ) [ ˆ ( ) ˆ ( )] in terms of the bosonicfields satisfying the usual commutation relation

x x x x, i ;xf q pd¶ ¢ = - ¢[ ˆ ( ) ˆ ( )] ( ) the density operator n x d x d x=ˆ ( ) ˆ ( ) ˆ ( )†
is

n x x d x d x
1

e h.c.; B.5x
k x

R L
2i F

p
f= - ¶ + +-ˆ ( ) ( ) ˆ ( ) ˆ ( ) ( )

†

moreover x d x d x d x d xx R R L Lf p¶ = - +ˆ ( ) [ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )]
† †

, x d x d x d x d xx R R L Lq p¶ = -ˆ ( ) [ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )]
† †

.

Within the bosonization formalism, the non-interactingHamiltonian H0
ˆ becomes

H
v

x
2

d B.6F
x x0

2 2òp
f q= ¶ + ¶ˆ [( ˆ ) ( ˆ) ] ( )

where v k asinF
a

F2

= D .We recall here that ν=N/L=1/2 and kF=π/(2a); then e 1k a2i F = - . The

bosonization of theHamiltonian term HU
1ˆ ( )
is quite standard, see e.g. [69], and leads to

H Ua
a

x2
2 2

2
cos 4 . B.7U x

1

2
2

2p
f

p
f= ¶ -

⎡
⎣⎢

⎤
⎦⎥ˆ ˜ ( ˆ )

( )
ˆ ( ) ( )( )

The bosonization procedure of HU
2ˆ ( )
is a bitmore subtle.We preliminary consider the quantity

d x a d x a h.c.+ - +ˆ ( ) ˆ ( )†
that, up to a proper shift, can be rewritten as d x a d x2 h.c.+ +ˆ ( ) ˆ ( )†

Thenwe
expand it in terms of the right and left operators taking into account that d x a d x a d x2 2r r x r+ » + ¶ˆ ( ) ˆ ( ) ˆ ( ),
with r R L,= . At the end of this procedure, we get four contributions hA,1

ˆ , hA,2
ˆ , hA,3

ˆ , and hB
ˆ with

h d x d x d x d x2 2 B.8A R R L L,1 = - -ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )
† †

h ad x d x ad x d x2 2 B.9A R x R L x L,2 = - ¶ - ¶ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )
† †

h a d x d x a d x d x2 2 B.10A x R R x L L,3 = - ¶ - ¶ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )
† †

h d x d x a d x a d x

d x d x a d x a d x

e 2 2

e 2 2 . B.11

B
k x

R L R L

k x
L R L R

2i

2i

F

F

=- + + +

- + + +

-ˆ [ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )]

[ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )] ( )

† †

† †

Now, recalling the identity(B.5), it is trivial to see that

x n x a h xd d
2

B.12A x,1 2
2ò ò p

f+ » - ¶
⎡
⎣⎢

⎤
⎦⎥( ) ˆ ( ) ( )

with x a x a xf f f+ » + ¶ˆ ( ) ˆ ( ) ˆ , we have approximated x a x ax x x xf f f f¶ + » ¶ + ¶ » ¶ˆ ( ) [ ˆ ( ) ˆ ] ˆ and ignored
terms of the form x x

2f f¶ ¶ˆ ˆ and e k x2i F fast oscillating terms Integrating by parts, we also observe that

x n x a h x n x a h Cd d B.13A A,3 ,2ò ò+ = - + +( ) ˆ ( ( ) ˆ ˆ ) ( )

with C x x
2f fµ ¶ ¶ˆ ˆ ˆ . Then the first integral in equation (B.13) cancels with x n x a hd A,2ò +( ) ˆ , while the Ĉ term

can be neglected.
Finally, we consider x n x a hd Bò +( ) ˆ . Neglecting fast oscillating terms e k x2i F , we get

x n x a h x h hd dB knon osc 4 Fò ò+ » +-( ) ˆ ( ˆ ˆ ). The term hnon osc-
ˆ consists of the following non-oscillating terms:

d x a d x a d x d x a
a

2
1

2
e B.14R L L R

a
2

2i x

p
+ + + = q¶ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

( )
( )

† † ˆ

d x a d x a d x a d x
a

2
1

2
e B.15R L L R

a
2

2i x

p
+ + + = q- ¶ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

( )
( )

† † ˆ

plus their hermitian conjugates; these terms can be rewritten as

a a
a a

1

2
e

1

2
1 2i 2 . B.16a

x x2
2i

2
2 2x

p p
q q»  ¶ - ¶q ¶

( ) ( )
[ ˆ ( ˆ) ] ( )ˆ

The contribution h k4 F
ˆ consists of the following terms

d x a d x a d x d x a
a

2
1

2
e B.17R L R L

x a a
2

i 4 4 2x x

p
+ + + = f f q+ ¶ + ¶ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

( )
( )

† † [ ˆ ( ) ˆ ˆ]
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d x a d x a d x a d x
a

2
1

2
e B.18R L R L

x a a
2

i 4 4 2x x

p
+ + + = f f q+ ¶ - ¶ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

( )
( )

† † [ ˆ ( ) ˆ ˆ]

and of their hermitian conjugates; when bosonized they give sine-Gordon terms of the form cos 4f̂. Collecting
the results, we have

H Ua
a

2 2 4

2
cos 4 . B.19x xU

2

2
2

2
2

2p
f

p
q

p
f= - - ¶ - ¶ +

⎡
⎣⎢

⎤
⎦⎥ˆ ˜ ( ˆ ) ( ˆ)

( )
ˆ ( )( )

Finally, the originalHamiltonian can be recast into the form

H
u

x
K

K
Ua

a
x

2
d

1 8

2
d cos 4 B.20x x

2 2
2ò òp

f q
p

f= ¶ + ¶ -
⎡
⎣⎢

⎤
⎦⎥ˆ ( ˆ ) ( ˆ)

˜
( )

ˆ ( )

providedwe identify u K v Ua12F p= + ˜ and uK v Ua4F p= + ˜ .

AppendixC.Meanfield approach

To calculate the critical interaction forwhich the systembecomes gapped atfilling ν=1/2we proceed in the
followingway.We use ameanfield approach to treat the correlated hopping term in the effectiveHamiltonian of
equation (26) andwe define

H
U

n d d
2

h.c. . C.1
j

j j jcorr 1 1å= - ++ -ˆ ˜
( ˆ ˆ ˆ ) ( )

†

Using the continuum limit operators d xˆ ( ) and d xˆ ( )†
, we have:

H x n x a d x a d xd 2 h.c. . C.2corr òµ + + +ˆ ˆ ( )[ ˆ ( ) ˆ ( ) ] ( )†

Then, we define n x n n xd= +ˆ ( ) ˆ ( ) and d x a d x x2 c dc+ = +ˆ ( ) ˆ ( ) ˆ ( )†
, with n x n x= á ñ( ) ˆ ( ) and

x d x a d x2c = á + ñ( ) ˆ ( ) ˆ ( )†
such that

H x n n x a xd h.c. . C.3corr ò d c dcµ + + + +ˆ [ ˆ ( )][ ˆ ( ) ] ( )

Neglecting quadratic fluctuation terms, trivial constants and an overall chemical potential, we obtain

H n x xd h.c. C.4corr ò dcµ +ˆ [ ˆ ( ) ] ( )

if we approximate d x a d x a d x2 2 x+ » + ¶ˆ ( ) ˆ ( ) ˆ ( ), it is trivial to see that H 0corr =ˆ (see also appendix B).
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