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We show how the use of standard perturbative RG in dimensional regularization
allows for a renormalization group based computation of both the spectrum and
a family of coefficients of the operator product expansion (OPE) for a given uni-
versality class. The task is greatly simplified by a straightforward generalization of
perturbation theory to a functional perturbative RG approach. We illustrate our pro-
cedure in the ε-expansion by obtaining the next-to-leading corrections for the spec-
trum and the leading corrections for the OPE coefficients of Ising and Lee-Yang

universality classes and then give several results for the whole family of renormal-
izable multicritical models φ2n. Whenever comparison is possible our RG results
explicitly match the ones recently derived in CFT frameworks.

1. INTRODUCTION

The standard perturbative renormalization group (RG) and the ε-expansion have
been, since the pioneering work of Wilson and Kogut [1], the main analytical tools for
the analysis of critical phenomena and, more generally, for the study of universality
classes with methods of quantum field theory (QFT). Under the pragmatic assumption
that scale invariance implies conformal invariance at criticality, which is confirmed by
almost all interesting examples, one could also argue that conformal field theory (CFT)
methods serve as an additional theoretical tool to describe critical models.

The RG flow of deformations of a scale invariant critical theory in a given operator
basis is generally encoded in a set of beta functions of the corresponding couplings. As
demonstrated by Cardy [2], the beta functions can be extracted adopting a microscopic
short distance cutoff as a regulator and in particular, expanding in the scaling opera-
tors, the linear part of the beta functions is controlled by the scaling dimensions of the
associated operators, while the quadratic part is fixed by the OPE coefficients of the op-
erators involved in the expansion. Whenever the underlying critical model is a CFT,
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this approach is the foundation of conformal perturbation theory and its development
strengthens further the conceptual relation between RG and conformal methods.

A CFT can be fully characterized by providing the so-called CFT data, which includes
the scaling dimensions ∆i of a set of operators known as primaries, and the structure
constants Cijk of their three point functions [3–5]. From the point of view of CFT, the
scaling dimensions determine some of the most important properties of the scaling
operators at criticality, and in fact can be related to the critical exponents θi of an un-
derlying second order phase transition, while the structure constants provide further
non-trivial information on the form of the correlators of the theory. The CFT data can be
used, in principle, to reconstruct the full model at, or close to, criticality. In dimension
greater than two (see, for example, [3–5]), however, since the symmetry group is finite
dimensional, the use of analytical CFT methods is often not simple and in fact most of
the recent success of CFT applications comes from the numerical approach known as
Conformal Bootstrap [6].

Up to now, RG methods have been almost always devoted to the computation of the
RG spectrum within a perturbative analysis in the ε-expansion below the upper critical
dimension of a given universality class. The determination of the RG spectrum prac-
tically overlaps with the computation of the critical exponents and thus of the scaling
dimensions ∆i of the underlying CFT. It is thus natural to wonder to which extent the
RG can help the determination of the remaining CFT data: the structure constants Cijk,
which have received far less attention in the RG literature.

The question which arises spontaneously is whether the approach of Cardy [2] can be
reversed and used to derive some of the OPE coefficients once the RG flow of a model
is known. In such a framework, since the beta functions are generally computed in a
specific RG scheme, one could expect that these RG based OPE coefficients might show
some degree of scheme dependence.

The main purpose of this paper is to present an RG based approach, in a dimen-
sionally regularized MS scheme, to the computation of the OPE coefficients C̃k

ij related
to the quadratic part of the Taylor expansion of the RG flow around a critical point.
We shall also pay attention to the transformation induced by general scheme changes
among mass independent schemes, and infer some structure constants Cijk when scale
invariance implies conformal invariance, strengthening in this way the link between RG
and CFT.

We also show how the upgrade from standard perturbative RG to functional pertur-
bative RG allows for a more straightforward access to these quantities. After illustrat-
ing how to do this for two representative cases, the Ising and (for the first time) the
Lee-Yang universality classes, respectively realized as unitary and non unitary theories,
we also proceed to the construction of the beta functions for all the unitary (even) mod-
els relying heavily on the approach developed by O’Dwyer and Osborn [7]. In general
the use of the functional approach simplifies the computation of beta functions, from
which, in the vicinity of a fixed point, one can try to extract some of the (universal)
CFT data ∆i and Ck

ij, from linear and quadratic perturbations around the critical point,
respectively. This paper is concerned with fleshing out the main features of the func-
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tional approach and applying them to the rich variety of critical theories which can be
described with a single scalar field φ. The functional approach appears to be very pow-
erful because the beta functionals are of a strikingly simple form, and yet at the same
time they describe the scaling behavior of classes of infinitely many composite opera-
tors.

In an effort to better understand the possible RG scheme dependence of the OPE
coefficients C̃k

ij we carefully review their transformation properties.1 In our approach
we can compute only the subset of OPE coefficients which are “massless” at the upper
critical dimension (the others being projected away by the dimensionally regularized
scheme) and therefore less sensitive to ε-corrections induced by a change in the RG
scheme. We show that our next-to-leading-order (NLO) computation gives these OPE
coefficients at order O(ε) and reproduces the structure constants previously obtained in
a CFT framework [9, 10]. This fact, even if plausible, is in general not obvious because
of the possible scheme dependence, and we find it to be supported by the functional ap-
proach, which indeed constrains to some extent the possible choices of coupling redefi-
nitions that otherwise would be completely arbitrary. All other “massive” C̃k

ij strongly
depend on the computational scheme and vanish in dimensional regularization. We ob-
serve that some OPE coefficients, including “massive” ones which would thus require
a separate investigation, can be or have already been obtained for several universality
classes in the ε-expansion in a CFT framework, with either the CFT/Schwinger-Dyson
Bootstrap [9, 11–15], the perturbative conformal block techniques [10] or Mellin space
methods [16]. Also large spin expansion techniques could be useful [17].

The first step in the functional perturbative RG approach is the computation of the
beta functional βV of the effective potential V(φ), which generates the beta functions of
the couplings of all the local operators φk. This can often be used to verify our results
by checking them against the renormalization of the relevant operators. Next comes
the inclusion of the beta functional βZ of a field dependent wavefunction Z(φ), which
generates the flow of the couplings corresponding to operators of the form φk(∂φ)2 and,
through its boundary conditions, allows also for the determination of the anomalous
dimension η. Higher-derivative operators can be added on top of the aforementioned
ones following a construction based on the derivative expansion, which treats operator
mixing in a systematic way, a topic that will be discussed here later on.

The content of the paper is as follows: In Sect. 2 we show in general how to use the
RG to compute both the spectrum of scaling dimensions and the coefficients of the OPE.
We discuss in general the possible scheme dependence by studying their behavior un-
der arbitrary changes of parametrization of the space of all couplings, and we illustrate
our methods by considering the RG flow of the Ising [18, 19] universality class as an
example.2 In Sect. 3 we promote the standard perturbative RG to functional perturba-
tive RG and illustrate the procedure by applying it to the Ising and Lee-Yang [20–26]

1 In the context of conformal perturbation theory this fact has already been discussed in [8].
2 We will pursue the convention of [9] and denote universality classes with the Typewriter font. This

is meant to avoid any confusion between the universality classes and the models realizing them at

criticality. For example, the Ising universality class and the Ising spin ±1 on a lattice are generally

distinguished, with the latter behaving according to the former only at the critical temperature and at

zero magnetic field. 3



universality classes. Using the beta functionals for the effective potentials in these two
examples, we give general formulas for both the spectrum and the structure constants
of the underlying CFTs, and use them to highlight the main novelties of the approach.
In Sect. 4 we describe how to systematically improve the functional approach, to include
arbitrary higher derivative operators, and how to generally deal with operator mixing.
In Sect. 5 we present an application of this framework to the study of the general mul-
ticritical φ2n universality class [7, 27]. Finally, in Sect. 6 we draw some conclusions and
discuss the most important prospects of this approach.

In appendix A we review the perturbative computations which are necessary to ob-
tain the beta functionals used in Sect. 5. In appendix B we show how to use the func-
tional approach to prove some simple scaling relations between critical exponents gen-
erally known as shadow relations. In appendix C we spell out some intriguing relation
between the perturbative and non-perturbative functional RG approaches [28–31].

2. SPECTRUM AND OPE COEFFICIENTS FROM RG ANALYSIS

The primary goal of the RG analysis is the study of universality classes and the deter-
mination of their quantitative properties, i.e. the CFT data (when the two are related).
This data is the union of the spectrum (the set of scaling dimensions ∆i of composite
operators) and the set of structure constants (in a CFT these are in one-to-one corre-
spondence with the OPE coefficients Ck

ij of primary operators).
The aim of this section is to introduce a computational scheme which shows how

CFT data is (partially) encoded in the beta functions describing the RG flow in prox-
imity of a fixed point. We start by describing the picture recalling a picture inspired
by Cardy [2], which was originally defined in a short distance regularized scheme, and
considering a generic basis of operators in which possible mixing effects are present.
Then we present, in a dimensionally regularized scheme, a simple discussion of the
Ising universality class to provide an example of an RG determination of OPE coef-
ficients in the ε-expansion, which will also motivate the subsequent discussion of the
transformation properties of the C̃k

ij. This discussion will make clear which subset of
OPE coefficients can actually appear in the beta functions, finally explaining which part
of the CFT data is directly accessible by our RG methods.

2.1. General analysis

We begin our analysis by considering a general (renormalized) action in d dimen-
sions,

S = ∑
i

µd−∆i gi
∫

ddx Φi(x) , (2.1)

describing an arbitrary point in theory space. The choice of a basis set of operators Φi
allows the introduction of coordinates, i.e. the corresponding (dimensionless) couplings
gi. The scaling dimensions ∆i of the (composite) operators, as we will see in a moment,
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take precise values only in the vicinity of a fixed point of the RG flow. All information
regarding the flow can be extracted from the set of (dimensionless) beta functions

βi = µ
dgi

dµ
,

which are in principle fully computable once a given scheme is precisely defined. A
fixed point of the RG flow is the point gi

∗ in the space of couplings for which the theory
is scale invariant

βi(g∗) = 0 . (2.2)

In the neighborhood of a fixed point it is convenient to characterize the flow by Taylor
expanding the beta functions. If δgi parametrizes the deviation from the fixed point
(gi = gi

∗ + δgi), we have

βk(g∗ + δg) = ∑
i

Mk
i δgi + ∑

i,j
Nk

ij δgi δgj + O(δg3) , (2.3)

where at the linear level we defined the stability matrix

Mi
j ≡

∂βi

∂gj

∣∣∣∣
∗

(2.4)

and at the quadratic level we defined the tensor

Ni
jk ≡

1
2

∂2βi

∂gj∂gk

∣∣∣∣
∗

, (2.5)

which is symmetric in the last two (lower) indices.
Each scale invariant point of the RG flow is in one to one correspondence with a uni-

versality class and, under mild conditions that we assume, a related CFT. The spectrum
of the theory at criticality is given by the eigendeformations of Mi

j with the correspond-
ing eigenvalues being (the negative of) the critical exponents θa. We will only be con-
cerned with cases in which either the matrix Mi

j is already diagonal, or its left and right
spectra coincide (meaning that the spectrum is unique and unambiguous). It is conve-
nient to introduce the rotated basis λa = ∑i S a

i δgi which diagonalizes Mi
j (through the

linear transformation S a
i ≡ ∂λa/∂δgi

∣∣
∗)

∑
i,j
S a

i Mi
j (S−1)j

b = −θaδa
b . (2.6)

Critical exponents allow for a precise definition of the scaling dimensions of the oper-
ators through the relation θi = d − ∆i. Let us introduce the “canonical” dimensions
Di of the couplings, and parametrize the deviations of the critical exponents from the
canonical scaling through the anomalous dimensions γ̃i as

θi = d− Di − γ̃i . (2.7)
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Here and in the following we adopt a tilde to distinguish RG quantities from CFT ones.
The notion of canonical dimension is in principle arbitrary, but in real-world applica-
tions it is generally borrowed from the scaling of the Gaussian critical theory.

This expression is, strictly speaking, valid only for primary operators; for descen-
dants there is a subtlety that we will discuss later. The matrix (S−1)i

a also returns the
basis of scaling operators of the theory at criticality, Oa = ∑i(S−1)i

a Φi, so that we can
rewrite the action as a fixed point action (i.e. CFT action) plus deformations

S = S∗ + ∑
a

µθa λa
∫

ddxOa(x) + O(λ2) . (2.8)

Deformations are relevant, marginal or irrelevant depending on the value of the related
critical exponent (respectively positive, zero or negative). In the diagonal basis also the
tensor Ni

jk have a direct physical meaning, since after the diagonalizing transformation
it becomes a quantity related to the (symmetrized) OPE coefficients3

C̃a
bc = ∑

i,j,k
S a

i Ni
jk (S−1)j

b (S−1)k
c , (2.9)

It will become clear in the practical examples that will follow this subsection that at
d = dc the C̃a

bc are the OPE coefficients of the underlying GaussianCFT and that all O(ε)
corrections agree with CFT results for all available comparisons, despite the general in-
homogeneous transformations of these coefficients under general scheme changes as
discussed in subsection 2.3. For these reasons we make the educated guess that the
quantities in (2.9) are the MS OPE coefficients since they have been computed using
MS methods. The relation among the standard perturbative MS OPE coefficients and
quadratic coefficients in the beta functions is an interesting subject, which is neverthe-
less beyond the scope of this work and is left for future investigations.

The beta functions can now be written as
βa = −(d− ∆a)λ

a + ∑
b,c

C̃a
bc λbλc + O(λ3) . (2.10)

This formula is the familiar expression for beta functions in CFT perturbation theory
(see, for example, [2]) and provides a link between RG and CFT. Generalizations of this
result beyond the leading order are considerably less simple than what we presented
here [8].

In CFT one uses the OPE4

〈Oa(x)Ob(y) · · · 〉 = ∑
c

1

|x− y|∆a+∆b−∆c
Cc

ab 〈Oc(x) · · · 〉 (2.11)

to renormalize a perturbative expansion of the form (2.8) in which the CFT is described
by the action S∗ and deformations are parametrized by the couplings λa.5 In the RG

3 Note that the overall normalization of the OPE coefficients is not fixed: a rescaling of the couplings

λa → αaλa implies C̃a
bc → αbαc

αa
C̃a

bc.
4 These OPE coefficients are related to those entering the beta functions by a factor Sd/2 (see [2]).
5 The careful reader must have noticed that our determination of the Ca

bc is symmetrized in the lower

two indices, but it is more than enough to reconstruct the fully symmetric structure constants Cabc.
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framework, conversely, the knowledge of the beta functions could permit (in principle)
the extraction of the conformal data directly from (2.10). The rest of this paper is es-
sentially devoted to a detailed exploration of this link, first within a simple example
in the next subsection and then, after a short discussion of the scheme dependences of
the OPE coefficients, within a functional generalization of standard perturbation theory
ε-expansion.

2.2. Example: Ising universality class

It is useful at this point to consider an explicit example to introduce our approach,
the Ising universality class in d = 4− ε [18, 19]. Perturbation theory forces us to restrict
to deformations around the Gaussian fixed point, the simplest of which are power like
non derivative operators Φi = φi parametrized by the dimensionless couplings gi, as
will be shown in the next section.

One can obtain the (two loop) NLO beta functions for relevant and marginal defor-
mations6

β1 = −
(

3− ε

2

)
g1 + 12 g2g3 − 108 g3

3 − 288 g2g3g4 + 48 g1g2
4

β2 = −2 g2 + 24 g4g2 + 18 g2
3 − 1080 g2

3g4 − 480 g2g2
4

β3 = −
(

1 +
ε

2

)
g3 + 72 g4g3 − 3312 g3g2

4

β4 = −εg4 + 72 g2
4 − 3264 g3

4

(2.12)

and the anomalous dimension η = 96g2
4. Note that the coefficients of the one loop

leading-order (LO) quadratic terms in the couplings are directly related to the Gaussian

OPE coefficients, which by construction coincide with the mean field OPE coefficients
of the Ising universality class (see also [32]).

The fixed point is characterized by g∗4 = ε
72 + 17ε2

1944 + O(ε3) and g∗1 = g∗2 = g∗3 = 0.
Around this fixed point one therefore expands in powers of deformations (with λi = gi
for i = 1, 2, 3 and λ4 = g4 − g∗4), and the beta functions become

β1 = −
(

3− ε

2
− ε2

108

)
λ1 + 12

(
1− ε

3

)
λ2λ3 +

4
3

ε λ1λ4 + . . .

β2 = −
(

2− ε

3
− 19ε2

162

)
λ2 + 24

(
1− 5

9
ε

)
λ2λ4 + 18

(
1− 5

6
ε

)
λ2

3 + . . .

β3 = −
(

1− ε

2
+

ε2

108

)
λ3 + 72

(
1− 23

18
ε

)
λ3λ4 + . . .

β4 = −
(
−ε +

17ε2

27

)
λ4 + 72

(
1− 17

9
ε

)
λ2

4 + . . .

(2.13)

6 Here and in other sections with explicit examples we lower the vector indices of the beta functions and

the couplings to avoid any confusion with power exponents.
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One should keep in mind that the NLO coefficients of quadratic terms involving λ4
can be affected by diagonalization. From the above relations one can immediately read
off the critical exponents θ1, θ2, θ3, θ4 as minus the coefficients of the linear terms. Note
that the scaling relation θ1 + θ3 = d discussed in appendix B is indeed satisfied. We
will see that these couplings will not be subject to any further mixing and thus these
are the complete ε-series to the exhibited order for the critical exponents and the OPE
coefficients. We have limited the ε-series for the OPE coefficients to linear order since the
O(ε2) terms are incomplete, receiving contributions from next-to-next-to-leading-order
(NNLO) beta functions.

From the eigenvalues we can extract the coupling (RG) anomalous dimensions γ̃i
through the relations

θi = d− i
(

d− 2
2

)
− γ̃i (2.14)

and η = 2γ̃1. The scaling dimensions of the composite operators are instead

∆i = i
(

d− 2
2

)
+ γi (2.15)

and define the (CFT) anomalous dimensions γi. The difference between the γ̃i and γi
appears only when the related operators are descendant, in this case when i = 3 for
which γ3 = γ̃3 + η. We will postpone the discussion of this fact to the appendix B. The
explicit expressions for the first anomalous dimensions are well known

γ̃1 =
ε2

108
γ̃2 =

ε

3
+

19ε2

162
γ̃3 = ε− ε2

108
γ̃4 = 2ε− 17ε2

27
.

From (2.13) it is equivalently easy to read off the OPE coefficients (which on the non-
diagonal entries are half the value of the coefficients in the beta functions)

C̃1
23 = 6− 2ε C̃1

14 =
2
3

ε C̃2
33 = 18− 15ε (2.16)

We note that the OPE coefficient C̃1
14 is in perfect agreement with that found in [9]

using CFT methods, while we did not find any result in the literature for the other
two coefficients to compare to. An explanation of why this agreement is expected will
be given in Sect. 3.1. It is also important to stress that we ensured the agreement by
choosing the same normalization of [9], that is by fixing the coefficients of the two point
functions.

2.3. Transformation properties

In general different regularization and renormalization procedures may result into
non trivial relations among the renormalized couplings. These relations go under the
name of scheme transformations, and they are exemplified through maps among the
couplings of the two schemes that can be highly non-linear [33]. Whenever the scheme
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transformations are computed between two mass independent schemes (such as, for
example, MS and lattice’s7) these relations might have a simpler form, but we will find
that it is very useful to consider them in their most general form. Let

ḡi = ḡi(g) (2.17)

be the general invertible, possibly non-linear, transformation between the set of cou-
plings gi and ḡi. Under such a change of “coordinates” the beta functions transform as
vectors8

β̄i(ḡ) =
∂ḡi

∂gj βj(g) . (2.18)

Now we turn our attention to the fixed point quantities, therefore in the following it
is understood that the transformations will be evaluated at a fixed point. The stability
matrix transforms as

M̄i
j =

∂ḡi

∂gl Ml
k

∂gk

∂ḡj . (2.19)

Since the derivatives are evaluated at the fixed point, the stability matrices of the two
set of couplings are related by a similarity transformation. Therefore it is trivial to prove
that the spectrum is invariant, meaning that it does not depend on the parametrization

θ̄a = θa , (2.20)

as one would naively expect for a physical quantity.
Things become less trivial when considering the matrix encoding the second order

of the Taylor expansion at the fixed point. A direct computation shows

N̄i
jk =

∂ḡi

∂gc

{
Nc

ab +
1
2

Mc
d

∂2gd

∂ḡl∂ḡm
∂ḡl

∂ga
∂ḡm

∂gb −
1
2

Md
a

∂2gc

∂ḡl∂ḡm
∂ḡl

∂gb
∂ḡm

∂gd

− 1
2

Md
b

∂2gc

∂ḡl∂ḡm
∂ḡl

∂ga
∂ḡm

∂gd

}∂ga

∂ḡk
∂gb

∂ḡj .
(2.21)

To simplify this expression it is convenient to assume that the couplings gk have already
been chosen to diagonalize the stability matrix with a linear transformation, so that on
the right hand side there will be the structure constants

N̄i
jk =

∂ḡi

∂gc

{
C̃c

ab +
1
2
(θc − θa − θb)

∂2gc

∂ḡl∂ḡm
∂ḡl

∂ga
∂ḡm

∂gb

}
∂ga

∂ḡk
∂gb

∂ḡj . (2.22)

Now it is necessary to move to the basis of couplings ḡi in which M̄i
j is diagonal, so that

the structure constants appear on both sides. We finally find

¯̃Cc
ab = C̃c

ab +
1
2
(θc − θa − θb)

∂2gc

∂ḡl∂ḡm
∂ḡl

∂ga
∂ḡm

∂gb , (2.23)

7 But in practice all lattice implementations can be considered massive schemes.
8 The suummation convention is understood in this subsection.
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which implies that the set of matrices C̃c
ab has a transformation law that is not homoge-

neous and therefore is reminiscent of the one of a connection in the space of couplings
[34, 35].

In the context of conformal perturbation theory one can find a similar result in [8],
in which the analysis includes cubic terms but is limited to a diagonal stability matrix
because conformal perturbation theory adopts by construction the basis of scaling op-
erators.

At this point few comments on the transformations of C̃c
ab are in order:

• It is evident from (2.23) that C̃c
ab can be independent of parametrization for a very

special sum condition among the scaling dimensions of the couplings or when
the Hessian at the fixed point is zero. The latter case could be realized for a spe-
cific family of scheme transformations, while the former condition can be realized
exactly only in d = dc, which corresponds to ε = 0, that is,

(θc − θa − θb)ε=0 = 0 . (2.24)

• We will observe in all practical examples that the coefficients C̃c
ab for which the

condition in Eq. (2.24) holds are the ones that are accessible via dimensional reg-
ularization. We dub them “massless”, as opposed to the “massive” ones that do
not satisfy the above condition and are zero in dimensional regularization. More-
over, these “massless” OPE coefficients at the critical dimension are insensitive to
changes of RG scheme and can be computed unambiguously with RG methods.

• In perturbation theory ε-expansion one can obtain ε-series only for the “massless”
OPE coefficients. In particular in d = dc − ε one generally has θc − θa − θb = O(ε)
and thus only the O(ε) terms can be scheme independent if the Hessian is at least
O(ε). This allows for crucial comparisons and cross-checks with other theoretical
approaches like CFT (as for the C̃1

14 of our previous example). In fact we will see
that all the MS leading corrections for the multi-critical models we can compare
with CFT are in perfect agreement. While this agreement can be explained at the
level of beta functions, by explicitly constructing the most general map between to
orthogonal massless scheme that also preserves the ε-expansion, the explanation
is more transparent when discussed in functional terms in the next section.

Finally one should remark that once the beta functions are extracted in some scheme,
one might also envisage geometrical methods to extract quantities which depend on the
universal scheme independent OPE coefficients to overcome the above limitations. A
step in this direction has been made for functional-type flows in Ref. [36] in the context
of the Polchinski RG equation. In this work, the authors define normal coordinates in
the space of couplings which have both geometrical meaning and definite scaling trans-
formations. In relation with the transformation (2.23), one can follow [36] and argue
that all “massive” coefficients can be eliminated by an opportune transformation of the
couplings and hence there exists a scheme, or rather a family of schemes, whose only
coefficients are the scheme independent ones. This family can be appropriately named
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“family of minimal subtraction schemes” having the MS scheme as its most famous
representative. We hope to address further these topics in future investigations.

3. FUNCTIONAL PERTURBATIVE RG: A FIRST LOOK

The previous example on the Ising universality class, which was dealing with the
study of the Ok = φk deformations of the Gaussian fixed point, can be analyzed more
conveniently if we work directly with the generating function of such operators which
is the local potential V(φ). We thus consider the action

S =
∫

ddx
{

1
2
(∂φ)2 + V(φ)

}
, (3.1)

and study the perturbative RG flow it generates. In particular, it turns out to be a smart
move to perform background field computations of loop diagrams in which the field
φ is set to a constant and leave the form of the potential completely general so that we
can extract the beta functional βV for the whole potential just by looking at the vacuum
renormalization. This way of thinking has at least a two fold advantage: it simplifies
computations (since we just need to compute the vacuum renormalization) and gives
direct access to the full system of beta functions for the couplings of the operators Ok =
φk (since βV serves as a generating function for the beta functions). From the knowledge
of the beta functions we can then follow the steps outlined in the previous section and
compute both the spectrum and the OPE coefficients in the MS scheme.

The action (3.1) not only renormalizes the potential, but also induces the flow βZ of a
field-dependent wavefunction functional that we will denote Z(φ). The flow generates
the beta functions of the couplings of the operators of the form φk(∂φ)2 and, moreover,
fixes the anomalous dimension η. More generally, all higher derivative operators have
an approximate flow induced solely by the potential, i.e. have a beta functional whose
r.h.s. contains only V(φ) and its derivatives. We will call local potential approxima-
tion (LPA) the truncation for which all the RG flow is generated by the potential alone.
Clearly, the full RG flow will involve the presence of other functionals, such as Z(φ)
and higher, on the r.h.s. of the beta functionals. According to that the computational
scheme can be systematically improved in a derivative expansion approach, as will be
discussed in section 4.

In this section we will study, as a tutorial example, the Ising and Lee-Yang uni-
versality classes within the LPA, while a first example of functional flow beyond this
approximation will be presented in section 5, in which we show that terms containing
Z(φ) on the r.h.s. of the beta functional βZ become important to describe mixing effects
when marginal or irrelevant operators are investigated in the Ising and multicritical
universality classes.

For any given theory and within a functional perturbative approach in a dimension-
ally regularized scheme, e.g. MS, such beta functionals can be written as polynomials
for which each monomial is a product of derivatives of various orders of the generating
functions V, Z, . . . and in particular each non trivial loop order in perturbation theory
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gives rise to a subset of monomials in the beta functionals [7]. Let us just stress that
for a given theory the monomials which can appear in the beta functional are very con-
strained and only their coefficients demand a real loop computation, which in turn can
be done in very specific and simple ways.

Another point to highlight is that, depending on the specific theory, contributions
denoted as LO (or NLO or higher) appear at different number of loops, generally bigger
than one (Ising and Lee-Yang are special in this respect since the LO terms are obtained
at one loop and NLO at two loops for both theories). We shall see this explicitly in
section 5 in which we study the whole family of multicritical φ2n universality classes:
indeed the number of loops required to obtain the LO contribution depends on the criti-
cal dimension dc of the theory (which determines the superficial degree of divergence of
a diagrams generated by the perturbative expansion). One sees that, since each mem-
ber of this family of models has dc = 2n

n−1 (for n > 1), the leading order contribution
appears at (n − 1)-loops and the NLO at 2(n − 1)-loops. Let us also mention the fact
that the LO and NLO order contributions are universal, i.e. independent of the specific
RG scheme (as can be easily seen by projecting the beta functionals on the beta function
of the respective critical coupling which we already know has LO and NLO universal
coefficients [33]).

It is also convenient to make the standard shift to dimensionless variables (in units of
the scale µ) directly at the functional level. Once the beta functional of the dimensionful
potential is found, the scaling properties are investigated by defining the dimensionless
potential

v(ϕ) = µ−dV(ϕµd/2−1Z−1/2
0 ) (3.2)

where Z0 is the field strength renormalization, which enters in the definition of the
dimensionless field ϕ = µ1−d/2Z1/2

0 φ. Its beta functional is then

βv = −dv(ϕ) +
1
2
(d− 2 + η)ϕ v(1)(ϕ) + µ−dβV , (3.3)

for which we introduced an anomalous dimension η = −µ∂µ log Z0, which will be dis-
cussed in detail soon.

The potential is a local function of the dimensionless field ϕ and can be parametrized
in terms of the dimensionless couplings gk as

v(ϕ) = ∑
k≥0

gk ϕk . (3.4)

The beta functional is then used to obtain the couplings’ beta functions through the
straightforward definition

βv = ∑
k≥0

βk ϕk . (3.5)

One then inserts (3.4) and (3.5) on the r.h.s. and l.h.s. of (3.3), respectively, and equates
powers of the field on both sides to obtain the general beta function system.

12



The dimensionless wavefunction is similarly defined as

z(ϕ) = Z−1
0 Z(ϕµd/2−1Z−1/2

0 )

and its dimensionless flow is

βz = ηz(ϕ) +
1
2
(d− 2 + η)ϕ z(1)(ϕ) + Z−1

0 βZ . (3.6)

This new beta functional has two main purposes. On the one hand by enforcing the
condition z(0) = 1 we can use it to determine η as

η = −µ∂µ log Z0 = −Z−1
0 βZ(0) . (3.7)

On the other hand, later in section 5 we will use (3.6) to generate the beta functions of
the dimensionless couplings of the operators of the form ϕk(∂ϕ)2. A detailed discussion
of the invariance of the systems of beta functionals in the LPA under reparametrizations
of z(0), and of its importance in the determination of η can be found in [37].

3.1. Ising universality class in LPA

The Ising universality class has upper critical dimension dc = 4, and the LPA beta
functionals for the dimensionful potential at NLO, and wavefunction at LO, are

βV =
1
2
(V(2))2

(4π)2 −
1
2

V(2)(V(3))2

(4π)4 βZ = −1
6
(V(4))2

(4π)4 . (3.8)

The functional form of these beta functionals can be argued on dimensional grounds.
Only the explicit determination of the three universal coefficients demand a loop com-
putation, but for a well studied universality class such as Ising these coefficients can be
obtained by matching with known beta functions of the φ4 critical coupling.

In turn, this simple observation shows that these coefficients are scheme independent
by the standard text book argument that LO and NLO beta functions and anomalous
dimension coefficients are so. Thus all the results of the present section, and in particular
the form of the beta functions around the fixed point are a functions of these universal
numbers. In particular this implies that the order ε and ε2 contributions to the spectrum
(which is universal) are scheme independent, and that the order ε corrections to the OPE
coefficients are also scheme independent even if the C̃i

jk themselves are not universal.
As promised this is a simple way to understand why the Hessian for the ”dimless”
OPEs is of order at least O(ε) [38].

After a simple rescaling v → (4π)2 v, the beta functionals for the dimensionless po-
tential are the following

βv = −4v + ϕv(1) + ε

(
v− 1

2
ϕv(1)

)
+

1
2

ηϕv(1) +
1
2
(v(2))2 − 1

2
v(2)(v(3))2

βz = ηz + ϕz(1) − ε

2
ϕz(1) +

1
2

ηϕz(1) − 1
6
(v(4))2 .

(3.9)
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Expanding the potential as in Eq. (3.4) discussed before, allows the generation of the
coupling’s beta functions

βk =−
(

4− k−
(

1− k
2

)
ε

)
gk + 48k gk g2

4

+
1
2

k+2

∑
i=2

i(i− 1)(i− k− 4)(i− k− 3) gi g4−i+k

+
1
6

k+7

∑
i=2

k+7−i

∑
j=2

i(i− 1)j(j− 1)(i + j− k− 8)(i + j− k− 7)×

×
(

i2 + ij + j2 − (i + j)(k + 8) + 4(k + 5)
)

gi gj g8−i−j+k .

(3.10)

The four-coupling system (2.12) studied in the previous section is straightforwardly
obtained by truncating (3.10) to k = 1, 2, 3, 4. Using (3.7) we can immediately obtain the
anomalous dimension

η =
1
6
(v(4)(0))2 = 96g2

4 . (3.11)

In dimensional regularization the fixed point is very simple

g∗k = g δk,4 g =
ε

72
+

17ε2

1944
(3.12)

and highlights the prominent role of the critical coupling g4. By expanding around the
fixed point it is straightforward to obtain the following general form for the spectrum
(in terms of the critical coupling)

θi = 4− i−
(

1− i
2

)
ε− 1

2
i(i− 1)g +

1
12

i(6i2 − 12i + 5)g2 − 2
3

g2δi,4 . (3.13)

Using (2.14) we immediately deduce the anomalous dimensions of the composite oper-
ators φi (in terms of ε)

γ̃i =
1
6

i(i− 1)ε− 1
324

i(18i2 − 70i + 49)ε2 +
2

27
ε2δi,4 . (3.14)

For i = 1, 2, 3, 4 this expression reproduces those of the example in the previous section.
The reader will notice the appearance of a contribution in (3.13) and in (3.14) propor-
tional to the Kronecker delta δi,4 because the anomalous dimension in (3.9) is a function
of the critical coupling as given in (3.11) [18, 19]. The expressions for the spectrum are
complete to order O(ε2) for all relevant couplings and, as we will show in section 5,
also for the marginal ones. For irrelevant couplings, due to mixing effects, only the
O(ε) terms are complete and correctly agree with the CFT results [9].

From the analysis of the quadratic part of the beta function we find the following
form for the universal OPE coefficients in the MS scheme

C̃k
ij =

1
2

i(i− 1)j(j− 1)
(

1− 1
6
(ij− 4)ε− 17

162
(ij− 4)ε2

)
δ4,i+j−k

+
8
3

ε (1 + 17ε) δ4,iδ4,jδ4,k +
2
3

ε

(
1 +

17
27

ε

)
(iδi,kδ4,j + jδj,kδ4,i) .

(3.15)
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This general expression gives us back the results of our previous example (2.16) and
thus matches, when overlapping, with CFT computations [9], but its general range of
validity will become clearer in section 5 after we analyze the effects of mixing. We note
that a NNLO computation, beside bringing some mixing effects, will provide further
contributions at order O(ε2) so that one should consider at this level of accuracy the
expressions (3.15) just up to order O(ε) as in Eq. (2.16). In fact, recalling our discussion in
section 2.3 on the possible differences among coefficients computed in other schemes,
agreement at order O(ε2) with an NNLO computation can be observed only if the MS
scheme and the “CFT” scheme are related by a Hessian of order O(ε2).

3.2. Lee-Yang universality class in LPA

The Lee-Yang universality class has upper critical dimension dc = 6 and the LPA beta
functionals at NLO for the dimensionful potential and wavefunction are

βV = −1
6
(V(2))3

(4π)3 −
23

144
(V(2))3(V(3))2

(4π)6

βZ = −1
6
(V(3))2

(4π)3 −
13

216
(V(3))4

(4π)6 .

(3.16)

The explicit derivation of these beta functionals is quite straightforward. After the con-
venient rescaling of the potential v→ 2(4π)3/2 v the beta functionals for dimensionless
quantities are

βv = −6v + 2ϕv(1) + ε

(
v− 1

2
ϕv(1)

)
+

1
2

ηϕv(1) − 2
3
(v(2))3 − 23

9
(v(2))3(v(3))2

βz = ηz + 2ϕz(1) − ε

2
ϕz(1) +

1
2

ηϕz(1) − 2
3
(v(3))2 − 26

27
(v(3))4 .

(3.17)

Expanding the potential as Eq. (3.4) leads to the general expression for the beta functions

βk =−
(

6− 2k−
(

1− k
2

)
ε− 3kg2

3

(
1 + 13g2

3

))
gk

− 2
3

k+4

∑
i=2

k+4−i

∑
j=2

i(i− 1)j(j− 1)(i + j− k− 6)(i + j− k− 5)gi gj g6−i−j+k

+
23
90

k+10

∑
i=2

k+10−i

∑
j=2

k+10−i−j

∑
t=2

k+10−i−j−t

∑
u=2

i(i− 1)j(j− 1)t(t− 1)u(u− 1)×

× (I − k− 12)(I − k− 11)
(

56 + 8k− (k + 12)I + ij + it + iu + jt + ju + tu + J
)
×

× gi gj gt gu gk−I+12

(3.18)

where I = i + j+ t+ u and J = i2 + j2 + t2 + u2. From (3.17) we also immediately obtain
the anomalous dimension

η = 24g2
3 + 1248g4

3 . (3.19)
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As expected, because of the non-unitarity of the model, the fixed point is complex

g∗k = g δk,3 g =
1

6
√

6
(−ε)1/2 − 125

1944
√

6
(−ε)3/2 + O

(
(−ε)5/2

)
, (3.20)

showing that the ε-expansion for the Lee-Yang universality class is in fact an expansion
in powers of

√
−ε; equivalently one can write g2 = − 1

54 ε− 125
8748 ε2 + O(ε3).

After expanding the beta functions around the fixed point we determine the spec-
trum in terms of the critical coupling

θi = 6− 2i−
(

1− i
2

)
ε−
(

1− 2g2

9

)
7g2

12
i

+

(
1− 23

24
g2
)

g2

2
i2 +

23
72

g4i3 −
(

g2

2
+

13
36

g4
)

δi,3 ,
(3.21)

from which using (2.14) we can extract the anomalous dimensions, as a function of ε

and taking in account (3.20)

γ̃i =
1

18
i(6i− 7)ε− 1

2916
i(414i2 − 1371i + 1043)ε2 −

(
ε

3
+

47
486

ε2
)

δi,3 . (3.22)

For reference we write the first anomalous dimensions

γ̃1 = − ε

18
− 43

1458
ε2 γ̃2 =

5
9

ε +
43

1458
ε2 γ̃3 =

3
2

ε− 125
162

ε2 .

It is easy to check that the scaling relation θ1 + θ2 = d, discussed in appendix B, is indeed
satisfied.

For the universal MS OPE coefficients we obtain

C̃k
ij =− 12i(i− 1)j(j− 1)g

{
1 + 46(i + j + ij− 5)g2

}
δi+j,k+3

+ 36g(1 + 312g2)δi,3δj,3δk,3 + 12g(1 + 104g2)
(
iδj,3δi,k + jδi,3δj,k

)
,

(3.23)

which at this order we display as a function of the coupling g of (3.20) for notational sim-
plicity. Using the explicit for of the fixed point (3.20) as a function of ε, and considering
only the leading order in

√
−ε we find

C̃k
ij =

√
2
3
√
−ε i(i− 1)j(j− 1)δi+j,k+3 +

√
−6ε δi,3δj,3δk,3 +

√
2
3
√
−ε

(
iδj,3δi,k + jδi,3δj,k

)
.

(3.24)

The first two universal OPE coefficients are

C̃1
2 2 = −4

√
2
3
√
−ε C̃1

1 3 =

√
2
3
√
−ε (3.25)

and agree with CFT computations [9]. The discussion of the universality of the Ising’s
OPE coefficients has an analog here: In the case of the Lee-Yang universality class we
have that (θc − θa − θb) = O(

√
ε), therefore the eventual Hessian relating the MS and

CFT schemes might contribute by changing the universal OPE coefficients at O(ε) or
higher.
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4. FUNCTIONAL PERTURBATIVE RG AND THE DERIVATIVE EXPANSION

In the rest of the paper we would like to show how it is possible to generalize the re-
sults presented so far to arbitrary order in the ε-expansion to include mixing effects, and
also to extend the analysis to a wider set of universality classes. In order to enter into
this subject and also pave the way for future computations including the most general
operators, we will first describe the general setup of the derivative expansion where one
can systematically include higher-derivative operators. In what follows, our aim would
be to outline a systematic approach to such a derivative expansion in the functional
perturbative RG. The derivative expansion, although being formally a truncation of the
most general action (3.1), allows, when combined with the perturbative ε-expansion, a
systematic and complete determination of the ε-series of the spectrum and the MS OPE
coefficients.

At each order in the number of derivatives there is an infinite number of operators
with higher and higher powers of the field. Just like the potential function V(φ) which
encompasses an infinite set of couplings, the couplings of these derivative operators
can be collected into functions so that at each derivative order there is a finite basis of
“functional” operators which spans all the operators with the given number of deriva-
tives. To make it more explicit, one can denote the basis of functional operators with
k derivatives by Ŵ(k)

a (φ), where a runs from 1 to Nk, the number of elements in such a
basis. With this notation the action (2.1) can be re-expressed as

S = ∑
k≥0

Nk

∑
a=1

∫
ddx Ŵ(k)

a (φ) , (4.1)

where the index k runs over the number of derivatives and a spans the possible degen-
eracy.

The first few instances of such operators can be listed as follows:

Ŵ(0)
1 (φ) = W(0)

1 (φ) Ŵ(2)
1 (φ) = W(2)

1 (φ)1
2(∂φ)2

Ŵ(4)
1 (φ) = W(4)

1 (φ)(2φ)2 Ŵ(4)
2 (φ) = W(4)

2 (φ)2φ(∂φ)2 Ŵ(4)
3 (φ) = W(4)

3 (φ)(∂φ)4 .

Thus N0 = 1, N2 = 1 and N4 = 3. Obviously, V = W(0)
1 , Z = W(2)

1 and we will

adopt the notation Wa ≡ W(4)
a . One can continue in this way and choose a basis for

higher-derivative operators. At the next order, i.e. six derivatives, there are N6 = 8
independent functional operators which form a basis. This will increase to N8 = 23
for the case of eight derivatives, and so on. For each of the operators in (4.1), after
shifting to the relative dimensionless functionals w(k)

a , one can define a (dimensionless)
beta functional β

(k)
a which captures the flow of the infinite number of couplings in w(k)

a .
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At this stage, let us be more specific and concentrate on theories of the form (4.1)
close to the upper critical dimensions of multicritical φ2n models [9]

d =
2n

n− 1
− ε . (4.2)

Then dimensional regularization has the virtue that the fixed-point action solving β
(k)
a =

0 is extremely simple, since all fixed point functionals are zero apart from the potential
V, which in turn is proportional to the critical coupling, and the Z, which is constant
and can be set to one. The fixed point action is then

S∗ =
∫

ddx
{

1
2(∂φ)2 + g φ2n

}
. (4.3)

These choices define the multi-critical universality classes which will be discussed in
detail in the next section.

The action (4.1) can then be seen as a deformation around the fixed point (4.3) away
from criticality. One can formally define the stability matrix and the set of OPE coef-
ficients in a functional form by expanding the beta functionals around the fixed point
as9

β
(k)
a (w∗ + δw) = ∑

i

δβ
(k)
a

δw(i)
b

∣∣∣
∗
δw(i)

b +
1
2 ∑

ij

δ2β
(k)
a

δw(i)
b δw(j)

c

∣∣∣
∗
δw(i)

b δw(j)
c + · · · (4.5)

In the above expression of the beta for the functions wk
a, which depend non linearly also

on derivative of them, one has formally functional derivatives and integral are under-
stood when repeated indices a, b, · · · are present. Although one can study the RG flow
and compute all universal quantities directly at the functional level by exploring the
consequences of (4.5), in the next section we will reconnect with the discussion in terms
of couplings as outlined in section 2, and use the beta functionals β

(k)
a as a convenient

way to generate the coupling beta functions.
The couplings in (4.1) can be defined by expanding the functions such as V(φ), Z(φ),

Wa(φ) and those of the higher derivative operators, in powers of the field, starting with
φ0 = 1. Using dimensional analysis and recalling that close to the upper critical di-
mension the spectrum of the theory is almost Gaussian, we can infer that the couplings
in V(φ) corresponding to the 2n lowest dimensional operators 1, φ, · · · , φ2n−1 do not
mix with any other coupling. Staring from φ2n and all the way up to φ4n−3 they mix
with the O(∂2) couplings of (∂φ)2, · · · , φ2n−3(∂φ)2. From φ4n−2, φ2n−2(∂φ)2 the O(∂4)
couplings of Wa(φ) will also be involved. This can be summarized in the following table

9 More generally, for an arbitrary Lagrangian L, the RG flow can be formally described by a beta func-

tional β[L], and a fixed point L∗ of the theory would be defined by the condition β[L∗] = 0. The fixed

point Lagrangian L∗ is normally expected to describe a CFT, whenever scale invariance implies confor-

mal invariance. Several non trivial informations on the critical theory can then be extracted by probing

arbitrary off-critical deformations from the fixed point parametrized by L = L∗ + δL

β[L∗ + δL] = δβ

δL

∣∣∣∣
L∗

δL+
1
2

δ2β

δLδL

∣∣∣∣
L∗

δLδL+ · · · (4.4)
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V : 1 φ · · · φ2n−1 φ2n · · · φ4n−3 φ4n−2 φ4n−1 φ4n · · ·
Z : (∂φ)2 · · · φ2n−3(∂φ)2 φ2n−2(∂φ)2 φ2n−1(∂φ)2 φ2n(∂φ)2 · · ·

W1 : (2φ)2 φ(2φ)2 φ2(2φ)2 · · ·
W2 : 2φ(∂φ)2 φ2φ(∂φ)2 · · ·
W3 : (∂φ)4 · · ·

(4.6)

where each row collects the operators included in the function shown on the left-hand
side and only couplings of operators in the same column mix together. If we arrange
the couplings of (4.1) in increasing order of their canonical operator dimension, and
furthermore, we sort them for increasing order of derivatives of their corresponding
operators, the stability matrix takes the block-diagonal form

M(0)

M(2)

M(4)

. . .

 (4.7)

where in general M(2k) is itself a block diagonal matrix. Each diagonal block contained
in M(2k) describes the mixing between couplings of operators up to 2k derivatives, all
of which belong to the same column in (4.6). In particular M(0) is a diagonal matrix
with entries giving the scaling dimensions of the first 2n couplings in the potential. The
matrix M(2) is block diagonal, with each block being a two by two matrix which gives
the mixing between a coupling in V(φ) and a coupling in Z(φ). M(4) is also a block
diagonal matrix of which, with our choice of basis for the four-derivative operators, the
first block is a three by three matrix, the second is four by four and the rest are five by
five matrices.

Using dimensional analysis one can restrict the stability matrix even further if one is
satisfied with the order ε approximation. As we will show explicitly in the following
section, at this order each diagonal block in the matrices M(2k) in (4.7) is itself block
lower-triangular, where each block describes the mixing of operators with the same
number of derivatives. This ensures that the entries on the diagonal for the couplings of
the potential and the second-derivative operators will give the scaling dimensions and
are unaffected by the mixing at this order.

5. GENERAL φ2n UNIVERSALITY CLASS

After the analysis of the Ising universality class in sections 2.2 and 3.1 and the in-
troductory discussion of the previous sections, we are now in a position to extend these
results to general models with even interaction φ2n at the critical point. In fact one can
treat the whole set of universality classes φ2n in a unified framework. A brief review of
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the method which closely follows [7] is outlined in appendix A. Here we pick the main
results that will be needed for our analysis.

Throughout this work we will not go beyond second order in the derivative expan-
sion, and in fact mostly concentrate on the local potential approximation. Let us there-
fore consider a theory of the form

S =
∫

ddx
{

1
2 Z(φ)(∂φ)2 + V(φ)

}
, (5.1)

in a space-time dimension which is close, as in Eq. (4.2), to the upper critical dimension
at which the coupling of the interaction φ2n becomes dimensionless.

The propagator of this theory satisfies the differential equation −�Gx = δd
x, where

δd
x is the d-dimensional Dirac delta function. The solution is given by

Gx =
1

4π

Γ(δ)
πδ

1
|x|2δ

, (5.2)

which is more conveniently written in terms of the field dimension δ = d
2 − 1 = 1

n−1 −
ε
2 . The coefficient in the propagator evaluated at criticality appears many times in the
calculations. For convenience we therefore call it c from now on

c ≡ 1
4π

Γ(δn)

πδn
δn =

1
n− 1

. (5.3)

Let us neglect for the moment the effect of derivative interactions encoded in Z(φ) and
concentrate on the V(φ) contributions to the beta functions of V(φ) and Z(φ). Before
giving the explicit expressions for the beta functions let us mention that in this O(∂0)
truncation one can extract the scaling dimensions and MS OPE coefficients for the rele-
vant components as they will be in any case unaffected by the mixing with the deriva-
tive operators. Moreover, as we will argue later, remaining within the same truncation
it is possible to go beyond the relevant components if one is content with the order ε

estimates.
Neglecting derivative interactions, the beta functional of the dimensionless potential,

in the form of Eq. (3.3), at the NLO (cubic order) in the dimensionless potential is

βv = − d v(ϕ) +
d− 2 + η

2
ϕ v′(ϕ) +

n− 1
n!

cn−1

4
v(n)(ϕ)2

−n− 1
48

c2n−2 Γ(δn) ∑
r+s+t=2n

r, s, t 6= n

Kn
rst

r!s!t!
v(r+s)(ϕ) v(s+t)(ϕ) v(t+r)(ϕ)

− (n− 1)2

16 n!
c2n−2 ∑

s+t=n

n− 1 + Ln
st

s!t!
v(n)(ϕ) v(n+s)(ϕ) v(n+t)(ϕ) , (5.4)

where the integers r, s, t are implicitly taken to be positive, and the quantities Kn
rst and

Ln
st are defined as follows

Kn
rst =

Γ
( n−r

n−1

)
Γ
( n−s

n−1

)
Γ
( n−t

n−1

)
Γ
( r

n−1

)
Γ
( s

n−1

)
Γ
( t

n−1

) , Ln
st = ψ(δn)− ψ(sδn)− ψ(tδn) + ψ(1) , (5.5)
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where ψ(x) = Γ′(x)/Γ(x) is the digamma function. The last term in the first line of (5.4)
is the LO (n− 1)-loop term, while the NLO second and third lines appear at 2(n− 1)-
loops. The origin of such terms and the corresponding diagrams will be briefly dis-
cussed in appendix A. Notice also that, differently from sections 2 and 3, we did not yet
include any further rescaling when moving from the dimensionful V(φ) to the dimen-
sionless v(ϕ) potential: since the rescaling does not affect the spectrum, we postpone
the discussion of the “appropriate” rescaling to subsection 5.3 in which some MS OPE
coefficients are computed.

Neglecting derivative interactions (in agreement with our definition of LPA), the in-
duced flow of the function z(ϕ) at quadratic order is given by

βz = η z(ϕ) +
d− 2 + η

2
ϕ z′(ϕ)− (n− 1)2

(2n)!
c2n−2

4
v(2n)(ϕ)2. (5.6)

The last term in this equation comes from a diagram with 2(n− 1)-loops, which gives
a counter-term consisting of the second contribution in Eq. (A.2), as explained in ap-
pendix A.

From (5.4), noticing the fact that only the dimensionless coupling can take a non-zero
value at the fixed point, one can set v(ϕ) = g ϕ2n together with the condition βv = 0 to
find the critical coupling g at quadratic order in ε. This is given by

(2n)!2

4 n!3
cn−1g = ε− n

n−1
η +

n!4

(2n)!

[
1
3

Γ(δn) n!2 ∑
r+s+t=2n

r, s, t 6= n

Kn
rst

(r!s!t!)2 +(n−1) ∑
s+t=n

n−1 + Ln
st

s!2t!2

]
ε2 .

(5.7)
Notice that here we have used an expansion of v(ϕ) without factorials. Including the
factorials, the (2n)! on the left-hand side would have appeared with power one, in
agreement with [7, 9]. This, of course, does not affect the final physical results when
written in terms of ε.

The anomalous dimension can be read off from (5.6) imposing the condition βz|ϕ=0 =

0 and using z(0) = 1. This gives, after using (5.7),

η =
4(n− 1)2n!6

(2n)!3
ε2 , (5.8)

in agreement with [7, 27] and recent CFT based computations [9, 10]. Having at our
disposal the functional form of βv at cubic order, we can follow the prescription of sec-
tion 2 to find the scaling dimensions of the relevant couplings at O(ε2) and the MS OPE
coefficients for the relevant operators at O(ε).

However, before doing so let us devote the next subsection to considering the lead-
ing order mixing effects due to the presence of z(ϕ)-interactions. This, for instance, will
allow us to compute the leading order anomalous scaling dimensions of the z(ϕ) cou-
plings, and justify the validity of the leading order anomalous dimensions of the v(ϕ)
couplings.
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5.1. Mixing

One can take into account the mixing effects due to the presence of derivative op-
erators. We have given a general sketch of the mixing pattern in section 4. Here we
concentrate on explicit results for two-derivative interactions collected in the function
z(ϕ). At quadratic level the presence of z(ϕ) does not affect the beta function of the
potential (5.4), but (5.6) instead gets a contribution at this level

∆βz =
n− 1

n!
cn−1

2

[
z(n)(ϕ) v(n)(ϕ) + z(n−1)(ϕ) v(n+1)(ϕ)

]
. (5.9)

These new terms arise from the derivative interactions and appear at (n− 1)-loops [7] as
discussed in appendix A. This gives rise to a mixing, at order ε, between the operators
φk+2n and φk(∂φ)2 for k = 0, · · · , 2n− 3, described by the k-th block of the matrix M(2),
while the couplings of φk with k = 0, · · · , 2n− 1, and therefore the elements of M(0), are
unaffected.

In general the terms in a beta function which contribute to the stability matrix at
order ε must be quadratic in the couplings, and furthermore one of the couplings must
be the dimensionless coupling g which is the only one that takes a nonzero value at the
fixed point. In the beta functional this manifests as the product of the potential v(ϕ)
and a function corresponding to a higher derivative operator, or more precisely, the
product of a derivative of these functions. These terms come from diagrams of the form
displayed in Fig. 2 of appendix A, or its generalizations where instead of z(ϕ) one can
have functions encoding higher derivative interactions.

A simple argument based on dimensional analysis shows that generally in the beta
function of a 2k-derivative coupling, the quadratic term which includes the coupling
g can involve also a derivative coupling lower or equal to k. To show this, one should
notice that in dimensional regularization the diagrams contributing to the beta functions
must be dimensionless, i.e. have vanishing superficial degree of divergence. For a melon
diagram of the form in Fig. 2 with r propagators that includes the potential v(ϕ) at one
vertex and a 2l-derivative coupling on the other vertex this condition is

(r− 1)
2n

n− 1
− 2r + 2(k− l) = 0 . (5.10)

The first term comes from the r − 1 loop integrations, while the r propagators give a
contribution −2r in the second term. To justify the remaining terms one should notice
that there are altogether 2l derivatives at one of the vertices, some of which might act
on the propagators and some might not, but finally we would like to extract the ∂2k

contribution from this diagram. This leads to the contribution 2(k − l). This simple
relation can be re-arranged and put in a more useful form,

l − k =
n− r
n− 1

< 1 , (5.11)

where one can use the fact that r ≥ 2 on the right-hand side to put an upper bound on
l − k. Since k, l are integers, the inequality (5.11) says that l ≤ k, which is the statement
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claimed above. This is a more general case of what we have already seen: that the beta
functions of the potential couplings do not contain the product of v and z couplings
but only v-coupling squared. This is telling us that at order ε each diagonal block in
the stability matrix that describes the mixing of a column in (4.6) is itself block lower-
triangular (where here a block describes the mixing of operators with the same number
of derivatives), as will be shown explicitly in the simplest case in the next section. This
ensures that at order ε the eigenvalues of the potential and the two-derivative couplings
are never affected by the mixing. In particular from (5.4) one can find the spectrum of
the couplings in the potential, not only for the relevant ones but also for the marginal
and all the irrelevant couplings. Similarly, the beta function (5.6) with the correction
(5.9) gives the spectrum of all the z-couplings, at order ε. These are made more explicit
in the following subsection.

5.2. Spectrum

In order to proceed with explicit results let us stick to the following convention
throughout this section for the expansions of the functions v(ϕ), z(ϕ) and of the cor-
responding beta functionals in powers of the field

v(ϕ) = ∑
k=0

gk ϕk

z(ϕ) = ∑
k=0

hk ϕk

βv(ϕ) = ∑
k=0

βk
v ϕk

βz(ϕ) = ∑
k=0

βk
z ϕk.

(5.12)

The choice of normalization for the couplings is of course physically irrelevant. An ex-
plicit computation using the beta function (5.4) and the expansions (5.12) shows that
the matrix ∂βi

v/∂gj evaluated at the fixed point, which is for dimensional reasons diag-
onal, has the elements −θi = −d + i(d− 2)/2 + γ̃i on its diagonal, with the following
anomalous parts10

γ̃i = i
η

2
+

(n− 1)i!
(i− n)!

2 n!
(2n)!

[
ε− n

n− 1
η

]
+ 2n η δ2n

i

+
(n− 1)i!n!6

(2n)!2
Γ(δn) ∑

r+s+t=2n
r, s, t 6= n

Kn
rst

(r!s!t!)2

[
2n!

3(i− n)!
− r!

(i− 2n + r)!

]
ε2

+
(n− 1)2i!n!5

(2n)!2 ∑
s+t=n

n− 1 + Ln
st

(s!t!)2

[
1

(i− n)!
− 2s!

n!(i− 2n + s)!

]
ε2. (5.13)

For the relevant components, that is for the range 0 ≤ i ≤ 2n− 1, these are simply the
anomalous dimensions with accuracy O(ε2). The last term in the first line, which comes

10 Note that in order to be able to make sense of the formula for the anomalous dimensions γ̃i for general

i, the terms involving factorials of negative numbers in the denominators are interpreted to be zero by

analytic continuation.
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from the term proportional to η in (5.4), does not contribute in the relevant sector. How-
ever, if one wishes to find the anomalous dimension of the marginal coupling, one has
to take this term into account. Within the same O(ε2) accuracy, for the irrelevant cou-
plings, which we do not consider here, additional mixing transformations are required
to diagonalize the stability matrix.

From (5.13) one can readily see that for i = 1 all the terms except the first vanish.
Also, interestingly, for i = 2n− 1 which corresponds to the descendant operator φ2n−1

in the interacting theory because of the Schwinger-Dyson equations, the O(ε2) terms in
the second and third line of Eq. (5.13) vanish so that these anomalous dimensions take
the simple form

γ̃1 =
η

2
, γ̃2n−1 = (n− 1)ε− η

2
. (5.14)

The two anomalous dimensions then sum up to γ̃1 + γ̃2n−1 = (n− 1)ε, which is equiv-
alent to the scaling relation θ1 + θ2n−1 = d and proved in general in appendix B.

The correction (5.9) allows us to go beyond the local potential approximation and
compute at order ε the block M(2) in (4.7) which is a block-diagonal matrix with two by
two blocks. The i-th block which gives the mixing of the φi+2n and φi(∂φ)2 couplings is
given in the {φi+2n, φi(∂φ)2} basis as

i
n− 1

1 +

 − (i+2n)
2 + 2(n−1)n!

(2n)!
(i+2n)!
(i+n)! 0

−2(n−1)2n!3

(2n)!2
(i+2n)!

i! cn−1(1− δi
0) − i

2 +
2(n−1)n!
(2n)!

(i+1)!
(i−n+1)!

 ε + O(ε2) , (5.15)

where 1 is the two dimensional identity matrix. For each i the two eigenoperators have
the same canonical scaling at the critical dimension. The eigenvalues of the stability
matrix include the scaling dimensions −θi+2n, given in Eq. (2.14), and ( d

2 − 1)i + ω̃i,
which is the analog for z-couplings in the notation of [7].

From these, one can then read off the anomalous parts γ̃i and ω̃i of the v and z cou-
pling scaling dimensions at order ε which are valid not only for 0 ≤ i ≤ 2n− 3 described
by the above matrix but for all i, according to the discussion in the previous subsection.
In summary, again interpreting the factorials to be infinite for negative integer argu-
ments, and for i ≥ 0

γ̃i =
2(n− 1)n!

(2n)!
i!

(i− n)!
ε ω̃i =

2(n− 1)n!
(2n)!

(i + 1)!
(i− n + 1)!

ε . (5.16)

This reproduces the result of [7]. The γ̃i in Eq. (5.16) also match the anomalous dimen-
sions found in [9, 10] from CFT constraints.

Beyond the leading order for the anomalous dimensions, the stability matrix will not
be lower-triangular anymore, and in order to find the anomalous dimensions of higher
and higher powers of φ one has to take into account (up to cubic order contributions
of) operators of higher and higher dimensions. In the simplest case, 2n < i < 4n− 3,
one needs to include cubic corrections to βz, and furthermore, take into account the
z(ϕ) contribution to βv at cubic level. The only term contributing to this last piece is
proportional to v(n)(φ)2 z(φ) and leads to O(ε2) corrections in the upper right element
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in (5.15). These higher order corrections are not considered here and are left for future
work.

Besides (5.16), an extra information which has been obtained in [9] using conformal
symmetry and the Schwinger-Dyson equations is the leading order value of γ2 for n >
2, which is of order ε2. For n > 2, putting i = 2 in (5.13) gives

γ̃2 = η − 2(n− 1)n!6

(2n)!2
Γ(δn)

Kn
2n−2,1,1

(2n− 2)!
ε2 =

8(n + 1)(n− 1)3n!6

(n− 2)(2n)!3
ε2 , (5.17)

which is also in agreement with the result found in [9].

5.3. OPE coefficients

The only non-zero C̃k
ij coefficients that are extracted from the beta functions are those

that are massless, or equivalently, satisfy the universality condition i + j− k = 2n. Con-
trary to the anomalous dimensions, the OPE coefficients do depend on the normaliza-
tion of the couplings. Throughout this section we continue to use the normalization
where couplings appear without factorials in the v(ϕ), z(ϕ) expansions, as defined in
(5.12). On top of this, it turns out convenient to make a global rescaling of the couplings
by redefining the potential according to11

v→ 4
(n− 1)cn−1 v . (5.18)

This removes the parameter c from the beta functions (5.4) and (5.6). In such a nor-
malization, using the beta function (5.4), the expansion of the potential and its beta
functional in powers of the field (5.12), and the fixed point relation (5.7), a lengthy but
straightforward calculation based on the definition (2.5) gives the MS OPE coefficients
(k = i + j− 2n)

C̃k
ij =

1
n!

i!
(i− n)!

j!
(j− n)!

− Γ(δn)
n!3

(2n)! ∑
r+s+t=2n

r, s, t 6= n

Kn
rst

r!s!t!2
j!

(j− s− t)!
i!

(i + s− 2n)!
ε

− (n− 1)n!2

(2n)! ∑
s+t=n

n− 1 + Ln
st

s!t!

[
1
n!

j!
(j− n− s)!

i!
(i− n− t)!

+
1
s!

i!
(i− n)!

j!
(j− n− s)!

+
1
s!

j!
(j− n)!

i!
(i− n− s)!

]
ε +

2(n− 1)n!3

(2n)!
(i δ2n

j + j δ2n
i + 2n δ2n

i δ2n
j )ε . (5.19)

Notice that, strictly speaking, the above quantity is in fact the matrix Nk
ij defined in

(2.5), but because the mixing matrix S i
a is diagonal (in the relevant and marginally ir-

relevant part of the spectrum) it coincides with the OPE coefficients C̃k
ij in our scheme.

11 In Sections 3.1 and 3.2 this rescaling was used for both the Ising and the Lee-Yang universality classes

with n = 1 and n = 3
2 respectively.
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The last contribution in (5.19) comes from the anomalous dimension term in (5.4). Simi-
lar to the anomalous dimensions (5.13) one has to keep in mind that terms with negative
factorials in the denominators vanish. Notice that the first term is nothing but the com-
binatorial factor that comes from Wick contractions in the free theory. The normalization
we have adopted therefore coincides with the CFT normalization where the coefficient
of the two point function 〈φ φ〉 is set to unity.

It is important to comment on the range of validity for the i, j indices in the above
formula. As in the case of anomalous dimensions, Eq. (5.19) is, of course, valid for all
relevant components, that is, positive integer indices smaller than 2n. Notice that in this
case the last term does not contribute. However, this is not all we can extract from this
formula. For instance, let us consider the case i < n. The above formula will then be
of order ε. At this level of approximation Eq. (5.19) is valid for any j, and not only the
relevant ones. This is because mixing effects enter only at NLO. Therefore for such cases
one can use (5.4) without any concern about the mixing. Notice that for these cases only
the second term on the first line and the last term in Eq. (5.19) contribute. The particular
case C̃1

1,2n gets contribution only from the last term in (5.19) and takes the simple form

C̃1
1,2n =

2(n− 1)n!3

(2n)!
ε . (5.20)

This reproduces the result found in [9] from CFT considerations, and therefore the com-
putation done in the MS scheme reproduces an entire family of CFT OPE coefficients at
least at order O(ε).

Finally, let us consider Eq. (5.19) for k = 1. The indices i, j must then satisfy i + j =
2n− 1, so we choose them as i = n−m, j = n + m + 1, for m = 1, . . . , n− 1. The OPE
coefficients reduce to

C̃1
n−m,n+m+1 =

(n− 1)2

m(m + 1)
(n + 1 + m)!(n−m)!
(n− 1−m)!(n + m)!

n!3

(2n)!
ε . (5.21)

This MS result is also in agreement with [9], and with [10] if one takes into account the
different normalizations of the operators φl.

5.4. Examples of CFT data for specific theories

Despite the above general treatment being comprehensive of all the even multicritical
models, we believe it is interesting to show some explicit results for specific theories.
The case of Ising had already been studied in subsections 2.2 and 3.1. In this subsection
we collect the CFT data for the Tricritical and Tetracritical universality classes.

The Tricritical universality class corresponds to n = 3. The anomalous dimen-
sions for the relevant and marginal operators at O(ε2) can be obtained from the general
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formula (5.13) and are given explicitly as

γ̃1 =
ε2

1000

γ̃2 =
4ε2

125

γ̃3 =
ε

5
+

(
2037
5000

+
27π2

400

)
ε2

γ̃4 =
4ε

5
+

(
601
625

+
27π2

200

)
ε2

γ̃5 = 2ε− ε2

1000

γ̃6 = 4ε−
(

1689
250

+
27π2

40

)
ε2 .

(5.22)
The scaling relation γ̃1 + γ̃5 = 2ε is satisfied. Notice that restricting to order ε one can
immediately extend these results to all the couplings including the irrelevant ones, and
even further to the z(ϕ) couplings. These were reported in Eqs. (5.16). It is also easy to
extract from the general equation (5.19) the universal OPE coefficients in the MS scheme
with relevant components at O(ε). These are listed below

C̃1
25 = 6ε

C̃1
34 = 24− 72

5
ε

C̃2
35 = 60− 90ε

C̃2
44 = 96− 18

5
(32 + 3π2)ε

C̃3
45 = 240− 6(98 + 9π2)ε

C̃4
55 = 600− 15(167 + 18π2)ε .

(5.23)

Furthermore Eq. (5.19) gives also the following leading order OPE coefficients with a
marginal component

C̃1
16 =

6
5

ε C̃2
26 =

192
5

ε , (5.24)

and an infinite set of OPE coefficients with an irrelevant component

C̃3
27 = 126 ε C̃4

28 = 336 ε C̃5
29 = 756 ε · · · (5.25)

The OPE coefficients C̃1
25 and C̃1

16 exactly match the corresponding structure constants
computed with CFT methods in [9]. For the others there are no available CFT results to
compare with.

For the Tetracritical universality class, which corresponds to n = 4, there are
seven relevant couplings whose anomalous dimensions are

γ̃1 =
9ε2

171500

γ̃2 =
27ε2

171500

γ̃3 =
7587ε2

171500

γ̃4 =
3ε

35
+

3(477948 + 78400 Γ[1
3 ]

3 + 99225 log 3− 33075
√

3π)ε2

3001250

γ̃5 =
3ε

7
+

9(232287 + 39200 Γ[1
3 ]

3 + 66150 log 3− 22050
√

3π)ε2

1200500

γ̃6 =
9ε

7
+

3(646533 + 98000 Γ[1
3 ]

3 + 198450 log 3− 66150
√

3π)ε2

600250

γ̃7 = 3ε− 9ε2

171500
, (5.26)

while the anomalous dimension of the marginal coupling is given as

γ̃8 = 6ε−
3(342516 + 39200 Γ[1

3 ]
3 + 99225 log 3− 33075

√
3π)ε2

42875
. (5.27)
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As expected, the spectrum satisfies the scaling relation γ̃1 + γ̃7 = 3ε. Using Eq. (5.19)
we also list here, at order ε, all the OPE coefficients with relevant components

C̃1
27 =

36
5

ε

C̃1
36 =

972
35

ε

C̃1
45 = 120− 432

7
ε

C̃2
37 =

1566
5

ε

C̃2
46 = 360− 324

35
(5
√

3π − 58− 15 log 3)ε

C̃2
55 = 600− 240

7
(18 + Γ[1

3 ]
3)ε

(5.28)

C̃3
47 = 840− 324

5

(
5
√

3π − 38− 15 log 3
)

ε

C̃3
56 = 1800− 4

7

(
320
√

3πΓ[1
3 ]

2Γ[2
3 ]
−1 + 81(84 + 15 log 3− 5

√
3π)

)
ε

C̃4
57 = 4200− 12

(
1506 + 100 Γ[1

3 ]
3 + 405 log 3− 135

√
3π
)

ε

C̃4
66 = 5400− 2

7

(
4800
√

3πΓ[1
3 ]

2Γ[2
3 ]
−1 + 81(822 + 195 log 3− 65

√
3π)

)
ε

C̃5
67 = 12600− 54

5

(
7292 + 800 Γ[1

3 ]
3 + 2025 log 3− 675

√
3π
)

ε

C̃6
77 = 29400− 126

5

(
11519 + 1400 Γ[1

3 ]
3 + 3375 log 3− 1125

√
3π
)

ε ,

(5.29)

as well as some with a marginal component

C̃1
18 =

72
35

ε C̃2
28 =

432
7

ε C̃3
38 =

60696
35

ε , (5.30)

the first of which can also be found from (5.20). We finally report here the first few of
the infinite set of leading order OPE coefficients with an irrelevant component

C̃3
2,9 =

1296
5

ε C̃4
2,10 = 864 ε C̃5

2,11 = 2376 ε · · ·

C̃4
3,9 =

33048
5

ε C̃5
3,10 = 20088 ε C̃6

3,11 =
260172

5
ε · · ·

(5.31)

For this universality class the OPE coefficients C̃1
27, C̃1

36 and C̃1
18 correctly match the

corresponding structure constants computed in [9]. The considerations made for the
Tricritical case on the full comparison to CFT are equally valid for the Tetracritical
universality class.

6. CONCLUSIONS

In this paper we have shown how to extend renormalization group (RG) techniques
to the computation of some OPE coefficients at a scale invariant critical points of scalar
quantum field theories. The approach of this work employs dimensional regularization
in the MS scheme at the functional level and gives access to a specific set of “massless”
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OPE coefficients, which are related to terms in the beta functions that are universal at the
upper critical dimensions of the models under investigation. For general multicritical
models we have extracted these quantities, and we have shown that at order O(ε) they
agree with the corresponding OPE coefficients computed directly with CFT methods,
when available on both sides.

Let us briefly summarize our procedure. In the vicinity of a fixed point the RG flow
can be expanded in powers of the couplings. The information on the universal quanti-
ties is encoded in the coefficients of this expansion, in which the linear and the quadratic
parts play a special role. The linear terms give rise to the so-called critical exponents
which are related to the scaling properties of the operators of the theory and have been
the focus of most RG studies so far. The quadratic terms instead give information on
some OPE coefficients, which can thus be extracted from the general knowledge of the
beta functions. Whenever scale invariance implies conformal invariance, the OPE co-
efficients are directly related to the structure constants of the underlying CFT and thus
our analysis strengthens the link between RG and CFT by showing explicitly how, and
which part of, the CFT data can be determined to some extent directly within an RG
approach.

The scheme dependence of the results can be analyzed in terms of the coupling redef-
inition connecting two different schemes. It follows that the spectrum is invariant and
in this sense universal, while the coefficients of the quadratic terms generally transform
inhomogeneously under coupling redefinitions. In a dimensionally regularized MS
scheme one has access only to the “massless” quadratic coefficients which are universal
at d = dc, but potentially differ in other schemes at higher orders in the ε-expansion.
A first observation is that our computational scheme gives the correct values at order
O(ε).

After a first pedagogical application of the approach to the investigation of the Ising

universality class, we have introduced a very convenient functional generalization of
the standard perturbative RG, in which all the beta functions for the couplings are ob-
tained from few simple generating functions: the beta functionals. This functional per-
turbative framework is a very useful tool that naturally organizes the beta functions in
simple generating functionals with few independent c-number coefficients, which, we
stress, at leading and next-to-leading order are RG-scheme independent. As a result
all the quantities we have computed (anomalous dimensions at order O(ε2) and OPE
coefficients at order O(ε)) depend essentially only on these universal coefficients.

The simplest of these generating functionals is βV , which encodes the RG flow of
the whole potential V(φ) and thus of all couplings of operators of the form φk. Con-
tributions of operators involving more derivatives can be included systematically. The
first such contribution comes from βZ, which generates all beta functions of the O(∂2)
operators φk(∂φ)2 included in the field dependent wavefunction Z(φ). A goal of our
work has been to emphasize some of the advantages of this shift towards a functional
approach to standard perturbation theory in the ε-expansion, because it grants an easy
and systematic determination of important universal quantities like both the scaling
dimensions and expressions for the massless MS OPE coefficients.
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As a first application of the functional perturbative RG we have reconsidered the
Ising and the Lee-Yang universality classes, as representative of the multicritical uni-
tary and non unitary families, at the level of the local potential approximation (LPA), i.e.
without taking into account derivative interactions, and we have showed how the re-
sults extracted from the RG coincide with those recently obtained with CFT techniques.
This we take as evidence that the MS scheme is effective in the computations of the
leading ε-corrections to some of the OPE coefficients.

We have also outlined a systematic approach to the inclusion of higher derivative
interactions in functional perturbative RG, and discussed the general mixing patterns
among operators at different orders in the derivative expansion using the general φ2n

models as examples. The efficiency of the functional RG techniques is most clearly
seen in this context, since we are able to collect infinite towers of critical exponents and
OPE coefficients at order O(ε) in compact formulas. This in particular has allowed a
straightforward check of our MS estimates with the results obtained recently with CFT
techniques [9, 10]. We stress that for the general φ2n our approach is a multi-loop anal-
ysis which, for almost all models, is characterized by an ε-expansion below a fractional
critical dimension [39].

The computation of the anomalous dimensions for the multi-critical models in a func-
tional framework was previously carried out by O’Dwyer and Osborn [7] and here we
have limited ourself essentially to the same order of the perturbative expansion. The
analysis is first done without taking into account derivative interactions, and afterwards
including the leading order of the mixing with O(∂2) derivative interactions. Using di-
mensional analysis we have imposed further constraints on the stability matrix by de-
termining possible terms that can appear at the quadratic level in any beta function. In
particular we have shown that at order ε the stability matrix is lower-triangular. This
allows, in agreement with the CFT analysis, the determination of the anomalous dimen-
sions for all operators contained in the potential V(φ) and the wavefunction Z(φ) up
to order ε, and therefore is not limited to the relevant operators. We have also given
the O(ε2) results for the scaling dimensions up to the marginally irrelevant operator
φ2n, and provided the O(ε) values for a family of infinite “massless” OPE coefficients
for all the multi-critical universality classes considered, which are found to match the
corresponding values from CFT analysis, when available. Clearly more investigations
on universality and scheme dependence of the results presented here are required. Here
we just observe that the functional framework in the context of perturbation theory ε-
expansion strongly constrains the possible redefinitions of the couplings giving support
for the success of our approach. We shall discuss in detail these issues in a forthcom-
ing paper [38]. On the other hand this fact can be seen as another argument in favor
of adopting a functional approach to RG analysis. To the best of our knowledge, very
few results have been obtained even at order O(ε) in CFT computations. It would be
especially interesting to have CFT results at order O(ε2) whose comparison with the RG
NNLO estimates would show possible artifacts induced by MS scheme.

Summarizing, the main results of our paper are highlighted as follows: Inspired by
the analysis presented by Cardy [2] which relies on an ultraviolet cutoff, we have pro-
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posed to extract the OPE coefficients of a CFT from the coefficients of the quadratic
terms in the coupling expansion of the beta functions around the fixed point using di-
mensional regularization and MS scheme at functional level. We have discussed the
scheme dependence of OPE coefficients obtained in this way and identified those that
are less sensitive to changes of scheme, which turn out to be the ones that are dimension-
less at the upper critical dimension. The order ε OPE coefficients that we have found are
compared with the literature on CFT approaches and when available with both meth-
ods it is shown that the results always agree. This analysis is done for all multicritical
even models, for which the beta functions were obtained in [7], as well as the Lee-Yang
model as a representative of the odd multicritical models for which we have reported
the functional betas at NLO (3.16). We have demonstrated the power of the functional
approach by obtaining compact formulas (3.23), (5.19) encompassing an infinite number
of OPE coefficients. Similar formulas are obtained for the order ε2 critical exponents of
the relevant operators (3.22), (5.13)12 which, for instance, allow us to verify the shadow
relations (5.14) for all such models in one shot. Finally we have argued that dimensional
analysis alone constrains the structure of the beta functions and in particular the stabil-
ity matrix. We have used this information to prove that the formulas for the order ε

critical exponents (5.16) are valid for all the V and Z couplings.
The functional perturbative RG as introduced in this paper is very general and can

be systematically pushed to higher levels of accuracy by including new families of op-
erators, a fact which is made particularly evident by working at the functional level. We
have recently also successfully applied this method to study [40] the non unitary family
of multi-critical universality classes described by single scalar field models with odd po-
tentials, whose first elements are the Lee-Yang and tricritical Lee-Yang (Blume-Capel [26,
41]), for which some CFT results are already available [9] finding again full agreement.
We plan to further develop the main ideas and apply the method to other universality
classes, e.g. for multifield cases, as well as to carry on investigations at higher orders in
perturbation theory.

Another extremely important line of investigation, which could possibly overcome
the limitations of the perturbative approach, is to move to one of the non-perturbative
functional RG frameworks [28–31]. This step is absolutely non trivial because such ap-
proaches are based on massive renormalization schemes, which often result into a much
stronger deformation of the basis of scaling operators (as compared to the Gaussian ba-
sis), and make it difficult to establish a direct link to the CFT results. We leave this line
of investigation to future research.
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Appendix A: Perturbative expansion

In this appendix we review briefly how perturbative calculations in the functional
form are done. We concentrate on the leading and next to leading order results. We will
be brief and closely following [7].

The ε-expansion is intimately related to an expansion in the couplings through their
fixed point value. The perturbative expansion performed here is therefore in powers of
couplings that define the potential V or the function Z. However, in dimensional regu-
larization, given a universality class φ2n and restricting to operators of a fixed number of
derivatives, there is a one-to-one correspondence between terms of a certain loop order
in the beta functional and those of fixed coupling order.

The leading order counter-terms are quadratic in the couplings. At this level there
are two possible terms that contribute to the V, Z counter-terms. One is represented
diagrammatically as in Fig. 1 and involves V contributions only. The corresponding
expression for this diagram is

∑
r≥2

1
2 r!

∫
ddx ddy V(r)(φx) Gr

x−y V(r)(φy) . (A.1)

It turns out that for r = n this “melon” type diagram has a pole that contributes to the
potential. On the other hand, for r = 2n− 1 there is a pole term with two derivatives
that contributes to the function Z. The corresponding counter-terms in the MS scheme
can be straightforwardly computed using (A.1) and are given by

Sc.t.(φ) =
1
ε

∫
ddx

{
cn−1

4 n!
V(n)(φ)2 − (n− 1)c2n−2

16 (2n)!
V(2n)(φ)2(∂φ)2

}
. (A.2)

The first counter-term is therefore of (n − 1)-loop order, while the second term is at
2(n− 1) loops. The other diagram that contributes at quadratic level is shown in Fig. 2.
This involves both the V and Z functions and contributes to the flow of Z for r = n,
which will therefore be of (n − 1)-loop order. Notice that there are three different di-
agrams of this kind depending on whether one, two or none of the fields in (∂φ)2 are
involved in the propagators, as shown in Fig. 2.

At cubic order in the couplings, restricting to the contribution from V only, i.e. LPA,
there are three types of counter-term diagrams for the potential. The first one can be
seen as a one loop graph with three vertices whose propagators are replaced with a
bunch of r, s and t propagators as shown in Fig. 3a. In order to have a pole contributing

V
(r)

r

V
(r)

FIG. 1: Diagram contributing to the counter-term of the potential V and the function Z
at quadratic level in the couplings
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Z(r)(∂φ)2
r

V (r)
Z(r−1)∂φ

Z(r−2)

FIG. 2: Diagrams contributing to the counter-term of the Z function at quadratic level
in the couplings

to the potential the number of propagators must be constrained to r + s + t = 2n. The
second one consists of two melon diagrams as in Fig. 3b, and the third graph, shown
in Fig. 3c, is a melon diagram involving the potential and its counter-term at quadratic
level Vc.t.(φ), which is the first term on the right-hand side of (A.2). In both diagrams the

r s

t

V (r+s)

V (r+t) V (s+t)

(a)

V (s+t)
s

V (s) V (t)

t

(b)

V
(r)
c.t.

r

V (r)

(c)

FIG. 3: Diagrams contributing to the counter-term of the potential at cubic level in the
couplings.

ε singularity that contributes to the potential occurs when the number of propagators in
each melon is equal to n. These three diagrams are therefore all of 2(n− 1)-loop order.
They give rise to the cubic terms in the second and third lines of (5.4).

The precise relation between the counter-terms and the dimensionful beta functions
of the potential at quadratic level βV,2 and at cubic level βV,3 and also the dimensionful
beta of the wavefunction at quadratic level βZ are given by the following equations

βV,2 = εVc.t.2 − µ
d

dµ

∣∣∣∣
1
Vc.t.2 = (n− 1)εVc.t.2, (A.3)

βV,3 = εVc.t.3 − µ
d

dµ

∣∣∣∣
1
Vc.t.3 − µ

d
dµ

∣∣∣∣
2
Vc.t.2 = 2(n− 1)εVc.t.3 − µ

d
dµ

∣∣∣∣
2
Vc.t.2, (A.4)

βZ = − µ
d

dµ

∣∣∣∣
1
Zv2

c.t.2 − µ
d

dµ

∣∣∣∣
1
Zvz

c.t.2 = 2(n− 1)εZv2

c.t.2 + (n− 1)εZvz
c.t.2. (A.5)

The total beta of the potential βV = βV,2 + βV,3 and the beta of the wavefunction βZ
are related to the dimensionless betas through (3.3) and (3.6), respectively. The cubic
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counter-term Vc.t.3(φ) is the sum of the diagrams (3a), (3b) and (3c), and the quadratic
counter-terms for the wavefunction Zv2

c.t.2 and Zvz
c.t.2 are extracted respectively from the

second term on the r.h.s of (A.2) and from the counter-term diagram of Fig. (2) for r = n.
The µ-derivatives with an index 1 are taken using the tree-level flow, which for the
derivatives of the potential and the wavefunction are given by the following relations

µ
d

dµ

∣∣∣∣
1
V(r) = −r− 2

2
ε V(r), µ

d
dµ

∣∣∣∣
1
Z(r) = − r

2
ε Z(r), (A.6)

while the µ-derivative with an index 2 is based on the quadratic flow. In particular

µ
d

dµ

∣∣∣∣
2
V(r) = β

(r)
V,2. (A.7)

Appendix B: A general scaling relation

In this appendix we would like to obtain a relation valid among the scaling of two
couplings induced by the RG flow. This information can then be compared to the rela-
tion obtained in CFT for the scaling of the field operator and one of its descendants.

We have already encountered the scaling dimensions of the operator φi and its cor-
responding dimensionless coupling gi, which were denoted by ∆i and θi in Eqs. (2.15)
and (2.14), together with their anomalous parts γi and γ̃i respectively. Let us consider
for a moment the case of a multi-critical theory φ2n. Then, for i 6= 2n− 1, the relation
θi + ∆i = d holds. This is equivalent to γi = γ̃i. Instead, for the descendant operator
corresponding to i = 2n− 1 this relation is modified to θi + ∆i = d + η by the presence
of η = 2γ1 = 2γ̃1, which is twice the anomalous dimension of φ. One can link this fact
to the relation γ2n−1 = (n − 1)ε + γ1 coming from the descendant constraint in CFT,
∆2n−1 = 2 + ∆1 and from another relation that we shall prove in general in the follow-
ing. Indeed we shall see that the latter is equivalent to γ̃2n−1 + γ̃1 = (n − 1)ε so that
the two anomalous dimensions (associated to the CFT operator and RG coupling) are
related by γ2n−1 = γ̃2n−1 + η.

We shall work at a general functional level [28]. Let us consider for the truncation
with two functions V and Z which describes deformations with composite (non-total
derivative) operators containing up to two derivatives. The beta functions describing
the RG flow are generically written as in Eqs. (3.3) and (3.6).

Linearizing such equations around the FP one obtains

θδv = ∑
i

∂βv

∂v(i)
δv(i)+∑

i

∂βz

∂z(i)
δz(i) (B.1)

= −d δv +
1
2
(d−2+η)ϕ δv′ + µ−d ∑

i

∂βV

∂v(i)
δv(i) + µ−d ∑

i

∂βV

∂z(i)
δz(i)

θδz = ∑
i

∂βz

∂v(i)
δv(i)+∑

i

∂βz

∂z(i)
δz(i) (B.2)

= η δz +
1
2
(d−2+η)ϕ δz′ + Z−1

0 ∑
i

∂βZ

∂v(i)
δv(i) + Z−1

0 ∑
i

∂βZ

∂z(i)
δz(i) .
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Let the fixed point solution be (v∗(ϕ), z∗(ϕ)). Taking the derivative in ϕ of the fixed
point equations

0 =
dβv(v∗, z∗, ϕ)

dϕ
= ∑

i

∂βv

∂v(i)
v(i+1)
∗ + ∑

i

∂βz

∂z(i)
z(i+1)
∗ +

∂βv

∂ϕ

0 =
dβz(v∗, z∗, ϕ)

dϕ
= ∑

i

∂βz

∂v(i)
v(i+1)
∗ + ∑

i

∂βz

∂z(i)
z(i+1)
∗ +

∂βz

∂ϕ
, (B.3)

one immediately sees that (δv, δz)r = (v′∗(ϕ), z′∗(ϕ)) is a solution of the linearized equa-
tion and is a relevant eigenoperator with eigenvalue θr =

1
2(d− 2 + η). Moreover, since

∑i
∂βV,Z
∂v(i)

δv(i) contains only terms with at least two derivatives on v, one can easily check
that (δv, δz)1 = (ϕ, 0) is a solution of the linearized equations and is a relevant eigenop-
erator with eigenvalue θ1 = 1

2(d + 2− η). Therefore one can immediately obtain from
the RG flow the scaling relation

θr + θ1 = d .

Specializing now to the multi-critical φ2n models, this is equivalent to the relation given
after Eq. (5.14), i.e. γ̃2n−1 + γ̃1 = (n− 1)ε.

Appendix C: Relations with the functional non-perturbative RG

In this appendix we want to spell out an interesting relation that the functional per-
turbative RG has with the functional non-perturbative RG in the effective average action
implementation that was originally proposed by Wetterich [30] and independently by
Morris [31].

In this approach a scale k is introduced by modifying the theory’s propagator through
the inclusion of an IR cutoff Rk in momentum space. This modification generates an RG
flow equation for the generator of the irreducible diagrams

k∂kΓk =
1
2

Tr
(

Γ(2) + Rk

)
k∂kRk . (C.1)

Using a truncation of the space of all possible operators appearing in Γk such as (3.1)
and adopting a specific form for the cutoff, we can compute the flow of the effective
potential

βV = k∂kV = cd
kd+2

k2 + V′′
, (C.2)

in which we defined c−1
d = (4π)d/2Γ(1 + d/2). To compute the above flow one can

choose to work with the so-called optimized cutoff Rk(q2) = (k2− q2)θ(k2− q2) because
the result is particularly simple, but the results of this appendix will be independent of
this particular choice.

Let us expand the right hand side of (C.2) in powers of V′′(ϕ)

βV = cd

{
kd − kd−2V′′ + kd−4(V′′)2 − kd−6(V′′)3 + . . .

}
. (C.3)
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For any given dimensionality, we shall refer to the terms of this expansion as critical
if they scale as k0 and off-critical if they do not. For example the term cdkd−4(V′′)2 is
critical in d = 4, while all other terms are off-critical. The critical terms have two im-
portant properties: On the one hand they are independent by the cutoff; this is because
once the momentum scale q2 is integrated out, the scale k is what remains of Rk(q2),
so independence of k implies independence of the cutoff function itself (this of course
can be proven more rigorously). On the other hand they are related to the logarithmic
divergences of the theory; using again d = 4 as an example

V = −
∫ Λ dk

k
βV ∼ −cd

∫ Λ dk
k

kd−4(V′′)2 ∼ −(V′′)2 log Λ in d = 4 , (C.4)

which also implies that they correspond to the 1
ε poles of dimensionally regulated per-

turbation theory.
It is instructive to choose a procedure that deliberately removes the off-critical terms

from the flow (C.2). We obtain

βV = c4(V′′)2 =
1

2(4π)2 (V
′′)2 in d = 4 (C.5)

βV = −c6(V′′)3 = − 1
6(4π)3 (V

′′)3 in d = 6 . (C.6)

It is easy to see that the above results correspond to the leading one loop contributions
of the two tutorial examples Ising and Lee-Yang. These two examples are the only two
universality classes that are captured through critical terms by the above procedure,
even though (C.2) is well known to be able to “see” critical points corresponding to all
the φ2n models [42] and more [26]. The reason why only those two critical terms appear
has to do with the fact that a local potential truncation of the operator space of Γk does
not contain all possible terms that can be generated perturbatively by higher loops. This
should also explain why (C.2) returns only the leading terms of the Ising and Lee-Yang

universality classes. The study of truncations that include the higher loops effects has
been initiated in [43], in which also the scheme-dependence of functional renormaliza-
tion group is carefully investigated, but those results have not yet been formulated in a
fully functional form as in the models of the present paper.

The careful reader must have noticed that the second term of (C.3) is critical for any
even value of d. In d = 2 the critical model corresponds to the Sine-Gordon universality
class. The beta function of the dimensionful potential is

βV = −c2V′′ = − 1
4π

V′′ , in d = 2 . (C.7)

It is interesting to investigate explicitly the flow of the dimensionless potential in d = 2,
which is

βv = −2v(ϕ)− 1
4π

v′′(ϕ) . (C.8)

36



The above beta function does not contain the scaling term contributed by the field ϕ

because the field is canonically dimensionless in d = 2 and fluctuations do not gen-
erate a nonzero anomalous dimension. Interestingly, the fixed point solution of the
Sine-Gordon universality can be obtained by directly integrating the right hand side of
(C.8). Using v′′(0) = σ as boundary condition we obtain

v(ϕ) = − σ

8π
cos(
√

8πϕ) , (C.9)

in which we can recognize the well-known Coleman phase
√

8π. This fact is quite
amazing since the Coleman phase is a non-perturbative result, which we just obtained
on the basis of a perturbative approximation. We plan to return to the study of the
Sine-Gordon universality class and of all other universal terms in a future work.

As mentioned above, the method presented in this appendix is limited to the uni-
versal terms which come from one-loop diagrams because of the local potential trun-
cation. The truncation of this appendix is by definition unable of dealing with higher
derivative operators, or operators which are generally generated beyond the first loop.
Furthermore, we have made a specific choice of the cutoff which forces us to resort to
the rather brute force method of “chopping” all nonzero powers of the cutoff scale k to
locate universal terms. A more refined approach to both these shortcomings which also
aligns with our discussion of the scheme transformations of Sect. 2.3 can be found in
[36] where special “normal” coordinates in the space of all couplings are found in the
context of the functional renormalization group (using the Polchinski equation instead
of the Wetterich equation, but arguably the conclusions are very similar). The normal
coordinates of [36] could be understood as a geometrical generalization of the basis of
couplings with well-behaved scaling properties introduced in Sect. 2.3 and their appli-
cation clearly shows that a consistent renormalization of correlators of all composite
operators, thus including in principle all possible OPE coefficients, is possible within
the functional renormalization group approach (at least in the vicinity of the Gaussian
fixed point). In order to achieve the same results, the functional method presented in the
main text of this paper requires the consistent inclusion of higher derivative operators
according to their mixing patters as described in Sect. 4.
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