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We investigate the critical properties of the Lee-Yang model in less than six spacetime dimensions
using truncations of the functional renormalization group flow. We give estimates for the critical
exponents, study the dependence on the regularization scheme, and show the convergence of our
results for increasing size of the truncations in four and five dimensions. While with our truncations
it is numerically challenging to approach the three-dimensional case, we provide a simple approx-
imation which allows us to qualitatively study the Lee-Yang model in two and three dimensions,
and use it to argue the existence of further nonunitary multicritical theories including one which is
relevant for the universality class of the Blume-Capel model.

I. INTRODUCTION

The cubic scalar field theory with classical Lagrangian
L = (∂ϕ)2 + λϕ3, despite its simplicity, shows a sur-
prisingly rich spectrum of phenomena. Historically, this
model in d = 6 spacetime dimensions has served as a pro-
totype of an asymptotically free theory [1] and was used
as a toy model to illustrate several aspects of QCD [2–
5]. For instance, it is remarkable that a particular cubic
theory of N scalars, which can be mapped to the (N+1)-
states Potts model [6], in the limit N→ 0 belongs to the
same universality class of the Reggeon field theory and
the directed percolation model [7].

Indeed, the most fertile area of application for this
kind of theories is offered by critical phenomena. A cel-
ebrated case of study is that of a single real scalar field,
known as the Lee-Yang model, which has upper criti-
cal dimension d = 6 and provides a Ginzburg-Landau
description of a peculiar critical point [8], the Yang-Lee
edge singularity [9]. This model provides an outstand-
ing example of universality since, while stemming from
the thermodynamic properties of Ising ferromagnets in
d dimensions [10], it governs the negative-activity sin-
gularity of fluid models with repulsive-core interactions
in the same dimensionality [11, 12], directed branched
polymers (directed loop-free lattice animals) in (d + 1)
dimensions [13], Anderson localization phenomena [14]
and isotropic branched polymers (undirected lattice ani-
mals) [15], both in (d+ 2) dimensions. The latter corre-
spondence descends from a beautiful connection with a
N = 1 supersymmetric model in (d+ 2) dimensions [16].

Away from criticality the simple cubic model seems to
be plagued by a terminal illness: the instability of the
bare potential which is believed to generically result into
an unbounded-from-below energy spectrum. However,
this conclusion has been questioned by several authors,
and two notable mechanisms to stabilize the theory have
been proposed. On the one hand, the stability of the
model might be tied to PT symmetry [17, 18], which
is present at criticality, as signaled, for instance, by the
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imaginary value of the cubic coupling λ. On the other
hand, the theory might be rescued through the inclusion
of additional degrees of freedom, such as N scalars with
O(N) symmetry.

This latter possibility has received some attention in
the past two years: on the basis of the AdS/CFT dual-
ity, it has been suggested that there exist O(N)-invariant
conformal models which are unitary in d < 6 for N
big enough [19–21]. These models have been pertur-
batively analyzed in d = (6 − ε) dimensions by means
of a parametrization in terms of an additional auxiliary
O(N) scalar singlet with cubic interaction [19–21]. The
cubic sector generates a nontrivial fixed point in d < 6,
which is real for large values of N and which thus of-
fers a cure to the triviality problem in 4 < d < 6. The
issue of the stability of these models remains still open
within perturbation theory, and nonperturbative meth-
ods have already been applied to try to settle it [22–24].
From our perspective, the nonperturbative study of the
Lee-Yang model is a complementary and more elemen-
tary task that should be addressed. Together, all these
lines of research complement our general understanding
of scalar field theories, which are at the heart of high-
energy physics through the Higgs sector of the standard
model, and of modern theoretical physics through the
AdS/CFT correspondence.

Similarly to the quartic model, the cubic scalar model
is generally not exactly solvable. The main properties of
the critical theory are exactly known only in d = 1 [8] and
d = 2 [25]. More precisely, in the latter case it has been
argued that the two-dimensional conformal field theory
corresponding to the Lee-Yang universality class is the
minimal M(2, 5) model which arises as a representation
of the Virasoro algebra [26]. Interestingly, it has been ar-
gued that the Lee-Yang model is only the first element of
a sequence of two-dimensional multicritical theories [27]
which are captured by the minimal modelsM(2, 2n+ 3)
for n ∈ N0 and of which the critical phases are reached
by tuning the magnetic field to a purely imaginary value
[28]. The second element of this sequence M(2, 7) de-
scribes the tricritical phase of the Blume-Capel model
for spin chains and thus could have application to mod-
els of atomic mixtures [29].

In more than two dimensions, the full understanding of
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the dynamics of the Lee-Yang theory requires an intricate
web of different approximations. Several methods have
been applied to the study of the critical model, ranging
from the (6− ε) expansion [30, 31] to strong coupling ex-
pansions [32], and from lattice simulations [11, 12, 33] to
the conformal bootstrap [34–38]. As a complementary
approach, the use of functional renormalization group
(FRG) techniques is very well suited to this problem,
since it can be naturally generalized to any continuous di-
mension (from high to low d) without the need of resum-
mations or extrapolations, in any regime (both weakly
or strongly coupled, massive or massless), and to a wide
family of models at once including arbitrary real or com-
plex couplings or bare actions (e.g. generic interacting
potentials) [39].

A first exploratory FRG analysis of the Yang-Lee edge
singularity has recently appeared [40]. The results of this
investigation pave the way for a more extensive and in-
depth analysis of the universal properties of this model,
which should be tested against the change of both ap-
proximation strategies and regulator choices, as well as
improvements of the numerical analysis. The present
work goes precisely in this direction.

The plan of this paper is as follows. In Sec. II, we de-
scribe the FRG method, the regularization scheme, and
the approximations within which we perform our anal-
ysis. In Sec. III, we obtain the most accurate FRG es-
timates for the critical theory in 4 ≤ d < 6 as of now,
and report on issues that future works will have to face
in order to push this description to lower dimensions. In
Sec. IV, we describe a simpler approximation that cap-
tures the essence of the model for all dimensionalities
2 ≤ d < 6 and shows a tower of multicritical iϕ2n+1

theories arising below their upper critical dimension. In
Sec. V, we summarize the results and outline the future
directions that should be taken.

II. FUNCTIONAL RENORMALIZATION
GROUP: APPROXIMATIONS AND SCHEME

To investigate the renormalization group (RG) flow of
the cubic scalar theory we will focus on truncations of
the RG equation for an effective average action Γk[ϕ]
that flows according to RG time t = log k. The action
Γk[ϕ] is constructed by modifiying a standard path in-
tegral through the inclusion of a masslike regulator with
kernel Rk(x, y) in the field’s propagator. The RG scale
k separates the excitations of the field ϕ into IR models,
the propagation of which is suppressed by the cutoff, and
UV modes, which are integrated out in the path integral.
The resulting functional generator of 1PI vertices Γk[ϕ]
is thus an effective description of the physics of the UV
modes and interpolates with the standard effective action
in the limit k → 0, at which all modes are integrated out.

The regulator kernel Rk(x, y) additively deforms the

inverse propagator

Γ
(2)
k (x, y) =

δ2Γk
δϕ(x)δϕ(y)

. (1)

and allows one to write a RG equation that is exact, but
has the simple structure of a one-loop equation [41–45]

∂tΓk[ϕ] =
1

2
Tr

[
∂tRk

(
Γ
(2)
k [ϕ] +Rk

)−1]
. (2)

Here ∂t is a derivative at fixed ϕ, while products, inverses
and traces (Tr) on the right hand side stand for matrix-
like operations, where continuous spacetime points (x, y)
replace discrete row/column labels. Eq. (2) is usually not
exactly solvable, but it still allows for perturbative ap-
proximations, both within the framework of the ε expan-
sion [46–50] and at the upper critical dimension [49, 51–
57]. A different and complementary approximation strat-
egy is based on nonperturbative truncations, which re-
quire projecting the RG flow on a treatable subset of
functionals, ideally as large as possible.

In this work, we will restrict ourselves to the
parametrization of the dynamics

Γk[ϕ] =

∫
ddx

[
1

2
Zk(ϕ)∂µϕ∂

µϕ+ Vk(ϕ)

]
(3)

which can be considered as the O(∂2) of a systematic
derivative expansion of the effective action. We will
adopt as a regulator a step-linear shape function that
in (Euclidean) momentum space reads

Rk(p2) = a
(
k2 − p2

)
θ
(
k2 − p2

)
, (4)

where θ is the standard Heaviside function and a > 0
is a free parameter. This functional kernel is chosen to
optimize the results of the truncation of Eq. (3) in scalar
models like the present one [58].

Our focus is on the nontrivial scaling solution with
upper critical dimension d = 6, which corresponds to a
non-Gaußian fixed point (FP) of the RG flow of dimen-
sionless renormalized quantities

ϕR = k−
d−2+η

2 ϕ ,

zk(ϕR) = kηZk(ϕ) , vk(ϕR) = k−dVk(ϕ) ,
(5)

where η denotes the anomalous dimension of the field
at the FP. We choose the normalization zk(0) = 1, and
probe the spurious dependence of universal quantities on
the overall normalization of the action, induced by trun-
cations of the theory space, by varying the regulator pa-
rameter a. Since we will always refer to dimensionless
renormalized quantities at the floating scale k, we will
drop both the k and R subscripts in what follows.

The beta functionals for the truncation (3) have been
presented in [59] using a power-law cutoff instead of (4).
In brief, the flow of the scale-dependent potential is com-
puted from the constant-field limit of (2), while the flow
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FIG. 1. The critical anomalous dimension η in d = 5.9, as
a function of the regulator parameter a, for several orders of
the polynomial truncation NZ (NV = NZ + 3).

of the wave function is computed from the flow of the
two-point function, which is obtained by taking two func-
tional derivatives of (2). Our beta functionals are con-
siderably more complex than those that appeared in [59],
both because of the step function and because of the pres-
ence of the additional parameter a. The explicit form of
these beta functionals is not particularly illuminating, so
we will not provide it in the paper.

III. DERIVATIVE EXPANSION AT O(∂2)

In this section we analyze the coupled system of equa-
tions for v(φ) and z(φ). We project the flow of these
functions on the following polynomial basis

v(ϕ) =

NV∑
n=1

λn
n!
ϕn, z(ϕ) =

NZ∑
n=0

zn
n!
ϕn. (6)

The flow obeys the following properties [59]: the equation
for ∂tv(ϕ) depends on v(ϕ), v′(ϕ), v′′(ϕ) and z(ϕ), while
the equation for ∂tz(ϕ) depends on z′′(ϕ), v′′′(ϕ), z(ϕ),
z′(ϕ) and z′′(ϕ). This translates into a precise hierarchy
for the polynomial couplings. The flow equation for λi
depends on couplings up to λi+2 and zi, while that for
zj involves parameters up to λj+3 and zj+2. However,
λ1 does not appear in the beta functions of all the other
couplings, as it is immediately visible from the right hand
side of Eq. (2). Since the FP condition is a set of two
second-order ordinary differential equations, the solution
is completely determined by four numbers, which can be
chosen as {λ2, λ3, η, z1}.

Let {gi} = {λ1, . . . , λNV , z0, . . . , zNZ} be the set of all
couplings of our truncation and βi = ∂tgi be their beta
functions. The critical exponents θi can be computed by
diagonalizing the stability matrix Mij at the FP

Mij =
∂βi
∂gj

(7)

and coincide with the negative of its eigenvalues. For
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FIG. 2. The violation of the hyperscaling relation for θ2, as
defined in Eq. (11), at the d = 5.9 fixed point, as a function of
the regulator parameter a, for several orders of the polynomial
truncation NZ (NV = NZ + 3).

each critical exponent, we can find a corresponding de-
formation,

v(ϕ) = v∗(ϕ) + δvn(ϕ) e−tθn ,

z(ϕ) = z∗(ϕ) + δzn(ϕ) e−tθn ,
(8)

which solves the linearized flow at the FP, the solutions
of which are denoted with an asterisk.

It is possible to prove very generally that the flow equa-
tions admit two relevant critical exponents, which are re-
lated to the anomalous dimension through two scaling
relations:

θ1 =
1

νc
=
d+ 2− η

2
, δv1 = ϕ, δz1 = 0 , (9)

θ2 =
1

ν
=
d− 2 + η

2
, δv2 = v′(ϕ), δz2 = z′(ϕ).(10)

For example, to prove that Eq. (10) holds, it suffices to
compare the linearized equations to the ϕ derivative of
the FP equations [60, 61]. While Eq. (9) is preserved by
the polynomial truncations of Eq. (6), Eq. (10) is not.1

In fact, one can use its violation

∆θ2 =
d− 2 + η

2
− θ2 (11)

as a measure of the quality of the truncation [40]. Equa-
tions (9) and (10) also show that the anomalous dimen-
sion completely determines all the relevant critical prop-
erties of the Lee-Yang model.2 In addition to η, it is

1 A similar violation of an exact scaling relation by truncations of
the FRG was observed in [62] when studying Aharony’s formula
for the dimension of a certain operator at the decoupled FP of the
O(N)⊕O(M) model. In that case the violation could be removed,
at least when considering NZ = 0 truncations, by dropping the
beta function of z0 inside the stability matrix [63]. The same
does not happen in the present work.

2 The implicit comparison is the Ising model which is characterized
by η and ν, the latter one governing the scaling of the correlation
length.
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FIG. 3. The violation of the hyperscaling relation for θ2, as
defined in Eq. (11), as a function of the order of the polyno-
mial truncation, for a = 0.5. Left panel: the d = 5.9 fixed
point. Right panel: the d = 5 fixed point.
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FIG. 4. The critical anomalous dimension η in d = 5.9 as a
function of the order of the polynomial truncation.

customary to define the critical exponent

σ ≡ θ2
θ1

=
d− 2 + η

d+ 2− η
, (12)

which is essentially the inverse of the thermodynamical
exponent δ and in fact governs the distribution of the
Yang-Lee edge as a function of the imaginary magnetic
field.

By construction, inserting the classical action
into Eq. (2) and expanding in powers of λ3 reproduces
the one-loop expressions for ∂tλ3 and η. These are thus
included in the (NV , NZ) = (3, 0) polynomial trunca-
tion, which comprehends all the classically relevant and
marginal couplings, and for which the FP can be easily
located at negative values of λ 2

3 and η. Several strate-
gies are conceivable on how to systematically increase the
separate orders NV and NZ . However, as tested in [64]
in a similar context, the inclusion of interactions in or-
der of their classical dimensionality appears to maximize
the convergence rate. This is to be expected as long as
the anomalous dimensions are small enough, and one can
trust the Gaußian notion of relevance of an operator. As
a consequence, in the following, we will report on the
results that descend from setting NV = NZ + 3 and in-
creasing NZ .

Let us first discuss several properties of the polynomial
truncations by remaining close to the upper critical di-
mension and setting d = 5.9. Already at low orders in

NZ , an important issue is the regulator dependence of
universal quantities like η. The stronger this is, the less
accurate the chosen truncation of theory space Eq. (3)
is. In fact, in d = 5.9, this dependence is rather weak,
as shown in Fig. 1. Interestingly, increasing NZ does not
significantly mitigate the regulator dependence of η. It
is possible to minimize the latter at almost every NZ ,
by locating an a-stationary point which appears to con-
verge around a = 0.5 for larger and larger NZ . This nu-
merically agrees with the value of a that minimizes the
violation of the second scaling relation, as is visible in
Fig. 2. By increasing NZ one can make this violation as
small as desired, as expected on the basis of the exactness
of Eq. (10), and explicitly checked in Fig. 3. Indeed, the
series of η against NZ is convergent, see Fig. 4. The rate
of convergence does depend on a, and it does not seem to
be maximal at the point that minimizes the sensitivity
of η, but close to it, as it can be observed by comparing
Figs. 1 and 4.

Ensuring the maximum convergence rate becomes cru-
cial for the sake of lowering d. Figures 5 and 6 illustrate
several important facts. First, the dependence of η on a
becomes stronger for lower d. This signals that in lower
dimensions the theory becomes strongly coupled and
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FIG. 5. The critical anomalous dimension η in d = 5, as a
function of the regulator parameter a, for several orders of
the polynomial truncation.
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FIG. 6. The critical anomalous dimension η in d = 4, as a
function of the regulator parameter a, for several orders of
the polynomial truncation.



5

0 1 2 3 4 5 6 7 8 9 10 11 12

-0.15

-0.14

-0.13

-0.12

-0.11

-0.10

NZ

η 7 8 9 10 11 12

-0.134

-0.1344

-0.1348

-0.1352

a=0.45

a=0.475

a=0.5

FIG. 7. The critical anomalous dimension η in d = 5 as a
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FIG. 8. The critical anomalous dimension η in d = 4 as a
function of the order of the polynomial truncation.

the simple parametrization of Eq. (3) is less adequate.
Second, the value of a for which the dependence is min-
imized moves when d changes. This, combined with the
technical problem that following the FP at higher NZ
is difficult in regions where the a-dependence is strong,
forces us to continuously relocate the stationarity point
while changing d and NZ . Let us remark that the min-
imization of the a dependence of η is performed also at
orders in NZ much higher than those displayed in Figs. 5
and 6, yet in a smaller domain. Third, the overall conver-
gence rate of the polynomial truncation decreases quickly
for lower d, which can be appreciated by comparing the
violation of the second scaling relation in d = 5.9 and
d = 5, as shown in the left and right panels of Fig. 3,
respectively.

Nevertheless, in both d = 5 and d = 4 it is possible to
see convergence of the polynomial truncations, but this
requires orders in NZ which are much higher than those
studied in [40], where results were obtained up to NZ = 5
and NV = 7 (though for polynomials centered around a
nonzero ϕ). Fig. 7 shows that in d = 5 convergence
at less than 1% can be achieved already with NZ = 7.
Having reached NZ = 12 allows us to extract the value
η = −0.1344(1) at the optimized point a = 0.5, within
the truncation of Eq. (3). For d = 4, at NZ = 7 the

anomalous dimension still oscillates at the level of 4%, as
shown in Fig. 8, and we need to push the numerics up to
NZ = 14 to obtain η = −0.325(3) at the optimized value
a = 0.6 within the truncation of Eq. (3).

These FPs can be smoothly connected with the per-
turbative region around d = 6 by analytically continuing
the flow equation in the dimensionality, such that their
identification as nonspurious solutions is unambiguous.
The upper panel of Fig. 9 illustrates how η and the mass
parameter λ2 decrease side by side as d is lowered, a
fact that has no parallel in the mass-independent scheme
usually adopted to construct the ε expansion, in which
λ2 = 0 at the FP. The lower panel of Fig. 9 shows that
the cubic couplings λ3 and z1 are instead non monotonic.
While in the perturbative region close to d = 6 the non-
derivative vertex clearly dominates over the momentum-
dependent one, the two become of the same order of mag-
nitude in d ≤ 4, which indicates that most likely this
applies also to other derivative interactions neglected in
our truncation Eq. (3). Therefore, it is reasonable to ex-
pect that below d = 4 the present order of the derivative
expansion will be far from accurate.

λ2
η

4.0 4.5 5.0 5.5 6.0
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-0.2

-0.1

0.0

d
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3.0 3.5 4.0 4.5 5.0 5.5 6.0
0

5

10

15

d

FIG. 9. The position of the FP as a function of spacetime
dimensions. Upper panel: the mass parameter λ2 and the
anomalous dimension η at order NZ = 10, for a = 0.5.
Lower panel: the momentum-independent and -dependent cu-
bic couplings (λ3 and z1 respectively) at order NZ = 7, for
a = 0.7.
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FIG. 10. The value of η for several orders of the polynomial
truncation, as a function of spacetime dimensions d. The
regulator parameter is fixed at a = 0.7.

Unfortunately, we are not able to report on the value
of η in d = 3, because the search for roots of the FP
equation becomes extremely cumbersome below d = 4,
such that in changing d, a and NZ the algorithm is very
easily attracted to spurious solutions (typically while in-
crementing NZ) or cannot find any FP at all (typically
while lowering d). To understand the origin of the prob-
lem, we can rely only on low-order truncations, for which
probing several a and d values is much easier. The re-
sults indicate that the main reason for these technical
difficulties is the slow rate of convergence of the polyno-
mial truncation in lower dimensions, combined with the
stronger a-dependence of the FP itself.

Regarding optimization, the minimum-sensitivity
value of a grows while d decreases, from a = 0.5 close
to d = 6 to roughly a = 0.7 in d = 3. Low-order trun-
cations show that for d < 3.8 the value of η undergoes
a rapid change across a ≈ 0.5. As a consequence, even
though the behavior of η in d ≤ 3.8 suggests that for
a < 0.5 there might be further stationarity points, we
have not been able to systematically probe that region.

Concerning the slow convergence rate, it appears to
significantly affect the d-dependence of η, which is non-
monotonic far from six dimensions. As shown in Fig. 10,
for each order of the polynomial truncation the anoma-
lous dimension reaches a minimum at some d and then
it grows in lower dimensions. The fact that the location
of the minimum is pushed toward lower d by increasing
NZ , suggests that this nonmonotonicity is an artifact of
polynomial truncations. Unfortunately, for higher NZ we
are not able to follow the FP from d = 4 down to d = 3,
probably because of the combination of the increasing
complexity of the system of algebraic equations and the
rapid change of the FP position for d slightly above the
position of the minimum of η, as visible in Fig. 10.

Finally, from the behavior of the rate of convergence
in 4 ≤ d < 6 we suspect that, even if we could follow the
genuine FP down to d = 3 for higher NZ , to determine η
with a reasonable precision we would still need to probe

values of NZ outside of our available computing power.
For all these reasons, we believe that the best way to
study this FP in lower dimensions is to abandon poly-
nomial truncations and to use numerical algorithms such
as discretization of field space or pseudospectral meth-
ods [65]. The next question would then be, whether the
O(∂2) derivative expansion is able to give a qualitatively
correct description of the Lee-Yang edge singularity in
d ≤ 3, and if so to which level of accuracy. So far, we are
able to provide an answer only for d = 5 and d = 4, as
summarized in Table I. We will compare these results to
the literature in Sect. V.

η σ

LY5 −0.1344(1) 0.40166(2)

LY4 −0.325(3) 0.2648(6)

TABLE I. Summary of the estimates coming from the O(∂2)
of the derivative expansion.

IV. LOCAL POTENTIALS AND NONUNITARY
MULTICRITICALITY

In this section we describe an approximation that is
inspired by the original work by Fisher [8], which is prob-
ably the simplest description of the Lee-Yang model in
terms of a local potential. Notably, it will allow us to ex-
tend our investigation to two and three dimensions. We
concentrate our attention to local potential truncations of
(3) for which Zk(ϕ) = const. The flow of the dimension-
less renormalized potential becomes considerably simple
if the cutoff function (4) is used at a = 1

∂tv(ϕ) = −dv(ϕ) +
d− 2 + η

2
ϕv′(ϕ) + cd

1− η
d+2

1 + v′′(ϕ)
,

(13)

with c−1d = (4π)d/2Γ(1 + d/2). Having fixed a, from
now on we will not be able to study the sensitivity of the
results on the cutoff. It is easy to see from the right hand
side of (13) that the stationarity condition ∂tv(ϕ) = 0
can be used to generalize FPs to solutions of a nonlinear
ordinary differential equations [61].

For a general real cutoff, and in particular for our
choice (13), the Wetterich equation (2) is invariant un-
der a generalization of Z2 parity known as PT symmetry.
In terms of the dimensionless renormalized potential we
define its action as

PT : v(ϕ)→ v(−ϕ)∗ , (14)

where the star indicates complex conjugation. It is natu-
ral to separate the real and imaginary parts of the poten-
tial v(ϕ) ≡ u(ϕ)+ ih(ϕ), and use this symmetry to argue
that for invariant stationary solutions v(ϕ) = v(−ϕ)∗ the
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FIG. 11. Terminal values of the integration of the FP con-
dition in d = 5 and d = 4 dimensions for varying boundary
condition g = −iλ3. The singularities corresponding to the
Lee-Yang model are highlighted for both dimensionalities by
insets.

real part of the potential is an even function, while the
imaginary part is odd:

u(−ϕ) = u(ϕ) and h(−ϕ) = −h(ϕ) . (15)

It is possible to decompose the flow (13) into a flow for
real and imaginary parts as ∂tv(ϕ) = ∂tu(ϕ) + i∂th(ϕ).
The even potential u(ϕ) could be thought to contain the
information of an Ising-like model, while the odd h(ϕ)
can be interpreted as a functional generalization of an
imaginary magnetic field.

Fisher showed that the critical exponents of the Yang-
Lee edge singularity in the thermodynamical limit can be
related to the scaling exponents of the Lee-Yang model
by opportunely tuning the imaginary magnetic field to
criticality [8]. We shall mimic this setting by truncating
the effective potential to its imaginary part, thus effec-
tively setting the real part to zero: u(ϕ) = 0. We are left
with the flow of a single function

∂th(ϕ)|u=0 = −dh+
d− 2 + η

2
ϕh′ − cdh′′

1− η
d+2

1 + h′′2
,

(16)

the stationary solutions of which can be studied with the
boundary condition h(0) = 0 coming from (15). In this
approximation there is only one parameter left to tune
to criticality, which we choose to be the third derivative

g ≡ −iλ3 = −iv′′′(0) = h′′′(0) .

A direct comparison of (16) with the flow of the N = 1
superpotential w(ϕ) in (d + 1) dimensions in the same
scheme [61, 66] shows the structural similarities between
the two problems, which might be related to some gen-
eralization of the arguments of [16].

The problem is now apt to the application of the stan-
dard shooting methods described in [61, 67–69] to find

LY3

BC3

d=3

0 2 4 6 8 10
0.0

0.2

0.4
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1.0

1.2

g

j

FIG. 12. Terminal values of the integration of the FP con-
dition in d = 3 dimensions for varying boundary condition
g = −iλ3. The singularities corresponding to the Lee-Yang
and the Blume-Capel models are highlighted by insets.

the critical values for the parameter g. In brief, the
method consists in numerically integrating the second-
order ordinary differential equation obtained by setting
the right hand side of (16) equal to zero, with varying
boundary conditions parametrized by g. For all values
of g, the integration terminates in a singularity for (the
third derivative of) h(ϕ), which occurs at a finite value of
ϕ. The plot of this terminal value of the field as a func-
tion of g displays spikes and flexes in proximity of the
critical values, indicating the existence of solutions that
can be extended to all values of the field. We refer to [61]
and references therein for more details on the approach,
including its relation to the Ginzburg-Landau theory.

The plot of the terminal value for the cases d = 5 and
d = 4 are given in Fig. 11 as a function of g. We high-
lighted the location of the singularities associated to the
Lee-Yang model for both dimensionalities. The values for
g are comparable to those shown in Fig. 9, but are not
quantitatively similar.3 The singularity corresponding to
g = 0 is the Gaußian model.

The plot for the case d = 3 is given in Fig. 12. The
singularity corresponding to the Lee-Yang model can be
followed easily from the higher dimensionalities, and it
is still evident on the right of the plot. However, in
d = 3 a new critical theory is present on the left of
the Lee-Yang model. We believe that the new theory
corresponds to the quintic iϕ5 model, the upper critical
dimension of which is d = 10/3 and therefore can be non-

3 A less crude approximation involves truncating the even part
of the potential to a mass term u(ϕ) = 1

2
λ2ϕ2, and tuning λ2

to criticality using ∂tu = 0, i.e. solving ∂tλ2 = 0 for λ2 as
a function of g too. This procedure gives a better agreement
for nonuniversal quantities such as g, but it can be shown that it
does not change the critical exponents η and σ. Since the physical
content of the model is in its critical exponents, we decided to
leave out this additional complication.
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Gaußian in three dimensions. To test this hypothesis we
explicitly checked that its singularity spawns from the
Gaußian solution while crossing its upper critical dimen-
sion d = 10/3, thus agreeing with Helmholtz theorem
and the standard arguments of mean field. The quintic
model is in the same universality class of the Blume-
Capel model [27, 28], which has a tricritical phase at an
imaginary magnetic field.4 Following a standard prac-
tice, we took the liberty of naming it simply the Blume-
Capel model, even though it is implied that by model we
mean universality class. For the most part, the Blume-
Capel model has been studied in two spacetime dimen-
sions, corresponding to one-dimensional spin chains, but
the model is critical (albeit nonunitary) in three dimen-
sions too, and thus furnishes a rather little-studied ex-
ample of a three-dimensional critical theory.

The latter discussion on the quintic model can be easily
generalized to all models governed by odd powers of the
field iϕ2n+1 for n ∈ N0, which include the Lee-Yang and
the Blume-Capel cases for n = 1 and n = 2, respectively.
Their upper critical dimensions are

dn = 2 +
4

2n− 1
. (17)

In the limit n → ∞, the critical dimensionalities ap-
proach dn → 2, that is, the special case in which the field
ϕ becomes canonically dimensionless. We conjecture that
this sequence of critical models interpolates with the se-
quence of minimal conformal theories M(2, 2n + 3) in
the two-dimensional limit [28]. This statement is backed
by both the structure of the operator product expansion,
as well as the fact that M(2, 5) and M(2, 7) are known
descriptions of the Lee-Yang and Blume-Capel models
respectively [25, 27].

Following the emergence of these models in dimensions
lower than three is, however, more complicated than ob-
serving the previous cases: the cutoff (4) has poorer con-
vergence properties than usual when approaching two di-
mensions in (16). The convergence can be improved by
changing the power of the momentum p2 of (4) as de-
scribed for the supersymmetric flows in [61]. All the
steps described above and leading to the flow (16) for
the imaginary part can still be performed, but are much
more complicated and lead to a highly nonlinear equa-
tion, which considerably complicates the numerical anal-
ysis. Nevertheless, we explicitly checked that the first few
iϕ2n+1 models spawn from the Gaußian solution when
lowering d to values smaller than their critical dimen-
sions, in a guise similar to what we observed for the
Blume-Capel model.

4 The original Blume-Capel model is the one of a spin chain,
thus it should be clear that this universality class refers to the
same model on a two-dimensional grid evolving in time. While
with our nomenclature convention the tricritical Ising universal-
ity class could also be referred to as Blume-Capel model, we
decided to use it for the lesser-studied theory.

In analogy with the relation between the Ising and the
Lee-Yang universality classes, it can be speculated that
the Blume-Capel class might be relevant in elucidating
the structure of the singularities in the complex activ-
ity plane of the tricritical Ising model [70]. We hope to
report more on the Blume-Capel universality class and
on the topic of multicriticality at imaginary values of the
magnetic field in the future. All the results of this section
for d = 5, 4, 3, 2 are summarized in Tab. II.

η σ

LY5 −0.176 0.394

LY4 −0.426 0.245

LY3 −0.667 0.0588

LY2 −0.958 −0.193

BC3 −0.0093 0.198

TABLE II. Summary of the estimates coming from the Fisher-
inspired approximation (16). Models are labeled by their ini-
tials while the subscripts refer to their dimensionality.

V. CONCLUSIONS

We gave functional renormalization group estimates
for the critical properties of the Lee-Yang model in less
than six dimensions. Using a O(∂2) truncation of the
space of all operators, and carefully optimizing the nu-
merics, we provided converging estimates to the anoma-
lous dimension and the exponent σ in five and four di-
mensions as summarized in Tab. I. It is important to
stress that we do not estimate the truncation error, only
the error related to the numerics. Our results are com-
pared to some of the estimates produced by other meth-
ods in Tab. III. These include another FRG study using
a different scheme as well as different lower-order poly-
nomial truncations [40], the four-loop ε expansion with
a Padé approximant constrained by the exact results in
d = 1 and d = 2 [31], the conformal bootstrap [34], the
strong coupling expansion [32], and simulations of fluid
models with repulsive-core interactions [11] and of lattice
animals and trees [33]. Thanks to the strong constraints
that the scaling relations enforce on it, all the relevant
properties of the Lee-Yang model are determined by η.

Unfortunately, we could not provide equally reliable es-
timates in three and two dimensions. Based on our anal-
ysis, we argued that in this case the problem is both tech-
nically challenging, because much bigger truncations are
needed to ensure convergence, but also that the simple
next-to-leading order of the derivative expansion might
be insufficient. We believe that a reliable solution to
this problem might lead to a deeper understanding of
the limitations of the derivative expansion and of how to
appropriately choose truncations of the effective action of
which the scope is the computation of critical exponents.

We then showed that there exists a simple, yet very
useful approximation of the effective potential which
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this work [40] [31] [34] [32] [11] [33]

LY5 0.40166(2) 0.4033(12) 0.3981 0.4105(5) 0.401(9) 0.402(5) 0.40(2)

LY4 0.2648(6) 0.2667(32) 0.2584 0.2685(1) 0.258(5) 0.2648(15) 0.261(12)

TABLE III. Estimates of the critical exponent σ at the Yang-Lee edge singularity in d = 5 and d = 4, from this work as
well as from an exploratory functional RG study [40], the ε expansion at four loops [31], the conformal bootstrap [34], strong
coupling expansions [32], Monte Carlo simulations of hard-core fluids [11], and of lattice animals and trees [33]. The error of
our estimates is to be understood as purely numerical, and it does not include an estimate of the systematic truncation effects.

allows us to qualitatively explore the three- and two-
dimensional cases. This is well suited to describe the ap-
pearance of further nonunitary critical solutions, which
we argued to represent the sequence of models iϕ2n+1,
and which we conjectured to interpolate with a well
known family of conformal theories in two dimensions.
While the first element of this sequence is the Lee-Yang
model, the second is a tricritical model which we con-
jectured to describe the critical Blume-Capel model on
a spin-lattice at imaginary values of the magnetic field.
This model happens to have an upper critical dimension
higher than three, and thus shows a non-Gaußian behav-
ior in three dimensions, giving a less known example of a
three-dimensional critical theory of a single scalar field.

NOTE ADDED

After the publication of this work we became aware
of a work discussing the Landau-Ginzburg description of
some of the nonunitary two-dimensional minimal models
[71], the conclusions of which do not agree with the con-
jecture made in this paper that the Blume-Capel (quin-
tic) universality class in d > 2 interpolates with the min-
imal model M(2, 7) in d = 2. In [71] it is conjectured
that the minimal model M(2, 9) admits a iϕ5 Landau-
Ginzburg description. This agrees with the fact that the
quintic theory is expected to correspond to a theory that
has four relevant and primary operators in its Kac table
(here we include the identity and exclude the operator
ϕ4 because it is not a primary, but rather a descendant

due to the equations of motion ∂2ϕ ∼ ϕ4).
A variant of the conjecture stated in this paper, which

also accomodates the recent findings, would be to argue
that the odd multicritical models iϕ2n+1 could be the
correct Landau-Ginzburg descriptions of the sequence
M(2, 4n+ 1) of CFT minimal models. This second con-
jecture agrees with the Lee-Yang case which occurs at
n = 1, but also agrees with the general discussion of [71]
and specifically with the n = 2 case, and resonates with
the general expectation that the iϕ2n+1 model should
correspond to a model that has 2n relevant and primary
operators in its Kac table.

The conjecture enunciated here is part of the more gen-
eral quest for a Landau-Ginzburg classification of all two-
dimensional CFTs and especially of all minimal models
(see [71] and references therein). We believe that such
a classification is an objective of paramount importance
for the development of QFT and statistical mechanics,
and we hope to give a contribution to this topic in the
future.
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11308/, Universitá di Bologna (2015).

http://arxiv.org/abs/1201.1244
http://arxiv.org/abs/1301.6207
http://arxiv.org/abs/1404.1094
http://arxiv.org/abs/1409.1937
http://arxiv.org/abs/1601.07198
http://arxiv.org/abs/1405.6622
http://arxiv.org/abs/1501.00211
http://arxiv.org/abs/1601.00450
http://arxiv.org/abs/1604.03561
http://arxiv.org/abs/hep-th/9402143
http://arxiv.org/abs/hep-th/0309137
http://arxiv.org/abs/1506.03357
http://arxiv.org/abs/1206.0872
http://arxiv.org/abs/1403.6003
http://arxiv.org/abs/1601.06851
http://arxiv.org/abs/1611.06373
http://arxiv.org/abs/1611.08407
http://arxiv.org/abs/hep-th/0002034
http://arxiv.org/abs/hep-ph/0005122
http://arxiv.org/abs/cond-mat/0702365
http://arxiv.org/abs/hep-ph/0611146
http://arxiv.org/abs/hep-th/9802039
http://arxiv.org/abs/hep-th/0512261
http://arxiv.org/abs/hep-th/0512261
http://arxiv.org/abs/1605.06039
http://arxiv.org/abs/hep-ph/9308265
http://arxiv.org/abs/hep-ph/9308265
http://arxiv.org/abs/hep-th/9301114
http://arxiv.org/abs/hep-ph/9308260
http://arxiv.org/abs/hep-ph/9308260
http://arxiv.org/abs/1003.1366
http://arxiv.org/abs/0708.2697
http://arxiv.org/abs/hep-th/9403164
http://arxiv.org/abs/hep-th/9604114
http://arxiv.org/abs/hep-th/9712038
http://arxiv.org/abs/hep-th/9803212
http://arxiv.org/abs/hep-th/0007128
http://arxiv.org/abs/hep-th/0007128
http://arxiv.org/abs/hep-th/0309242
http://arxiv.org/abs/1310.7625
http://arxiv.org/abs/hep-th/0103195
http://arxiv.org/abs/hep-th/0103195
http://arxiv.org/abs/hep-th/0005245
http://arxiv.org/abs/hep-th/0005245
http://arxiv.org/abs/hep-th/0203006
http://arxiv.org/abs/hep-th/0203006
http://arxiv.org/abs/hep-th/0111159
http://arxiv.org/abs/hep-th/9410141
http://arxiv.org/abs/hep-th/9410141
http://arxiv.org/abs/0901.0450
http://arxiv.org/abs/1508.02547
http://arxiv.org/abs/1306.2952
http://arxiv.org/abs/1503.07817
http://arxiv.org/abs/1503.09136
http://arxiv.org/abs/1502.07511
http://arxiv.org/abs/1603.06726
http://arxiv.org/abs/0907.4229
http://arxiv.org/abs/hep-th/9405190
http://arxiv.org/abs/hep-th/9405190
http://arxiv.org/abs/1204.3877
http://arxiv.org/abs/0710.0991
http://amslaurea.unibo.it/11308/
http://amslaurea.unibo.it/11308/

	Lee-Yang model from the functional renormalization group
	Abstract
	I Introduction
	II Functional renormalization group: approximations and scheme
	III Derivative expansion at O(2)
	IV Local potentials and nonunitary multicriticality
	V Conclusions
	 Note added
	 Acknowledgments
	 References


