
Simulating FogDirector Application Management

Stefano Forti1, Alessandro Pagiaro, Antonio Brogi
Department of Computer Science, University of Pisa, Italy

Abstract
Achieving a correct and effective management of Fog computing applica-
tions is a non-trivial task to accomplish, which includes considering specific
application requirements as well as dynamic infrastructure characteristics.
CISCO FogDirector is a tool that can be used to manage the entire life-cycle
of IoT applications over Fog infrastructures by relying on a RESTful API.
In this paper, we present a prototype simulation environment, FogDirSim,
compliant with FogDirector API. FogDirSim permits comparing different ap-
plication management policies according to a set of well-defined performance
indicators (viz., uptime, energy consumption, resource usage, type of alerts)
and by considering probabilistic variations of the applications workload and
failures of the underlying infrastructure. A lifelike example is used to validate
the prototype and to show its usefulness in selecting the best management
policy.
Keywords: Fog computing, Application Management, CISCO Fog Director,
RESTful API

1. Introduction

Fog computing architectures are characterised by the seamless exploitation
of heterogeneous devices and communication protocols [1, 2]. Particularly,
the presence of many resource-constrained devices in Fog networks calls for
resource-aware application management more than in Cloud scenarios, where

1Corresponding author. Email: stefano.forti@di.unipi.it

c©2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/. This manuscript is a preprint of the ar-
ticle accepted for publication in Simulation Modelling Practice & Theory .

Preprint submitted to Simulation Modelling Practice and Theory November 9, 2019



elasticity and scalability are less critical [3, 4]. Furthermore, in addition to
hardware failures, Fog devices can incur in the loss of Internet access due to
their mobility or to edge network failures [5]. Last but not least, many Fog
computing applications – such as e-health [6] or autonomous vehicles [7] –
have stringent Quality of Service (QoS) requirements to meet due to their
business-, mission- and sometimes life-critical nature.

Overall, managing applications in highly distributed Fog computing sce-
narios requires to decide on which node each application should be installed
and run at each moment in time, depending on different infrastructure condi-
tions and always considering application requirements in terms of hardware
(e.g., RAM, CPU) and QoS (e.g., uptime, energy consumption). This pro-
cess normally involves human decision-makers (i.e., application operators)
that design and implement suitable management scripts to guarantee the
fulfilment of all such requirements throughout the application life-cycle, viz.
from application deployment to retirement.

Unfortunately, bad or poor management choices can lead to unsatisfac-
tory service QoS, waste of electrical power or money, and – worst of all
– customer (and, therefore, financial) losses due to bad service placement,
overloading of Fog devices and service downtime, respectively. For instance,
application operators have to decide where to suitably migrate applications
whenever their deployment nodes undergo failures or overloading situations
due to environmental factors, or when to increase the resources allocated to
an application whenever it has to deal with a workload higher than expected,
or again how many replicas of a certain application are needed to guarantee a
satisfactory uptime. Finally, they might also consider purchasing new hard-
ware to extend their deployment infrastructure if the current setup cannot
suitably satisfy the application needs.

In general, designing, tuning and enacting correct and effective applica-
tion management policies in Fog computing scenarios is an open research
problem, which calls for suitable tooling and support [8, 9]. Indeed, before
adopting new management policies in production environments, an effective
loop for application operators would include:

1. writing a script to implement their management policies for deploy-
ing application artefacts and handling deployment alerts and faults at
runtime,

2. experimenting and assessing the actual behaviour of their script in a
simulated environment capable of reproducing all possible infrastruc-

2



ture and workload conditions,
3. obtaining an estimate of the Key Performance Indicators (KPIs) achieved

by the considered management script within the simulated environment
so to assess its effectiveness,

4. refining their script based on the obtained results, if needed, and pos-
sibly simulating it again by repeating steps 1–4.

To this end, research has proposed some first prototype simulators that per-
mit to run and compare management policies (e.g., iFogSim [10], YAFS [11]).
However, the major shortcomings that these prototypes share concern:

(A) the high level of abstraction with respect to industrial Fog computing
solutions and APIs for managing Fog applications (like CISCO FogDi-
rector), and

(B) the fact that few considers the possibility for Fog devices to fail or
temporarily disconnect from the network.

Whilst (A) introduces an additional layer of complexity for application op-
erators that must first translate – when possible – their infrastructure and
application models, and naturally their management scripts, into the input
accepted by the prototype simulators, (B) results in failing to capture one of
the main aspect of Fog computing and highly distributed infrastructures in
general, i.e. failures and device churn.

Among the first works inspired to industry-based solutions, Forti et al.
[12] proposed an operational semantics of all basic management functionali-
ties of CISCO FogDirector. A proof-of-concept implementation, FogDirMime,
based on such semantics was then proposed to permit experimenting with
abstract program specifications of CISCO FogDirector management scripts
and to collect some customised performance indicators against probabilistic
infrastructure variations. Still, FogDirMime only constitutes the core API
of a simulation environment of Fog application management with CISCO
FogDirector, and it shows important limitations. More precisely, it is not
able to directly input actual CISCO FogDirector management scripts, nor it
provides the possibility to set configuration parameters for the simulation to
take place. Last but not least, FogDirMime proof-of-concept leaves the users
alone with the task of deciding which KPIs to compute and how to compute
them.

3



In this article, pursuing the (mostly formal) modelling effort of FogDirMime
[12], we will describe the design and implementation of FogDirSim, a proto-
type discrete-event simulation environment which is fully compliant to (a
feature-complete subset of) CISCO FogDirector RESTful API for applica-
tion and infrastructure management. FogDirSim is a simulator that permits
comparing different application management policies according to a set of
KPIs. Based on monitored aggregate historical data, the prototype con-
siders probabilistic variations and failures in the underlying infrastructure,
which can happen independently from the considered management. In short:

This work aims at contributing to supporting the design and as-
sessment of correct and effective management policies for Fog
computing applications, by providing a (discrete-event) simulation
environment based on the model and API of CISCO FogDirector,
and capable of predicting management KPIs against probabilisti-
cally varying deployment conditions.

As we will show over a lifelike motivating example, FogDirSim can be fruitfully
exploited by application operators to a priori validate, assess and compare in
a simulated environment different management policies for their applications.
Differently from existing approaches, application operators can directly sim-
ulate the very same management scripts that they can run in production
against an actual instance of CISCO FogDirector.

In addition to testing the correctness of their management against varying
infrastructure conditions, FogDirSim can probabilistically predict:

• application uptime and downtime,

• the different types of alerts raised,

• energy consumption due to management choices,

• the convergence speed of different management policies,

• their robustness against varying device failure rates, and

• their capacity to adapt to changing application workloads.

4



The rest of this paper is organised as follows. After briefly describing CISCO
FogDirector functionalities (Sect. 2), we describe a motivating scenario from
the field of smart building application over lifelike infrastructures (Sect. 3).
Then, we describe the implementation and functionalities of our simulator,
FogDirSim (Sect. 4), and – after discussing its validation – we use it to solve
the motivating example (Sect. 5). Finally, after reviewing some related work
(Sect. 6), we conclude and point to possible directions for future work (Sect.
7).

2. Background: CISCO FogDirector

In 2016, CISCO released CISCO IOx, a first Fog platform that brings to-
gether capabilities from the networking operating system Cisco IOS, and
from the Linux operating system. Such convergence permits to get together
networking management and the possibility to run Linux-based applications
within CISCO IOx, which enables developers to easily create a wide variety
of IoT applications. Within the IOx framework, CISCO provides CISCO
FogDirector [13], a single control panel to manage, monitor and troubleshoot
Fog applications and infrastructure devices.

First, CISCO FogDirector enables application operators to achieve con-
sistent management throughout the lifecycle of Fog applications. Indeed, it
permits to start and stop applications, manage their versioning and updates,
view and monitor the health state of deployed applications by possibly rais-
ing suitable alerts, backup and restore applications in case of failures, change
deployment configurations and allocated resource profiles.

Second, CISCO FogDirector enables managing Fog infrastructures by con-
tinuously monitoring installed devices (with respect to consumed RAM and
CPU, instantaneously and over time), whilst abstracting from more technical
networking aspects. It also permits tagging devices and searching for them
to perform informed management decisions at runtime.

Last but not least, CISCO FogDirector permits rapid adoption from new
users as well as integration with existing or custom management systems.
To this end, CISCO FogDirector provides a GUI to offer an intuitive user
experience that fits in with operational and administrative processes and
practices. CISCO FogDirector also exposes a RESTful API to perform all
aforementioned operations. Such API enables the interaction with existing
management scripts, and it can be exploited to implement new automated

5



management systems, which implement customised management policies to
orchestrate applications and infrastructure devices.

3. Motivating Scenario

Consider a holiday resort with 150 bungalows dispersed over a large area.
The resort currently has 20 access points deployed to offer Internet connec-
tivity to its guests, and those access points are CISCO FogDirector-enabled.
Particularly, the available infrastructure is composed of three types of devices
with the specifications listed in Table 1, which also reports the average µ and
the variance σ of the free CPU and RAM they feature, based on historical
monitoring data. For instance, devices of type L have a total of 2500 CPU
units and 1024 MB of RAM but, on average, there are 1700 free CPU units
(with a variance of 500 units) and 850 MB of RAM available (with a variance
of 450 MB).

Total Resources CPU Usage RAM Usage
Type Number CPU RAM µ σ µ σ

L 5 2500 1024 1700 500 850 450
M 5 1500 1024 1000 400 750 450
S 10 1200 512 800 400 300 200

Table 1: Resort infrastructure.

The resort manager plans to install a Smart Ambient application capable of
managing and properly coordinating IoT domotics systems installed at each
bungalow (i.e. air-conditioning, autonomous cleaning, room lighting, fire
alarm) according to commands issued and goals specified by resort guests.
Sensors and actuators needed for these purposes can directly connect to
CISCO FogDirector devices via various technologies.

An instance of the application – requiring on average 100 CPU units and
32 MB of free RAM – must be deployed for each room so to enable all smart
ambient services. Thus, the resort manager has to deploy 150 instances
to provide the new services to its customers, and she is willing to invest
in extending the available infrastructure with more devices of type S so to
suitably support those instances, i.e. to reach an overall uptime of at least
80%, with no alerts. Sizing of the infrastructure might also depend on the
policy she will adopt for deploying and managing the application instances.
To this end, she selected four candidate management policies to choose from:

6



• Random-fit which places application instances that are to be deployed
anew, or migrated due to alerts, on a random node that can accommo-
date them,

• First-fit which places application instances that are to be deployed
anew, or migrated due to alerts, on the first node in the list of the
available devices that can accommodate them,

• Largest-fit which places application instances that are to be deployed
anew, or migrated due to alerts, on the node with currently more free
resources that can accommodate them, and

• Informed Largest-Fit which places application instances that are to be
deployed anew, or migrated due to alerts, on the node with historically
more free resources that can accommodate them, based on aggregate
monitoring data (inspired by FogTorchΠ [14]).

Listing 1 shows the code of the first three policies described before and being
considered by the manager. The fourth policy, i.e. the Informed Largest-Fit,
only differs from the Largest-Fit because it monitors the infrastructure for a
period of time and sorts the devices list based on the average free resources
computed during that period, before performing its choice.
Naturally, the resort manager aims at selecting a policy that can rapidly
deploy all application instances, whilst minimising overall energy consump-
tion and alert rates, and maximising the uptime of all deployed application
instances. Hence, the first questions she aims at answering are:
Q1. Which is the best management policy among the candidate ones, with
respect to overall convergence speed, applications uptime and monthly energy
consumption?
Q2. In case the policy chosen in Q1 does not guarantee at least 80% of
uptime without deployment alerts, how many devices of type S should she buy
and install to reach such a guarantee? How much will the monthly energy
consumption increase? How likely are different types of alert to happen in
case the infrastructure is extended accordingly?
As the new smart service becomes more popular, the hotel manager realises
that she can offer a paid premium replica to resort customers, which guar-
antees them improved uptime in case of alerts or devices failures. Then, she
would like to answer other questions:

7



def random_fit():
_, devices =fd.get_devices()
r =random.randint(0, len(devices["data"]) -1)
return devices["data"][r]["ipAddress"], devices["data"][r]["deviceId"]

def first_fit(cpu, mem):
_, devices =fd.get_devices()
for dev in devices["data"]:

if dev["cpu"]["available"] >=cpu and dev["memory"]["available"] >=mem:
return dev["ipAddress"], dev["deviceId"]

return None

def largest_fit(cpu, mem):
_, devices =fd.get_devices()
devices =[dev for dev in devices["data"] if dev["cpu"]["available"] >=cpu

and dev["memory"]["available"] >=mem]
devices.sort(reverse=True, key=(lambda dev: (dev["cpu"]["available"],

dev["memory"]["available"]) ))
while len(devices) ==0:

_, devices =fd.get_devices()
devices =[dev for dev in devices["data"] if dev["cpu"]["available"] >=cpu

and dev["memory"]["available"] >=mem]
devices.sort(reverse=True, key=(lambda dev: (dev["cpu"]["available"],

dev["memory"]["available"]) ))
largestFit =devices[0]
return largestFit["ipAddress"], largestFit["deviceId"]

Listing 1: Example management policies.

Q3. How many premium replicas can she offer with the infrastructure ob-
tained as per the answer to Q2, when employing the policy chosen in Q1?
Q4. How many new devices of type S should she purchase and have installed
at the resort so to suitably support a premium replica for each application
instance for each bungalow (viz., 300 instances overall)? How much will this
impact on energy consumption and on alerts?
Then, the resort manager might have some considerations related to device
failures. Indeed, she might want to answer the following:
Q5. Assuming that devices can fail (e.g., crash with probability 0.5% and
successfully reboot with probability 40%), how much will this affect the chosen
management policy? How many new devices of type S should be added to keep
the probability of uptime without alerts around 80%? How likely are different
types of alert to happen in case the infrastructure is extended accordingly?
Finally, the resort manager would like to assess what happens when deployed
application instances undergo a higher workload phase, with a probability of
0.2. Last but not least, she might want to answer the following:
Q6. Assuming that devices can fail as before and that 20% of deployed

8



applications are subject to an intensive workload, how much will this affect
the chosen management policy? How many new devices of type S should be
added to keep the probability of uptime without alerts around 80%? How likely
are different types of alerts to happen in case the infrastructure is extended
accordingly?
In Section 5, after discussing the validation of our prototype simulator of
CISCO FogDirector management, we will use it to answer the questions
raised by the hotel manager.

4. Architecture and Implementation of FogDirSim

In this section, we describe the architecture and the implementation2 of
our prototype simulation environment for CISCO FogDirector application
management, FogDirSim. The prototype permits to directly simulate the
execution of CISCO FogDirector management scripts, based on the well-
established and industry-supported RESTful API exposed by the actual
CISCO tool3.

4.1. Bird’s Eye View
As aforementioned, CISCO FogDirector exposes a RESTful API to man-

age both infrastructure devices and applications running on them. As sketched
in Figure 1, FogDirSim exposes the same API of CISCO FogDirector and it
enables its users to run their management scripts against a probabilistic mod-
elling of the available infrastructure, based on monitored data on both device
resource availability and failures. The probabilistic modelling exploited by
FogDirSim is therefore capable of capturing the possibility that infrastructure
conditions change independently from the considered application manage-
ment policy. For instance, this can happen as a consequence of increasing
or decreasing devices workload, hardware or network failures and concurrent
management operations issued by other clients.
By relying on FogDirSim, application operators can validate, assess and com-
pare different management policies for their applications, before enacting
them in production environments.

2FogDirSim is publicly available at https://github.com/di-unipi-socc/FogDirSim.
3All information about CISCO FogDirector functioning is taken from the online docu-

mentation [15] and from the official user guide [16].

9



Figure 1: Bird’s-eye view of FogDirSim.

On one hand, based on a set of well-defined key performance indicators
(KPIs) that are predicted by the simulation environment, application op-
erators can actually fix and refine their management policies. For instance,
they can select the best management script among a set of candidates, by
simulating them for a statistically significant number of times and by choos-
ing the one script that can guarantee the best application(s) performance
(e.g., higher uptime, lower energy consumption) on average. On the other
hand, they can also experiment with their management, whilst varying the
infrastructure capacity and/or the number (and resource profiles) of deployed
applications. This enables FogDirSim users to evaluate, for free and before-
hand, the impact of new investments or business-related strategic moves by
means of what-if analyses [17]. For instance, by simulating different scenar-
ios, one can best tune the sizing of a given infrastructure so to support a
specific uptime for all the applications she will have to manage.
As we will detail later in this section, for any simulated management script,
FogDirSim can

• quantitatively predict the probability of applications uptime and down-
time, the probability of deployed applications to raise different types
of alerts, the energy consumption due to management choices, and

• qualitatively estimate its convergence speed, its robustness against vary-
ing device failure rates, and its capacity to adapt to changing applica-
tion workloads.

10



Being designed in a modular fashion, FogDirSim can be further extended to
support computation of other quantitative or qualitative metrics, e.g. finan-
cial operational costs. In the next sections, we will detailedly describe the
model and architecture of our prototype.

4.2. Architecture Overview
FogDirSim is organised into a microservice-based architecture, composed of
a set of independently deployable services interacting via RESTful APIs. As
shown in Figure 2, FogDirSim includes four main microservices, which are
described hereinafter.

Figure 2: Microservice based architecture of FogDirSim

API Gateway It is implemented with the Python Flask micro-framework,
and it exposes an API (FD) which is compliant4 with a feature-complete
subset of the actual CISCO FogDirector API (FD). The API Gateway5
can, therefore, receive HTTP requests from existing application/infras-
tructure management scripts and suitably respond to them. In addition

4As further discussed in Section 5, FogDirSim has been validated against the official
CISCO FogDirector sandbox. However, due to limitations in the testbed functionalities,
it has not been possible to fully reverse-engineer all functionalities of the tool. For those
cases, we referred to the Fog Director Reference Guide [16] and we completed the API
accordingly.

5The implemented API is described at https://github.com/di-unipi-socc/FogDirSim/wiki/
API-Documentation

11



to the CISCO FogDirector API, this micro-service exposes also a cus-
tom API (SIM) to retrieve data about the current simulation. The API
Gateway microservice transmits its requests to the Simulation Engine
microservice via an event queue.

Database The Database microservice manages two non-relational databases
implemented with MongoDB. The first – InfrastructureDB – contains
all the information about the monitored infrastructure devices and
the probabilistic distributions of their available resources (viz., CPU,
RAM). The second – SimulationDB – keeps track of the current state
of the simulated infrastructure resources and application deployments.

Simulation Engine It is a discrete-event simulator, implemented in Python.
It executes a simulation loop that (i) samples a particular state of the
infrastructure and of the application’s workload, according to the prob-
ability distributions in the Database microservice, (ii) updates statistics
on devices and applications status and checks for alerts triggered in the
sampled state, (iii) pops the next client request to be simulated from
the event queue and executes it.

GUI It is a Web-based GUI (Fig. 3) which shows the KPIs related to
the currently running simulation. Particularly, the Homepage shows
system-wise aggregate simulation results (Fig. 3(a)), the Devices tab
details per device statistics (Fig. 3(b)), and the Apps tab details infor-
mation on each deployed appplication (Fig. 3(c)). It is also in charge
of aggregating data and of computing some of the results output by
the simulator.

In the following, we focus on describing the implementation of the Simulation
Engine microservice, by describing the underlying model and the KPIs it can
compute in the current release.

4.3. Simulation Model and Implementation
The Simulation Engine is the core of FogDirSim, acting as a discrete-event
simulation (DES) controller [18] for our prototype. As mentioned before, it
implements a loop that pops operations to be executed from the event queue
and runs them against a probabilistic varying model of the infrastructure. By
simulating CISCO FogDirector behaviour, it permits to perform devices and
applications management, as well as monitoring and troubleshooting of both

12



(a) Homepage

(b) Devices

(c) Apps

Figure 3: FogDirSim GUI.

13



the infrastructure and the deployed applications. In addition, FogDirSim is
capable of estimating KPIs related to the adopted management policy. In this
section, we will describe all internals of the Simulation Engine – with a focus
on the description of the (concurrent) finite state automata associated to each
system entity – and show how they simulate (and sometimes approximate)
CISCO FogDirector functioning.

4.3.1. Device Management
The finite state machine in Figure 4 shows all possible state transitions that
a device can undergo in response to device management requests to CISCO
FogDirector API.

Figure 4: Device lifecycle.

In order to be managed by CISCO FogDirector, all devices must first be
added to the currently running instance of the management tool. The tran-
sition (Not Added → Added) models how a device can be added for man-
agement within an instance of CISCO FogDirector. To do so, a suitable
API request has to be issued, specifying the IP address, the port and the
authentication credentials of the device to be added. Conversely, the transi-
tion (Added→ Not Added) models the possibility of deleting a device from
the infrastructure currently managed by an instance of CISCO FogDirector.
Naturally, the device to be removed should be among the previously added
ones.

CISCO FogDirector relies on a heartbeat mechanism to periodically check
for device reachability. Devices can, therefore, become unreachable due to
network or hardware failures. Analogously, a temporarily unreachable device
can become again reachable whenever the failure is solved. Such possibilities
are modelled by the unlabelled (Added ↔ Unreachable) transitions of the
finite state machine in Figure 4. Unreachable devices can also be deleted

14



from the currently managed infrastructure, as modelled by the transition
(Unreachable → NotAdded). Finally, the added device can be tagged by
assigning a symbolic label to it. This permits to retrieve (one or a set of)
devices by means of a tag, thus easing device management.

Every IOx devices can run applications in a virtualised environment.
When an IOx device is added to CISCO FogDirector, it shares informa-
tion about its currently available hardware resources. These values refer to
virtualised resources which can be allocated to application deployments. Re-
sources are allocated at deployment time and cannot be changed afterwards
unless uninstalling and installing the application again. Whenever deployed
applications exceed their allocated resources, CISCO FogDirector triggers a
suitable alert which can be programmatically retrieved and, possibly, pro-
cessed by taking appropriate management decisions.
FogDirSim simulates the device management according to this description by
exposing all the API functionalities needed to add, delete and tag devices.
Additionally, to simulate the possibility of a device being unreachable, due
to network or hardware failures, FogDirSim can input a failure probability
φ and a recovery probability ρ for each infrastructure device. When the
Simulation Engine samples a new infrastructure state, devices can fail (or
recover) according to their specified failure (and recovery) rate following a
simple Susceptible-Infectious-Susceptible (SIS) model [19].

4.3.2. Application management
CISCO FogDirector defines six states in which applications can be through-
out their lifetime. The finite state machine of Figure 5 shows the transitions
from one state to another. Dashed states are those in which application
artefacts are not yet stored on their deployment device(s).
In order to be managed by CISCO FogDirector, applications first have to
be uploaded to the current CISCO FogDirector instance. The transition
(Init → Unpublished) models how an application is uploaded to CISCO
FogDirector. To do so, an API request has to be issued, containing the appli-
cation package descriptor. Conversely, the transition (Unpublished→ Init)
models how an application package descriptor can be removed from CISCO
FogDirector. After uploading an application to CISCO FogDirector, we can
publish it via the (Unpublished → Published) transition, so to be able to
deploy it later on. Naturally, published applications can be unpublished by is-
suing the operation modelled by the transition (Published→ Unpublished).

15



Figure 5: Application lifecycle.

Via a specific request to CISCO FogDirector API, it is also possible to upload
and publish an application at a time, as modelled by the (Init→ Published)
transition.
Once they are published, applications can be installed (viz., deployed) to a
device by issuing a New Deployment request to CISCO FogDirector, along
with the application identifier, a symbolic deployment identifier and the ap-
plication deployment type (i.e., Docker, Linux container, VM). This opera-
tion is modelled by the transition (Published→ Ready to Install), while its
dual is modelled by the opposite transition (Ready to Install→ Published).
A new deployment (i.e. a myapp) can group one or more instances (i.e. jobs)
of a specific published application. This permits to group, for instance, all
the replicas of the same service under a common identifier and, therefore,
management policy. The result of creating a new deployment is a deploy-
ment identifier to be used later on (e.g. to delete a deployment).
Newly created myapps can be actually installed to target devices by following
the transition (Ready to Install→ Stopped). As a result, the application is
uploaded on these target devices and it is ready to be started, by triggering
the (Stopped→ Started) transition via a suitable API request. Application
deployments can be stopped again as per the (Started → Stopped) transi-
tion, and uninstalled as per the (Stopped→ Ready to Install).
FogDirSim is able to simulate the CISCO FogDirector API for application
management by supporting all the previously described API operations. Ap-
plication can be published (or unpublished) through suitable requests that

16



add (or remove) application packages to (or from) the applications collection
in the SimulationDB. Published applications can be deployed to managed de-
vices by first creating a new deployment (myapp) via a request that contains
the application identifier and a symbolic name for the deployment. After-
wards, application instances (jobs) can be installed to one or more devices
by specifying a reference myapp, the deployment devices and the number of
resources to be allocated6 to each job.

Installation requests succeed if the currently sampled infrastructure state
features enough resources to support the application instance at the chosen
deployment device. In case it is not possible to deploy a job, a 400 HTTP
error is returned by FogDirSim. Naturally, after installing a myapp, it can be
started and stopped through suitable requests.

A priori estimating the workload and (consequently) the amount of re-
sources needed by a deployed application to run smoothly is a non-trivial
task to accomplish. To this end, FogDirSim introduces the possibility of
specifying different application stress profiles with respect to the allocated
resources. Stress profiles are modelled as probabilistic samplings that de-
termine the specific amount of RAM and CPU required by each deployed
application within its allocated amount (i.e., the current application work-
load). Currently7, FogDirSim considers three possible stress profiles:

• Quiet, the stress profile that consumes a small amount of resources with
respect to the amount defined in the application package, i.e., 70% of
the resources declared in the application descriptor, with a standard
deviation equal to 5%,

• Normal, the default stress profile that consumes an average amount of
resources with respect to the amount defined in the application package,
i.e., 80% of the resources declared in the application descriptor, with a
standard deviation of 10%,

• Intensive, the stress profile that models an application with a currently
very high workload, i.e., 90% of the resources declared in the application

6Despite Fog Director API permits to install multiple jobs related to the same myapp
on a single device, our simulator follows the best practice enforced by Fog Director’s GUI
that only permit to deploy jobs of the same myapp to distinct devices.

7Embedded stress profiles profiles are a customisable parameter of the Simulation En-
gine. Indeed, users can tune them from a configuration file according to their needs.

17



Alert Type Description
status The application has a state mismatch (e.g., it is expected to be

running but it is uninstalled) due to external management oper-
ations, or an install/uninstall operation failed on a device.

App Health Whenever the application is running on a corrupted device or has
some other issue with its health.

App Configuration The application is modified outside CISCO FogDirector.
Device Reachability The device on which the application is installed is not reachable.
Memory Consumption During the last hour, the application has consumed more than

95% of the memory that is configured on its deployment device.
CPU Consumption During the last hour, the application has consumed more than

95% of the CPU that is configured on its deployment device.
Disk Consumption During the last hour, the application has consumed more than

95% of the Disk that is configured on its deployment device.
DeviceClockSync The time of the device clock is ahead of the time of CISCO FogDi-

rector.
Read/Write Rate Whenever the application reads or writes data faster than the

maximum rate threshold that is configured for the device.

Table 2: Alert’s types and descriptions

descriptor, with a standard deviation equal to 10%.

As we will explain next, FogDirSim users are able to detect problems that may
arise from the high application resource usage by programmatically retrieving
the generated alerts, as in the actual CISCO FogDirector.

4.3.3. Monitoring, Alerting and KPIs
CISCO FogDirector implements a monitoring system that permits to retrieve
information about the current state of the managed infrastructure and ap-
plications. Such information can be used by management scripts to make
informed management decisions at runtime. The system, also, generates
alerts whenever it detects a problem, an error or an unexpected behaviour
in application management and infrastructure devices. Table 2 describes the
main alerts that can be triggered by CISCO FogDirector, classified according
to their type.
FogDirSim simulates the monitoring of the managed devices and applications
by sampling both available resources and applications status profiles. The
Simulation Engine of FogDirSim tracks the system state and generates alerts
whenever a criticality is detected. The current version of FogDirSim only

18



considers a subset of all possible alerts that can be raised by CISCO FogDi-
rector. We will detail in the next paragraphs the simulated monitoring and
alerting system of FogDirSim for both devices and applications.

• Devices Monitoring - At every cycle the Simulator Engine sam-
ples the available resources for every device (i.e., according to the
CPU/RAM device distributions and by subtracting the allocated ap-
plication’s resources). Such values are used in the current run and,
moreover, averaged with all previous samplings to compute the aver-
age resources availability for every managed device. Furthermore, for
all devices the simulation keeps track of the average number of appli-
cation it hosts, of the probability that it is in a critical resource state
(i.e. CPU or memory allocated is more than the available resources
given the current sampling) and the failure state (i.e. when the device
is not reachable, resulting from the probabilistic sampling given by the
failure probability).

• Applications monitoring - For every application instance (i.e., a
job), the Simulation Engine samples the resources usage (as per its
stress profile) and checks if the allocated resources on the deploy-
ment devices are used more than the 95%. Whenever this happens,
a Memory Consumption/CPU Consumption alert is triggered by the sim-
ulation. FogDirSim also checks for device failures. If the deployment
device is in a failure state, a Device Reachability alert is triggered8.
Overall, FogDirSim is capable of simulating all types of alerts that can
be triggered in response to bad management policies or resource al-
location choices, and varying infrastructure or workload conditions,
viz. App Health, Device Reachability, Memory Consumption and CPU
Consumption. Based on this, FogDirSim computes the probability that
each deployed application undergoes different alert types, by averaging
them on the number of simulation cycles.

In addition to the metrics described up to now, FogDirSim is capable of com-
puting two additional KPIs that CISCO FogDirector does not consider but

8Since CISCO FogDirector fires alerts from the application viewpoint, a device with
resource deficiency triggers an application alert for every application it hosts.

19



which are useful to evaluate and assess different management policies. They
are the application up- and downtime and the devices energy consumption
of managed devices.

• Uptime and Downtime - As discussed before, CISCO FogDirector
permits to group different application instances (i.e., jobs) under the
hood of some deployment (i.e., myapps). FogDirSim extends the CISCO
FogDirector API so to permit to specify a minimum number of jobs
that must be up and running in order to consider a given deployment
up and running. A job is considered up and running wherever it is
started and its device is reachable.
At each simulation cycle, FogDirSim checks the number of jobs that are
up and running for each myapp and compares it with the minimum value
the user specified9 so to determine whether the myapp can be considered
up or down. The overall average of myapp uptime percentage constitutes
a measure of the overall system uptime, under specific management.

• Energy Consumption - Whilst device power consumption is often
modelled as a function which linearly depends on CPU (or memory)
utilisation (e.g., [20], [21]), FogDirSim permits to its users to input
arbitrary energy consumption functions for each available device.
Based on such functions, FogDirSim estimates per device and overall
energy consumption of a CISCO FogDirector-managed infrastructure
under the effects of a particular management policy. Whenever no en-
ergy function is specified, FogDirSim leverages the default one10 shown
in Listing 2. Energy consumption functions should return the expected
instantaneous energy consumption11 in Watt.

9In order to maintain the compatibility with the original CISCO FogDirector API, the
minimum number of jobs is an optional parameter. In case it is not specified, FogDirSim
consider an application up and running only if all the application jobs are up and running.

10Default behaviour is based on CISCO 800 Series Integrated Service Router - https:
//www.cisco.com/c/en/us/products/collateral/routers/800-series-routers/
data_sheet_c78-519930.html

11Naturally, FogDirSim can be extended to account for other operational costs (e.g.
financial) based on similar computations.

20



def default_function(cpu_usage, mem_usage):
if cpu_usage <425:

return 5
if cpu_usage <850:

return 10
if cpu_usage <1275:

return 18
return 25

Listing 2: Default energy consumption function.

At each simulation cycle, FogDirSim computes the energy consumption
of the entire managed system by computing the energy consumed by
all devices, and by subtracting from such value the energy consumed
by the sampled infrastructure alone, i.e., without managed applica-
tions. Based on the average of such values, the simulator estimates the
monthly system energy consumption due to application management
in kWh.

5. Experiments

In this section we briefly discuss the validation of FogDirSim (Section 5.1)
and we use the prototype to solve the smart resort motivating example of
Section 3 (Section 5.2).

5.1. Prototype Validation
The FogDirSim prototype described before has been validated against an
actual instance of CISCO FogDirector, which is made available by CISCO in
a sandboxed environment12. The sandbox permits to instantiate two virtual
devices running IOx (on top of which it is possible to deploy applications)
and one virtual device running CISCO FogDirector.

For each API operation available in FogDirSim, tests were written to com-
pare its behaviour with that of the sandboxed instance of CISCO FogDirec-
tor. By doing so, results from all the following operations of FogDirSim have
been successfully compared against those obtained in the CISCO sandbox:

• adding, removing, tagging and getting a device(s),

• creating and retrieving (device and deployment) tag(s),

12CISCO DevNet Sandbox – https://developer.cisco.com/site/sandbox/

21



• uploading and deleting local applications,

• publishing and unpublishing applications,

• creating and deleting myapps,

• retrieving generated alerts13, and

• users login and logout.

Overall, the test suite14 consists of 43 actual test requests, which were all
successfully passed.

5.2. Motivating Example Continued
To answer her questions, the resort manager decides to run various 10, 000
epochs15 simulations in FogDirSim. First, she aims at selecting the best
management policy among the candidate ones and to understand whether
such policy can guarantee a good uptime with no alerts (i.e., at least 80%) for
150 application instances. Hence, she simulates all policies on the available
infrastructure made from 20 Cisco IOx devices (see Table 1), launching and
managing 150 application instances. Throughout this section, but where
differently specified, we assume that application instance undergo a Normal
stress profile.

Fig. 6 shows how the overall system uptime evolves throughout the first
10, 000 simulation epochs. Despite converging more slowly – due to the in-
volved monitoring phase it performs – the Informed Largest-Fit policy proves
to achieve the highest average uptime probability for all the deployed in-
stances. Also, when considering such uptime probability multiplied by the
probability of not having applications under alerts, the Informed Largest-Fit
policy outperforms the First-Fit, Largest-Fit and the Random-Fit) policies,
as plotted in Fig. 7. Clearly, Informed Largest-Fit is the management policy
of choice for the resort manager (what answers question Q1) but, unfortu-
nately, it barely reaches a probability of 75% uptime without alerts. The

13The sandbox only permits to raise Application Status alerts, which we also used
to derive the JSON format of all other alert messages described in CISCO FogDirector
manual [16].

14The tests suite is publicly available at https://github.com/di-unipi-socc/
FogDirSim/tree/master/tests.

15Each epoch corresponds to one cycle of simulation.

22



Figure 6: Average uptime over 10, 000 simulation epochs (20 devices, 150 applications).

overall management energy consumption of such management settles around
100 kWh per month.

Then, with the goal of answering question Q2, the hotel manager starts
increasing the number of available nodes of type S, still running the Informed
Largest-Fit policy and attempting the deployment of 150 applications. She
soon realises that 80% of uptime without alerts can be reached by purchasing
15 new devices to complement the infrastructure up to 35 nodes overall. Fig.
8 shows how the average uptime without alerts and management energy
consumption evolve at varying the number of application instances from 150
to 290. In the simulated scenario, by adding 15 devices of type S, with 150
application instances running, FogDirSim estimates the probability that an
application raises a App Health alert at around 15%. Other alert types
are not raised in this scenario, as they depend on infrastructure failures or
application workload variations, which are not considered in this first step.
The overall management energy consumption of such management slightly
increases up to 103 kWh per month. Overall, this answers question Q2.

It is worth noting that this setting can also accommodate 40 premium

23



Figure 7: Average uptime with no alerts over 10, 000 simulation epochs (20 devices, 150
applications).

Figure 8: Average uptime with no alerts and energy consumption when varying the number
of application instances (after 10, 000 epochs) with 35 devices.

replicas (i.e., up to 190 overall) of the application with suitable uptime with-
out alerts (i.e., 80%) with an estimated monthly management energy con-

24



sumption of 134 kWh (i.e., +34 kWh), which answers Q3. Deploying 190
application instances does not substantially changes the probability of raising
a App_Health alert, which settles around 16%. Indeed, when trying to de-
ploy more than 190 applications mainly the uptime of the system undergoes
a considerable decrease, due to the repeated attempts to migrate applications
unsuccessfully from one node to another.

Figure 9: Average uptime with no alerts and energy consumption when varying the number
of available devices with 300 deployments (10, 000 epochs).

Since – according to simulation results – the 35 devices infrastructure
cannot support more than 290 application instances, as the available system
resources are insufficient, the resort manager investigates the possibility of
further extending the available infrastructure with devices of type S, so to
answer question Q4. Fig. 9 shows how the probability of uptime without
alerts and the management energy consumption change as the number of
devices varies within 25 and 160.

When incrementing the number of devices, the total amount of manage-
ment energy consumption slightly decreases since devices are less overloaded
(and thus consume less power), whilst uptime with no alerts increases. With
70 devices (+50 devices of type S), the uptime is greater than the 80% and, re-
quires approximately 192kWh of management power consumption per month.
On the other hand, extending the infrastructure by introducing more devices
leads to consuming more device idle power, which is not considered in man-
agement power consumption. For instance, adding the 50 devices of type
S and considering an average of 800 CPU units used, results in a monthly

25



increment of 125 $ per month16 overall. Extending the infrastructure to 70
devices shows a reduced probability of App Health (around 9%). All these
considerations answer question Q4.

Subsequently, in order to answer question Q5, the hotel manager sets a
failure rate of 0.5% and a recovery rate of 40% for all the 70 devices that
she plans to install. As shown in Fig. 10, considering device failures in
the settings with 70 devices, considerably reduces the probability of system
uptime without alerts at around 70%. By running further simulations and
increasing the number of devices of type S, the hotel manager can realise
that she will need to consider extending the infrastructure to 110 devices so
to reach the set goal of 80%. Fig. 11 shows the probability of different alert
types in this scenario. It is worth noting that even though App Health alerts
become less likely (i.e., 7%), new alerts of type Device Reachability, due
to failures, reach a probability of 1%.

Figure 10: Average uptime with no alerts and energy consumption when varying the
number of available devices with 300 deployments and device failures (10, 000 epochs).

Finally, the hotel manager includes the possibility for a part of the appli-
cation to be (re-)started with an Intensive stress profile, representing a higher
workload, so to answer questionQ6. As a result, the previous extension to
110 devices (+90 of type S), the uptime with no alerts decreases below 80%
whilst overall management power consumption increases above 160 kWh per
month. The hotel manager soon realises that there is a need to buy another
10 devices of type S, so to have an infrastructure made from 120 devices,

16We assume that 1 KWh costs 0.25 $.

26



which can support an uptime without alerts of 80%, with a management
power consumption of around 140 kWh (+250 $ for idle consumption), and
the probability of different alert types of Fig. 13.

Figure 11: Alert types (after 10, 000 epochs) with 110 possibly failing devices and 300
application deployments.

Figure 12: Average uptime with no alerts and energy consumption when varying the
number of available devices with 300 deployments, device failures (10, 000 epochs) and
intensive stress profiles for 20% of the applications.

Such final scenario – requiring the purchase of 100 additional devices of
type S – can suitably support 300 application instances (150 primary and 150
replicas), in presence of failures and applications with a high-stress profile,
what answers also question Q6 by the hotel manager.

To conclude, Table 3 summarises all the questions of the hotel manager
and the answers she got from performing what-if analyses with FogDirSim.

27



Question Answer
Q1. Which is the best management policy among
the candidate ones, with respect to overall con-
vergence speed, applications uptime and monthly
energy consumption?

The best management policy is the Informed
Largest-Fit as it shows the highest average up-
time probability (without alerts) and fastest con-
vergence speed with respect to all others. It has
an estimated monthly management energy con-
sumption of 100 kWh.

Q2. In case the policy chosen in Q1 does not
guarantee at least 80% of uptime without deploy-
ment alerts, how many devices of type S should
she buy and install to reach such a guarantee?
How much will the monthly energy consumption
increase? How likely are different types of alert
to happen in case the infrastructure is extended
accordingly?

To guarantee a probability of uptime without
alerts of at least 80% the infrastructure should be
extended with 15 new devices of type S. The esti-
mated monthly management energy consumption
grows up to around 103 kWh. App Health alerts
are raised with a 15% probability.

Q3. How many premium replicas can she offer
with the infrastructure obtained as per the answer
to Q2, when employing the policy chosen in Q1?

The infrastructure extended with 15 new devices
of type S can accommodate at most 290 applica-
tion instances. However, to keep their probability
of uptime without alerts at 80%, the hotel man-
ager can offer at most 40 premium replicas (190
instances overall). The estimated monthly man-
agement energy consumption grows up to around
134 kWh. App Health alerts are raised with a 16%
probability.

Q4. How many new devices of type S should she
purchase and have installed at the resort so to
suitably support a premium replica for each appli-
cation instance for each bungalow (viz., 300 in-
stances overall)? How much will this impact on
energy consumption and on alerts?

To guarantee a probability of uptime without
alerts of at least 80% for 300 application in-
stances, the infrastructure should be extended
with 50 new devices of type S. The estimated
monthly energy consumption grows up to around
192 kWh. App Health alerts are raised with a 9%
probability.

Q5. Assuming that devices can fail (e.g., crash
with probability 0.5% and successfully reboot with
probability 40%), how much will this affect the
chosen management policy? How many new de-
vices of type S should be added to keep the proba-
bility of uptime without alerts around 80%? How
likely are different types of alert to happen in case
the infrastructure is extended accordingly?

To guarantee a probability of uptime without
alerts of at least 80% for 300 application in-
stances, in presence of failures, the infrastructure
should be extended with 90 new devices of type S.
The estimated monthly management energy con-
sumption settles around 125 kWh. App Health
and Device Reachability alerts are raised with
a 7% and 1% probability, respectively.

Q6. Assuming that devices can fail as before and
that 20% of deployed applications are subject to
an intensive workload, how much will this affect
the chosen management policy? How many new
devices of type S should be added to keep the prob-
ability of uptime without alerts around 80%? How
likely are different types of alerts to happen in
case the infrastructure is extended accordingly?

To guarantee a probability of uptime without
alerts of at least 80% for 300 application in-
stances, in presence of failures and intensive work-
load, the infrastructure should be extended with
100 new devices of type S. The estimated monthly
management energy consumption settles around
140 kWh. App Health, Device Reachability,
CPU Consumption and Mem Consumption alerts are
raised with a 6%, 1%, 3%, 4% probability, respec-
tively.

Table 3: Summary of the experiments.

28



Figure 13: Alert types (after 10, 000 epochs) with 120 possibly failing devices and 300
application deployments with a probability of Intensive stress profile of 20%.

6. Related Work

To the best of our knowledge, a few different simulation environments of Fog
computing scenarios have been designed and prototyped in the last years. In
the next paragraphs, we describe those which are more related to simulating
Fog application management and we analyse their specificity.

iFogSim. Based on CloudSim [22], iFogSim [10] is one of the most promising
tools for simulating a Fog computing environment. It models IoT, Fog and
Cloud resources and measures the impact of resource management techniques
on latency, network congestion, energy consumption and monitoring cost. Its
architecture is composed of several layers. The first layer is the Sensors Layer,
responsible to simulate data generation according to customised patterns.
The second layer is the Fog Devices Layer, which simulates the Fog and
Cloud resources. The devices are organised hierarchically and only vertical
connection can be done. Finally, the Monitoring Layer is the core of the
simulator and it manages resources of the environment in order to meet the
QoS constraints with the available resources. The current version of iFogSim
provides a static application placement policy. Every application is modelled
as a collection of modules that can be statically installed over devices. The
simulation model adopted by iFogSim is a Discrete-Event Simulation (DES).

EdgeCloudSim. As iFogSim, EdgeCloudSim [23] is an extention of CloudSim.
In addition to CloudSim device model, it features the possibility of simulating
(possibly parallel) execution of application tasks.

29



FogTorchΠ. FogTorchΠ [9] proposes a simple, yet general, model of multi-
service IoT applications and Fog infrastructures. The authors prove the NP-
hardness of the problem and find a heuristic backtracking search algorithm to
solve it. They, moreover, extend the prototype in [24] by introducing a Monte
Carlo simulation so to consider variations in the QoS of communication links.
FogTorchΠ can be used to determine and compare eligible deployments of
an application to a given infrastructure considering the QoS, the cost of
deploying IoT applications to considered infrastructures [14] and the context.

YAFS. Very recently, and promisingly, Lera et al. [11] proposed YAFS (Yet
Another Fog Simulator), a discrete-event simulation library that relies on
complex network theory to support the design of IoT applications, embedding
different placement and routing strategies. Similarly to FogDirSim, YAFS
models potential failures of the available devices, but not the possibility for
them to recover from failed states. Also, their modelling accounts for the
mobility of users and the associated workload, and considers network topol-
ogy information, mostly focussing on communication latency and bandwidth.
Being a library, YAFS does not feature a set of predefined KPI but gathers
the main events in raw format, leaving its users to decide how to output
aggregate data. A simulator GUI is not currently available but it can be
realised by relying on Python libraries.

Other approaches. Other solutions, that include a mix of simulation, emula-
tion and the use of a real testbed, are proposed in the literature. We report,
in the follows paragraph two of them: a solution from Ficco et al. [25] and
EmuFog [26]. A simulation environment is not always able to catch all the
features of the environment. In order to avoid this bias, Ficco et al. [25] has
proposed a mixed model in which some experimental scenario is simulated,
while the edge and fog nodes under test are emulated or executed in a real
environment. It introduces, of course, a different cost to the simulation since
the IoT devices have to be bought and installed. The simulation part is
used to reproduce the behaviour of the external system, instead, the specific
devices phenomena are analyzed using a combination of emulation and real
devices analysis. Similar to the previous work, EmuFog [26] tries to delete
the simulation simplification that may not always be true in a dynamic in-
frastructure. It uses a network emulator, MaxiNet [27], to emulating the
infrastructure. It permits to load the infrastructure from a file and connect
the devices using ad undirected graph.

30



All simulation environments described up to now rely upon custom APIs
to express application management policies, i.e. they require application
operators to convert their (actual) management scripts into an abstract rep-
resentation, compliant with the API and internal model of the simulator.
Doing so clearly introduces an additional layer of complexity and might also
introduce difficulties in interpreting the simulation output, requiring to com-
pare the application and infrastructure models of the actual management
tool with the ones of the simulator. A first effort towards reducing the gap
between simulation and real-world tools has been carried out by Forti et al.
[12] in their FogDirMime.

FogDirMime. In [12], Forti et al. proposed a simple operational semantics
to model CISCO FogDirector basic functionalities, i.e. publish, deploy, con-
figure, start, monitor, stop, undeploy and retire application instances. They
implemented a first, partial, proof-of-concept library, FogDirMime, which,
using a very high-level API can simulate CISCO FogDirector functioning
and permits writing custom simulation scripts to compare different applica-
tion management policies. The operational semantics of CISCO FogDirector
given in [12] has been used as a first formal guideline to drive the design and
implementation of FogDirSim. Still, FogDirMime prototype shows important
limitations. In addition to modelling a much smaller (and high-level) subset
of CISCO FogDirector functionalities with respect to FogDirSim, FogDirMime
is not able to directly input actual management scripts, nor it provides the
possibility to set configuration parameters for the simulation to take place.
Last but not least, FogDirMime proof-of-concept leaves the users alone with
the tasks of writing their own simulation engine and of deciding which KPIs
to compute and how to compute them, and it does not provide any GUI.

7. Concluding Remarks

In this paper, we illustrated FogDirSim, a novel simulation environment of
CISCO FogDirector management system. We then discussed validation of the
prototype and showed its usability and usefulness over a lifelike experiment
from the world of smart-buildings and domotics.

To the best of our knowledge, FogDirSim is the first prototype capable
of simulating actual application management policies, written by relying on
the RESTful API of (and therefore fully compliant with) an industrial Fog
computing management platform (viz., CISCO FogDirector). Our prototype

31



constitutes a first – feature-complete and extensible – framework to validate,
assess and compare different management policies against a probabilistic de-
scription of the available (or target) Fog infrastructures.

Indeed, it tames the scale and complexity of Fog infrastructure, and it per-
mits simulating different CISCO FogDirector application management scripts
so to:

• validate their correct functioning within different simulated infrastruc-
ture workload conditions and against (network or hardware) failures,
and

• predict KPIs (viz., uptime, energy consumption, resource usage, type of
alerts) of the effectiveness of the management policies they implement.

Tools like FogDirSim are expected to be extremely useful to application oper-
ators in Fog computing scenarios. Actually, application operators can freely
exploit our prototype to improve and refine their management scripts before
using them in production environments by following a write-simulate-refine
feedback loop.

For instance, FogDirSim can be used to help in deciding when and where to
migrate a certain application, how to best handle failures and node workload
variations, how many application replicas are needed to achieve a suitable
uptime, how to reduce energy consumption due to a bad management policy.
Also, it enables application operators evaluating – for free and beforehand
– the impact of infrastructural upgrades or expected changes by performing
what-if analyses over simulated scenarios. For instance, employing amortised
costs modelling, it would be possible to complement FogDirSim analysis with
an analysis of the costs related to the purchase of new (and possibly diverse)
devices and to their future maintenance so to take the best strategic decision
in the considered business scenario.
Overall, FogDirSim contributes to supporting the design of correct and effec-
tive management policies for Fog computing applications, whilst reducing the
overhead required to application operators by other approaches to translate
management scripts according to a particular simulation model and API.
In our future work, it would be interesting to:

• refine the simulation model so to account for the relative duration of
simulated operations, which would permit to more accurately estimate

32



the period of stay of a deployment in each different state and, conse-
quently, the output KPIs,

• improve the probabilistic modelling of infrastructure variations so to
introduce some form of correlation among consecutively sampled events
(e.g., by relying on Markov chain models as in [28]), or to be able to
simulate a specified series of those variations as well as time-related
KPIs (e.g., application response time) so to offer support for time-
sensitive applications (e.g., healthcare emergency),

• refine the implemented API against a production-ready instance of
Fog Director over which it is possible to run actual IOx applications,
and possibly getting from CISCO more complete documentation of the
RESTful API of the tool,

• test and assess the prototype against an actual use case infrastructure
and applications set, which are currently under development at our
University, and use it to compare other existing placement and man-
agement policies [29].

Acknowledgements

This work has been partly supported by the project “DECLWARE: Declar-
ative methodologies of application design and deployment” (PRA_2018_66)
funded by University of Pisa, Italy, and by the project “GIÒ: a Fog computing
testbed for research & education”, funded by the Department of Computer
Science of the University of Pisa, Italy.

References

[1] F. Bonomi, R. Milito, P. Natarajan, J. Zhu, Fog computing: A platform
for internet of things and analytics, in: Big data and internet of things:
A roadmap for smart environments, Springer, 2014, pp. 169–186.

[2] J. Dizdarević, F. Carpio, A. Jukan, X. Masip-Bruin, A survey of com-
munication protocols for internet of things and related challenges of fog
and cloud computing integration, ACM Computing Surveys (CSUR) 51
(2019) 116.

33



[3] C. S. R. Prabhu, Fog application management, in: Fog Computing,
Deep Learning and Big Data Analytics-Research Directions, Springer,
2019, pp. 21–24.

[4] H. Shahinzadeh, J. Moradi, G. B. Gharehpetian, H. Nafisi, M. Abedi,
Iot architecture for smart grids, in: 2019 International Conference on
Protection and Automation of Power System (IPAPS), IEEE, pp. 22–30.

[5] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakan-
lahiji, J. Kong, J. P. Jue, All one needs to know about fog computing
and related edge computing paradigms: A complete survey, Journal of
Systems Architecture (2019).

[6] A. A. Mutlag, M. K. A. Ghani, N. Arunkumar, M. A. Mohamed,
O. Mohd, Enabling technologies for fog computing in healthcare iot
systems, Future Generation Computer Systems 90 (2019) 62–78.

[7] C. Yu, B. Lin, P. Guo, W. Zhang, S. Li, R. He, Deployment and di-
mensioning of fog computing-based internet of vehicle infrastructure for
autonomous driving, IEEE Internet of Things Journal (2018).

[8] A. N. Toosi, R. M. Q. Chi, R. Buyya, Management and Orchestration
of Network Slices in 5G, Fog, Edge, and Clouds, Wiley, pp. 79–101.

[9] A. Brogi, S. Forti, QoS-aware Deployment of IoT Applications Through
the Fog, IEEE Internet of Things Journal 4 (2017) 1185–1192.

[10] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, R. Buyya, ifogsim: A toolkit
for modeling and simulation of resource management techniques in the
internet of things, edge and fog computing environments, Software:
Practice and Experience 47 (2017) 1275–1296.

[11] I. Lera, C. Guerrero, C. Juiz, YAFS: A simulator for IoT scenarios in
Fog computing, IEEE Access 7 (2019) 91745–91758.

[12] S. Forti, A. Brogi, A. Ibrahim, Mimicking FogDirector Application Man-
agement, Software-Intensive Cyber-Physical Systems 2–3 (2019).

[13] CISCO Fog Director, https://www.cisco.com/c/en/us/products/
cloud-systems-management/fog-director/index.html, 2019. Ac-
cessed: June 19.

34



[14] A. Brogi, S. Forti, A. Ibrahim, Deploying Fog Applications: How Much
Does It Cost, By the Way?, in: Proceedings of the 8th International
Conference on Cloud Computing and Services Science (CLOSER 2018),
SciTePress, 2018, pp. 68–77.

[15] Cisco Fog Director REST API, https://developer.
cisco.com/docs/iox/#!fog-director-api-documentation/
cisco-fog-director-rest-api, 2019. Accessed: June 18.

[16] CISCO, Cisco Fog Director Reference Guide (v. 1.5), 2017.

[17] S. Rizzi, What-if analysis, in: Encyclopedia of Database Systems,
Springer, 2009, pp. 3525–3529.

[18] B. P. Zeigler, T. G. Kim, H. Praehofer, Theory of modeling and simu-
lation, Academic press, 2000.

[19] A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential
equation sis epidemic model, SIAM Journal on Applied Mathematics
71 (2011) 876–902.

[20] S. Rivoire, P. Ranganathan, C. Kozyrakis, A comparison of high-level
full-system power models., HotPower 8 (2008) 32–39.

[21] L. Gu, J. Cai, D. Zeng, Y. Zhang, H. Jin, W. Dai, Energy efficient task
allocation and energy scheduling in green energy powered edge comput-
ing, Future Generation Computer Systems 95 (2019) 89–99.

[22] R. Buyya, R. Ranjan, R. N. Calheiros, Modeling and simulation of
scalable cloud computing environments and the cloudsim toolkit: Chal-
lenges and opportunities, in: High Performance Computing & Simula-
tion, 2009. HPCS’09. International Conference on, IEEE, pp. 1–11.

[23] C. Sonmez, A. Ozgovde, C. Ersoy, Edgecloudsim: An environment for
performance evaluation of edge computing systems, Transactions on
Emerging Telecommunications Technologies 29 (2018) e3493.

[24] A. Brogi, S. Forti, A. Ibrahim, Optimising QoS-Assurance, Resource Us-
age and Cost of Fog Application Deployments, in: V. Muñoz, D. Fergu-
son, M. Helfert, C. Pahl (Eds.), Cloud Computing and Services Science,

35



CLOSER 2018 Revised Selected Papers, volume 1073 of Communica-
tions in Computer and Information Science (CCIS), Springer, 2019, pp.
168–189.

[25] M. Ficco, C. Esposito, Y. Xiang, F. Palmieri, Pseudo-Dynamic Test-
ing of Realistic Edge-Fog Cloud Ecosystems, IEEE Communications
Magazine 55 (2017) 98–104.

[26] R. Mayer, L. Graser, H. Gupta, E. Saurez, U. Ramachandran, Emufog:
extensible and scalable emulation of large-scale fog computing infras-
tructures, in: Fog World Congress (FWC), IEEE, pp. 1–6.

[27] P. Wette, M. Draxler, A. Schwabe, F. Wallaschek, M. H. Zahraee,
H. Karl, Maxinet: Distributed emulation of software-defined networks,
in: Networking Conference, 2014 IFIP, IEEE, pp. 1–9.

[28] T. Ahmad, D. Truscan, I. Porres, Identifying worst-case user scenarios
for performance testing of web applications using markov-chain workload
models, Future Generation Computer Systems 87 (2018) 910–920.

[29] A. Brogi, S. Forti, C. Guerrero, I. Lera, How to Place Your Apps in the
Fog - State of the Art and Open Challenges, Software: Practice and
Experience In Press. (2019).

36


