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Abstract. Hermitian plus possibly non-Hermitian low rank matrices can be efficiently reduced
into Hessenberg form. The resulting Hessenberg matrix can still be written as the sum of a Hermitian
plus low rank matrix. In this paper we develop a new implicit multishiftQR-algorithm for Hessenberg
matrices, which are the sum of a Hermitian plus a possibly non-Hermitian low rank correction. The
proposed algorithm exploits both the symmetry and low rank structure to obtain a QR-step involving
only O(n) floating point operations instead of the standard O(n2) operations needed for performing
a QR-step on a Hessenberg matrix. The algorithm is based on a suitable O(n) representation of
the Hessenberg matrix. The low rank parts present in both the Hermitian and low rank part of the
sum are compactly stored by a sequence of Givens transformations and a few vectors. Due to the
new representation, we cannot apply classical deflation techniques for Hessenberg matrices. A new,
efficient technique is developed to overcome this problem. Some numerical experiments based on
matrices arising in applications are performed. The experiments illustrate effectiveness and accuracy
of both the QR-algorithm and the newly developed deflation technique.
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1. Introduction. In the last few years many numerical techniques for comput-
ing eigenvalues of structured rank matrices have been proposed (see, e.g., [19, 2, 4]
and the references therein). In particular, the QR-algorithm received a great deal of
this attention. Suitable representations such as quasiseparable, diagonal-subdiagonal,
or Givens-weight to represent the structured rank matrix are essential for the devel-
opment of effective and efficient algorithms. A representation of the structured rank
Hessenberg matrix in terms ofO(n) parameters makes it possible to performQR-steps
in O(n) operations instead of the O(n2) operations required by standard methods.

This paper is concerned with the efficient computation of all the eigenvalues of an
n× n Hermitian matrix perturbed by a possibly non-Hermitian low rank correction.
This problem arises in different situations, for example, when a perfectly Hermitian
structure is corrupted by errors in only a few rows or columns. Another typical sit-
uation is the eigenvalues’ computation of matrices with the sizes of the off-diagonal
elements decaying rapidly away from the main diagonal. In this case, it can be com-
putationally convenient to approximate, up to a desired accuracy, the original matrix
by the sum of a Hermitian and a low rank matrix. In many other cases the problem to
be solved is modeled naturally in this form (see the numerical experiments). A typical
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‡Department of Computer Science, Università di Pisa, Largo Pontecorvo, 3, 56127 Pisa, Italy
(delcorso@di.unipi.it). This author was partially supported by the PRIN project: Analisi di strutture
di matrici: Aspetti teorici, computazionali e applicazioni.

2190



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QR-ALGORITHMS FOR HERMITIAN PLUS LOW RANK MATRICES 2191

example is the computation of roots of a polynomial expressed in a basis satisfying a
three-term recurrence giving rise to a Hermitian tridiagonal matrix plus a rank-one
correction. These matrices are referred to in the literature as comrade matrices [1].

More precisely, let A = S + UV H , A ∈ Cn×n, where S is Hermitian and U, V ∈
C

n×m, with m � n. A standard approach to computing the eigenvalues of A consists
in a preliminary reduction to Hessenberg form followed by the standardQR-algorithm.
The reduction to Hessenberg form takes O(n3) operations in general, but often one
can take advantage of the rank structure present in the original matrix and reduce the
cost to O(n2) [8, 9, 13]. It can be easily seen that the resulting Hessenberg matrix H
can still be expressed as the sum of a Hermitian and a low rank perturbation matrix.

In this paper a new suitable O(n) representation based on Givens transformations
of the Hessenberg matrix is first proposed. This representation allows performing
implicit multishift QR-steps involving only O(n) operations for each iteration. Since
the new representation makes deflation in the classical sense impossible, a solution to
this problem is also proposed.

In [7] QR-algorithms for Hessenberg matrices which are the sum of symmetric plus
low rank matrices were also presented. Our paper differs significantly from theirs. The
authors in [7] use the quasiseparable representation; i.e., they store the low rank part
by means of few vectors. Instead we use unitary 2× 2 transformations for storing the
low rank part. Since the two representations are different, the resulting QR-steps and
implementations are also completely different. In [7] the standard deflation technique
as present in Lapack is used. Using, however, the representation presented here,
this is not possible, and both the deflation technique and the successive QR-steps
on submatrices need to be adapted. Similar numerical experiments were performed,
making it possible to compare the two approaches.

2. Preliminary results. In this section we first discuss preliminary results es-
sential for understanding this article, and, in particular, we present the graphical
schemes used for representing the QR-factorization of a Hessenberg matrix. Second,
we discuss a similarity transformation of a Hermitian plus low rank matrix to a Hes-
senberg matrix, which is the sum of a Hermitian plus low rank matrix. It is shown in
the next section that the number of parameters for representing this Hessenberg ma-
trix is linear. For developing an implicit QR-algorithm, preservation of the structure
is essential. This is discussed in subsection 2.3, where the general scheme of implicit
QR-iterations is given.

2.1. Working with Givens transformations. Matrices with a rank structure
can be represented with an adapted form of the Givens-weight representation [5, 16,
18]. Sequences of Givens transformations admit an easily understandable graphical
representation. This representation will be used throughout the paper to show how
the algorithm works. For efficient use of this representation, some extra tools are
necessary such as the shift-through operation and the fusion operation. Let us first
explain the Givens-weight representation by an example.

The following graphical scheme represents the QR-factorization of a 6 × 6 Hes-
senberg matrix H , based on Givens transformations.
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The scheme corresponds to the factorization H = G1G2 . . . G5R. The matrix R is
shown on the right by the × (assume them all to be different from zero) and is clearly
upper triangular. The numbers on the vertical axis indicate the different rows of
the matrix. The brackets with arrows depict Givens transformations. The arrows
point to the rows the Givens transformations act on. The numbers on the bottom
line represent a sort of timeline, describing the temporal order of application of each
Givens transformation.

Givens transformations can also interact with each other by means of the fusion
or the shift-through operations (see [18, pp. 112–115]). The fusion operation will be
depicted as

➊ �↪→�
➋

� �

2 1
resulting in

➊ �
➋

�

1

and consists in the concatenation of two Givens transformations acting on the same
rows. The shift-through operation allows us to rearrange the order of some Givens
transformations (see [18]).

Graphically we will depict this rearrangement of Givens transformations as
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The shift-through operation can also be applied repeatedly. This results in shift-
through sequences. This is referred to as the shift-through operation of length �.

Lemma 2.1. Suppose we have the matrix product GWX, in which G denotes
a Givens transformation acting on rows 1 and 2. The matrices W and X are both
unitary matrices consisting of a descending sequence of � Givens transformations.
This means that both W and X consist of � successive Givens transformations. The
ith Givens transformation GW

i of W acts on rows i + 1 and i + 2. The ith Givens
transformation GX

i of X acts on rows i and i+1. The matrix product GWX can then

be rewritten as GWX = Ŵ X̂Ĝ, where Ĝ is now a Givens transformation acting on
rows �+1 and �+2. The unitary matrices Ŵ and X̂ are again descending sequences
of � Givens transformations.

Graphically, the situation described in the previous lemma is
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resulting in

➊ �
➋ �

�
�

➌
�
�
�
�

➍
�
�
�
�

➎
�
�
�
�×

➏
� �

6 5 4 3 2 1

where G is the first Givens transformation acting on rows 1 and 2 in the first picture
(marked with ×), W the leftmost chain of descending Givens, and X the rightmost
chain of Givens. The symbol �

�
represents that after this operation, we will have a

Givens transformation that will act on � rows below the place where the initial Givens
was acting. In this example, Ĝ will act on rows 5 and 6 because � = 4.

The operation depicted in the lemma is an operation “moving” a Givens rotation
from the top-left position to the bottom-right position. Similarly one can have shift-
through operations of length � going to the top right, top left, and the bottom left.
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To clearly indicate where the Givens is going and the number of single shift-through
operations, we use the symbols �

�
,

�

� ,
�

� , and �
�
.

2.2. Similarity transform to Hessenberg form. Applying a QR-method
directly to a Hermitian plus rank m matrix is possible, but, especially for large values
of m, it is more efficient to first reduce the problem to Hessenberg form [6, 8, 3].

Suppose the initial matrix A is written as the sum of a Hermitian plus a rank m
matrix, that is, A = S + UV H , where U and V ∈ Cn×m. A standard reduction of
the matrix A to Hessenberg form costs O(n3) operations, when one does not exploit
the available low rank structure. In particular, if S is a band matrix with bandwidth
b, the cost reduces to O((b +m)n2) [6, 3] for transforming the involved matrix A to
Hessenberg form (see also [8, 9, 13]). The reduction to Hessenberg form preserves the
eigenvalues since it is a unitary similarity transformation. This gives

H = QHAQ = QHSQ+QHUV HQ = Ŝ + Û V̂ H .

Hence, the Hessenberg matrix H can be written as the sum of a Hermitian matrix Ŝ
plus a rank m correction matrix Û V̂ H . Note that, even if S was banded, Ŝ is a dense
Hermitian matrix in general, but we will see that this matrix still admits an O(n)
representation.

2.3. On the QR-algorithm. Let us denote the Hessenberg matrix we are work-
ing with as H = S + UV H , where H is Hessenberg, S is Hermitian, and U and V
are two n × m matrices. We will denote by Fn,m (see [7]) the class of upper Hes-
senberg matrices obtained as the sum of an n × n Hermitian matrix and a rank-m
perturbation.

As shown in [7], the class Fn,m is closed under QR-steps. This fact is essential
for developing an efficient implicit QR-method exploiting the matrix structure. The
multishift QR-algorithm, applied to matrix H = H(0) ∈ Fn,m, generates a sequence
of unitarily similar matrices {H(k)}k converging to the real canonical Schur form of
H .

The multishift QR-method proceeds iteratively as follows.1 Let H(0) = H ,

(2.1)

{
p
(k)
d (H(k)) = Q(k)R(k),

H(k+1) = Q(k)HH(k)Q(k), k = 0, 1, . . . ,

where, for every k, p
(k)
d (x) is a monic polynomial of degree d. For example, for d = 1

we have the single shift case with p
(k)
1 (H(k)) = H(k) − μ(k)I, and for d = 2 we have

the double-shift case with p
(k)
2 (H(k)) = (H(k) − μ

(k)
1 I)(H(k) − μ

(k)
2 I). The parameter

μ(k) for the single shift case and parameters μ
(k)
1 and μ

(k)
2 for the double-shift case are

chosen in accordance with some shift strategy [21, 23, 14] to accelerate convergence.
Usually, instead of explicitly computing the factorization QR of the polynomial

in (2.1), we proceed implicitly, performing the transition H(k) → H(k+1) without
even computing the products between the shifted matrices in (2.1) (see also [22]).
The possibility of computing the iterations implicitly was first proposed in [11, 10].
Based on, e.g., the implicit Q-theorem [12], the essential uniqueness of the matrix
obtained is guaranteed at each step, once the first column of Q(k) has been formed.

The global flow of an implicit method is hence of the following form.

1The superscript notation ·(i) will be used only for depicting QR-steps performed on matrices.
We will omit this superscript as much as possible so as not to overload the notation.
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1. Initialization step. Determine the orthogonal transformation Q̂I (the sub-
script I refers to the initial step), such that

Q̂H
I pd(H) e1 = β e1, β = ‖pd(H)e1‖2,

where pd(H) is a monic polynomial of degree d, as described in (2.1) with
suitable shifts chosen. Let HI = Q̂H

I HQ̂I , and note that HI is not in upper
Hessenberg form since a bulge is created with the tip in position (d+ 2, 1).

2. Chasing steps. Perform a unitary similarity reduction on HI to bring it back
to Hessenberg form (not altering the first column and row). Let Q̂C (the
subscript C refers to the chasing procedure) be such that Ĥ = Q̂H

C HIQ̂C =

Q̂H
C Q̂H

I HQ̂IQ̂C is in Hessenberg form. Set Q̂ = Q̂IQ̂C .
It can be proved easily that Q̂ and Ĥ are essentially identical to the matrices

obtained by performing the explicit QR-algorithm. In this paper, we will consider
only the double shift cases, that is, d = 2, but the proposed algorithm works similarly
for the general case with any d ≥ 1. The single shift case is fully treated in [20]. In
the double shift case p2(H) = (H − μ1 I)(H − μ2 I) is a generalized Hessenberg and
QI is obtained as the product of two Givens transformations. The size of the bulge
created depends on the degree d and has d(d+ 1)/2 undesired elements. Finally, the
orthogonal matrix QC in the chasing step is the cumulative product of d (n−2) Givens
factors.

3. A suitable O(n) representation. In [7] the matrices belonging to Fn,m are
represented by using the diagonal and subdiagonal of H plus the two skinny matrices
U and V . In this section we will deduce a representation of H based on Givens
transformations similar to the one introduced for m = 1 in [15]. This representation
still allows us to store O(n) elements and has the advantage of being intuitive, and
stable, as usual, for representations based on Givens rotations (see, for example,
[5, 17]).

Since matrix H is the sum of a Hermitian and a low rank matrix, we know that
the Hermitian matrix S has quite a large part of the low rank structure. Consider
S = H − UV H . The Hessenberg matrix H has zeros below the subdiagonal. Hence,
matrix S needs to be of rankm below the subdiagonal. The matrix S has the following
form, where the part marked with the � is coming from a rank-m part.

S =

⎡
⎢⎢⎢⎣
× · · · · ·
× × · · · ·
�×× · · ·
��×× · ·
���×× ·
����××

⎤
⎥⎥⎥⎦

Since S is Hermitian, the entries denoted by dots are known once the lower triangular
part of S is specified. The matrix we start with is the matrix S. All subsequent
graphical schemes represent factorizations of this matrix S.

3.1. A rank-1 perturbation. We consider the case m = 1; hence, as we can
see in the first scheme below, three elements (coming from a rank-1 part) in the last
row of the matrix S are annihilated by a single Givens transformation acting on rows
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5 and 6.

➊ × · · · · ·
➋ ×× · · · ·
➌ �×× · · ·
➍ ��×× · ·
➎ � ⊗⊗�×× ·
➏

�
×××

1

Mathematically, the scheme depicts S = G1S1, where G1 corresponds to the Givens
transformation at time stamp 1, and S1 is the matrix on the right having extra zeros
in the last row. The scheme here presents a sort of factorization of the original
Hermitian matrix S. In fact, S1 and G1 are computed similarly to how one computes
a QR-factorization: GH

1 S = S1, where GH
1 acts on S to create zeros, resulting in a

matrix S1.
The elements to be annihilated by the second Givens transformation are marked

in the scheme with ⊗. In fact, G2 is computed to obtain GH
2 GH

1 S = S2, where S2 has
n− 4 zeros in row n− 1. Rewriting GH

2 GH
1 S = S2 gives us S = G1G2S2 depicted in

the following scheme. We see S2 on the right and Givens transformations G1 above 2
and G2 above 1. Considering S = G1G2S2, we see that first G2 needs to be reapplied
to S2 followed by G1 to retrieve the original matrix S.

➊ × · · · · ·
➋ ×× · · · ·
➌ �×× · · ·
➍ � ⊗�×× · ·
➎ �

�
××× ·

➏
�

×××
2 1

After the Givens transformation acting on rows three and four is performed, we have
completely removed the low rank part. Removing the structured rank part intro-
duces, however, a new subdiagonal. The matrix remaining on the right side is now a
generalized Hessenberg matrix having two subdiagonals.

➊ × · · · · ·
➋ ×× · · · ·
➌ � ××× · · ·
➍ �

�
××× · ·

➎ �
�

××× ·
➏

�
×××

3 2 1

Let us write this factorization as S = Ṽ B̃, in which Ṽ represents the Givens transfor-
mations on the left and the matrix B̃ represents the generalized Hessenberg matrix
on the right. Reconsider now the original matrix H . Due to the equality between
the low rank parts in the matrices uvH and S, we can factorize the vector u as Ṽ ũ,
where the vector ũ has only the first three elements different from zero. This means
that we get

H = S + uvH = Ṽ
(
B̃ + ũvH

)
(3.1)

= �
�
�

�
�

�

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣
× · · · · ·
× × · · · ·
× ×× · · ·
××× · ·
××× ·
×××

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
×
×
×

⎤
⎥⎥⎥⎦vH

⎞
⎟⎟⎟⎠ .
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This representation was used in [15]. The disadvantage of this form is that it requires
a quite complicated initial step. To simplify the QR-procedure we enlarge our matrix
Ṽ by adding two more Givens transformations to it. These transformations are con-
structed in such a way that they annihilate the second and third nonzero elements
in ũ; hence u = V û. The following scheme depicts the representation we will use.
Since there is no correspondence between the rank structure of B̃ and ũ anymore, no
additional zeros will be created in the matrix B̃.

H = V
(
B + ûvH

)

=

�
�
�

�
�

�
�

�
�

�

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣
× · · · · ·
× × · · · ·
× ×× · · ·
××× · ·
××× ·
×××

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
×⎤⎥⎥⎥⎦vH

⎞
⎟⎟⎟⎠ .

For ease of notation we will reuse the symbol u; that is, we start from a factorization
H = V (B + uvH) assuming u has only one element different from zero.

3.2. A rank-2 perturbation. We assume the perturbation to be of rank 2; the
general case proceeds similarly. Decompose UV H as uvH + xyH . The Hermitian
matrix S is of the form S = H − uvH − xyH , having therefore the part below the
subdiagonal of rank at most 2. Similarly to what is done for the rank-1 case, we can
peal off a rank-1 part. Now, this will not create zeros, because another part of rank 1
will still remain. Graphically a first sequence of Givens transformations transforms S
into the following form, having the part marked with � still of rank 1. Without loss
of generality we assume we are working on a 7× 7 matrix.

➊ × · · · · · ·
➋ ×× · · · · ·
➌ � ××× · · · ·
➍ �

�
�××× · · ·

➎ �
�

��××× · ·
➏ �

�
���××× ·

➐
�

����×××
4 3 2 1

We remark that this first sequence of Givens transformations also transforms the
vector u into a vector with only the first three elements nonzero. To remove the
remaining low rank part in the scheme above, another sequence of Givens transfor-
mations is needed. We get the following form:

➊ × · · · · · ·
➋ ×× · · · · ·
➌ � ××× · · · ·
➍ �

�
�×××× · · ·

➎ �
�
�
�

×××× · ·
➏ �

�
�
�

×××× ·
➐

� �
××××

4 3 2 1

This second sequence of Givens transformations will also create many zeros in the
vector x; all but the first four elements will become zero. This means that for the
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matrix H , we get the following graphical scheme:

H =
�

�
�
�

�
�
�
�

�
�
�
�

� �

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
× ××× · ·
×××× ·
××××

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
×
⊗2⊗1

⎤
⎥⎥⎥⎥⎦vH +

⎡
⎢⎢⎢⎢⎣
×
×
⊗4⊗3

⎤
⎥⎥⎥⎥⎦yH

⎞
⎟⎟⎟⎟⎠ .

Just like in the rank-one case, we are not finished yet. The elements ⊗ in the vectors
still need to be removed. The order of their removal is indicated by their subscripts.
Bringing these Givens transformations outside the brackets gives us the following final
representation:

(3.2) H =

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

� �

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
×××× ·
××××

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
×⎤⎥⎥⎥⎥⎦vH +

⎡
⎢⎢⎢⎢⎣
×
×
⎤
⎥⎥⎥⎥⎦yH

⎞
⎟⎟⎟⎟⎠ .

This scheme corresponds to (for simplicity we reuse the symbols u and x for denoting
the sparse vectors) H = V (u) V (x)

(
B + uvH + xyH

)
.

Remark 1. We choose to present the construction of the sequences of Givens
transformations V (u) and V (x) based on the matrix S, to show the appearance of
the extra subdiagonals. In practice, however, they are entirely determined by the
vectors x and u, and one can immediately compute the full sequence of n− 1 Givens
transformations for V (u) and n− 2 transformations for V (x) based on the two vectors
u and x.

3.3. The generic rank m > 2 perturbation. Generalizing, if H = S+UV H ,
with UV H a rank m perturbation of a Hermitian matrix S, we can represent H as

H =

m∏
i=1

V (ui)

(
B +

m∑
i=1

uiv
H
i

)
,

where B is a generalized Hessenberg with m + 1 subdiagonals, ui are sparse vectors
with only the first i entries different from zero, and each V (ui) consists of n− i Givens
transformations. So, to store the representation for a Hessenberg matrix which is the
sum of a Hermitian plus rank m perturbation, we need to store

• ∑m
i=1(n− i) = O(nm+m2) Givens transformations;

• ∑m+2
i=1 (n+ 1− i) = O(nm+m2) entries for the matrix B; and

• ∑m
i=1 i = O(m2) entries for the vectors ui.

Based on this representation we will illustrate how to perform a single and double
shift QR-step. We will discuss the single shift and multishift settings in two different
sections, so the reader can follow the algorithms more easily. For simplicity we will
restrict ourselves to the rank-two case and the double shift case. However, the ideas
presented are easily generalizable to fit the more general case.

Remark 2. In section 4 we silently assume all Givens transformations in the
sequences V (ui) to be different from the identity matrix. In this case all shift-through
operations are well defined, and we can run the algorithm to completion. We will
come back to this in the beginning of section 5 and discuss this in more detail in [20].
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4. The multishift strategy. For simplicity we will present only the double
shift case restricted to a rank-two perturbation; the general multishift case proceeds
almost identically, and a detailed explanation of the single shift case is reported in
[20]. The double shift case is quite important since one can restrict computations
to the real field in case the original matrix A is non-Hermitian but real, by simply
choosing the shifts as complex conjugates. In this case one converges not to an upper
triangular matrix, but to a block upper triangular matrix having blocks of size at
most 2 × 2 on the diagonal. The 2 × 2 blocks on the diagonal will then contain the
complex conjugate eigenvalues of the original real-valued matrix A [21, 12].

The cost of a double shift QR-step is roughly double that of a single shift QR-step.
Since, however, the convergence is assumed to be twice as fast, the global speed is approx-
imately the same. Multishift algorithms have, however, many other advantages [21].

Let H = H1 = V
(u)
1 V

(x)
1 (B1 +u1v

H
1 +x1y

H
1 ). For performing a complete double

shift QR-step on a Hessenberg matrix, 2(n − 1) Givens transformations are needed.
Two Givens transformations are needed in the initialization step, and two more are
needed in each of the chasing steps to move the bulge down one row. In particular,
at step i we have an “almost” Hessenberg matrix Hi. To go from Hi to Hi+1 a
similarity transformation is performed involving two Givens transformations Gi,2 and
Gi,1. Transformation Gi,2 acts on rows i and i + 1, and transformation Gi,1 acts
on rows i + 1 and i + 2. First GH

i,1 is applied, followed by GH
i,2. This means that

Hi+1 = GH
i,2G

H
i,1HiGi,1Gi,2. The vectors and matrices used for representing Hi will

inherit the same subscript as well as all intermediate variables with the subscript i,
unless they are in final form for Hi+1; in that case they obtain the subscript i+ 1. In
particular, at the end of the initialization step we will end up with matrix H2, which
is a perturbed Hessenberg with a bulge of size 3. This is matrix HI from section 2.3.

4.1. Initialization. Let Q̂I be the initial unitary transformation such that

Q̂H
I (H − μ1I)(H − μ2I)e1 = β e1, where β = ‖(H − μ1I)(H − μ2I)e1‖2.

The orthogonal transformation Q̂H
I consists of two Givens transformations. In par-

ticular, QI = G1,1G1,2 such that GH
1,2G

H
1,1(H − μ1I)(H − μ2I)e1 = β e1. We start by

applying a similarity transformation on H = H1, i.e., the initial step. We obtain

H2 = GH
1,2G

H
1,1 H1 G1,1G1,2 = GH

1,2G
H
1,1 V

(u)
1 V

(x)
1 (B1 + u1v

H
1 + x1y

H
1 )G1,1G1,2

=

�× ��
�×�

2

�
�
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

� �

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
× ××× · ·
×××× ·
××××

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
×⎤⎥⎥⎥⎥⎦vH

1 +

⎡
⎢⎢⎢⎢⎣
×
×
⎤
⎥⎥⎥⎥⎦yH

1

⎞
⎟⎟⎟⎟⎠G1,1G1,2.(4.1)

The Givens transformations depicted on the left, marked with ×, are the transforma-
tions GH

1,2 and GH
1,1.

4.1.1. Transformations on the left. Similarly as in the single shift case pre-

sented in [20], we shift the transformations on the left through the sequences V
(u)
1

and V
(x)
1 as depicted in scheme (4.1). Based on the equality GH

1,2G
H
1,1 V

(u)
1 V

(x)
1 =

Ṽ
(u)
1 Ṽ

(x)
1 G̃H

1,2G̃
H
1,1, we obtain



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QR-ALGORITHMS FOR HERMITIAN PLUS LOW RANK MATRICES 2199

H2 = Ṽ
(u)
1 Ṽ

(x)
1 G̃H

1,2G̃
H
1,1(B1 + u1v

H
1 + x1y

H
1 )G1,1G1,2

=

�
�
�
�

�
�
�
�
�×

�
�
�
� �

�×
�
�
�
� �

�
�
�
�

� �

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
×××× ·
××××

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
×⎤⎥⎥⎥⎥⎦vH

1 +

⎡
⎢⎢⎢⎢⎣
×
×
⎤
⎥⎥⎥⎥⎦yH

1

⎞
⎟⎟⎟⎟⎠G1,1G1,2.

Performing the operations G̃H
1,2G̃

H
1,1 on the terms in the brackets affects only the

matrix B1. Due to the zero structure of the vectors u1 and x1, they remain unaltered
and are already in final form (u2 = u1 and x2 = x1):

H2 = Ṽ
(u)
1 Ṽ

(x)
1 (B̃1 + u2v

H
1 + x2y

H
1 )G1,1G1,2

=

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

� �

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
⊗̂ ×××× · ·

×××× ·
××××

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
×⎤⎥⎥⎥⎥⎦vH

1 +

⎡
⎢⎢⎢⎢⎣
×
×
⎤
⎥⎥⎥⎥⎦yH

1

⎞
⎟⎟⎟⎟⎠G1,1G1,2.

One undesired element is created in the matrix B̃1. This element is marked with ⊗̂
since it will play a role in the chasing. In addition to the Givens transformations
moving to the bottom, this bulge will move downward as the iteration proceeds.

4.1.2. Transformations on the right. As we will see in the following, the
remaining transformations on the right are almost identical to the chasing procedure.
Performing the transformations on the right on the terms inside the brackets gives us

H2 = Ṽ
(u)
1 Ṽ

(x)
1 (B̂1 + u2v

H
2 + x2y

H
2 )

=

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

� �

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
⊗×××× · ·
⊗⊗×××× ·

××××

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
×⎤⎥⎥⎥⎥⎦vH

2 +

⎡
⎢⎢⎢⎢⎣
×
×
⎤
⎥⎥⎥⎥⎦yH

2

⎞
⎟⎟⎟⎟⎠ .

As mentioned before, the bulge plays a role in the chasing and will move down along
this subdiagonal. Hence, we attempt only to remove the undesired elements in the
first column of the matrix B̂1. Two Givens transformations are needed.

H2 = Ṽ
(u)
1 Ṽ

(x)
1 Ĝ1,1Ĝ1,2(B2 + u2v

H
2 + x2y

H
2 )

=

�
�
�
�

�
�
�
�

�
�
�
�
�×

�
�
�
�
�×
�

�
�
�
��

2

�
� �

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
× ××× · ·
⊗̂ ×××× ·

××××

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
×⎤⎥⎥⎥⎥⎦vH

2 +

⎡
⎢⎢⎢⎢⎣
×
×
⎤
⎥⎥⎥⎥⎦yH

2

⎞
⎟⎟⎟⎟⎠ .

Performing shift-through operations to bring the transformations Ĝ1,1Ĝ1,2 to the front

gives us Ṽ
(u)
1 Ṽ

(x)
1 Ĝ1,1Ĝ1,2 = G2,1G2,2V

(u)
2 V

(x)
2 , resulting in

H2 = G2,1G2,2V
(u)
2 V

(x)
2 (B2 + u2v

H
2 + x2y

H
2 ),(4.2)

which finalizes the initialization step.
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4.2. The chasing. The global flow of the chasing is as follows. When starting
the chasing procedure we have a matrix factorization of the form (assume i < n− 3)

Hi = Gi,1Gi,2V
(u)
i V

(x)
i (Bi + uiv

H
i + xiy

H
i ),

where all vectors and matrices satisfy the constraints posed by the representation,
only the matrix Bi has a bulge because of a nonzero element in position (i + 2, i).
One starts with a similarity transformation determined by Gi,1Gi,2.

Hi+1 = GH
i,2G

H
i,1HiGi,1Gi,2

= V
(u)
i V

(x)
i (Bi + ui+1v

H
i + xi+1y

H
i )Gi,1Gi,2

= V
(u)
i V

(x)
i (B̂i + ui+1v

H
i+1 + xi+1y

H
i+1).

The vectors ui = ui+1 and xi = xi+1 are not affected by the transformations. The
matrix B̂i has three undesired nonzero elements in positions (i + 2, i), (i + 3, i), and
(i+ 3, i+ 1). The Givens transformations ĜH

i+1,1 and ĜH
i+1,2 are constructed so as to

annihilate, respectively, the elements in positions (i+ 3, i) and (i+ 2, i):

Hi+1 = V
(u)
i V

(x)
i Ĝi,1Ĝi,2(Bi+1 + ui+1v

H
i+1 + xi+1y

H
i+1).

The matrix Bi+1 has only one undesired nonzero element in position (i + 3, i + 1),
which is hence shifted down with respect to the position in Bi. Applying the shift-
through operation a few times to bring the Givens transformations to the front gives
us

Hi+1 = Gi+1,1Gi+1,2V
(u)
i+1V

(x)
i+1(Bi+1 + ui+1v

H
i+1 + xi+1y

H
i+1).

4.3. The final similarity transformations in the chasing. The implicit
algorithm cannot be carried on fully to the end. Suppose we have the matrix Hn−5,
and we perform the similarity transformation determined by Givens transformations
Gn−5,1 and Gn−5,2: Hn−4 = GH

n−5,2G
H
n−5,1Hn−5Gn−5,2Gn−5,1. Applying the Givens

transformations on the right, which act on columns from n−5 to n−2, will not create
a bulge in the matrix Bn−5. Hence, we cannot continue the chasing procedure. The
algorithm breaks down in this case. To determine the final Givens transformations,
we need to explicitly compute a few columns of Hn−5. Using the representation this
can be achieved easily (see [20] for the details).

5. Deflation. The QR-iterations should always be combined with a deflation
technique, which allows us to split the problem into two or more smaller problems with
the same structure. For a Hessenberg matrix H , deflation means that the Hessenberg
matrix is numerically of the form

H =

[
H(1 : i, 1 : i) ×

0 H(i+ 1 : n, i+ 1 : n)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×××× ××××××
×××× ××××××
××× ××××××
×× ××××××

0 ××××××
××××××
×××××
××××
×××
××

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(5.1)

The matrix can be subdivided into two other Hessenberg matrices H(1 : i, 1 : i) and
H(i+ 1 : n, i+ 1 : n) on which one can continue working separately.
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In this paper, however, there is a strong connection between the Hermitian matrix
S and the rank-m part. The matrix H has a zero block, but this does not necessarily
mean that either S or UV H has a zero block in the corresponding position. Only
their sum must have a zero block in this position.

The coupled representation used in this paper makes it impossible to apply de-
flation in the classical sense. This means that one cannot just divide the Hessenberg
matrix into two parts, each having their specific representation. In this case we main-
tain a global representation for the entire matrix, but the knowledge that there are
deflatable blocks will make it possible to act on these different blocks separately.

In [20] we treat the algorithmic changes for accounting of special structures in the
low rank perturbation.

5.1. The representation in case of deflation.

5.1.1. Assumptions on the Givens transformations. In the remainder of
this section we assume a strict rank-two perturbation. This means that the vectors
u and x have no trailing zeros. No trailing zeros means that the sequences of Givens
transformations V (u) and V (x) consist of nonidentity Givens transformations.2

Since the shift-through operation of three nonidentity Givens transformations
always results in three new nonidentity Givens transformations, the chasing procedure
can never create identity Givens transformations in the middle of the sequences V (u)

or V (x). The creation of identity Givens transformations can occur only at the left
part of the sequence, when, for example, a fusion is applied. We can therefore conclude
that after a QR-step is performed, we can have Givens transformations equal to the
identity matrix only at the bottom (leftmost) part of the sequence. In this case
again we refer the reader to [20]. So, to conclude, we explicitly assume all Givens
transformations in the sequences to be different from the identity.

5.1.2. Detection of deflation. The easiest, but not the fastest, way to detect
numerical zeros on the subdiagonal of the Hessenberg matrix is to explicitly compute
these subdiagonal elements. This approach is used in [7]. Due to our specific repre-
sentation, there is, however, a faster way to detect deflation that in the case m = 0
coincides with the standard approach.

Suppose the matrix H = V (u)V (x)
(
B + uvH + xyH

)
we are working with can

be split into two independent problems. This means that the element H(i + 1) = 0
for a specific i.

Let us denoteW = V (x)HV (u)HH = B+uvH+xyH . Since the matrices V (u) and
V (x) represent sequences of ascending Givens transformations, we have H(i+1, i) = 0
if and only if W (i+ 3, i) = 0. Since i + 3 ≥ 4, we have u(4 : n) = 0 and x(4 : n) = 0.
This proves that W (i + 3, i) = 0 if and only if B(i + 3, i) = 0 because all the Givens
transformations are different from the identity. The condition B(i + 3, i) = 0 can be
checked by using a relative criterion involving the size of the neighboring elements,
making it easy to verify whether deflation can be applied.

The representation, however, does not reveal deflation in two other cases. In fact,
we cannot determine if H(n − 1, n − 2) = 0 or H(n, n − 1) = 0 without explicitly
computing these entries, retrieving the values from the representation. This problem
is similar to the problem we had for computing the final steps in the chasing steps of
the QR-method (see section 4.3).

2Assuming, e.g., u to have a trailing sequence of zeros results in a leading (leftmost) sequence of
identity Givens transformations in V (u). This is excluded in this paper but is discussed in [20].
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Graphically, H(i+1, i) = 0 corresponds to a factorization of the form (the dashed
line depicts where deflation should be applied in the original Hessenberg matrix H)

(5.2)

H =

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

� �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× · · · · · · · · ·
× × · · · · · · · ·
× ×× · · · · · · ·
× ××× · · · · · ·
× ×× × · · · · ·
× × ×× · · · ·

0 ××× · · ·
×××× · ·
×××× ·
××××

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

×⎤⎥⎥⎥⎥⎥⎥⎥⎦
vH
2 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

×
×
⎤
⎥⎥⎥⎥⎥⎥⎥⎦
yH
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that the zero indicating deflation is positioned two rows below the position where
one should actually subdivide the matrix; the column, however, remains the same.

Remark 3. Considering a rank-m perturbation, we have m+1 subdiagonals. We
assume all used Givens transformations to be different from the identity (otherwise
we refer the reader to [20]). A zero element in the Hessenberg matrix can be detected
as a zero on the (m + 1)th subdiagonal. The zero resides in the same column but
shifts down m rows. The final m subdiagonal elements of the Hessenberg matrix have
to be computed explicitly; their zeroness is not reflected in the representation simply
because we cannot shift down m more rows.

In the standard deflation approach, the matrix is divided into two independent
subproblems with the same characteristics of the original one. On the contrary, in
our case, the problem cannot be decoupled into two smaller subproblems because we
are using a different representation and the two parts are interacting.

5.2. Performing QR-steps after deflation was applied. In the previous
section it was shown that even though deflation can be applied, both independent
Hessenberg matrices (see (5.1)) H(1 : i, 1 : i) and H(i + 1 : n, i + 1 : n) still have
interaction in the representation.

In the following subsections we will show how to perform QR-steps on the top
parts H(1 : i, 1 : i), the bottom parts H(i : n, i : n) (1 < i < n), and also the middle
parts H(i : j, i : j), 1 < i < j < n (assuming, of course, suitable deflation possibilities
in H for each of the three cases). We denote the entire matrix we act on as H ; this
corresponds to the matrix H from (5.1) and (5.2). We will, however, work only on
the top, bottom, and middle parts of H !

5.2.1. The top part. Assume deflation is possible and the following matrix
factorization is given (the dashed line depicts the actual splitting between the upper
and lower parts in the Hessenberg matrix). We start performing a QR-step on the
matrix H(1 : i, 1 : i). Denote H by H1, that is, H1 = H .

H1 =

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

� �

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
× ××× · ·
×××× ·

0 ×××

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
×⎤⎥⎥⎥⎥⎦v1

H +

⎡
⎢⎢⎢⎢⎣
×
×
⎤
⎥⎥⎥⎥⎦y1

H

⎞
⎟⎟⎟⎟⎠ .
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When performing a QR-step on the top part of the matrix, one would expect the
chasing step to break down once the dashed line is reached. Assume the shifts are
chosen with regard to rapid convergence for the upper part of the Hessenberg matrix.3

The initial transformations are performed similarly as in the standard case. Hence

we obtain (4.2): H2 = G2,1G2,2V
(u)
2 V

(x)
2 (B2 + u2v

H
2 + x2y

H
2 ), with G2,1 and G2,2

determining the upcoming chasing step. Performing the unitary similarity transfor-

mation with G2,2 and G2,1 gives us H3 = V
(u)
2 V

(x)
2 (B2 + u2v

H
2 + x2y

H
2 )G2,1G2,2,

graphically depicted as follows (G2,1 and G2,2 are marked with × and shown on the
right):

H2 =

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

� �

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
⊗̂ ×××× ·

0 ×××

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
×⎤⎥⎥⎥⎥⎦v2

H +

⎡
⎢⎢⎢⎢⎣
×
×
⎤
⎥⎥⎥⎥⎦y2

H

⎞
⎟⎟⎟⎟⎠

�×
�×
�

�
.

We see that since B(7, 4) = 0, no bulge is created when transformation G2,1 is applied
to the columns; multiplication by matrix G2,2 will leave a small bulge in position (6, 2)
that can be removed by means of a Givens transformation acting on rows 5 and 6. This
transformation can simply be dragged to the left as was done before by repeatedly
applying the shift-through operation. It is interesting to remark that we have an
impact below the dashed line! We obtain

H3 = G3,1V
(x)
3 V

(u)
3

(
B3 + u3v

H
3 + x3y

H
3

)
.

Another similarity transformation is now performed, involving Givens transformation
G3,1. Since H(5, 4) = 0, we would expect the algorithm to break down after this
similarity transformation. Before applying G3,1 on the right we have

(5.3) H3 =

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

� �

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
× · · · · · ·
× × · · · · ·
× ×× · · · ·
× ××× · · ·
×××× · ·
×××× ·

0 ×××

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
×⎤⎥⎥⎥⎥⎦vH

3 +

⎡
⎢⎢⎢⎢⎣
×
×
⎤
⎥⎥⎥⎥⎦yH

3

⎞
⎟⎟⎟⎟⎠

�×� .

After applying G3,1 on the right nothing essential changes. When trying to perform
the chasing step, we see that no bulge in position (7, 3) will be created and the
algorithm breaks down, as expected. One has performed an implicit QR-step on
H(1 : i, 1 : i).

5.2.2. Bottom part. Assume we have a matrix H = H1 and we would like to
perform a QR-step now on the bottom part H(i : n, i : n). Even though the Givens
transformations acting on the top part will be of no influence, just as the vectors x
and u, we do depict them to avoid confusion. For simplicity we restrict our attention

3The shifts are therefore computed based on the bottom right part of the matrix H(1 : i, 1 : i).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2204 RAF VANDEBRIL AND GIANNA M. DEL CORSO

to a 9× 9 matrix; the general case proceeds similarly.

(5.4) H2 =

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

� �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

× · · · · · · · ·
× × · · · · · · ·
× ×× · · · · · ·
× ××× · · · · ·
× ××× · · · ·

0 ××× · · ·
×××× · ·
× ××× ·
××××

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

×⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
vH
1 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

×
×
⎤
⎥⎥⎥⎥⎥⎥⎥⎦
yH
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The shifts are computed and the initial Givens transformations are determined by
explicitly computing the necessary columns of the matrix H . With respect to the
original matrix in (5.1), we are now choosing two shifts μ1 and μ2 and two Givens
transformations such that

GH
1,2G

H
1,1(H(i : n, i : n)− μ1I)(H(i : n, i : n)− μ2I)e1 = βe1,

where e1 has the size of H(i : n, i : n). The two Givens transformations should act
on rows 1, 2 and 2, 3 of the matrix H(i : n, i : n), but since we are working with H ,
which has extra rows on top, GH

1,2 is acting on row 4 and 5 while GH
1,1 combines row 5

with row 6. Graphically, we obtain (the Givens rotations determining the similarity
transformation are marked with ×)

(5.5)

H2 =

�
�
�
�

�
�
�
�

�× �
�
�
�

�
�×�

2

�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

� �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

× · · · · · · · ·
× × · · · · · · ·
× ×× · · · · · ·
× ××× · · · · ·
× ××× · · · ·

0 ××× · · ·
×××× · ·
×××× ·
××××

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�×
�×
�

� +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

×⎤⎥⎥⎥⎥⎥⎥⎥⎦
vH
2 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

×
×
⎤
⎥⎥⎥⎥⎥⎥⎥⎦
yH
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We expect that the depicted zero remains in this position after the initial similarity
transformation is performed; otherwise our initial deflation was destroyed. In fact, we
can do almost exactly the same thing as in the standard initial step. We first shift
through the leftmost marked Givens transformations, as depicted in (5.5). We obtain
the following situation:

H2 =

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�×

�
�
�
� �

�×
�
�
�
� �

� �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

× · · · · · · · ·
× × · · · · · · ·
× ×× · · · · · ·
× ××× · · · · ·
× ××× · · · ·

0 ××× · · ·
×××× · ·
×××× ·
××××

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�×
�×
�

� +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

×⎤⎥⎥⎥⎥⎥⎥⎥⎦
vH
2 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

×
×
⎤
⎥⎥⎥⎥⎥⎥⎥⎦
yH
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Now the zero plays an important role. Applying these two left transformations on the
matrix B1 will create only one bulge. Hence the zero remains intact.

H2 =

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

� �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

× · · · · · · · ·
× × · · · · · · ·
× ×× · · · · · ·
× ××× · · · · ·
× ××× · · · ·

0 ××× · · ·
×××× · ·
⊗̂ ×××× ·

××××

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�×
�×
�

� +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

×⎤⎥⎥⎥⎥⎥⎥⎥⎦
vH
2 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

×
×
⎤
⎥⎥⎥⎥⎥⎥⎥⎦
yH
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

There are two Givens transformations remaining on the right. Applying them,
we will produce a bulge:

H2 =

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

� �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

× · · · · · · · ·
× × · · · · · · ·
× ×× · · · · · ·
× ××× · · · · ·
× ××× · · · ·

0 ××× · · ·
× ××× · ·
⊗ ×××× ·
⊗⊗××××

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

×⎤⎥⎥⎥⎥⎥⎥⎥⎦
vH
2 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

×
×
⎤
⎥⎥⎥⎥⎥⎥⎥⎦
yH
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

To remove the bulge we have to combine rows 8 and 9 and rows 7 and 8. These
last two Givens transformations can be brought to the front by applying a series of
shift-through operations (just like in section 4.1), and one can continue the chasing
procedure.

5.2.3. Middle part. When running the algorithm zeros will be created in many
more instances. This will also result in cases, such as, for example,

H =

⎡
⎢⎣
H(1 : i− 1, 1 : i− 1) × ×

0 H(i : j, i : j) ×
0 0 H(j + 1 : n, j + 1 : n)

⎤
⎥⎦ .(5.6)

We already know how to perform QR-steps on the top part, the matrix H(1 : i−1, 1 :
i− 1) (standard initial step and new finishing step), and on the bottom part, matrix
H(j + 1 : n, j + 1 : n) (standard initial step and standard finishing step). In fact,
performing a QR-step on the middle part is just a combination of the standard initial
step with the new finishing step from the top part.

6. Software and experiments.

6.1. The software. In this section we present some details concerning the soft-
ware implementation. The code was written both in MATLAB R2007b and in Fortran
95 on an Intel Core 2 Duo 2.4 GHz with 4GB of memory, and both implementations
are available online.4

As described in section 3, the representation is based on 2 × 2 Givens rotations,
which can be stored by either one or two parameters. So globally the memory used
by the algorithm for the rank-one case is given by n− 1 places for the unitary 2 × 2
matrices,5 3(n − 1) places for the diagonal, subdiagonal, and subsubdiagonal of the

4http://www.cs.kuleuven.be/∼raf/
5In the actual implementation we used 2× 2 unitary matrices instead of Givens transformations;

these matrices, although more expensive in the occupation of memory, are easier to handle.
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matrix B, and finally n places for the product uvH . For the rank-two perturbation,
an extra sequence of unitary transformations, an extra subdiagonal for B, and an
extra vector for the product xyH are needed.

Since, in general, we will consider non-Hermitian eigenvalue problems, the Rayleigh
shift was taken. This means that, for the single shift case, we chose the shift value
equal to the last diagonal element, while for the double shift case, both the eigenvalues
of the trailing 2× 2 block were taken.

It is well known that balancing can have a significant impact on the accuracy of the
computed results. This means that a permuted diagonal matrix D is constructed such
that the matrix D−1AD has the row and column norms as nearly as possible equal
to each other. See, e.g., the matrix in (6.2), which becomes Hermitian tridiagonal
and hence has perfectly conditioned eigenvalues after scaling with the matrix D =
diag([1, . . . , 1,

√
α]). Although, in the general, non-Hermitian setting, balancing can

be performed without bothering about the structure, in our case, the Hermitian plus
low rank structure needs to be maintained; hence it is not trivial to design a good
balancing strategy maintaining this structure.

6.1.1. Deflation. For a generic Hessenberg matrix H = (hij), deflation is ad-
mitted when the following constraint is satisfied (see, e.g., [23]):

(6.1) hi+1,i < ε(|hii|+ |hi+1,i+1|),

ε being the machine precision.
This criterion is, however, based on the entire matrixH , which consists of a sum of

a Hermitian and a low rank matrix. Both the Hermitian and the low rank matrix have,
however, a nonneglectable low rank part below the subdiagonal. Perfect annihilation
is required in order to create zeros in the matrix H . Numerical experiments show that
in case of coefficients of largely varying sizes in the matrix H , this annihilation might
not be perfect anymore. Round-off introduces errors, making it difficult/impossible to
accurately compute the subdiagonal elements hi+1,i. The other matrix elements in H
are computed up to high precision, but the difficulties of determining hi+1,i sometimes
result in too early or too late termination of the QR-steps, resulting often in a loss
of accuracy. This behavior was encountered in several of the numerical experiments
performed.

In section 5.1.2, it was illustrated how a zero in H can be detected in the repre-
sentation by finding a corresponding zero in a subdiagonal of the matrix B. Let us
refer to these two deflation criteria as the H-criterion (Hessenberg) or the B-criterion
(zero detected in the matrix B). For detecting a zero in a subdiagonal of B we use
(6.1), but then applied to the subsubdiagonal elements of B.

In the following numerical experiment we compare both deflation criteria for the
same matrix of size 128. In both figures all eigenvalues are plotted, and their estimate
of accuracy based on the condition number is also depicted. Figure 6.1(a) represents
the eigenvalues computed via the standard B-deflation criterion, while in Figure 6.1(b)
we used the H-criterion. Both figures look almost identical, and relative accuracy of
all of the eigenvalues is comparable.6 The average number of iterations is significantly
different. The B-criterion uses 4.5 iterations on average, whereas the H-criterion due
to cancellation needs on average 14 iterations. In fact, the iteration process can be
stopped far before the 14th iteration, but one is not able to determine the subdiagonal

6In this example all elements were constructed randomly. When sizes of the elements vary more,
accuracy is quite often lost in the H-criterion.
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elements accurately, and hence one is not sure when to terminate the iteration process
to obtain a certain level of accuracy.
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(a) B-criterion (b) H-criterion

Fig. 6.1. Comparison of two deflation criteria. Relative error in the eigenvalues and estimated
error using the B-criterion (a) and the H-criterion (b).

6.1.2. Computational complexity. An important operation in the algorithm
is the shift-through operation. Each shift-through operation involves a QR-factoriza-
tion of a 3×3 unitary matrix. This involves computing the two Givens transformations
and takes in total 32 operations.

Performing a simple QR-step can be divided in two main steps:
• First operation on the left. This involves a single shift-through operation
(32 flops), followed by applying the unitary transformation on the matrix B
(≈ 18 flops).

• Inside the chasing, one has to perform the unitary transformation on the right
and drag it through the matrix B such that it pops up again on the left. This
has to be performed n − 1 times. To perform the operations, one needs a
window of 4 × 3 sliding on the main diagonal of the matrix B. Computing
this window takes ≈ 30 operations. Applying the unitary matrix on v takes
6 operations; applying it on B and factoring it again out takes ≈ 48 flops.
Performing the shift-through operation to bring it to the front takes ≈ 32
operations.7

Hence we obtain a global cost of approximately 116n− 66 for each QR-step on
a Hessenberg matrix of size n. The designed algorithm is hence clearly an O(n2)
method.

6.2. The numerical experiments. In this section we present the results of the
numerical experiments performed on matrices belonging to the class Fn,1.

We denote by λ = [λ1, λ2, . . . , λn] the vector containing the exact eigenvalues and
by λ̃ = [λ̃1, λ̃2, . . . , λ̃n] the vector of the computed ones, sorted in such a way that λ̃i

7In this rough estimate we neglect the final step, which needs to be determined explicitly; since
no shift-through needs to be performed, the cost is roughly the same.
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is an approximation of λi. The error criteria for measuring accuracy are as follows:

E(abs) = ‖λ− λ̃‖∞ = max
i

{
|λi − λ̃i|

}
,

E(rel) = max
i

{
|λi − λ̃i|

|λi|

}
.

To compare with the results from [7] we also use the infinity norm relative criterion
defined as

E(rel2) =
‖λ− λ̃‖∞
‖λ‖∞ .

Note that E(rel) < tol guarantees that all the eigenvalues have been computed with
a relative error lower than the tolerance tol, while this is not true when E(rel2) is
considered. In our numerical results we compared the eigenvalues returned by our
program (denoted as GivQR) with the eigenvalues returned by the Lapack routine
DGEEV, and we used a cutting criterion of 10−16 as deflation tolerance.

The purpose of this experimentation is to test accuracy in the eigenvalues’ com-
putation with respect to general purpose algorithms not specifically designed to deal
with structured matrices. The test suite consists of different kinds of perturbed tridi-
agonal matrices and of Hessenberg forms of Hermitian plus low rank matrices. The
results of a more extensive testing are reported in [20].

6.2.1. Description of the test suite. In this section we describe the matrices
used to estimate the quality of our algorithm, both from the point of view of accuracy
and computational speed. We were able to compare with a general purpose method
implemented in Lapack, showing that already for matrices of moderate size the time
required by our implementation is lower than that taken by the DGEEV routine in
Lapack. The behavior of our method in terms of CPU time differs from the FastQR

algorithm by Eidelman, Gemignani, and Gohberg [7] for quantities of the order of
milliseconds, so we do not report the direct comparison in terms of time because they
behave similarly.

Many of the matrices considered have a particular interest from an applicative
point of view. In particular, we tested our software on almost tridiagonal matrices
and on Hessenberg matrices that can be expressed as the sum of Hermitian and rank-
one matrices. Changing slightly the notation introduced in [7], we will consider these
different test matrices.

Type I: Chebyshev–Comrade matrices are matrices of the form A = Tn + uen
T ,

where Tn is an n× n Hermitian tridiagonal matrix associated with Chebyshev poly-
nomials of the first kind, that is,

Tn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1√
2

1√
2

0 1
2

1
2

. . .
. . .

. . .
. . . 1

2
1
2 0 1√

2
1√
2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

These matrices arise when one wants to compute the roots of a polynomial expressed
in the first kind Chebyshev polynomial basis.
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Table 6.1

Errors for Type-I matrices of size n = 128, and u = α [1, . . . , 1]T . For all values of α our
algorithm requires a time ranging from 0.0070 sec to 0.0080 sec, while the time required by the
Lapack routine DGEEV ranges from 0.0220 to 0.0260 seconds.

α 1 103 105 107 108 1011

E(abs) 1.0991e-14 9.0949e-13 2.9104e-11 7.4506e-09 1.4901e-08 4.7417e-08

E(rel) 5.8831e-15 1.2950e-13 1.7515e-12 1.1038e-09 8.3495e-09 2.5190e-06

E(rel2) 1.6396e-13 9.0885e-16 2.9104e-16 7.4506e-16 1.4901e-16 4.7417e-19
avrgit 2.5391 2.6328 2.7031 2.6484 2.8203 2.7500

Table 6.2

Errors for Type-I matrices of the form Tn + ueTn , with u = rand(n, 1). For different values of
n, the absolute and relative errors are shown. In the last two columns the times in seconds required
by our method (GivQR) and by the Lapack routine DGEEV are given.

n E(abs) E(rel) E(rel2) GivQR DGEEV

50 3.9968e-15 8.3890e-15 2.1393e-15 0.0010 0.0020
100 6.3283e-15 1.7494e-14 3.3873e-14 0.0050 0.0160
200 1.5543e-14 7.9124e-14 8.3196e-15 0.0160 0.0890
300 1.4655e-14 7.9692e-14 7.8442e-15 0.0360 0.2380
400 2.1094e-14 4.0091e-13 1.1291e-14 0.0600 0.4680
500 2.9310e-14 8.9860e-13 1.5688e-14 0.0920 0.7990

1000 2.9865e-14 1.3214e-12 1.5985e-14 0.3340 2.8410
2000 3.2707e-13 2.4688e-11 1.7507e-13 1.3030 11.8160
3000 8.1790e-13 6.1995e-11 4.3779e-13 2.9090 37.2560
4000 8.0880e-13 1.2163e-10 4.3292e-13 5.1890 70.2290

Type II: Unsymmetric tridiagonal matrices. We consider an almost symmetric
tridiagonal matrix of the form

(6.2) T =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1

1 0
. . .

. . .
. . . 1
1 0 1

α 0

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1

1 0
. . .

. . .
. . . 1
1 0 α

α 0

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
0

1− α
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
en

T .

When α becomes very large, the dominant eigenvalues are ill-conditioned.
Type III: Hessenberg form of random matrices. We consider the Hessenberg form

of random symmetric plus random rank-one matrices.
In Table 6.1 we report the results for Type-I matrices, choosing u = α [1, . . . , 1]T

for increasing values of α. We note that the accuracy of the computed eigenvalues
deteriorates for high values of α. For Type-I matrices with randomly chosen vector
u, we are able to obtain a higher accuracy, as reported in Table 6.2. Comparing with
[7], we see that the results are comparable.

In Figure 6.2 the last two columns of Table 6.2 are plotted, and the data were
fitted, respectively, with a quadratic and a cubic polynomial. This plot shows that,
indeed, the quadratic behavior of our method can be observed from the beginning,
and, moreover, it is always faster than the Lapack routine DGEEV.

We note that the accuracy in the computation of the eigenvalues deteriorates as
α increases, suggesting a dependence on the norm of the perturbation. Comparing
the results with those from [7], we see that a slight improvement in absolute value is
made: at least one digit is gained.
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Fig. 6.2. On the x-axis the size of the matrix. On the y-axis the time in seconds. The time
required by our method (GivQR) increases quadratically with n, while the time required by DGEEV

grows cubically. The data used are those reported in Table 6.2. The values obtained with GivQR are
represented with crosses and the values obtained using DGEEV with asterisks.

Table 6.3

Errors for Type-II matrices, n = 128, and different values of α.

α 1 102 104 106 108 1010

E(abs) 7.8826e-15 3.9080e-14 7.1054e-14 7.0145e-11 2.4975e-09 4.8511e-08

E(rel) 2.1569e-13 1.5473e-13 3.4055e-13 7.0145e-11 2.4975e-09 4.4442e-07

E(rel2) 3.9425e-15 3.8884e-15 7.1051e-16 7.0145e-14 2.4975e-13 4.8511e-13
avrgit 2.4922 2.7109 2.6797 2.7188 2.6406 2.5703

Table 6.4

Type III: Hessenberg form of randomly generated symmetric plus rank-one matrices.

n E(abs) E(rel) E(rel2)

50 5.5067e-14 5.5067e-14 8.6938e-16
100 3.1264e-13 2.9843e-13 1.9313e-15
200 3.0553e-13 1.8652e-13 1.2322e-15
500 5.4214e-12 9.8766e-13 8.4880e-15

1000 4.5906e-12 4.5906e-12 3.6693e-15

Matrices of Type II are almost symmetric tridiagonal matrices that can be ex-
pressed as a rank-one perturbation of a symmetric tridiagonal matrix. Depending on
the magnitude of the perturbation, the extreme eigenvalues become ill-conditioned.
Our algorithm is, however, very good at dealing with this situation (see Table 6.3)
because for α = 1010 we still have an absolute error of O(10−8) and a relative accuracy
of O(10−13), with respect to the infinity norm. Comparing with the results provided
in [7], we see that for large values of α we gained significantly in accuracy.
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Results for the Hessenberg form of randomly generated symmetric matrices plus
random rank-one matrices are given in Table 6.4. We can see a slight loss of accuracy
for higher values of n, which is due to the reduction to Hessenberg form, but this is
still acceptable when looking at the condition numbers of the individual eigenvalues.

7. Conclusions. In this article a new algorithm was developed for performing
a QR-step on a Hessenberg matrix, which is the sum of Hermitian plus low rank
matrices. The implementation was based on the Givens-weight representation. The
use of a unitary factorization to represent the matrix results in the incapability of
using the standard deflation approach, and hence an alternative deflation technique
was developed.

Numerical experiments illustrate that this algorithm is a viable alternative to
the existing technique proposed in [7]. In some experiments a significant increase
in accuracy is obtained, whereas in others the technique from [7] performs better.
Comparing our implementation with Lapack routine DGEEV, we have that our method
is already faster for n = 50.

Future research involves a backward error analysis and a detailed investigation
of the deflation criterion used. Moreover, explicitly computing the last Givens trans-
formation when performing the QR-iteration seems an unnatural step; it would be
interesting if we could get rid of this explicit computation.
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