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Abstract

Calibrations are a possible tool to validate the minimality of a certain candidate. They
have been introduced in the context of minimal surfaces [4, 11, 14] and adapted to the
case of the Steiner problem in several variants. Our goal is to compare the different
notions of calibrations for the Steiner Problem and for planar minimal partitions appearing
in [8, 15, 16]. The paper is then complemented with remarks on the convexification of the
problem, on non–existence of calibrations and on calibrations in families.

1 Introduction

Let S be a collection of n points p1, . . . , pn in the Euclidean plane. We want to find a connected
set that contains S whose length is minimal, namely

inf{H1(K) : K ⊂ R2, connected and such that S ⊂ K} . (1.1)

This latter is commonly known as the Steiner problem.
Although the existence of minimizers is known, finding explicitly a solution is extremely
challenging even numerically. For this reason every method to determine solutions is welcome.
A classical tool is the notion of calibration, introduced in the framework of minimal surfaces [4,
11, 14] (see also [18, § 6.5] for an overview of the history of calibrations): given M a k–
dimensional oriented manifold in Rd, a calibration for M is a closed k–form ω such that
|ω| ≤ 1 and 〈ω, ξ〉 = 1 for every ξ in the tangent space of M . The existence of a calibration
for M implies that the manifold is area minimizing in its homology class. Indeed given an
oriented k–dimensional manifold N such that ∂M = ∂N we have

Vol(M) =

∫
M
ω =

∫
N
ω ≤ Vol(N) ,

where we applied the properties required on the calibration ω and we used Stokes’ theorem
in the second equality.

This definition of calibration is not suitable for the Steiner Problem (1.1) simply for the
reason that neither the competitors nor the minimizers of the problem admit an orientation
which is compatible with their boundary. To overcome this issue several variants have been
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defined starting from the paired calibrations by Morgan and Lawlor in [15], where the Steiner
problem is seen as a problem of minimal partitions. In [16] Marchese and Massaccesi rephrase
the Steiner Problem as a mass minimization for 1–rectifiable currents with coefficients in a
group and this leads to a suitable definition of calibrations (see also [6]). Finally reviving the
approach via covering space by Brakke [7] (see [2] for the existence theory) another notion of
calibrations has been produced [8].

A natural question is whether the previously mentioned notions of calibrations are equivalent.
In the first part of the paper we give an answer to it. When the points of S lie on the boundary
of a convex set (actually the only case in which paired calibrations are defined) calibrations
on coverings are nothing but paired calibrations. On the other hand an equivalence does not
exist between calibrations on coverings and calibrations for currents with coefficients in Rn;
in particular the notion of calibrations for currents is stronger than the one on coverings. In
other words it is easier to find a calibration on coverings.
Let us now discuss in more depth the relation between the two notions. The definition of
calibrations for currents with coefficients in Rn (see Definition 2.16) depends on choice of the
norm of Rn (see [17] where different norms are used to study clusters with multiplicities).
The norm considered in [16] (see also [17]), here denoted by ‖ · ‖[, is the one that produces
the weakest notion of calibrations and still gives the equivalence with the Steiner problem in
Rd with d ≥ 2: the “best possible” norm in a certain sense. It turns out that this notion of
calibration is stronger than the one on coverings. Indeed in Theorem 3.2 we are able to prove
that if a calibration for a mass minimizing current with coefficients in Rn exists, then there
exists also a calibration for a perimeter minimizing set in a given covering, but the converse
does not hold. To prove a sort of converse one has to abandon the idea of working in the
general setting of Marchese and Massaccesi [16] and take full advantage of restricting to R2.
To this aim we slightly change the mass minimization problem and we define a different norm
on Rn denoted by ‖ ·‖\ (the unit ball of ‖ ·‖\ is smaller than the one of ‖ ·‖[ as one can see (at
least in R3) from their Frank diagram depicted in Figure 2). The ‖ · ‖\ notion of calibration
is equivalent with the definition of calibrations on coverings in R2.

The second part of the paper has a different focus and it can be seen as a completion of [8]
as we restrict our attention to calibrations on coverings. In Theorem 4.2 we prove that the
existence of a calibration for a constrained set E in a covering Y implies the minimality of
E not only among (constrained) finite perimeter sets, but also in the larger class of finite
linear combinations of characteristic functions of finite perimeter sets (satisfying a suitable
constraint). This apparently harmless result has some remarkable consequences.
First of all it is directly related to the convexification of the problem naturally associated with
the notion of calibration. This convexification G is the so–called “local convex envelope” and
it has been defined by Chambolle, Cremers and Pock. In [9] they are able to prove that it
is the tightest among the convexifications with an integral form. Unfortunately it does not
coincide with the convex envelope of the functional, whose characterization is unknown. We
show that G equals the total variation on constrained BV functions with a finite number
of values. In other words, the local convex envelope “outperforms” the total variation only
when evaluated on constrained BV functions whose derivatives have absolutely continuous
parts with respect to L 2.
As a second consequence of Theorem 4.2 we produce a counterexample to the existence of
calibrations. It has already been exhibited in the setting of normal currents by Bonafini [5]
and because of the result of Section 3 we had to “translate” it in our framework. It is specific
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to the case in which S is composed of five points, the vertices of a regular pentagon, and
cannot be easily generalized to vertices of other regular polygons.

We summarize here the structure of the paper. In Section 2 we recap the different approaches
to the Steiner Problem and the consequent notions of calibrations. Section 3 is devoted to
the relations among different definitions of calibrations. Then in Section 4 we generalize the
theorem “existence of calibrations implies minimality”, and this allows us to complement a
result by Chambolle, Cremers and Pock on the convexification of the problem. An example
of nonexistence of calibrations is given in Section 5. The paper is concluded with some
remarks about the calibrations in families presented in [8] that underline the effectiveness of
our method.

2 Notions of calibrations for minimal Steiner networks

In this section we briefly review the approaches to the Steiner Problem and the related notions
of calibrations presented in the literature [8, 15, 16].

2.1 Covering space approach [2, 7, 8]

We begin by explaining the approach via covering space by Brakke [7] and Amato, Bellettini
and Paolini [2]. They proved that minimizing the perimeter among constrained sets on a
suitable defined covering space of R2 \ S =: M is equivalent minimizing the length among all
networks that connect the point of S. We refer to both [2] and [8] for details.

Consider a covering space (Y, p) where p : Y → M is the projection onto the base space.
Consider ` a loop in R2 around at most n− 1 points of S. Heuristically Y is composed of n
copies of R2 (the sheets of the covering space) glued in such a way that going along p−1(`) in
Y , one visits all the n sheets. We avoid repeating here the explicit construction of Y presented
in [2] but it is relevant to keep in mind how points of different copies of R2 \ S are identified.
First the n points of S in R2 are connected with a cut Σ ⊂ Ω given by the union of injective
Lipschitz curves Σi from pi to pi+1 (with i ∈ {1, . . . , n−1}) not intersecting each other. Then
Σi is lifted to all the n sheets of M and the points of Σi of the j–th sheet are identified with
points of Σi of the k–th sheet via the equivalence relation

k ≡ j + i (mod n) with i = 1, . . . , n− 1 and j = 1, . . . , n .

This equivalence relation produces a non–trivial covering of M .

p1 p2

p3

R2

p1 p2

p3

D1

p1 p2

p3

D2

p1 p2

p3

D3

Figure 1: A closer look at the topology of the covering Y of R2 \ {p1, p2, p3}. Each ball is
represented with one texture and color.
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We remark that for technical reasons the construction in [2] requires the definition of a pair
of cuts joining the point pi with pi+1. Then the equivalence relation is defined identifying the
open sets enclosed by the pairs of cuts.

Remark 2.1. Given a function f : Y → Rm it is possible to define the parametrizations of
f on the sheet j as a function f j : M → Rm for every j = 1 . . . , n (see [8, Definition 2.5,
Definition 2.6] for further details).
It is then possible to define functions f (resp. sets E) on the covering space Y prescribing
the parametrizations f j : M → Rm (resp. sets Ej) for every j = 1 . . . , n. The set Ej is the
set determined by the parametrization of χE on the sheet j.

We define now the class of sets Pconstr(Y ) that we will consider to get the equivalence with
the Steiner Problem. A set E belongs to the space Pconstr(Y ) if it is a set of finite perimeter
in Y , for almost every x in the base space there exists exactly one point y of E such that
p(y) = x and it satisfies a suitable boundary condition at infinity.
More precisely fixing an open, regular and bounded set Λ ⊂ R2 such that Σ ⊂ Λ and
Conv(S) ⊂ Λ (here Conv(S) denotes the convex envelope of S), we defined rigorously
Pconstr(Y ) as follows:

Definition 2.2 (Constrained sets). We denote by Pconstr(Y ) the space of the sets of finite
perimeter in Y such that

i)
∑

p(y)=x χE(y) = 1 for almost every x ∈M ,

ii) χE1(x) = 1 for every x ∈ R2 \ Λ.

We look for
min {P (E) : E ∈Pconstr(Y )} . (2.1)

Remark 2.3. Problem (2.1) does not depend on the choice of the cut Σ in the definition of
the covering space Y (see [2]). Moreover given Emin a minimizer for (2.1) it is always possible
to label the points S in such a way that the cut Σ does not intersect the projection of the
reduced boundary of Emin (see [8, Proposition 2.28]). From now on we always do this choice
of the labeling of S.

Theorem 2.4. The Steiner Problem is equivalent to Problem (2.1).

Proof. See [8, Theorem 2.30].

Once we have reduced the Steiner Problem to Problem (2.1), a notion of calibration follows
extremely naturally.

Definition 2.5 (Calibration on coverings). Given E ∈Pconstr(Y ), a calibration for E is an
approximately regular vector field Φ̃ : Y → R2 (Definition 5.5) such that:

(1) div Φ̃ = 0;

(2) |Φ̃i(x)− Φ̃j(x)| ≤ 2 for every i, j = 1, . . . n and for every x ∈M ;

(3)
∫
Y Φ̃ ·DχE = P (E).
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As desired we have that if Φ̃ : Y → R2 is a calibration for E, then E is a minimizer of
Problem (2.1) [8, Theorem 3.5].

We recall that we can reformulate the problem in terms of BV functions with values in {0, 1}:
we define BVconstr(Y, {0, 1}) as the space of functions u ∈ BV (Y, {0, 1}) such that for almost
every x ∈M it holds

∑
p(y)=x u(y) = 1 and u1(x) = 1 for every x ∈ R2 \Λ. Then we minimize

the total variation among functions in BVconstr(Y, {0, 1}).

2.2 Minimal partitions problem and paired calibrations [15]

We provide here the definition of paired calibrations [15] of a minimal partition in the plane
(see for example [9] for this formulation). To speak about minimal partitions and paired
calibration we have to suppose that the points of S lies on the boundary of an open smooth
convex set Ω.
We define

B :=

{
u = (u1, . . . , un) ∈ BV (Ω, {0, 1}n) such that

n∑
i=1

ui(x) = 1 a.e. in Ω

}

and a function u ∈ B such that ui = 1 on the part of ∂Ω that connects pi with pi+1.
We then define the energy:

E(u) :=
n∑
i=1

|Dui|(Ω) .

Definition 2.6. A function umin ∈ B is a minimizer for the partition problem if umin = u
on ∂Ω and

E(umin) ≤ E(v) .

for every v ∈ B such that v = u on ∂Ω.

Definition 2.7 (Paired calibration). A paired calibration for u ∈ B is a collection of n
approximately regular vector fields φ1, . . . , φn : Ω→ R2 such that

• div φi = 0 for every i = 1, . . . , n,

• |φi − φj | ≤ 2 a.e. in Ω and for every i, j = 1, . . . , n,

• (φi − φj) · νij = 2 H1–a.e. in Jui ∩ Juj and for every i, j = 1, . . . , n,

where Jui is the jump set of the function ui and νij denotes the normal to Jui ∩ Juj .

With this definition Morgan and Lawlor proved in [15] that if there exists a paired calibration
for a given u ∈ B, then the latter is a minimizer of the minimal partition problem according
to Definition 2.6.

Given u = (u1, . . . , un) a minimizer for the partition problem the union of the jump sets of
ui is a minimal Steiner network. Conversely given a minimal Steiner network S it is possible
to construct v = (v1, . . . , vn) ∈ B such that the union of the singular sets of vi is the network
S. Such a v is a minimizer for the partition problem. Therefore Definition 2.7 is a legitimate
notion of calibration for the Steiner Problem as well.
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Remark 2.8. Calibrations on coverings in Definition 2.5 are a generalization of paired calibra-
tions. Indeed when the points S lies on the boundary of a convex set (the only case in which
paired calibrations are defined) the two notions are equivalent.
Suppose that the points of S lie on the boundary of a convex set Ω. Then in the construction
of Y we can choose the cut Σ outside Ω. Consider u = (u1, . . . , un) ∈ B a minimizer for
the minimal partition problem and a paired calibration (φ1, . . . , φn) for u. Define then ũ ∈
BVconstr(Y, {0, 1}) prescribing the parametrization on each sheet of Y as

ũi = un+1−i for i = 1, . . . , n .

Notice that with this choice |Dũ|(Y ) = E(u). Define a vector field Φ̃ : Y → R2 prescribing its
parametrizations on the sheets of the covering spaces (see Remark 2.1) as

Φ̃i = φn+1−i for i = 1, . . . , n .

It is easy to check that ũ is a minimizer for Problem (2.1) and that Φ̃ a calibration for ũ
according to Definition 2.5.
Similarly, given a calibration Φ̃ for ũ ∈ BVconstr(Y, {0, 1}) minimizer for Problem (2.1) one
can construct a paired calibration for u ∈ B minimizer for the minimal partition problem.

2.3 Currents with coefficients in Rn [16]

We briefly summarize here the theory of currents with coefficients in Rn with the approach
given in [16]. The notion of currents with coefficients in a group was introduced by W. Flem-
ing [12]. We mention also the the work of B. White [19, 20].

Consider the normed space (Rn, ‖ · ‖) and denote by ‖ · ‖∗ the dual norm. For k = 0, 1, 2 we
call Λk(R2) the space of k–vectors in R2.

Definition 2.9 (k–covector with values in Rn). A k–covector with values in Rn is a linear
map from Λk(R2) to Rn. We denote by Λkn(R2) the space of k–covectors with values in Rn.

We define the comass norm of a covector ω ∈ Λkn(R2) as

|ω|com := sup
{
‖ω(τ)‖∗ : τ ∈ Λk(R2) with |τ | ≤ 1 and τ simple

}
.

Then the k–forms with values in Rn are defined as the vector fields ω ∈ C∞c (R2,Λkn(R2)) and
their comass is given by

‖ω‖com := sup
x∈R2

|ω(x)|com .

Remark 2.10. Notice that the definition of the space C∞c (R2,Λkn(R2)) is equivalent to the one
presented in [16]. Indeed they consider k–covectors ω defined as bilinear maps

ω : Λk(R2)× Rn → R ,

that can be seen as k–covectors with values in (Rn)′.

Thanks to the just defined notions we are able to introduce the definition of k–current with
coefficients in Rn.
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Definition 2.11 (k–current with coefficients in Rn). A k–current with coefficients in Rn is
a linear and continuous map

T : C∞c (R2,Λkn(R2))→ R .

The boundary of a k–current T with coefficients in Rn is a (k − 1)–current defined as

∂T (ω) := −T (dω) ,

where dω is defined component–wise.

Definition 2.12 (Mass). Given T a k–current with coefficients in Rn its mass is

M(T ) := sup
{
T (ω) : ω ∈ C∞c (R2,Λkn(R2)) with ‖ω‖com ≤ 1

}
.

A k–current T with coefficients in Rn is said to be normal if M(T ) <∞ and M(∂T ) <∞.

Definition 2.13 (1–rectifiable current with coefficients in Zn). Given Σ a 1–rectifiable set
oriented by τ ∈ Λ1(R2), simple, such that |τ(x)| = 1 for a.e. x ∈ Σ and θ : Σ→ Zn in L1(H1),
a 1–current T is rectifiable with coefficients in Zn if admits the following representation:

T (ω) =

∫
Σ
〈ω(x)(τ(x)), θ(x)〉 dH1 .

A 1–rectifiable current with coefficients in Zn will be denoted by the triple T = [Σ, τ, θ].

Notice that if T = [Σ, τ, θ] is a 1–rectifiable current with coefficients in Zn one can write its
mass as

M(T ) =

∫
Σ
‖θ(x)‖ dH1 .

Remark 2.14. The space of 1–covector with values in Rn can be identified with the set of
matrices Mn×2(R). In what follows we will assume this identification and we will denote the
set of 1–forms by C∞c (R2,Mn×2(R)). Moreover given ω ∈ C∞c (R2,Mn×2(R)) we write it as

ω =

ω1(x)
...

ωn(x)

 ,
where ωi : R2 → R2. Notice that ωi(x) is a canonical 1-form, hence its differential can be
identified (by the canonical Hodge dual) as

dωi =
∂ω

∂x2
− ∂ω

∂x1
= divω⊥i

and therefore we can define dω as

dω =

divω⊥1
...

divω⊥n

 .
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Let (gi)i=1,...,n−1 be the canonical base of Rn−1. Define gn = −
∑n−1

i=1 gi.
Given B = g1δp1 + . . .+ gnδpn we consider the following minimization problem:

inf
{
M(T ) : T is a 1− rectifiable currents with coefficients if Zn−1, ∂T = B

}
. (2.2)

To have the equivalence between Problem (2.2) and the Steiner Problem (1.1) the choice of
the norm of Rn−1 plays an important role. Indeed given I any subset of {1, . . . , n − 1} it is
required in [16] that ∥∥∥∥∥∑

i∈I
gi

∥∥∥∥∥ = 1 . (2.3)

Theorem 2.15. Choosing a norm satisfying (2.3), the Steiner Problem is equivalent to Prob-
lem (2.2).

The notion of calibration associated to the mass minimization problem (2.2) introduced in
[16] is the following:

Definition 2.16 (Calibration for 1–rectifiable currents). Let T = [Σ, τ, θ] be a 1–rectifiable
current with coefficients in Zn−1 and Φ ∈ C∞c (R2,Mn−1×2(R)). Then Φ is a calibration for
T if

(i) dΦ = 0;

(ii) ‖Φ‖com ≤ 1;

(iii) 〈Φ(x)τ(x), θ(x)〉 = ‖θ(x)‖ for H1-a.e. x ∈ Σ.

If Φ ∈ C∞c (R2,Mn−1×2(R)) is a calibration for T = [Σ, τ, θ] a 1–rectifiable current with
coefficients in Zn−1, then T is a minimizer of Problem (2.2). To be more precise T is a
minimizer among normal currents with coefficients in Rn−1 [16].

Remark 2.17. In Proposition 5.6 in appendix we prove that is possible to weaken the reg-
ularity of the calibration Φ and consider Φ : R2 → Mn−1×2(R) such that each row is an
approximately regular vector field (see also [16] for a definition of calibration with weaker
regularity assumptions of the vector fields). In the next section we assume implicitly that Φ
is approximately regular.

3 Relations among the different notions of calibrations

We have already discussed the equivalence between paired calibrations and calibrations on
coverings (see Remark 2.8). We focus now on the relation with Definition 2.16.
Definition 2.16 is dependent on the norm of Rn. Define ‖ · ‖[ as

‖x‖[ := sup
xi>0

xi − inf
xi≤0

xi

for every x ∈ Rn. This is the norm considered by Marchese and Massaccesi [16] and in
particular it satisfies property (2.3). In [16] it is also proved that the dual norm ‖ · ‖[,∗ can
be characterized as follows:

‖x‖[,∗ = max

∑
xi>0

xi,
∑
xi≤0

|xi|

 . (3.1)
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From calibrations for currents to calibration on coverings

From here on we endow Rn with ‖ · ‖ = ‖ · ‖[. With this choice, we show that if there exists a
calibration for a 1–rectifiable current with coefficients in Zn−1, then there exists a calibration
for E ∈Pconstr minimizer for Problem (2.1).

Lemma 3.1. Given S = {p1, . . . , pn} with the points pi lying on the boundary of a convex set
Ω labelled in an anticlockwise sense and u = (u1, . . . , un) a competitor of the minimal partition
problem, it is possible to construct a 1–rectifiable current T = [Σ, τ, θ] with coefficients in Zn−1

such that 2M(T ) = E(u), ∂T = g1δp1 + . . . gnδpn and for H1–a.e. x ∈ Jui ∩ Juj

θ(x) =

j−1∑
k=i

gk . (3.2)

Proof. For i = 1, . . . , n let Ai be the phases of the partition induced by u = (u1, . . . , un), that
is ui = χAi . Notice that for every i ∈ {1, . . . , n} the set ∂∗Ai is a 1–rectifiable set in R2 with
tangent τi almost everywhere and it joins the points pi and pi+1. For i ∈ {1, . . . , n} we define
Ti = [∂∗Ai, τi, ai], where the multiplicities ai are chosen in such a way that ai − ai+1 = gi for
i = 1, . . . , n− 1. Then for every i, j = 1, . . . , n

ai − aj =

j−1∑
k=i

gk . (3.3)

We set

T =

n∑
i=1

Ti .

Denoting by θT the multiplicity of T , by construction θT (x) = ai − aj for H1–a.e. x ∈
∂∗Ai ∩ ∂∗Aj that thanks to (3.3) gives (3.2). Moreover as ∂Ti = ai(δpi − δpi+1) (with the
convention that pn+1 = p1). We infer

∂T =
n∑
i=1

∂Ti =
n∑
i=1

ai(δpi − δpi+1) =

n∑
i=1

aiδpi −
n∑
i=1

aiδpi+1

=
n∑
i=1

aiδpi −
n+1∑
i=2

ai−1δpi = (a1 − an)δp1 +
n∑
i=2

(ai − ai+1)δpi

=

n∑
i=1

giδpi .

Theorem 3.2. Given S = {p1, . . . , pn} lying on the boundary of a convex set Ω, let E ∈
Pconstr be a minimizer for Problem (2.1). Let Φ be a calibration according to Definition 2.16
for T = [Σ, τ, θ] a 1–rectifiable current with coefficients in Zn−1 minimizer of Problem (2.2).
Then there exists Φ̃ a calibration for E (according to Definition 2.5).

Proof. We label the n points of S in an anticlockwise sense. By choosing the cuts Σ ⊃ Ω
calibrations on coverings (Definition 2.5) reduce to paired calibrations (Definition 2.7). Hence
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we are looking for a collection Φ̃ of n vector fields Φ̃i : Ω→ R2 for u = (u1, . . . , un) ∈ B where
un+1−i = χEi (see Remark 2.8).
Let Φi be the n− 1 rows of the matrix Φ. We claim that the collection of n vector fields Φ̃i

defined by
Φ̃i − Φ̃i+1 = 2Φ⊥i for i = 1, . . . , n− 1 (3.4)

is a calibration for E. Notice that from (3.4) we deduce that

Φ̃n − Φ̃1 = −2
n−1∑
i=1

Φ⊥i .

We have to show that Φ̃ satisfies conditions (1), (2), (3) of Definition 2.5.

(1) The divergence of Φ̃ is automatically zero, because div Φ̃i = 0 in Ω for every i = 1, . . . , n
(notice that we have taken the cut Σ outside Ω).

(2) By Definition 2.16 it holds that ‖Φ‖com ≤ 1, hence for every x ∈ R2 we have

sup
{
‖Φ(x)τ‖[,∗

∣∣∣ τ ∈ R2, |τ | ≤ 1
}
≤ 1 .

Writing the n components of Φ(x)τ as 〈Φ1(x), τ〉 , . . . , 〈Φn(x), τ〉 and using (3.1), for
every τ ∈ R2 such that |τ | ≤ 1 and i, j = 1, . . . , n with i ≤ j − 1 we obtain

1 ≥‖Φ(x)τ‖[,∗ = max

 ∑
〈Φk,τ〉>0

〈Φk, τ〉 ,−
∑

〈Φk,τ〉<0

〈Φk, τ〉


≥

∣∣∣∣∣
n−1∑
k=1

〈Φk, τ〉

∣∣∣∣∣ ≥
∣∣∣∣∣
〈
j−1∑
k=i

Φk, τ

〉∣∣∣∣∣ .
Therefore ∣∣∣∣∣

j−1∑
k=i

Φ⊥k

∣∣∣∣∣ ≤ 1 .

Notice that from (3.4) we obtain that for every i, j ∈ {1, . . . , n}

|Φ̃i − Φ̃j | = 2

∣∣∣∣∣
j−1∑
k=i

Φ⊥k

∣∣∣∣∣ .
Hence for every i, j ∈ {1, . . . , n} condition |Φ̃i(x)−Φ̃j(x)| ≤ 2 is fulfilled for every x ∈ Ω.

(3) We can apply the construction of Lemma 3.1 with Ei = An+1−i to produce a 1–
rectifiable current T with coefficients in Zn−1 such that and ∂T = ∂T and 2M(T ) =
P (E). Moreover thanks to the fact that E a minimizer for (2.1) and T for (2.2) we get

2M(T ) = P (E) = 2H1(S) = 2M(T ) ,

where S is a minimizer for the Steiner Problem (1.1). The current T has the same
boundary and the same mass of T , then it is a minimizer for the Problem (2.2) as well.
Therefore Φ is a calibration also for T . Then we have that H1–a.e. x ∈ p(∂∗E)

〈Φτ, θT 〉 = 1 .
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Using (3.2), for H1–a.e. x ∈ ∂∗Ai ∩ ∂∗Aj the previous equation reads as

1 = 〈Φτ,
j−1∑
k=i

gk〉 =

j−1∑
k=i

〈Φτ, gk〉 =

j−1∑
k=i

〈Φk, τ〉 =

j−1∑
k=i

〈Φ⊥k , νij〉 =
1

2
〈Φ̃i − Φ̃j , νij〉 ,

that is the third condition of the paired calibration, that in our setting is equivalent to
(3) of Definition 2.5.

When the points of S do not lie on the boundary of a convex set, we cannot take advantage of
the equivalence between calibrations on coverings and paired calibrations (that are not defined
if the points of S are not on the boundary of a convex set). Indeed in this case we look for a
unique vector field Φ̃ : Y → R2 defined on the whole space Y and satisfying the requirements
of Definition 2.5. As one can guess from Step (3) in the proof of Theorem 3.2, relations (3.4)
has to be satisfied locally around the jumps. A clue of this fact is the local equivalence between
the minimal partition problem and Problem (2.1) that suggests a local equivalence between
calibrations on coverings and paired calibrations. Thanks to Remark 2.1 once defined Φ̃i in
each sheet one can construct Φ̃, but in doing such an extension/identification procedure it
is not guaranteed that the divergence of Φ̃ is zero. It seems to us that the existence of a
calibration Φ̃ is plausible, but the extension of the field has to be treated case by case. At
the moment we do not have a procedure to construct Φ̃ globally.

From calibrations on coverings to calibrations for currents

Given a calibration for E ∈Pconstr minimizer for Problem (2.1) we want now to construct a
calibration for T , a 1–rectifiable current with coefficients in Zn−1 minimizer for Problem (2.2).
Notice that given any competitor T = [Σ, τ , θ], testing condition ii) of Definition 2.16 on T
reduces to show that 〈

Φ(x)τ(x), θ(x)
〉
≤ ‖θ(x)‖[ for H1 − a.e x ∈ Σ .

Moreover it suffices to evaluate 〈Φ(x)τ(x), ·〉 on the extremal points of the unit ball of the
norm ‖ · ‖[ that are PI =

∑
i∈I gi for every I ⊂ {1, . . . , n− 1} (see [16, Example 3.4]). Hence

proving Condition ii) reduces to verify 2n−1 − 1 inequalities. On the other hand Condition

(2) of Definition 2.5 requires to verify n(n−1)
2 inequalities. Apart from the case of 2 and 3

points, Condition (2) of Definition 2.5 is weaker than Condition ii) of Definition 2.16. Hence
in general one cannot construct a calibration for T starting from a calibration for E.

To restore an equivalence result we slightly change Problem (2.2).
Define a norm ‖ · ‖\ on Rn−1 characterized by the property that its unit ball is the smallest
such that ∥∥∥∥∥

j−1∑
k=i

gi

∥∥∥∥∥
\

= 1 with i ≤ j − 1 , i, j ∈ {1, . . . , n} .

For n = 4 (in this case the admissible coefficients are g1, g2 and g3) the unit ball of the norm
‖ · ‖\ is depicted in Figure 2. Notice that if we consider the norm ‖ · ‖[, the mass of all curves
appearing in Figure 3 coincides with the length. If instead we use the norm ‖ · ‖\, the mass
of the curve with multiplicity g1 + g3 is strictly bigger than its length. This is a still natural
choice if we want to prove an equivalence with the Steiner problem as in Theorem 2.15 for the

11



norm ‖ ·‖\. Indeed for a specific labelling of the points, the curve with multiplicity g1 +g3 has
to lie outside the convex envelope of p1, . . . , p4 and therefore the competitor on the rightmost
of Figure 3 cannot be a minimizer for the Steiner problem.
From now on we write either M\ or M[ to distinguish when the mass is computed using either
the norm ‖ · ‖\ or ‖ · ‖[.

g2

g1 + g2

g2 + g3

g1 + g2 + g3

g3

g1 + g3

g1

g1 + g3

g2

g1 + g2

g2 + g3

g1 + g2 + g3

g3

g1

Figure 2: Left: the unit ball of the norm ‖ · ‖[. Right: the unit ball of the norm ‖ · ‖\.

Lemma 3.3. There exists a permutation σ of the labelling of the points of S such that defining

Bσ =

n−1∑
i=1

gσ(i)δpσ(i)

the problem

inf
{
M\(T ) : T = [Σ, τ, θ] is a 1− rectifiable currents with coefficients in Zn−1, ∂T = Bσ

}
(3.5)

is equivalent to the Steiner Problem.

Define

G :=

{
j−1∑
k=i

gk : i, j = 1, . . . , n and i ≤ j − 1

}
and notice that by the definition of ‖ · ‖\ one has

‖θ‖\ ≥ ‖θ‖[ ∀θ ∈ Rn−1 and ‖θ‖\ = ‖θ‖[ = 1 ∀θ ∈ G. (3.6)

We obtain the definition of calibration for Problem (3.5) simply repeating Definition 2.16
replacing ‖ · ‖[ by ‖ · ‖\. Clearly if Φ is a calibration for Tσ, then Tσ is a minimizer for
Problem (3.5) in its homology class. We postpone the proof of Lemma 3.3 and we state the
main result.
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Theorem 3.4. Given S = {p1, . . . , pn}, let E ∈Pconstr be a minimizer for Problem (2.1) and
T = [Σ, τ, θ] be a 1–rectifiable current with coefficients in Zn−1 minimizer of Problem (3.5).
Suppose that there exists Φ̃ calibration for E according to Definition 2.5, then there exists Φ
calibration for Tσ according to Definition 2.16 (where we consider ‖ · ‖ = ‖ · ‖\).

Proof. For simplicity we suppose that the n points lie on the boundary of a convex set Ω and
the cuts Σ are chosen such that Σ ⊃ Ω. Hence Φ̃ : Y → R2 reduces to a paired calibration:
a collection of n approximately regular vector fields Φ̃i : Ω→ R2 satisfying the conditions of
Definition 2.7. We define Φ calibration for Tσ as the matrix whose n− 1 rows satisfy

Φ⊥i =
1

2

(
Φ̃i − Φ̃i+1

)
for i = 1, . . . , n− 1 .

Condition i) is trivially satisfied and adapting the proof of step (3) of Theorem 4.2 we also
get Condition iii). To conclude the proof it is enough to notice that when Rn is endowed with

‖ · ‖\, condition ‖Φ‖com ≤ 1 is fulfilled if
∣∣∣∑j−1

k=i Φ⊥k

∣∣∣ ≤ 1 for every i ≤ j − 1 ∈ {1, . . . , n}, that

is nothing else than |Φ̃i − Φ̃j | ≤ 2.

We conclude this section proving Lemma 3.3.

Proof of Lemma 3.3.

Denoted by S a Steiner network connecting the points of S we repeat the construction of [8,
Proposition 2.28] obtaining a suitable labelling of the points of S (and consequently Bσ). It
is possible then to construct a current Tσ = [Σσ, τσ, θσ] with boundary Bσ such that θσ ∈ G
and M[(Tσ) = H1(S): it is enough to define Ti as the 1–current supported on the branch of
S connecting pi with pn with multiplicity gi and then build Tσ =

∑n−1
i=1 Ti.

Hence by the equivalence between the Steiner problem and Problem (2.2) the current Tσ =
[Σσ, τσ, θσ] is a minimizer for Problem (2.2) with M = M[ and B = Bσ. We show that Tσ
is a minimizer also for Problem (3.5). By minimality of Tσ it holds M[(Tσ) ≤ M[(T ) for all
1–rectifiable current T with coefficients in Zn−1. Then for all competitors T it holds

M\(Tσ) = M[(Tσ) ≤M[(T ) ≤M\(T ) ,

where we used (3.6). This gives the minimality of Tσ for Problem (3.5) and concludes the
proof.

p2

p3p4

p1

g1 + g2

g2

g3g1 + g2 + g3

g1

p2

p3p4

p1

g2 + g3

g2

g3g1 + g2 + g3

g1

p2

p3p4

p1

g1 + g3

g2

g3g1 + g2 + g3

g1

Figure 3: With a suitable choice of the labeling of the points p1, p2, p3, p4 it is not possible
to construct a competitor without loops that lies in the convex envelop of the points where a
curve has coefficient g1 + g3.
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Remark 3.5. Although in general giving explicitly the permutation σ is quite hard, the choice
of a suitable labelling of the points of S becomes easy when the points lie on the boundary
of a convex set: it is enough to label p1 . . . , pn in a anticlockwise sense (see Lemma 3.1).

3.1 Extension to Rn

This paper is devoted to compare the known notions of calibrations for minimal networks and
minimal partitions in R2.
Minimal partitions
A natural question would be if it is possible to generalize/modify the mentioned approaches
to minimal partition problems in higher dimension with the goal of comparing the related
notions of calibrations.
Paired calibrations are already a tool to validate the minimality of a certain candidate that
span a given boundary and divide the domain (a convex set in Rn+1) in a fixed number of
phases. At the moment it is not known if one can find a suitable group G and a suitable
norm such that n–dimensional currents with coefficients in G represent a partition of Rn+1.
Regarding instead the covering spaces approaches several attempts to very specific problems
have been proposed in [2, 3, 7]. Despite this remarkable list of examples it is still not clear
if it is possible to systematically approach Plateau’s type problems and partition problems
within the covering space setting.
Minimal networks
Because of the intrinsic nature of the notion if currents, 1–currents with group coefficients
describe networks in any codimension. Hence this approach is suitable for the Steiner problem
in Rn.
To conclude, Section 2.3 is about minimizing 1–dimensional objects in codimension n, instead
Section 2.2 regards the minimization of n–dimensional objects in codimension 1. Clearly n = 2
is the only case in which the two are comparable.

4 Convexifications of the problem

Definition 4.1. We call

• BVconstr(Y, [0, 1]) the space of functions u ∈ BV (Y, [0, 1]) such that for almost every
x ∈M it holds

∑
p(y)=x u(y) = 1 and u1(x) = 1 for every x ∈ R2 \ Ω.

• BV #
constr(Y ) the space of functions in BVconstr(Y, [0, 1]) with a finite number of values

α1, . . . , αk.

In [8] we have proven that if Φ is a calibration for u ∈ BVconstr(Y, {0, 1}), then u is a minimizer
in the same class, but actually the following holds:

Theorem 4.2. If Φ : Y → R2 is a calibration for u ∈ BVconstr(Y, {0, 1}), then u is a

minimizer among all functions in BV #
constr(Y ).

For the proof of Theorem 4.2 we need the following:

Lemma 4.3. Let {ηi}i=1,...,n and {ti}j=1,...,n such that
∑n

i=1 ηi = 0 and |ti− tj | ≤ 2 for every
i, j ∈ 1 . . . ,m. Then ∣∣∣∣∣

n∑
i=1

tiηi

∣∣∣∣∣ ≤
n∑
i=1

|ηi| . (4.1)
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Proof. Notice that∣∣∣∣∣
n∑
i=1

tiηi

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
ηi>0

tiηi +
∑
ηi<0

tiηi

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
ηi>0

max(ti)ηi +
∑
ηi<0

min(ti)ηi

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
ηi>0

max(ti)ηi −
∑
ηi>0

min(ti)ηi

∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣
∑
ηi>0

ηi

∣∣∣∣∣∣ =
n∑
i=1

|ηi| .

Remark 4.4. We also note that given u,w ∈ BVconstr(Y, [0, 1]) and Φ : Y → R2 an approxi-
mately regular divergence free vector field it holds∫

Y
Φ ·Du =

∫
Y

Φ ·Dw . (4.2)

This result can be proved adapting [8, Proposition 4.3].

Proof of Theorem 4.2.
Consider u ∈ BVconstr(Y, {0, 1}), Φ : Y → R2 a calibration for u and w a competitor in

BV #
constr(Y ). Combining Remark 4.4 with Conditions (1) and (3) of Definition 2.5 we have

|Du|(Y ) =

∫
Y

Φ ·Du =

∫
Y

Φ ·Dw . (4.3)

Moreover by the representation formula for Dw in the space Y we get∫
Y

Φ ·Dw =

m∑
j=1

∫
R2

Φj ·Dwj ,

where without loss of generality we have supposed that p(Jw) ∩ Σ = ∅ (see Remark 2.3).
Calling ηj(x) = (wj)+(x) − (wj)+(x) (we refer to Remark 2.1 for the definition of wj), we

notice that, as w ∈ BV #
constr(Y ), for almost every x ∈ R2

m∑
j=1

ηj(x) = 0 .

Then

m∑
j=1

∫
R2

Φj ·Dwj =
m∑
j=1

∫
J
wj

ηjΦ
j · ν dH1

=

∫
p(Jw)

m∑
j=1

ηj(Φ
j · ν)χ

Jjw
dH1

≤
∫
p(Jw)

∣∣∣ m∑
j=1

ΦjηjχJjw

∣∣∣ dH1 .
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Applying Lemma 4.3 one obtains∫
Y

Φ ·Dw ≤
∫
p(Jw)

m∑
j=1

|ηj |χJjw dH
1 = |Dw|(Y ) . (4.4)

Hence combining (4.3) with (4.4) we conclude that

|Du|(Y ) =

∫
Y

Φ ·Du =

∫
Y

Φ ·Dw ≤ |Dw|(Y ) .

Remark 4.5. The previous theorem is sharp, in the sense that one cannot replace BV #
constr(Y )

by BVconstr(Y, [0, 1]). Indeed consider S = {p1, p2, p3} with pi vertices of an equilateral
triangle. Although the minimizer u ∈ BVconstr(Y, {0, 1}) is calibrated (for the result in our

setting see [8, Example 3.8]), there exists a function in BVconstr(Y, [0, 1]) \BV #
constr(Y ) whose

total variation is strictly less than the total variation of u, as it shown in [9, Proposition 5.1].

We define now the convexification of |Du| with u ∈ BVconstr(Y, {0, 1}) naturally associated to
the notion of calibration for covering spaces. It was introduced by Chambolle, Cremers and
Pock in [9] in the context of minimal partitions.

Definition 4.6 (Local convex envelope). Let u ∈ BVconstr(Y, [0, 1]). We consider the func-
tional G given by

G(u) :=

∫
Y

Ψ(Du) ,

where

Ψ(q) = sup
p∈K

n∑
j=1

pj · qj

and
K = {p ∈ Y : ‖pi − pj‖ ≤ 2, for every i, j = 1, . . . , n} .

In analogy with [9] we call G local convex envelope.

The local convex envelope is the tightest convexification with an integral form, indeed:

Proposition 4.7. ([9]) The local convex envelope G is the larger convex integral functional
of the form H(v) =

∫
Y Ψ(x,Dv) with v ∈ BVconstr(Y, [0, 1]) and Ψ(x, ·) non negative, even

and convex such that

H(v) = |Dv|(Y ) for v ∈ BVconstr(Y, {0, 1}) .

As a consequence of Theorem 4.2 we are able to prove:

Proposition 4.8. It holds

G(v) = |Dv|(Y ) for v ∈ BV #
constr(Y ) .
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Proof. The inequality G(v) ≥ |Dv|(Y ) is consequence of Proposition 4.7 choosing Ψ(x, p) =

|p|. For the other inequality it is just enough to notice that given v ∈ BV #
constr(Y ), from the

proof of Theorem 4.2 we obtain that∫
Y
p ·Dv ≤ |Dv|(Y )

for every p ∈ K. Therefore taking the supremum on both sides and using that |Dv|(Y ) < +∞
we conclude that ∫

Y
sup
p∈K

p ·Dv ≤ |Dv|(Y ) .

Remark 4.9. Proposition 4.8 shows that even if the local convex envelope is the best integral
convexification of the problem, it ”outperforms” the total variation only when evaluated on
functions u ∈ BVconstr(Y, [0, 1]) \BV #

constr(Y ).

5 An example of nonexistence of calibrations

Finding a calibration for a candidate minimizer is not an easy task. We wanted to understand
at least whether there exists a calibration when S is composed of points lying at the vertices
of a regular polygon. We have a positive answer only in the case of a triangle and of a
square [8, 16]. As a byproduct of Theorem 4.2 we are now able to negatively answer in the
case of a regular pentagon.

Example 5.1 (Five vertices of a regular pentagon). Given S = {p1, . . . , p5} with pi the five
vertices of a regular pentagon, the minimizer of the Steiner problem is well known. Following
the canonical construction presented in [8, Proposition 2.28] it is not difficult to construct the
“associated” function u ∈ BVconstr(Y, {0, 1}) here represented in Figure 4. By explicit com-
putations one gets 1

2 |Du|(Y ) = 4.7653. Consider now the function w ∈ BVconstr(Y, {0, 1
2 , 1})

exhibited in Figure 4. It holds 1
2 |Dw|(Y ) ≈ 4.5677. Theorem 4.2 tells us that if a calibration

for the minimizer u exists, then u has to be a minimizer also in the larger space BV #
constr(Y ),

but |Dw|(Y ) < |Du|(Y ), hence a calibration for u does not exists.

D1 D2 D3 D4 D5

D1 D2 D3 D4 D5

Figure 4: Up: The functions u ∈ BVconstr(Y, {0, 1}) minimizer of Problem (2.1) Down: A
function w in BVconstr(Y, {0, 1/2, 1}) with |Dw|(Y ) < |Du|(Y ). White corresponds to the
value 0, light green to 1/2 and dark green to 1.
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Non–existence of calibrations for minimal currents when S = {p1, . . . , p5} with pi the five
vertices of a regular pentagon was already highlighted in [5, Example 4.2]. As we have shown
that Definition 2.16 is stronger than Definition 2.5 it was necessary to “translate” the example
in our setting to conclude that a calibration does not exists for u minimizer of Problem (2.1).

Remark 5.2. We refer also to [16, Example 4.6] where an example of nonexistence of cali-
brations is provided. However in that case the ambient space is not R2 endowed with the
standard Euclidean metric.

5.1 Remarks on calibrations in families

Example 5.1 underlines an big issue of the theory of calibrations. Calibrations in families
(see [8, Section 4]) can avoid the problem. Indeed in [8, Example 4.9] we are able to find the
minimal Steiner network for the five vertices of a regular pentagon via a calibration argument.
We explain briefly here the strategy we used and we validate it with some remarks.

• First we divide the sets of Pconstr(Y ) in families. The competitors that belong to the
same class share a property related to the projection of their essential boundary onto
the base set M . In particular we define a family as

F(J ) := {E ∈Pconstr(YΣ) : H1(Ei,j) 6= 0 for every (i, j) ∈ J }.

where J ⊂ {1, . . . ,m}× {1, . . . ,m} and Ei,j := ∂∗Ei ∩ ∂∗Ej . The union of the families
has to cover Pconstr(Y ).

• We consider a suitable notion of calibrations for E in F(J ): Condition (2) can be
weaken as

|Φi(x)− Φj(x)| ≤ 2 for every i, j = 1, . . .m such that (i, j) ∈ J and for every x ∈ D.

• We calibrate the candidate minimizer in each family.

• We compare the perimeter of each calibrated minimizer to find the explicit global min-
imizers of Problem (2.1).

How to divide the competitors in families
We consider as competitors only the sets in Pconstr(Y ) whose projection onto M is a network
without loops. Since it is known that the minimizers are tree–like, the previous choice is not
restrictive.

Suppose that S consists of n points located on the boundary of a convex set Ω. Then
Problem (2.1) is equivalent to a minimal partition problem and E ∈ Pconstr(Y ) induces a
partition {A1, . . . , An} of Ω. We classify the sets in Pconstr(Y ) simply prescribing which
phases “touch” each other (see [8, Lemma 4.8]). The division in families depends on the
topology of the complementary of the network.

Let us now pass to the general case of any configuration of n points of S. The minimal Steiner
networks are composed of at most m = 2n − 3 segments. Each segment of a minimizer S
coincides with p(Ei,j) for i 6= j ∈ {1, . . . , n}. Different segments of S are associated with
different Ei,j . We take I composed of 2n− 3 different couples of indices (i, j) ∈ {1, . . . , n} ×
{1, . . . , n}. The cover of Pconstr(Y ) is given by considering all possible I satisfying the above
property.
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Existence of calibrations in families
The just proposed division in families is the finest possible one and it classifies the competitors
relying on their topological type. Note that the length is a convex function of the location
of the junctions. As a consequence each stationary network is the unique minimizer in its
topological type (see for instance [17, Corollary 4.3] and [10] where more general situations
are treated) and therefore a calibration in such a family always exists.

Export the idea of calibrations in families to currents
Once identified the families for sets in Pconstr(Y ) it is possible to produce families for Prob-
lems (2.2) and (3.5). Take a competitor in each F(J ). When the points of S lie on the
boundary of a convex set it is sufficient to apply Lemma 3.1 (reminding that Ei = An+1−i)
to construct a current T . Then one can identify the coefficients of T . Hence in this case the
classification in families will rely on which subsums of gi are present in the competitors.
To deal with the case of general configurations of points of S, we have to generalize Lemma 3.1.
In the construction we set Ti = [∂∗Ei, τi, ei] where τi are the tangent vectors to ∂∗Ei and
the multiplicities are chosen in such a way that ei − ei−1 = g̃i with g̃i linearly independent
vectors of Rn−1. Again we set T =

∑
Ti. Now ∂T is the sum of g̃jδpi where j can also be

different from i. We obtain a current with the desired boundary simply substituting g̃j with
gi in order to satisfy g̃jδpi = giδpi .

Appendix: Regularity of the calibration

Proposition 5.3 (Constancy theorem for currents with coefficients in Rn). Let T be a normal
2-current in R2 with coefficients in Rn. Then there exists u ∈ BV (R2,Rn) such that for every
ω ∈ C∞c (R2,Rn)

T (ω) =

∫
R2

〈ω, u〉 dL 2 . (5.1)

Proof. Notice firstly that the space of 2–forms with values in Rn can be identified by Hodge
duality to the space C∞c (R2,Rn). As T is a normal current, by Riesz theorem there exists
σ : R2 → Rn and µT a finite measure in R2 such that

T (ω) =

∫
R2

〈ω, σ〉 dµT =

n∑
i=1

∫
R2

ωiσi dµT . (5.2)

Defining Ti : C∞c (R2,R)→ R as

Ti(f) =

∫
R2

fσi dµT

we know that Ti is a 2-normal current with coefficients in R. Therefore we can apply the
standard constancy theorem (see for instance [13, §3.2, Theorem 3]) and find ui ∈ BV (R2)
such that

Ti(f) =

∫
R2

fui dL
2 (5.3)

for every i = 1, . . . , n. Hence combining (5.2) and (5.3) we conclude.

We recall the definition of approximately regular vector fields both on Rn and on the covering
space Y ([1, 8]).
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Definition 5.4 (Approximately regular vector fields on Rn). Given A ⊂ Rn, a Borel vector
field Φ : A→ Rn is approximately regular if it is bounded and for every Lipschitz hypersurface
M in Rn, Φ admits traces on M on the two sides of M (denoted by Φ+ and Φ−) and

Φ+(x) · νM (x) = Φ−(x) · νM (x) = Φ(x) · νM (x), (5.4)

for Hn−1–a.e. x ∈M ∩A.

Definition 5.5 (Approximately regular vector fields on the covering Y ). Given Φ : Y → R2,
we say that it is approximately regular in Y if Φj is approximately regular for every j =
1, . . . ,m.

Theorem 5.6. Suppose that Φ : R2 →Mn×2(R) is a matrix valued vector field such that its
rows are approximately regular vector fields. Given T = [Σ, τ, θ] a 1–rectifiable current with
coefficients in Zn, assume that Φ satisfies condition (i), (ii) and (iii) of Definition 2.16. Then
T is mass minimizing among all rectifiable 1–currents with coefficients in Zn in its homology
class.

Proof. Set Ω′ ⊂⊂ Ω ⊂ R2 open, bounded, smooth sets such that they contain the convex
envelope of S. Given the candidate minimizer T we take a competitor T̃ = [Σ̃, τ̃ , θ̃]: a
rectifiable 1–current in R2 with coefficients in Zn such that ∂(T − T̃ ) = 0. Notice that we
can suppose that Σ, Σ̃ ⊂ Ω′. There exists U a normal 2–current in R2 with coefficients in Zn
such that T − T̃ = ∂U . By Proposition 5.3 there exists u ∈ BV (R2,Rn) such that for every
ω ∈ C∞c (R2,Rn)

U(ω) =

∫
R2

〈ω, u〉 dL 2 .

Notice that for every φ ∈ C∞c (R2,Mn×2) supported in R2 \ Ω′ we have

0 = T (φ)− T̃ (φ) = −U(dφ) = −
∫
R2

〈u, dφ〉 dL 2 =
n∑
i=1

∫
R2

uidiv φ⊥i dL
2 .

Taking the supremum on φ ∈ C∞c (R2,Mn×2) compactly supported in R2 \ Ω′ such that
‖ω‖∞ ≤ 1 we infer that |Du|(R2 \ Ω′) = 0 and therefore there exists a vector c ∈ Rn such
that u(x) = c in R2 \ Ω′ almost everywhere. Define then

U0(ω) =

∫
R2

〈ω, uc〉 dL 2 (5.5)

where uc(x) = u(x)−c. It is easy to check that U0(dφ) = U(dφ) for every φ ∈ C∞c (R2,Mn×2).
Define now Φn ∈ C∞c (R2,Mn×2) as Φn = (χΩΦ) ? ρn, where ρn is a mollifier. Using the
standard divergence theorem for BV function we obtain

T (Φn)− T̃ (Φn) = ∂U(Φn) = −U(dΦn) = −U0(dΦn) = −
∫
R2

〈uc, dΦn〉 dL 2

= −
n∑
i=1

∫
R2

ucidiv (Φn)⊥i dL
2 =

n∑
i=1

∫
R2

(Φn)⊥i ·Duci . (5.6)

We observe that

T (Φn) =

∫
Σ
〈Φnτ, θ〉 dH1 → T (Φ) as n→ +∞
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because Σ ⊂ Ω and similarly for T̃ . Therefore taking the limit on both sides of (5.6) we get

T (Φ)− T̃ (Φ) =
n∑
i=1

∫
Ω

Φ⊥i ·Duci . (5.7)

Finally applying the divergence theorem for approximately regular vector fields ([1]) and using
that uc = 0 on R2 \ Ω′ we get

T (Φ)− T̃ (Φ) =
n∑
i=1

∫
Ω
ucidiv Φ⊥i dL

2 = 0

thanks to property (i) of a calibration.
Then the proof follows the same line of Proposition 3.2 in [16].
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