
TRACK BILLIARDS

LEONID A. BUNIMOVICH AND GIANLUIGI DEL MAGNO

Abstract. We study a class of planar billiards having the remarkable prop-

erty that their phase space consists up to a set of zero measure of two invariant

sets formed by orbits moving in opposite directions. The tables of these bil-
liards are tubular neighborhoods of differentiable Jordan curves that are unions

of finitely many segments and arcs of circles. We prove that under proper con-

ditions on the segments and the arcs, the billiards considered have non-zero
Lyapunov exponents almost everywhere. These results are then extended to

a similar class of of 3-dimensional billiards. Finally, we find that for some

subclasses of track billiards, the mechanism generating hyperbolicity is not
the defocusing one that requires every infinitesimal beam of parallel rays to

defocus after every reflection off of the focusing boundary.

1. Introduction

There are rather few examples of hyperbolic systems with several ergodic com-
ponents, which are exactly described (for example, see [W2, B3]). We study here
a class of billiards whose phase space is up to a set of zero measure an union of
two invariant sets consisting of orbits moving in opposite directions. The table of
one of these billiards is a tubular neighborhood of differentiable Jordan curve that
is a finite union of straight segments and arcs of circles. Since such a region looks
somewhat like a track field, the billiards considered in this paper will be called track
billiards. A simple example of a track billiard is obtained by cutting out a smaller
stadium from a stadium (Fig. 2(a)).

In this paper, we prove that all the Lyapunov exponents of a track billiard are
non-zero almost everywhere (hyperbolicity) provided that the segments and the
arcs are sufficiently large, or that the segments and the width of the transverse
section of the track are sufficiently large. We also generalize these results to 3-
dimensional track billiards. There is no doubt that the hyperbolicity implies that
the dynamics on each of the invariant sets formed by orbits moving in opposite
directions is ergodic. This however will be the content of a forthcoming paper.

It is worth pointing out that for some track billiards, the mechanism of hyperbol-
icity is not the defocusing one. This mechanism requires that after every reflection
from the focusing part of the billiard boundary, a narrow beam of parallel rays
must pass through a conjugate point, and become divergent before the next col-
lision with the curved part of the boundary. Moreover, along a typical orbit, the
average time of divergence along an orbit must exceed the average time of conver-
gence. We found a class of track billiards that are hyperbolic, but do not satisfy
the defocusing property. Namely, it is not true that every beam of parallel rays
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α
(a) Circular guide (b) Straight guide

Figure 1. The two types of guides considered in this paper

defocuses after reflecting off a focusing component and before the next reflection
off a curved component of the boundary. To control such beams, we use the fact
that the dynamics inside the curved part of a track is integrable.

Track billiards are also related to billiards in tubular regions, which model certain
electronic devices in nanotechnology. Although, there are several works devoted to
the study of the quantum properties of these billiards [E-S, G-J, C-D-F-K, V-P-R],
we have found only a few works in the literature, which can give some insight on
their classical properties [H-P, P]. Our results, may help fill in this gap.

The paper is organized as follows. In Section 2, we review some basic facts
concerning billiard systems, introduce tracks billiards, and state the main result
of this paper. The last part of Section 2 contains some preliminary lemmas that
are crucial in the proof of the hyperbolicity. In Section 3, we give the notions
of focusing time and invariant cone field. Then, using a sort of generalized mirror
formula for billiard trajectories crossing annular regions, we construct an eventually
strictly invariant cone field for track billiards, whose existence implies hyperbolicity.
Section 3 contains also a discussion concerning the construction of the invariant cone
field for a circular guide. Finally, in Section 4, the results obtained for 2-dimensional
track billiards are extended to 3-dimensional track billiards.

2. Track billiards

Let Q be a bounded domain of R2 with piecewise differentiable boundary. The
billiard in Q is the dynamical system arising from the motion of a point-particle
inside Q obeying the following rules: the particle moves along straight lines at unit
speed until it hits the boundary of Q, at that moment, the particle gets reflected
so that the angle of reflection equals the angle of incidence.

2.1. Definitions. The domain Q considered in this paper is a tubular neighbor-
hood of a planar differentiable Jordan curve γ that is a finite union of segments and
arcs of circles. Equivalently, we can say that Q is an union of finitely many building
blocks of two types: circular guides and straight guides. A circular guide is the
region of an annulus with circles of radii r1 > r2 > 0 contained inside a sector with
central angle 0 < α < 2π (see Fig. 1(a)). A straight guide is simply a rectangle
(see Fig. 1(b)). The circular and straight guides must all have the same transverse
width in order to fit together and form a domain Q. Furthermore, we will always
assume that any two circular guides of Q do not intersect (i.e., they are separated
by at least one straight guide). Since Q resembles a track field, it is called a track.
Two examples of tracks are depicted in Fig. 2. A billiard in Q is called a track
billiard.



TRACK BILLIARDS 3

(a) (b)

Figure 2. Two examples of tracks

For our purposes, the dynamics of a track billiard can be conveniently described
by a discrete transformation called billiard map, which is defined as follows. Let
M be the set of all vectors (q, v) ∈ T1R2 such that q ∈ ∂Q and 〈v, n(q)〉 ≥ 0,
where n(q) is the normal vector to ∂Q at q pointing inside Q. Here 〈·, ·〉 is the
standard dot product of R2. The set M is easily seen to be a smooth manifold with
boundary. Let π : M → Q be the canonical projection defined by π(q, v) = q for
(q, v) ∈M . If we view q and v as the position and the velocity of the particle after
a collision with ∂Q, then M represents the collection of all possible post-collision
states (collisions, for short) of the particle with ∂Q.

Fix an orientation of the boundary ∂Q. A set of local coordinates for M is given
by M 3 x 7→ (s(x), θ(x)), where s is the arclength parameter along the oriented
boundary ∂Q, and 0 ≤ θ ≤ π is the angle that the velocity of the particle forms with
the oriented tangent of ∂Q. To specify an element x ∈M , we will use indifferently
the notations x = (q, v) or x = (s, θ). We endow M with the Riemannian metric
ds2 + dθ2 and the probability measure dµ = (2|∂Q|)−1 sin θdsdθ, where |∂Q| is the
length of ∂Q.

Denote by ∂M the set of all vectors (q, v) ∈ M such that 〈v, n(q)〉 = 0 or q is
the endpoint of a straight segment of ∂Q. Let intM = M \ ∂M . For technical
reasons, we define T only on collisions belonging to the smooth manifold (without
boundary) intM . The billiard map T : intM → M is the transformation given
by (q, v) 7→ (q1, v1), where (q, v) and (q1, v1) are two consecutive collisions of the
particle. Let us denote by S+

1 the union of ∂M and the subset of intM where T
is not differentiable. It is easy to see that S+

1 = ∂M ∪ T−1∂M . From the general
results of [K-S], it follows that S+

1 is a compact set consisting of finitely many
smooth compact curves that can intersect each other only at their endpoints. If we
define S−1 = M \ T (M \S+

1 ), then T is a diffeomorphism from M \S+
1 to its image

M \ S−1 , and preserves the measure µ (see e.g. [C-F-S, K-S]).
The billiard dynamics is time-reversible. Indeed, the involution J : M → M

defined by J(s, θ) = (s, π − θ) for every (s, θ) ∈ M has the property that J ◦ T =
T−1 ◦ J everywhere on M \ S+

1 . Most of the time, we will use the notation −A
instead of JA, where A is a subset of M .

For every n > 1, let us define S+
n = S+

1 ∪ T−1S+
1 ∪ · · · ∪ T−n+1S+

1 and S−n =
S−1 ∪ TS

−
1 ∪ · · · ∪ Tn−1S−1 . By the time-reversibility of the billiard dynamics,

we have S−n = −S+
n for every n > 0. Let S+

∞ = ∪n>0S
+
n and S−∞ = ∪n>0S

−
n .

Then M̃ = M \ (S−∞ ∪ S+
∞) is the set where all iterates of T are defined. Clearly,

µ(S+
∞) = µ(S−∞) = 0 and µ(M̃) = 1.
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2.2. Invariant sets and unidirectionality. We define v∗ to be the component
of the velocity the particle along the oriented tangent of γ at the point where the
transverse section of Q passing through the position of the particle intersects γ.
This definition makes sense because Q = {q + δn(q) : q ∈ γ and |δ| < ε}, where
n(q) is the unit normal vector of γ at q, and 2ε is the transverse width of the
guide. Since γ is differentiable, it easy to see that v∗ is a continuous function of
the time, and is constant inside a circular guide and a straight guide. Therefore
sgn(v∗) is constant. Let L,R,N be the sets consisting of collisions (s, θ) ∈ M
such that π/2 < θ < π and 0 < θ < π/2 and θ = π/2, respectively. Clearly,
M = L ∪ R ∪N , and from the previous considerations, it follows that L,R,N are
invariant1. Sometimes, this property is called unidirectionality.

In a forthcoming paper, we will prove that for track billiards satisfying a condi-
tion slightly stronger than the one called H in this paper (see (14) in Section 3, for
the exact formulation), the sets L and R are the only invariant sets with measure
between 0 and 1. In other words, the first return map of T to each set L and R is
ergodic.

Remark 2.1. In fact, the previous statement remains valid for a billiard in a
tubular neighborhood of a differentiable Jordan curve in arbitrary dimension. To
see this, first note that the set N = {(q, v) ∈ M : v∗ = 0} is invariant. Next,
suppose that v∗ > 0 initially, and that v∗ < 0 at some later time, i.e., the particle
changes the direction of its motion. Since v∗ is a continuous function of the time,
we see that v∗ = 0 at some moment of time, which by the previous observation
implies that v∗ is identically equal to zero, giving a contradiction.

2.3. Main result. The map T is called (nonuniformly) hyperbolic if all its Lya-
punov exponents are non-zero almost everywhere on M̃ .

Definition 2.2. We say that a circular guide is of type A if α ≥ π (and no
conditions on r1 and r2 are imposed), and is of type B if r2/r1 < 1/2 (and no
conditions on α are imposed).

We now state the main result of this paper.

Theorem 2.3. Consider a track Q such that each of its circular guides is either of
type A or B. The billiard map T in Q is hyperbolic provided that the straight guides
of Q are sufficiently long.

The outer circle and the inner circle of a circular guide are focusing and dispersing
curves, respectively. To our knowledge, all the recipes for designing hyperbolic
billiard domains including focusing and dispersing in their boundaries require these
curves to be placed sufficiently apart [B1, C-M, D-M, M1, W2, W3]. Since for guides
of type A, there is no restriction on the distance between the outer and inner circles,
Theorem 2.3 tells us that there do exist hyperbolic billiard domains that violate the
condition on the separation between focusing and dispersing boundary components.
This easily implies that the mechanism generating hyperbolicity in these billiards
is not the defocusing one, which requires that after a reflection off of a focusing
curve, an infinitesimal family of parallel trajectories must focus and defocus before
the next collision with the boundary of the billiard table. However, we have to

1To be precise, we should write that L ∩ M̃,R ∩ M̃,N ∩ M̃ are invariant, because only on M̃ ,
every iterate of T is defined.
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Figure 3. Consecutive collisions inside a circular guide

point out that circular guides are very special domains being the billiards inside
them integrable. Also, note that we still need to put circular guides sufficiently far
away from each other in order to obtain hyperbolicity. While writing this paper,
we learned that Bussolari and Lenci also constructed hyperbolic billiards (different
than track billiards) that violate the aforementioned separation condition [B-L].

2.4. Billiard dynamics in a circular guide. To prove Theorem 2.3, it is essential
to investigate the billiard dynamics inside a circular guide.

Consider a circular guide with outer and inner radii r1 = 1 and 0 < r2 =
r < 1, respectively. Note that by a proper rescaling, every circular guide can be
transformed into such a guide. Denote by M1 the set of all collisions (q, v) such
that q belongs to the outer circle of the guide. We will focus our attention on the
transformation T1 that maps a collision with the outer circle to the next collision
with the same circle (between these collisions, there may be a collision with the
inner circle). If (s, θ) belongs to the domain of T1, then

(1) T1(s, θ) = (s+ 2δ(θ), θ),

where 2δ(θ) is the central angle of the sector bounded by the two consecutive
collisions with the outer circle (see Fig. 3).

Note that between (s, θ) and T1(s, θ), there is a collision with the inner circle
of the guide if and only if θ ∈ [θ̄, π − θ̄], where θ̄ = cos−1 r ∈ (0, π/2). For
θ ∈ [0, θ̄) ∪ (π − θ̄, π], it is trivial to check that δ(θ) = θ. For θ ∈ [θ̄, π − θ̄] instead,
we immediately deduce from Fig. 3 that δ(θ) = θ−φ(θ), where φ(θ) is the angle of
the collision with the inner circle. The relation between θ and φ is provided by the
conservation of the angular momentum of the particle measured from the center of
the circular guide, which reads as cos θ = r cosφ. Putting all together, we obtain

(2) δ(θ) =

{
θ − cos−1

(
cos θ
r

)
if θ ∈ [θ̄, π − θ̄],

θ if θ ∈ [0, θ̄) ∪ (π − θ̄, π].

The function δ is differentiable on [0, π]\{θ̄, π− θ̄}, and δ′(θ)→ −∞, as θ → θ̄+ or
θ → (π− θ̄)−. By abuse of notation, we define δ(x) = δ(θ(x)) and δ′(x) = δ′(θ(x)).

Definition 2.4. For every x ∈ M1 such that θ(x) /∈ {0, θ̄, π − θ̄, π}, denote by
n1(x) ≥ 0 the times that the particle with initial state x hits the outer circle before
leaving the guide.

Clearly, n1(x) is finite. From (1), it then follows that

(3) DxT
n1(x)
1 =

(
1 2n1(x)δ′(x)
0 1

)
.
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2.5. Preliminary lemmas. We now prove some facts that will play a crucial role
in the proof the hyperbolicity of track billiards. The goal here is to estimate the
quantity 2n1(x)δ′(x).

Definition 2.5. Let E1 be the set of all x ∈M1 such that

(1) θ(x) /∈ {0, θ̄, π − θ̄, π},
(2) x is an entering collision (i.e., n1(−x) = 0),
(3) the particle with initial state x hits the outer circle before leaving the guide.

For every x ∈ E1, let us define

(4) ω(x) = α− 2n1(x)δ(x),

and

(5) χ(x) = 2n1(x)δ′(x).

The next lemma is a trivial consequence of the fact that δ′(x) = 1 for all x ∈ E1

such that θ(x) ∈ (0, θ̄) ∪ (π − θ̄, π).

Lemma 2.6. If x ∈ E1 and θ(x) ∈ (0, θ̄) ∪ (π − θ̄, π), then χ(x) = 2n1(x).

Remark 2.7. From the definition of ω(x), it follows immediately that 0 ≤ ω(x) <
2δ(x) for every x ∈ E1.

We now restrict our analysis to the circular guides of type A and B.

Lemma 2.8. Consider a circular guide of type A. There exists c = c(α, r) > 2
such that χ(x) ≤ −c for every x ∈ E1 with θ(x) ∈ (θ̄, π − θ̄) and n1(x) > 0.

Proof. By the symmetry of the guide, it is enough to prove the lemma for x ∈ E1

such that θ(x) ∈ (θ̄, π/2). For such values of x, we have

(6) δ′(θ) = 1− sin θ√
r2 − cos2 θ

< 0

and

(7) δ′′(θ) =
cos θ

(r2 − cos2 θ)
3
2

(1− r2) > 0.

Since δ′(θ) → −∞, as θ → θ̄+, we can find θ̂ ∈ (θ̄, π/2) such that χ(x) < −3 for
every x ∈ E1 with θ(x) ∈ (θ̄, θ̂] and n1(x) > 0.

We now consider the case x ∈ E1 with θ(x) ∈ (θ̂, π/2) and n1(x) > 0. It is
trivial to see that for every θ ∈ (θ̂, π/2), we have δ(θ) = −δ′(θ)∆θ, where ∆θ is the
length of the segment lying on the x-axis whose endpoints are θ and the intersection
point of the tangent of δ at (θ, δ(θ)) with the x-axis. Since δ is strictly convex and
δ(π/2) = 0, it follows that 0 < ∆θ < π/2− θ for every θ ∈ (θ̂, π/2). Hence

(8)
δ′(θ)
δ(θ)

= − 1
∆θ

< − 2
π − 2θ

for θ ∈ (θ̂, π/2).



TRACK BILLIARDS 7

From (4),(5),(8) and Remark 2.7, it follows that

χ(x) = (α− ω(x))
δ′(θ)
δ(θ)

< −2
α− ω(x)
π − 2θ

< −2
α− 2δ(θ)
π − 2θ

for θ ∈ (θ̂, π/2).(9)

Let h(α, θ) = −2(α − δ(θ))/(π − 2θ). Since α ≥ π and δ(θ) < θ, it is easy to see
that ∂αh < 0 and h(α, θ̂) < −2. So h is strictly decreasing, and therefore

χ(x) < h(α, θ̂) < −2 for θ ∈ (θ̂, π/2).

To complete the proof, set c = min{3,−h(α, θ̂)}. �

Since δ′ is strictly increasing for θ ∈ (θ̄, π/2) (see (7)), we have δ′(x) < δ′(π/2) =
1 − 1/r for every x ∈ M1 such that θ(x) ∈ (θ̄, π − θ̄). This simple fact proves
immediately the following lemma, saying that a result similar to Lemma 2.8 holds
true for circular guides of type B.

Lemma 2.9. If r < 1/2, then χ(x) ≤ 2n1(x)(1− 1/r) < −2 for every x ∈ E1 such
that θ(x) ∈ (θ̄, π − θ̄) and n1(x) > 0.

Remark 2.10. It is precisely the fact that |χ(x)| > 2 proved in the previous lemmas
that allows us to think of circular guides as optical devices having the property of
focusing in a controlled way infinitesimal families of parallel rays entering the guide.
In this sense, we can think of circular guides of type A and B as some sort of
generalized absolutely focusing curves [B2, D]. This is the main ingredient of the
construction of hyperbolic track billiards, and its proof will be completed in the next
section.

3. Hyperbolicity

In this section, we prove that, under proper conditions concerning the circular
guides and the distance between them, a track billiard admits an eventually strictly
invariant cone field. By a well known result of Wojtkowski [W2], this property
implies Theorem 2.3.

3.1. Focusing times. Recall that M is the phase space of the billiard in the track
Q. Given a tangent vector u ∈ TxM at x ∈ intM , let s 7→ γ(s) = (q(s), v(s)) ∈
intM be a differentiable curve such that γ(0) = x and γ′(0) = u. Next, define
a family of rays s 7→ γ+(s) by setting γ+(s) = {q(s) + v(s) : t ≥ 0}. Similarly,
define a second family of rays s 7→ γ−(s) by replacing γ with −γ in the definition
of γ+. In geometrical terms, γ− is obtained from γ+ by reflecting its rays at ∂Q.
All the rays of γ+(γ−) intersect in linear approximation at one point along the ray
γ+(0)(γ−(0)), which are called the focal points of u. If x = (s, θ) and u = (ds, dθ),
then the distances between π(x) and the focal points of u lying on γ+(0) and γ−(0)
are, respectively, given by

(10) f+(u) =
sin θ

κ(s) +m(u)
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and

(11) f−(u) =
sin θ

κ(s)−m(u)
,

where κ(s) is the curvature ∂Q at s and m(u) = dθ/ds (see for example, [W2]). We
conventionally assume that the curvature of the outer circle is positive, whereas the
curvature of the inner circle is negative. The distances f+(u) and f−(u) are called
forward and backward focusing times of u. By summing the reciprocals of f+(u)
and f−(u), we obtain the well known Mirror Formula2

(12)
1

f+(u)
+

1
f−(u)

=
2κ(s)
sin θ

.

3.2. Fractional linear transformation.

Definition 3.1. Let E be the set of all collisions x ∈ M \ S+
1 entering a circular

guide of Q. Also, for every x ∈ E, denote by n(x) ≥ 0 the times that the particle
with initial state x hits the boundary of the circular guide before leaving it.

Following [W3], we now introduce a transformation describing the relation be-
tween the focusing times of an infinitesimal family of billiard trajectories at the
entrance and at the exit of a circular guide.

Let x ∈ E, and consider u ∈ TxM with u 6= 0. Next, denote by Fx the map from
the real projective line R ∪ {∞} to itself given by f0 7→ f1, where f0 = f−(u) and
f1 = f+(DxT

n(x)u). Using the Mirror Formula, one can deduce that Fx is a linear
fractional transformation (restricted to R ∪ {∞})

Fx(f0) =
af0 + b

cf0 + d
,

where a, b, c, d are real numbers such that

ad− bc < 0.

This inequality is equivalent to the fact that the derivative F ′x is negative on R,
and implies that the transformation Fx has two fixed points τ1(x) and τ2(x) on the
real line. We will always assume that τ1(x) ≥ τ2(x).

The following lemma is an immediate consequence of the properties of Fx.

Lemma 3.2. Let x ∈ E, and consider u ∈ TxM with u 6= 0. Then

f−(u) < τ2(x) or f−(u) > τ1(x)⇐⇒ τ2(x) < f+(DxT
n(x)u) < τ1(x).

Definition 3.3. Given a circular guide, define

τ̃ = sup
x∈E

τ1(x).

The number τ̃ is called the focal length of the guide.

In the next theorem, we prove that the focal length of a circular guide of type
A or B is always bounded above.

2The convention on the signs of the focusing times adopted here is different than that used in
[W2].
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Theorem 3.4. We have

τ̃ ≤ c̃

c̃− 2
,

where c̃ = c(α, r) with c(α, r) as in Lemma 2.8 for a guide of type A, and c̃ =
2(1/r − 1) for a guide of type B.

Proof. We redefine M1 to be the set all collisions x ∈ M such that π(x) belongs
to the outer circle of a circular guide of the track Q, and E1 to be the set of all
collisions x ∈ E ∩M1 such that the particle with initial state x hits the outer circle
of the circular guide before leaving it.

Let first assume that x = (s, θ) ∈ E1, and compute the fixed points of the
transformation Fx, i.e., the solutions f ∈ R ∪ {∞} of the equation

(13) Fx(f) = f.

If u ∈ TxM with u 6= 0, then f = f−(u) = sin θ/(1 + m(u)) and Fx(f) =
f+(DxT

n1(x)u) = sin θ/(1+m(DxT
n1(x)u)). From (7), it follows thatm(DxT

n1(x)u) =
m(u)/(1 + χ(x)m(u)), and so (13) becomes

m(u)
1 + χ(x)m(u)

= −m(u),

whose solutions are given by

m(u) = 0 and m(u) = − 2
χ(x)

.

From Lemmas 2.6,2.8 and 2.9, we know that χ(x) > 0 if θ ∈ (0, θ̄)∪ (π− θ̄, π), and
χ(x) < −2 if θ ∈ (θ̄, π − θ̄) so that

τ1(x) =

{
sin θ if θ ∈ (0, θ̄) ∪ (π − θ̄, π),

sin θ
1+2/χ(x) if θ ∈ (θ̄, π − θ̄),

and

τ2(x) =

{
sin θ

1+2/χ(x) if θ ∈ (0, θ̄) ∪ (π − θ̄, π),

sin θ if θ ∈ (θ̄, π − θ̄).
If c̃ is defined as in the statement of the theorem, then by Lemmas 2.6,2.8 and 2.9,
we immediately obtain

sup
x∈E1

τ1(x) ≤ sup
x∈E1

χ(x)
χ(x) + 2

≤ c̃

c̃− 2
.

Suppose now that x ∈ E \ E1. By increasing the central angle α of the circular
guide, we can always embed the orbit {x, . . . , Tn(x)x} into an orbit {y, . . . , Tn(y)y}
of the enlarged guide3 such that y ∈ E1 and n(x) ≤ n(y) ≤ n(x)+2. It follows that
Ty = x /∈M1 or Tn1(y)−1y = Tn(x)x. Because of the symmetry of the problem, we
can assume without a loss of generality that Ty = x. We argue by contradiction,
and suppose that

(14) τ1(x) > τ1(y).

3The argument presented here makes sense even when the enlarged guide has center angle
greater or equal to 2π.



10 L. BUNIMOVICH AND G. DEL MAGNO

Let u ∈ TyM such that f−(u) = τ1(x). Also, set w = DxT
−1u. Since τ1(x) is a

fixed point of Fx, we have

τ1(x) =

{
f+(DyT

n1(y)w) if Tn(x)x = Tn1yy,

f+(DyT
n1(y)−1w) otherwise.

Using the Mirror Formula and the fact that τ1(y) is greater than the Euclidean
distance d(π(x), π(y)) in R2 between the points π(x) and π(y), we can easily show
that 0 < f−(w) < sin θ = τ2(y), where y = (s, θ). By Lemma 3.2, it follows that

(15) τ2(y) < f+(DxT
n1(y)w) < τ1(y),

and, using the Mirror Formula,

(16) − sin θ < f+(DxT
n1(y)−1w) < d(π(x), π(y)) < τ2(y) < τ1(y).

From (15) and (16), we then see that τ1(x) < τ1(y), contradicting our assumption
(14). Hence, if we write τ1(x;α) in place of τ1(x) to emphasize the dependence of
τ1 from the angle α, then, using the results obtained earlier for y ∈ E1, we get

sup
x∈E\E1

τ1(x;α) ≤ sup
β≥α

sup
y∈E1

τ1(y;β)

≤ sup
β≥α

c̃(β, r)
c̃(β, r)− 2

.

Next, note that the function c̃ is increasing in β (because so is −h; see the proof of
Lemma 2.8) for a guide of type A, and is independent of β for a guide of type B.
Finally, observe that z/(z− 2) is decreasing as a function of z < −2. Thus, we can
conclude that

sup
x∈E\E1

τ1(x;α) ≤ c̃(α, r)
c̃(α, r)− 2

,

which completes the proof. �

3.3. Cone fields. A cone in a 2-dimensional space V is a subset

C = {aX1 + bX2 : ab ≥ 0},

where X1 and X2 are two linear independent vectors of V . Equivalently, we can say
that the cone C is a closed interval of the projective space P(V ), the space of the
lines in V . The interior of C is defined by int C = {aX1 + bX2 : ab > 0}. Since the
backward focusing time f− and the forward focusing time f+ are both projective
coordinates of P(TxM), the set C = {u ∈ TxM : f−(u)(f+(u)) ∈ I} is a cone in
TxM for every closed interval I ⊂ R.

Let Λ be a subset of M̃ such that µ(Λ) > 0. Denote by TΛ : Λ → Λ the first
return map on Λ induced by the billiard map T . Also, denote by µΛ the probability
measure on Λ obtained by normalizing the restriction of µ to Λ. It is well known
that the map TΛ preserves µΛ.

Definition 3.5. A measurable cone field C on Λ is a measurable map that associates
to each x ∈ Λ a cone C(x) ⊂ TxM . We say that C is eventually strictly invariant
if for every x ∈ Λ, we have

(1) DxTΛC(x) ⊂ C(TΛx),
(2) ∃ an integer k(x) > 0 such that DxT

k(x)
Λ C(x) ⊂ int C(T k(x)

Λ x) ∪ {0}.
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Remark 3.6. By [W2], the existence of such a cone field (plus other properties,
always satisfied by track billiards) implies that TΛ is hyperbolic. Furthermore, if the
set ∪k∈ZT

kΛ has full µ-measure, then it is not difficult to see that T is hyperbolic
as well (see [W1]).

We now define an invariant cone field for circular track billiards. In the next sub-
section, we will show, relying on Lemmas 2.8, 2.9 and Theorem 3.4, that this cone
field is eventually strictly invariant if the straight guides of a track are sufficiently
large.

Let Ẽ = E∩M̃ be the set of entering collisions with infinite positive and negative
semi-orbits. We define a measurable cone field on Ẽ as follows

(17) C(x) = {u ∈ TxM : f−(u) ≥ τ̃(x)} for all x ∈ Ẽ,

where τ̃(x) is the focal length of the circular guide containing π(x). The cone field
C is continuous (and therefore measurable), because so is τ̃(x).

3.4. Cone fields and integrability. This subsection is intended to provide a
more direct description of the construction of the cone field C in (17), and to clarify
the role of the integrability of the billiard dynamics inside circular guides in this
construction. Let T1 and E1 be, respectively, the tranformation and the set of
entering collisions as in Subsection 2.4. We recall that E1 consists of all entering
collisions x ∈ E such that x and the last collision of the orbit of x with the circular
guide belong to M1. We will restrict the following analysis to the set E1, since the
basic idea behind the construction of C remains the same on E \ E1.

We start by observing that there exists a natural cone field C that is invariant
along the orbits of T1. This is given by

(18) C(x) =

{{
a ∂
∂s + b ∂∂θ : ab ≥ 0

}
if x ∈ M̂1,{

a ∂
∂s + b ∂∂θ : ab ≤ 0

}
if x ∈M1 \ M̂1,

where M̂1 is the set of all collisions x ∈ M1 such that θ(x) ∈ (0, θ̄) ∪ (π − θ̄, π).
The invariance of C is a consequence of the invariance of ∂s (which in turn is a
consequence of invariance of the angular momentum of the particle inside a circular
guide) and the twist 2δ′ of T1, which is responsible for tilting the ‘vertical’ vector
∂θ to the right or to the left according to the twist’s sign. Note that δ′ > 0 on M̂1

and δ′ < 0 on M1 \ M̂1.
The cone field C is obtained by modifying properly the cones of C. Here properly

means that after such a modification, the new cone field C must have the property,
which we will call (*), that there are two real numbers τ− and τ+ such that for
every x ∈ E1,

(i) [τ−,+∞] ⊂ f−(C(x)),
(ii) f+

(
DxT

n1(x)
1 C(x)

)
⊂ [−∞, τ+].

These conditions mean that each cone C(x) must consist of tangent vectors (cor-
responding to infinitesimal families of billiard orbits) such that their backward
focusing time varies between τ− and +∞ at the entrance of the guide, and their
forward focusing time varies between −∞ and τ+ at the exit of the guide. We
point out that focusing curves having an invariant cone field with this property (for
dispersing curves, such a cone field always exists) play a crucial role in designing
hyperbolic billiards [B2, D, M1, W2, W3]. Indeed, once we have selected some of
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these special curves, to obtain a hyperbolic billiard domain, all that we need to do
is to arrange them, maybe using some straight lines, so that there is sufficient dis-
tance between any pair of them. This recipe remains valid if boundary components
are replaced by circular guides with an invariant cone field that has Property (*).

It is easy to check that C enjoys Property (*) on M̂1. In fact, using Formulae
(10) and (11), we obtain

f−(C(x)) = [−∞, 0] ∪ [sin θ(x),+∞]

and
f+

(
DxT

n1(x)
1 C(x)

)
⊂ f+(C(x)) = [0, sin θ(x)]

for every x ∈ M̂1 (as in Subsection 2.4, we are assuming that the radius of the
outer circle is equal to one). Property (*) is however not satisfies by C on M1 \M̂1.
More precisely, while part (ii) of (*) holds true, because Lemma 2.8 (for circular
guides of type A) and Lemma 2.9 (for circular guides of type B) imply that for
every x ∈M1 \ M̂1,

−1/2 < m(DxT
n1(x)
1 ∂θ) < 0,

and so
f+

(
DxT

n1(x)
1 C(x)

)
⊂ [sin θ(x), 2 sin θ(x)],

part (i) is not satisfied, because

+∞ /∈ f−(C(x)) = [0, sin θ(x)] for all x ∈M1 \ M̂1.

This problem can be easily solved by replacing the vertical edge ∂θ of C(x) with
a vector X(x) ∈ TxM1 such that 0 < m(X(x)) < 1. The vector X(x) has to be
chosen so that part (ii) of (*) remains valid, being the new cones wider than the
old ones. More precisely, we have to show that there exist a real number c > 0 and
a vector X(x) ∈ TxM1 such that for every x ∈ E1 \ M̂1,

1− c < m(X(x)) < 1 and m
(
DxT

n1(x)
1 X(x)

)
> −1 + c.

It is not difficult to see that this property implies both parts (i) and (ii) of (*) with
some τ− and τ+ less than 1/c.

The existence of such c and X for x ∈ E1 is proved in Lemmas 2.8 and 2.9. In
Theorem 3.4, we extends this result to all points of E, and also provide a specific
choice for the vector X, which is determined (up to a positive scalar factor) by the
relation f−(X(x)) = τ̃(x) for x ∈ E. Here τ̃(x) is the focal length of the circular
guide containing π(x).

Finally, we remark that the second edge of the cone field in (17) is not ∂s as in
(18), but ∂s +∂θ if x ∈M1, and −∂s + r−1∂θ otherwise. This makes that cone field
in (17) narrower than the C constructed in this subsection, but it is easy to check
that Property (*) remains valid for it.

3.5. Hyperbolicity. Let Q be a track, and assume that its guides are ordered in
such a way that the ith straight guide connects the ith and (i+1)th circular guides.
The (n+ 1)th circular guide coincides with the first one so that there are exactly n
circular guides separated by n straight guides. We also assume that each circular
guide is either of type A or B. For every 1 ≤ i ≤ n, let τ̃i and li be the focal length
and the length of the ith circular guides and the ith straight guide, respectively.
We say that such a track Q satisfies Condition H if the distance between any pair of
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consecutive circular guides of Q is greater than the focal length of the two circular
guides, i.e.,

(H) li > τ̃i + τ̃i+1 for each i = 1, . . . , n.

We can now give the precise formulation and the proof of Theorem 2.3, the main
result of this paper.

Theorem 3.7. Suppose that a track Q satisfies Condition H. Then the billiard map
T in Q is hyperbolic.

Proof. By Remark 3.6, it is enough to prove that the cone field C defined in (17) is
eventually strictly invariant, and the set ∪k∈ZT

kẼ has full µ-measure.
Let x ∈ Ẽ, and consider u ∈ C(x) with u 6= 0. By definition of C(x), we have

f−(u) > τ̃(x) ≥ τ1(x) so that Lemma 3.2 implies that f+(DxT
n(x)u) < τ1(x) ≤

τ̃(x). Now, note that Tn(x)x is a collision leaving a circular guide, and that the
piece of the orbit of x between x and TẼx crosses a straight guide of length l. By
Condition H, we then have l > τ̃(x) + τ̃(TẼx), and hence

f−(DxTẼu) = l − f+(DxT
n(x)u)

≥ l − τ̃(x)

> τ̃(TẼx).

This means that DxTẼu ∈ int C(TẼx), and we can conclude that C is eventually
strictly invariant with k(x) = 1 for every x ∈ Ẽ. It is clear that ∪k∈ZT

kẼ = M̃ \N
(for the definition of N , see Subsection 2.2). Since µ(N) = 0, it follows that
∪k∈ZT

kẼ has full measure. �

Remark 3.8. It is easy to check that the so called Monza billiard considered in
[V-P-R] satisfies Condition H. Note that its circular guides are of type B. Theorem
3.7 then assures that the Monza billiard is hyperbolic.

4. 3-dimensional track billiards

In this section, we introduce 3-dimensional track billiards, and extend Theorem
3.7 to them.

Definition 4.1. A 3-dimensional cylindrical (straight) guide G̃ is the direct product
G×I, where G is a 2-dimensional circular (straight) guide G, and I ⊂ R is a closed
interval. Furthermore, we assume that G is of type A or B.

Definition 4.2. We say that a domain Q̃ ⊂ R3 is a 3-dimensional track if there
exist a differential Jordan curve γ in R3 and a rectangle R such that the intersection
of Q̃ with the plane orthogonal to the tangent line Txγ is equal to R for every x ∈ γ.
We further require Q̃ to be an union of finitely many alternating cylindrical and
straight guides.

An example of a 3-dimensional track is depicted in Fig. 4.

Remark 4.3. If we denote by v∗ the orthogonal projection of the velocity of the
particle along the oriented tangent of γ, then, as for 2-dimensional track billiards,
sgn(v∗) is constant along the trajectory of the particle. In this way, we see that the
billiard phase space of a 3-dimensional track is partitioned into the three invariant
sets consisting of collision states such that sgn(v∗) > 0, sgn(v∗) < 0 and sgn(v∗) =
0, respectively.
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Figure 4. A 3-dimensional track that satisfies Condition H̃.

Figure 5. A twisted guide

Definition 4.4. Let P̃ be a subdomain of a 3-dimensional track, which consists of
two cylindrical guides G̃1 and G̃2 connected by a straight guide such that circular
guides G1 and G2 lie on orthogonal planes (i.e., their normals are orthogonal) of
R3 (Fig. 5).

If a track does not contain a twisted guide, then all the 2-dimensional tracks are
contained in a single plane. It follows that the momentum of the particle along
the normal of that plane is a first integral of motion, and so the billiard is not
completely hyperbolic. In the 2-dimensional case, we managed to prove that track
billiards are hyperbolic if the satisfy Condition H. The 3-dimensional analogue of
Condition H reads as follows. Let Q̃ be a track such that Q̃ is an union of finitely
many cylindrical and straight guides. We say that Q̃ satisfies Condition H̃ if

(1) the distance between any two cylindrical guides G̃1 and G̃2 is greater than
τ1 + τ2, where τ1 and τ2 are the focal lengths of the 2-dimensional guides
corresponding to G̃1 and G̃2;

(2) Q̃ contains at least one twisted guide.

An example of track satisfying H̃ is shown in Fig. 4. Billiards in tracks satisfy-
ing Condition H̃ are closely related to certain hyperbolic semi-focusing cylindrical
billiards [B-D1, B-D2], and are examples of twisted Cartesian products [W3]. The-
orem 3.7 combined with the results of [B-D1] (or Theorem 17 of [W3]) implies that
for a 3-dimensional track billiard satisfying Condition H̃, there exists an invariant
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cone field that is strictly invariant along every orbit crossing a twisted guide, thus
proving the following theorem.

Theorem 4.5. If a 3-dimensional track satisfies Condition H̃, then billiard map
in such a track is hyperbolic.
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