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Caring about the human operator:

haptic shared control for enhanced user comfort

in robotic telemanipulation
Rahaf Rahal, Giulia Matarese, Marco Gabiccini, Alessio Artoni,

Domenico Prattichizzo, Paolo Robuffo Giordano, Claudio Pacchierotti

Abstract—Haptic shared control enables a human operator and an
autonomous controller to share the control of a robotic system using
haptic active constraints. It has been used in robotic teleoperation
for different purposes, such as navigating along paths minimizing the
torques requested to the manipulator or avoiding possibly dangerous
areas of the workspace. However, few works have focused on using these
ideas to account for the user’s comfort. In this work, we present an
innovative haptic-enabled shared control approach aimed at minimizing
the user’s workload during a teleoperated manipulation task. Using an
inverse kinematic model of the human arm and the Rapid Upper Limb
Assessment (RULA) metric, the proposed approach estimates the current
user’s comfort online. From this measure and an a priori knowledge
of the task, we then generate dynamic active constraints guiding the
users towards a successful completion of the task, along directions that
improve their posture and increase their comfort. Studies with human
subjects show the effectiveness of the proposed approach, yielding a 30%
perceived reduction of workload with respect to using standard guided
human-in-the-loop teleoperation.

I. INTRODUCTION

Shared control algorithms have been investigated as one of the

main tools for designing complex but intuitive robotic teleoperation

systems, helping operators in carrying out increasingly challenging

tasks. This approach makes it possible to share the available degrees

of freedom of the robotic system between the operator and an

autonomous controller. Applications include mobile robotics [1],

robot-assisted surgery [2], and assistive robotics [3], [4]. Possible

implementations of this approach can be obtained using variable

admittance control [5], virtual non-holonomic constraints [6]–[8], and

online adaptation of the level of support [9]. Abbink et al. [10] re-

viewed several implementations of haptic shared control, arguing that

it can be useful to meet common design guidelines for the interaction

between humans and autonomous controllers. More recently, Hong

and Rozenblit [11] presented a haptic shared control approach for

surgical training. The trainee is guided away from dangerous areas

of the environment using active constraints whose magnitudes change

according to the trainee’s proficiency level. Similarly, Ghalamzan et

al. [12] presented a haptic shared control for teleoperated grasping.

The operators are in full control of the robotic manipulator and

capable of choosing any grasping pose they like. At the same time,

an active constraint guides them toward the direction that optimizes

the end-effector manipulability over the post-grasp trajectory.

Under different names, haptic shared control has been successfully

used to perform a large number of different tasks, e.g., to guide
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Fig. 1. The experimental setup for the pick and place task. On the master side,
a Haption Virtuose 6-DoF haptic device, on the slave side a 7-DoF Franka
Emika Panda robot. The user shoulder is assumed to be fixed.

the operator toward a reference position [13]–[17], to avoid certain

areas of the environment [15], [18]–[20], and for training in manual

tasks [21], [22]. However, researchers have rarely focused their

attention on accounting for the user’s comfort during robotic tele-

manipulation, and never – to the best of our knowledge – has haptic

shared control been designed for this specific purpose. Nonetheless,

this is a very important issue, as operators in many high-impact

applications use robotic teleoperation system for long uninterrupted

time periods (e.g., a robotic prostatectomy generally takes 2-4 hours).

To our knowledge, a few examples are available in the field of

human robot interaction (HRI). For example, Busch et al. [23] used

a simplified human model to calculate the user’s body configuration

in HRI. They derived a continuous cost function based on the Rapid

Entire Body Assessment score (REBA) and used it to choose the robot

position optimizing the human joint angles (and thus the ergonomic

comfort). Marin et al. [24] optimized the ergonomics of an HRI

task where subjects are asked to drill on a board carried by the

robot. They relied on musculoskeletal simulations to train a Contex-

tual Ergonomics Model through a probabilistic supervised learning

Gaussian process. Results showed reduced muscular activations for

the optimized drilling position. Chen et al. [25] modeled the human

arm as a 7-degrees-of-freedom (7-DoF) robotic manipulator, and its

muscular effort was derived based on the estimated value of the joint

torques. Similarly, Peternel et al. [26] also estimated muscular effort

from torques during co-manipulation tasks.

This paper introduces a haptic shared control approach aimed at

minimizing the user’s workload during a robotic teleoperation task.

Using an inverse kinematic model of the human arm and a proposed

online implementation of the Rapid Upper Limb Assessment (RULA)

tool [27], the proposed approach starts by estimating the current user’s

discomfort at runtime. Then, this metric is combined with some

knowledge of the target task and system (e.g., direction to follow,

target position to reach, effort demanded to the robot) to generate

dynamic active constraints guiding the user towards a successful

completion of the task but along directions that require a reduced

user’s workload. The proposed approach is compatible with any
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robotic teleoperation framework and can be combined with as many

additional pieces of information on the task and system as needed. To

demonstrate the validity of the proposed approach, we carried out a

bilateral telemanipulation experiment with 15 participants, evaluating

the effect of our approach in the task’s performance and in the

workload experienced by the users.

II. SYSTEM DETAILS

In this work, we consider a bilateral teleoperation system composed

of a 6-DoF master interface and a velocity controlled 7-DoF slave

robot, as shown in Fig. 1. Since the ergonomic comfort of the human

operator is the main objective of this paper, we also include the human

arm, from the shoulder to the wrist, as part of the system. Fig. 3 gives

an overview of the entire system architecture relating the master, the

slave and the human user.

A. System model

The master side is composed of a torque-controlled Haption Vir-

tuose 6-DoF haptic grounded interface, while the slave side consists

of a Franka Panda 7-DoF serial manipulator. The robot is equipped

with a gripper that can be controlled by the user to perform pick and

place tasks.

We consider four reference frames in our system (see Fig. 1):

Fr: {Or,xr,yr, zr}, the robot frame attached to the gripper;

Fm: {Om,xm,ym, zm}, the frame attached to the end-effector of

the master interface; Fs: {Os,xs,ys, zs}, attached to the shoulder of

the user, which is assumed to be fixed; and Fw: {Ow,xw,yw, zw}
being the world frame. Let xm = (pm,Rm) ∈ R

3 × SO(3) be

the pose of the master interface end-effector, xr = (pr,Rr) ∈
R

3×SO(3) the pose of the robot end-effector, and xs = (ps,Rs) ∈
R

3 × SO(3) the pose of the user’s shoulder, all expressed in the

common world frame Fw. The linear/angular velocities of the master

and slave in Fw are denoted by vm = (ṗT
m,ω

T
m)T ∈ R

6 and

vr = (ṗT
r ,ω

T
r )

T ∈ R
6, respectively.

The master device is modeled as a generic, gravity pre-

compensated, mechanical system

Mm(xm)v̇m +Cm(xm, vm)vm = fm + fh, (1)

where M(xm) ∈ R
6×6 is the positive-definite and symmetric inertia

matrix, C(xm, vm) ∈ R
6×6 represents the Coriolis/centrifugal

terms, fh ∈ R
6 are the forces applied by the human operator to

the master interface, and fm ∈ R
6 the feedback forces provided

to the operator. On the other hand, the slave robot is controlled in

velocity,

vr = vm + λ

[

pr,d − pr

Rr
r(θu)r,d

]

, (2)

where λ is a gain parameter, pr,d = (pm−pm0)+pr0 is the desired

robot position calculated from the current master position pm, and

pm0 and pr0 are the initial poses of the master and the slave. For

the angular velocity term, we rely instead on r(θu)r,d, the angle-

axis representation of the relative rotation between the desired and

the current slave orientations [28].

B. Human arm model

To estimate the user’s discomfort due to arm posture in real-time,

we need an estimate of the configuration of his/her arm throughout

the teleoperation task. In fact, in this work, we decided to rely on a

non-invasive technique for estimating the ergonomic comfort, using

only the joint angles of the arm. We will consider other approaches

in the future (see Sec. V).

For this purpose, the human arm is modeled as a 7-DoF robotic

arm, similarly to the work of Shimizu et al. [29]. A spherical joint

(a) (b)

Fig. 2. (a) The joint angles assigned to the human arm. (b) Definition of the
arm angle ψ.

is used for representing the shoulder and the wrist, while the elbow

is represented by a revolute joint (Fig. 2a). We use an XYZ Euler

convention to represent the spherical joints, to be consistent with the

RULA metric which will be introduced in Sec. II-C. Given the fixed

shoulder assumption (the human operator is asked to stand in the

same position throughout the experiment), we can then estimate the

joint values qarm = [q1, ..., q7]
T of the user’s arm using the position

of the master end effector, which coincides with the user’s palm,

using inverse kinematics (details in Sec. II-D).

C. User workload parametrization

As mentioned in Sec. I, human posture is often used in the literature

in order to estimate and prevent work-related musculoskeletal risks, as

posture is one of the risk factors to the workers. It is often quantified

by a discrete metric using the Rapid Upper Limb Assessment

(RULA) method [27], in which a score is given for each upper

limb configuration. The sum of these scores represents the amount

of overall workload exerted by the user.

In this work, the load or discomfort estimate needs to be con-

tinuously updated as a function of the user arm configuration,

throughout the teleoperation task. To do so, we derive a RULA-

inspired continuous metric which increases as the deviation from the

resting position of each angle in the arm increases. We calculate, at

each time step, as qs = [q1, q2, q3]
T the shoulder angles, qe = q

4

the elbow angle, and qw = [q5, q6, q7]
T the wrist angles. As such

qarm = [qT
s , qe, q

T
w]

T . The workload W is then defined as the sum

of the squared differences between the angles and their rest positions

(π/2 for the elbow angle, and 0 for the others)

W = q
T
s qs + (qe − π/2)2 + q

T
wqw. (3)

D. Inverse kinematics and solving the redundancy

Calculating the workload W assumes that the joint angles qarm

of the user arm are known at each time step. However, given that

the arm is represented with a 7 dof kinematic model, the inverse

kinematics is not straightforward. Similarly to [30], we define an arm

angle, ψ ∈ [0, π], representing the swivel angle of the arm around

a virtual line connecting the shoulder to the wrist, as shown in Fig.

2b. If ψ is known, the redundancy is resolved, since the shoulder and

wrist angles can be parametrized using it and the elbow angle can

be computed solely based on geometry.

At each time step, we calculate the inverse kinematics result qarm

from the user hand position, using all possible values of ψ (discrete

values with increments of 0.01 in the [0, π] range), then compute the

corresponding W value. Assuming that the user naturally chooses

the most comfortable configuration of the elbow when presented

with a set of options, we choose the inverse kinematics solution

corresponding to the ψ value leading to the least discomfort between

the possible solutions, similarly to [25]. A condition is added to

ensure the resulting angles are within a threshold value of the previous

configuration of the arm, so that no sudden change in configuration

occurs. This assumption only affects the swivel angle of the elbow

and no other joint angle. Additional techniques we will use in the

future to improve this pose estimation are mentioned in Sec. V.
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Fig. 3. Block diagram summarizing the system architecture and the shared
control algorithm presented in Secs. II and III.

III. SHARED CONTROL ARCHITECTURE

This Section describes the shared control algorithm used to guide

the human operator during the teleoperation task. The main goal of

this architecture is not only to account for task-related requirements,

but to also target the maximization of the user’s comfort during the

task. We thus divide our haptic feedback force into two components:

a human-related component, HW , and a robot/task-related one, Hr .

A. Human workload cost function

From a human perspective, we want to minimize the muscular

discomfort exerted during the task execution. This is obtained by

minimizing the cost function HW = W , i.e., the workload. A

comfortable arm configuration is thus defined as one with a small

value for the workload cost W .

B. Task-related cost function

The second component of the haptic feedback is related to the task

itself, as in more traditional shared control architectures. Another cost

function Hr is thus introduced to represent this task-related metric to

be optimized. The cost Hr can be related to maximizing the distance

from joint limits, singularities, or obstacles. It could also be related to

the distance from a target, or to the robot joint velocities or torques,

in which case it should be minimized. While this cost function is

general and dependent on the task, we choose for our application to

minimize the Euclidean distance to the target object pose, similarly

to [31], by defining

Hr =

[

pr,g − pr
r(θu)r,g

]T [

pr,g − pr
r(θu)r,g

]

, (4)

where pr and pr,g represent the current and goal positions of the

robot end-effector, and r(θu)r,g is the angle-axis representation of

the relative rotation between the current and target robot poses.

C. Haptic feedback

We design the haptic feedback to guide the user during teleopera-

tion, such that both robot- and human-comfort-inspired cost functions

are minimized. To achieve this goal, the forces applied at the master

end effector are defined as

fm = αf
W

+ βfr −Dvm, (5)

where f
W

is the force vector instantaneously guiding the user

towards the position with the highest comfort, and vector fr is the

force minimizing the robot cost function, which in our case is related

to the distance to the target releasing position. α and β are weights

to be tuned depending on the importance to be given to each cost

function (α + β = 1). Finally, D is a diagonal damping matrix

to improve the bilateral stability of the system [7], [32]. We chose a

damping value of 2 Ns/m in translation and 0.07 Nms/rad in rotation.

The feedback component related to HW is designed to be propor-

tional to a desired velocity of the master device in a direction that

minimizes the cost function,

f
W

= KWvm,dW
, (6)

where KW is a proportional constant, and vm,dW
is the desired

velocity of the master device end effector, based on the metric max-

imizing the comfort. It is calculated from the desired joint velocities

of the human arm, q̇arm,d, as follows: vm,dW
= TJq̇arm,d, where

T is a transformation matrix to take the desired velocity calculated

from the shoulder frame Fs to Fm, and J is the Jacobian of the

human arm. The velocity q̇arm,d is chosen for ensuring that HW is

minimized, or in other words ḢW(qarm) = (∂HW/∂qarm)q̇arm ≤ 0.

We thus choose the desired angular velocity of the arm angles to be

in the direction of the negative of the gradient of the cost function

related to the human comfort,

q̇arm,d = −
∂HW

∂qarm

. (7)

Null values for fe in eq. (6), caused by the algorithm being stuck in

a singular configuration q̄ (where N(J(q̄)) 6= 0) different from the

target one associated with the minimum RULA and where q̇arm,d ∈
N(J(q̄)), are very unlikely due to the quite limited range of motion

of the user’s arm.

The feedback component related to Hr is designed in a similar

way,

fr = Krvm,d
r
. (8)

Since our haptic feedback is applied at the master side, and assuming

no significant delays or communication issues occur between the

master and the slave, we start by defining a new cost function,

Hm, which encodes the difference between the master device pose

and its target pose, computed from the target robot pose using a

transformation matrix:

Hm =

[

pm,g − pm
m(θu)m,g

]T [

pm,g − pm
m(θu)m,g

]

, (9)

where pm and pm,g are the current and target positions of the haptic

device end-effector. m(θu)m,g is the angle-axis representation of the

relative rotation between the current and the target master poses. The

desired velocity of the haptic device is finally chosen such that it

minimizes the distance to the target

vm,dr =

[

ṗm,dr

ωm,dr

]

=

[

pm,g − pm
m(θu)m,g

]

, (10)

as also done in, e.g., [28].

To avoid having one of the two components of the force (fr

and f
W

) masking the other one due to their difference in scale,

we normalize each of the forces to the same range before adding

them in eq. (5). The linear and torque components of each force

vector are scaled to a norm of 2.5 N and 0.25 N.m, respectively.

The resulting force guides the users towards the pose minimizing

the composite metrics, but it is always gentle enough to enable them

to deviate from the suggested path, if needed. Additional feedback

techniques for providing this guidance information are discussed in

Sec. V. Finally, once the user is within a threshold distance from

the target position, we scale each force proportionally to the distance

to the goal, to avoid strong forces and oscillations as the user gets

closer to the goal (see [32]).
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(a) A0 (b) A20 (c) A40

Fig. 4. User trajectory for a reaching movement for the three weightings A0
(blue), A20 (red), and A40 (green). In A0, only Hr is considered, and the user
trajectory is therefore almost horizontal. As the contribution of HW to the
haptic feedback increases, the trajectory tries to minimize the user discomfort
by moving the arm to a downward (more comfortable) position.

IV. EXPERIMENTAL EVALUATION

A. Setup and Participants

The experimental setup is shown in Fig. 1, and it is described in

Sec. II. The remote environment is composed of three different sets

of objects to grasp, pick up, and place on a target location, as detailed

in the next Section. To enable the operator to see the environment,

the master interface was placed next to the slave robot.

Fifteen subjects participated in the study (10 males, 5 females).

Each subject spent about two minutes practicing the control of

the telemanipulation system before starting the experiment. At this

moment, the pose of the user’s shoulder was measured and kept fix

throughout the experiment. This latter point is important because our

user workload parametrization and inverse kinematics assume a fixed

position of the shoulder (see Secs. II-C and II-D).

B. Task and Conditions

Participants used the master interface to control the slave manip-

ulator. The task consisted in grasping the objects and moving them

to a target location marked on the table. Participants were asked

to complete the task as precisely and fast as possible. The task

started when the manipulator moved for the very first time, and it

was considered successfully completed when the object was released

on the target.

As explained in Sec. III, we combine different cost functions to

take into account human-related metrics as well as robot- and task-

related ones. In this experiment, we consider the estimated human

workload as our human-related cost HW , and the distance from

the target put-down location as our task-related cost Hr . These two

functions are then properly weighted and combined to generate the

guiding haptic feedback, as described in eq. (5). Of course, the

proposed approach can be used for any other set of cost functions.

We consider three different weighting schemes for the contribution

of HW and Hr to the haptic guidance fm:

(A0) α = 0, β = 1 (the human-centered metric is disregarded and

the operator is simply guided toward the target);

(A20) α = 0.2, β = 0.8 (weak human-centered guidance);

(A40) α = 0.4, β = 0.6 (strong human-centered guidance).

We only consider conditions with β > 0.5 to ensure that the guidance

feedback always brings the user towards the completion of the task.

In fact, a hypothetical condition with α = 1.0, β = 0 would simply

guide the user towards a comfortable arm position, without any

information and guidance regarding the task.

For each weighting condition A0, A20, A40, participants were

asked to pick and place three different sets of objects:

(B) an empty cardboard box of dimensions 14×4×4 cm;

(C) two cubes, each of dimensions 4.2×4.2×4.2 cm;

(L) the wooden letter “H” with outer dimensions 21×13×2.5 cm.

Each subject carried out eighteen randomized repetitions of the

pick-and-place task, two for each weighting condition and set of

objects. These two repetitions differed in the pick-up and put-down

TABLE I
STATISTICAL ANALYSIS (TWO-WAY REPEATED-MEASURE ANOVA)

Completion timeCompletion time

Main effect of weighting

A0 vs. A20 p = 0.020 A0 vs. A40 p < 0.001

Main effect of object

B vs. L p < 0.001 L vs. C p < 0.001

B vs. C p < 0.001

Placing errorPlacing error

Main effect of object

B vs. C p < 0.001 L vs. C p = 0.003

Average HWAverage HW

Main effect of weighting

A0 vs. A20 p = 0.048 A0 vs. A40 p < 0.001

A20 vs. A40 p = 0.028

Main effect of object

B vs. L p < 0.001 L vs. C p < 0.001

Maximum HWMaximum HW

Main effect of weighting

A0 vs. A20 p = 0.049 A0 vs. A40 p < 0.001

A20 vs. A40 p = 0.025

Main effect of object

B vs. L p < 0.001 L vs. C p = 0.002

B vs. C p = 0.012

NASA TLX workload indexNASA TLX workload index

Main effect of weighting

A0 vs. A20 p = 0.035 A0 vs. A40 p = 0.001

A20 vs. A40 p = 0.050

locations. A video showing representative trials in the different

conditions is available as supplemental material and at https://youtu.

be/-FK5luaqZeo. Fig. 4 shows the effect of the three weighting

schemes in a simple reaching movement between two fixed targets.

As shown in the video, our scenario involved a pick and place

task, in which the starting and target positions are placed on two

supports having different height. To avoid colliding with any of the

supports and make our approach viable for any complex trajectory,

we designed our task-related feedback by introducing an intermediate

target point, xr,i = (pr,i,Rr,i), higher than both supports. The user

is first guided to this intermediate point. Then, once the robot reaches

its neighborhood, the guiding force smoothly switches toward a new

target pose, xr,g = (pr,g,Rr,g), which is the final release position

for our object. This approach can be easily used with any arbitrarily

complex trajectory.

C. Results

To evaluate the effectiveness of the proposed human-centered

shared control approach, we recorded (i) the completion time, (ii)

the error in placing the objects at the target, (iii-iv) the mean and

maximum HW registered, and (v) the NASA Task Load Index

(NASA-TLX) [33]. To compare these metrics, we ran two-way

repeated-measures ANOVA tests. The three weightings (A0 vs. A20

vs. A40) and the three sets of objects to move (B vs. C vs. L) were

treated as within-subject factors. Data were transformed using the

arcsin transformation whenever necessary to achieve normality. All

data passed the Shapiro-Wilk normality test. A Greenhouse-Geisser

correction was used when the assumption of sphericity was violated.

Results of post hoc analysis with Bonferroni adjustments are reported

in Table I (only significant p values are shown).

Fig. 5a shows the completion time, averaged across trials. All

data passed the Mauchly’s Test of Sphericity. The two-way repeated-

measure ANOVA revealed a statistically significant change for this

metric across weighting conditions (F(2, 28) = 14.898, p < 0.01)

and objects (F(2,28) = 107.168, p < 0.001). Fig. 5b shows the

error in placing the objects, averaged across trials. It is calculated as

the distance between the target position and where the objects were
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Fig. 5. Human subjects experiment. Mean and standard error of the mean of (a) completion time, (b) error in placing the objects, (c) average HW , (d)
maximum HW , and (e) NASA TLX load index for the three control conditions (A0, A20, A40) and the three target objects (B, L, C).

actually placed at the end of the task. All data passed the Mauchly’s

Test of Sphericity. The two-way repeated-measure ANOVA revealed

a statistically significant change for this metric across objects only

(F(2,28) = 16.118, p < 0.001). Fig. 5c shows the mean HW ,

averaged across trials. It is calculated as the value of HW aver-

aged over the duration of the task. All data passed the Mauchly’s

Test of Sphericity. The two-way repeated-measure ANOVA revealed

a statistically significant change for this metric across weighting

conditions (F(2,28) = 17.287, p < 0.001) and objects (F(2.28) =

58.534, p < 0.001). Fig. 5d shows the maximum HW , averaged

across trials. It is calculated as the maximum value of HW registered

during the task. All data passed the Mauchly’s Test of Sphericity. The

two-way repeated-measure ANOVA revealed a statistically significant

change for this metric across weighting conditions (F(2,28) = 16.594,

p < 0.001) and objects (F(2.28) = 32.418, p < 0.001). Fig. 5e

shows the overall workload score of the NASA TLX, registered

using the official NASA TLX app. All data passed the Mauchly’s

Test of Sphericity. The two-way repeated-measure ANOVA revealed

a statistically significant change for this metric across weighting

conditions only (F(2,28) = 13.340, p < 0.001).

A linear regression was run to understand the effect of HW on

the final NASA TLX. To assess linearity, a scatterplot of mean HW

against NASA TLX with superimposed regression line was plotted.

Visual inspection of these two plots indicated a linear relationship

between the variables. There was homoscedasticity, independence,

and normality of the residuals. Average HW accounted for 60.7%

of the variation in NASA TLX with adjusted R2 = 60.3%, and it

statistically significantly predicted NASA TLX, F(1,133) = 265.123,

p < 0.001. A Pearson’s product-moment correlation showed a

statistically significant positive correlation between mean HW and

NASA TLX, r(135) = 0.779, p < 0.001.

Fig. 6 shows a representative evolution of both cost functions vs.

time for the A0 and A40 weighting schemes.

V. DISCUSSION AND CONCLUSION

We presented a haptic shared control for robotic teleoperation that

combines human-centered and task-centered cost functions, so as to

consider together the need of the human operator as well as the

objective of the teleoperation. To do so, first, we devised an innovative

approach to estimate the user’s muscular comfort during the task,

using an inverse kinematic model of the human arm and the popular

Rapid Upper Limb Assessment (RULA) tool.

This technique can estimate the user’s workload HW using the

pose of the hand registered by the grounded haptic interface, without

the need of any additional sensor on the user. Although rather simple

and fast to compute, this estimation has shown a good correlation

and prediction capability with respect to the NASA TLX results

compiled by the user at the end of the task, proving its effectiveness

and viability in this scenario. Then, we combined this workload

measure with a cost function related to the task at hand or the
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Fig. 6. Graphs showing the representative evolution of the human workload
metric W and the norm of the translational error between the current and
the desired robot pose, for the A0 and A40 weighing conditions. The user
is faster in completing the task using A0; however, a lower W is recorded
using A40, especially in the second part of the task (after grasping the object
and moving towards the put-down location). The dashed line represents the
moment the user grasps the object and the target position changes.

status of the robotic system. As an example, in our experiments,

we considered a cost function Hr indicating the distance from the

target position. However, it is important to highlight that the proposed

framework supports any other task- or system-related cost function

(e.g., trajectory minimizing the energy consumed, displacement, risks

of encountering singularities). The one used in this paper has been

chosen because representative, effective, and simple to implement.

From the combination of HW and Hr , we then generate a dynamic

active constraint guiding the user towards a successful completion of

the task along directions maximizing user comfort.

To prove the effectiveness of the proposed approach, we carried

out a robotic telemanipulation experiment enrolling 15 participants.

Subjects were asked to pick and place three different sets of objects

while receiving three different haptic guidance profiles. The first

profile (A0) only considered the task-related cost function Hr ,

guiding the user toward the target release position along the shortest

path, without considering the comfort-related metric HW . The second

guidance profile (A20) started to mix HW and Hr , guiding the user

toward the target position (weight 0.8) while also considering the

human-centered metric (weight 0.2). The last guidance profile (A40)

retains the same mix, but assigning a different importance to HW

and Hr: weight 0.4 for the former and weight 0.6 for the latter.

We evaluated the performance of the task considering five metrics.

Completion time showed a significant degradation when adding

our human-centered guidance (A20, A40) vs. standard task-centered

guided teleoperation (A0). This result is quite expected, and it is

the major drawback of our approach, as the additional guidance
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inevitably deviates the user from the shortest path. However, this

(small) performance degradation is compensated by a significant

reduction of the estimated muscular discomfort (mean and max HW )

and measured workload (NASA TLX). In fact, while the completion

time and placing error degrade by 14% and 10%, respectively, the

NASA TLX value is improved by 30%. It is also important to

highlight that we considered a rather short task (approx. 10 minutes

in total), and we expect that the effect and usefulness of our approach

increase with the duration of the task. Finally, we did not register any

noticeable degradation of the performance due to implementing the

haptic shared control at the master side. Indeed, where to implement

haptic active constraints is an interesting and open question we are

interested to analyze in the future. There are arguments for both.

Implementing an active constraint at the master side solves any issue

related to the stability of the system, but it opens to the risk of badly

controlling the slave robot. On the other hand, enforcing an active

constraint at the slave side solves any issue related to the commanding

of the slave robot, but it exposes to the risks of instabilities.

In the future, we want to explore the possibility of using (wearable)

cutaneous feedback and kinesthetic force feedback to provide the two

pieces of information separately, to make it easier for the human

operator to differentiate the source of the guidance. Moreover, if we

provide the human-centered guidance via a wearable interface, the

motion of the user through the grounded haptic interface would not

be directly affected, possibly leading to smaller errors in carrying

out the task. Another option is to provide all feedback information

using wearable cutaneous feedback, to inform users about which

trajectory the system would like them to follow while still leaving

them completely free to move wherever they find suitable [34].

Finally, we plan to use other techniques to either directly measure

the users muscle effort (e.g., using Electromyography EMG) or

better estimate their pose (e.g., using RGB-D cameras [35], machine-

learning approaches, or spatial tracking [36]). Such approaches would

also solve the uncertainty related to the redundancy of our arm

kinematical model.
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