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Abstract. We establish almost optimal decay estimate for the 3-D Schrödinger
equation with non - negative potential decaying exponentially and nonlinear-
ity of power p > 1 + 2/3 = 5/3. The key point is the introduction of appro-
priate analogue of the generators of the pseudoconformal group for the free
Schrödinger equation.
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1. Introduction.

We consider the following Schrödinger type equation

(i∂t +∆x −W (x))u+ |u|p−1u = 0. (1.1)

where t ≥ 1 and x ∈ R3 and W (x) is a non - negative potential.
Potential type perturbation for the classical Schrödinger equation

(i∂t +∆x)U + |U |p−1U = 0

appears in natural way, after linearization around solitary type solutions, i.e. so-
lution of the form

U = eiωtχ(x),

where χ ∈ H1(R3) is a critical point of the functional

E(χ) =
1

2
∥∇χ∥2L2 −

1

p+ 1

∫
R3

|χ(x)|p+1dx
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subject to the constraint
∥χ∥2L2 = 1.

Restricting the attention to minimum of E(χ) subject to the same constraint one
can work with so called ground states (see [6] and the references therein ) and see
the existence and the fact that ground states are positive, radial and exponentially
decaying functions. The linearization of type

U =
(
u+ eiωtχ

)
leads to equation of type (1.1), where W is a bounded (possibly non self adjoint)
operator in L2 expressed in terms of χ(x).

For simplicity in this work we consider the case, when W (x) is a real valued
non-negative function having the same decay properties as the ground state χ(x).
More precisely, we assume the following hypotheses on W :

(H1) W is a non - negative Schwartz function decaying exponentially at infinity
and such that there exist positive constants c0 > c1 > 0 so that for any
x ∈ R3

0 ≤ c0W (x) ≤ −∂rW (x),

and
W (x) + |∂rW (x)| ≤ Ce−c1|x|.

Let Σs be the Hilbert space defined as the closure of C∞
0 (R3) functions with respect

to the norm
∥u∥2Σs = ∥u∥2Hs(R3) + ∥|x|su∥2L2(R3). (1.2)

It is well - known that p = 5/3 is a critical value for the existence of asymp-
totic profiles and dispersive estimates for small data solutions in case of potential
W = 0 (see [11] for example). In this work we study the supercritical case p > 5/3
and obtain the following decay estimate.

Theorem 1.1. Assume (H1) and the parameters s, p satisfy p > 5/3, s > 3/2.
Then there is a constant ϵ0 > 0, so that for any δ > 0 one can find a constant
C0 = C0(ε0, δ) > 0 such that for any ϵ ∈ (0, ϵ0) the solution to (1.1) satisfies the
inequality

∥u(t)∥L∞(R3) ≤
C0

t3/2−δ
ϵ, (1.3)

provided
∥u(1)∥Σs ≤ ϵ.

There is a long list of results concerning the Strichartz type estimates, Lp −
Lq estimates and similar dispersive estimates for potential (or magnetic) type
perturbations of the linear Schrödinger or wave equation. (see [16], [18], [7], [2],
[14] for some of these results). However these type of estimates seem to have non
– obvious application if one tries to get the almost optimal decay rate for the
nonlinear supercritical Scrödinger equation. The classical approach developed in
[11] is based on the use of the generators of the pseudoconformal transform that
enable to get the optimal decay for the case of potentialW = 0. Since no reasonable
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definition of these generators is available for the case of potential we are forced to
use another approach.

Our approach is based on a direct application of the pseudoconformal trans-
form. After this transform the global Cauchy problem with initial data at t = 1
becomes local Cauchy problem for the Schrödinger equation with time dependent
potential. More precisely, we shall need an estimate of the solution to the problem

i∂T v +∆v − T−2W

(
X

T

)
v = G, T ∈ (0, 1)

Taking s ∈ [3/2, 2], for any δ > 0 we shall be able to find positive constant
C = C(s, δ) so that

∥v(T, ·)∥Hs
X
≤ C|T |3/2−s−δ∥v(1, ·)∥Hs

X
+ + C|T |3/2−s−δ∥G∥L1((T,1);Hs

X).

This is our key estimate to derive local existence result for the nonlinear
Schrödinger equation after the pseudoconformal transform.

2. Pseudo - conformal transform.

The pseudo – conformal transform is defined as follows

(t, x, u) =⇒ (T,X, v),

where t = 1/T, x = X/T and

v(T,X) =
1

Tn/2
u(

1

T
,
X

T
)ei

X2

4T . (2.1)

Then we have the relation

i∂T v(T,X) + ∆Xv(T,X) = T−2−n
2 ei

X2

4T (−i∂tu(t, x) + ∆xu(t, x)) |t=1/T,x=X/t .

Since u satisfies the equation

(−i∂t +∆x −W (x))u+ |u|p−1u = 0,

we get

i∂T v(T,X) + ∆Xv(T,X) = T−2−n
2

(
W (x)u(t, x)− |u(t, x)|p−1u(t, x)

)
ei

X2

4T

= T−2W

(
X

T

)
v(T,X)− T

np−n−4
2 |v(T,X)|p−1v(T,X).

Hence

i∂T v +∆Xv − T−2W

(
X

T

)
v + T

np−n−4
2 |v|p−1v = 0 (2.2)

for 0 < T ≤ 1 and X ∈ Rn. Note that the L2 norm of u is constant, since u satisfied
the nonlinear Schrödinger equation (1.1). On the other hand, the transform (2.1)
preserves the L2 norm, so we have

d

dT

∫
Rn

(
|v|2

)
dX = 0.

In this way we obtain the following lemma.
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Lemma 2.1. If u satisfies the linear Schrödinger equation

(i∂t +∆x −W (x))u = F for t ≥ 1 and x ∈ Rn, n ≥ 3, (2.3)

then v(T,X) defined according to (2.1) and

G(T,X) =
1

T 2+n/2
F (

1

T
,
X

T
)ei

X2

4T . (2.4)

satisfy

i∂T v +∆Xv −WT (X)v = G(T,X), (2.5)

where

WT (X) = T−2W

(
X

T

)
. (2.6)

3. H2 estimate.

Setting

v2(T,X) =

(
−∆+ T−2W

(
X

T

))
v(T,X),

we have the following equation satisfied by v2

i∂T v2 +∆v2 − T−2W

(
X

T

)
v2 = iW1v +G2,

where

W1(T,X) =

[
∂T

(
T−2W

(
X

T

))]
and

G2 =

(
−∆+ T−2W

(
X

T

))
G.

Let us take n = 3. Applying the Strichartz estimates of Theorem 6.8, we get

∥v2(T, ·)∥L2
X
≤ C

(
∥v2(1, ·)∥L2

X
+ ∥W1v∥L2((T,1);L

6/5
X )

+ ∥G2∥L1((T,1);L2
X)

)
The assumption (H1) guarantees that

W1(T,X) ≤ C
W0(T,X)

T
, (3.1)

where

W0(T,X) =
e−c2|X|/T

T 2
.

We have a generalization of this estimate, given in the Lemma below, where typi-
cally we shall assume that b(s) = 1 + | log s| or b(s) = s−δ with δ > 0 small.
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Lemma 3.1. Suppose b(s) is a positive continuous function in (0,∞), such that b
is decreasing in (0, 1), satisfies the estimate b(s2) ≤ Cb(s), s ∈ (0, 1) and

lim
s↘0

sεb(s) = 0

for any ε > 0 such that ε < min(c2, a/2))

and satisfies one of the following assumptions
a) b is decreasing in (1,∞), and

lim
s↗∞

sεb(s) = ∞

for some ε > 0 such that ε < min(c2, a/2))

or
b) b is increasing in (1,∞), satisfies the estimate b(s−1) ≤ Cb(s), s ∈ (0, 1)

and

lim
s↗∞

sεb(s) = ∞

for any ε > 0 such that ε < min(c2, a/2)).

Then for T ∈ (0, 1) we have the estimate

b(|X|)W1(T,X) ≤ C
b(T )W̃0(T,X)

T 1−a|X|a
, a ∈ (0, 1), (3.2)

where

W̃0(T,X) =
e−(c2−ε)|X|/T

T 2
.

Proof. It is sufficient to verify the inequality

|X|ab(|X|)
b(T )T a

≤ Ceε|X|/T .

If T 2 < |X| < T, then

|X|ab(|X|)
T ab(T )

≤ |X|ab(T 2)

T ab(T )
≤ C.

If |X| ≤ T 2, then the condition

lim
s↘0

sεb(s) = 0

implies sεb(s) ≤ C so

|X|ab(|X|)
T ab(T )

≤ |X|a−ε

T ab(T )
≤ T a−2ε

b(T )
≤ C.

For T < |X| < 1 we have

|X|ab(|X|)
T ab(T )

≤ |X|a

T a
≤ Ceε|X|/T
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and the same argument works if |X| > 1 > T and b is decreasing everywhere,
i.e. a) holds. For b) we can separate the cases 1 < |X| < 1/T and |X| > 1/T . If
1 < |X| < 1/T then b(|X|) ≤ b(1/T ) ≤ Cb(T ) and we have

|X|ab(|X|)
T ab(T )

≤ C|X|a

T a
≤ C1e

ε|X|/T .

If |X| ≥ 1/T , then b(T ) ≥ C−1b(1/T ) ≥ C−1b(1) = C1 and hence

|X|ab(|X|)
T ab(T )

≤ C|X|2ab(|X|) ≤ Ceε|X| ≤ Ceε|X|/T .

�

Note that

∥W̃0(T, ·)∥Ln/2 = O(1). (3.3)

Applying the estimate of the previous Lemma (with n = 3, b(T ) = | log T | )
we get

∥W1v∥L2((T,1);L
6/5
X )

≤ C

∥∥∥∥∥ b(τ)W̃0(τ,X)

τ1/2b(|X|)|X|1/2
v

∥∥∥∥∥
L2((T,1);L

6/5
X )

.

Using the fact that

∥b(τ)τ−1/2∥2L2((T,1)) =

∫ 1

T

log2(τ)
dτ

τ
∼ | log T |3 = b(T )2| log T |,

combined with the Hölder inequality∥∥∥W̃0(τ,X)g(x)
∥∥∥
L

6/5
X

≤ ∥W̃0(T, ·)∥L3/2
X

∥g(x)∥
L

6/5
X

= C ∥g(x)∥
L

6/5
X

,

we get

∥W1v∥L2((T,1);L
6/5
X )

≤ Cb(T )| log T |1/2
∥∥∥∥ v

b(|X|)|X|1/2

∥∥∥∥
L∞((T,1);L6

X)

≤

≤ Cb(T )| log T |1/2∥v∥L∞((T,1);L∞
X )

so

∥W1v∥L2((T,1);L
6/5
X )

≤ C| log T |2∥v∥L∞((T,1);L∞
X ).

In this way we arrive at

∥(−∆+WT )v(T, ·)∥L2
X
≤ C∥v(1, ·)∥H2

X
+ C| log T |2∥v(1, ·)∥L2

X
+ (3.4)

+C∥(−∆+WT )G∥L1((T,1);L2
X),

where Wt is defined according to (2.6).
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4. Interpolation between s = 2 and s = 0.

First we take any δ ∈ (0, 1) and v(1, x) = 0 and consider the operator

M : G ∈ L1((δ, 1);L2(R3)) −→ v ∈ L∞((δ, 1);L2(R3))

such that v solves the equation

i∂T v +∆v − T−2W

(
X

T

)
v = G,

with zero data at T = 1. We take another small parameter δ1 ∈ (0, 1) and define
for any complex z with Rez ∈ [0, 1] the following operator

U(z) = Uδ1(z) = (−∆+WT )
zT (δ1 −∆+WT )

−z

U(z) : L1((δ, 1);L2(R3)) −→ v ∈ L∞((δ, 1);L2(R3)).

This is analytic operator – valued operator. Using the fact that

(−∆+WT )
is : L2(R3) −→ L2(R3)

is bounded operator for real s due to the spectral theorem and using the charge
conservation law for the Schrödinger equation with real valued potential, we see
that

∥Uδ1(z)F∥L∞((δ,1);L2(R3)) ≤ C∥F∥L1((δ,1);L2(R3)) (4.1)

provided Rez = 0. Note that the constant C > 0 is independent of G, δ, δ1.
Using the estimate (3.4), we see that

∥Uδ1(z)F∥L∞((δ,1);L2(R3)) ≤ C∥F∥L1((δ,1);L2(R3)) (4.2)

provided Rez = 1 and again the constant C > 0 is independent of G, δ, δ1.
Applying the Stein interpolation theorem (in this simple case the three lines

lemma) we see that for any s ∈ (0, 2) we have

∥Uδ1(s/2)F∥L∞((δ,1);L2(R3)) ≤ C∥F∥L1((δ,1);L2(R3)) (4.3)

and using the definition of Uδ1(z) we set

F = (δ1 −∆+WT )
s/2G, G ∈ L1((δ, 1);Hs(R3))

and get

∥(−∆+WT )
s/2v(T, ·)∥L∞(δ,1);L2

X) ≤ C∥(δ1 −∆+WT )
s/2G∥L1((δ,1);L2

X). (4.4)

with constant C > 0 is independent of G, δ, δ1, letting δ and δ1 to tend to zero we
find

∥(−∆+WT )
s/2v(T, ·)∥L∞(0,1);L2

X) ≤ C∥(−∆+WT )
s/2G∥L1((0,1);L2

X). (4.5)

In a similar way one can consider the map

M0 : f ∈ L2(R3) −→ v ∈ L∞((δ, 1);L2(R3))

such that v solves the equation

i∂T v +∆v − T−2W

(
X

T

)
v = 0,
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with data v(1, X) = f(X) at T = 1. The estimate (3.4) shows that we have

∥(−∆+WT )v(T, ·)∥L2
X
≤ C∥f∥H2

X
+ C| log T |2∥f∥L2

X
. (4.6)

Applying interpolation argument as above, we find

∥(−∆+WT )
s/2v(T, ·)∥L2

X
≤ C(1 + | log T |)s∥f∥Hs

X
(4.7)

for any s ∈ [0, 2].
In this way we obtain the estimate.

Theorem 4.1. Assume s ∈ [0, 2]. Then the solution to the equation

i∂T v +∆v − T−2W

(
X

T

)
v = G

satisfies the inequality

∥(−∆+WT )
s/2v(T, ·)∥L2

X
≤ C (1 + | log T |)s ∥v(1, ·)∥Hs

X
+ (4.8)

+C∥(−∆+WT )
s/2G∥L1((T,1);L2

X).

One can show that

∥(−∆+WT )
s/2f∥L2

X
∼ ∥(−∆)s/2f∥L2

X
,

for 0 ≤ s < 3/2. This fact is established in [9], [8] (see also the section 7 below
where this is verified for completeness).

Then we arrive at

Theorem 4.2. Assume s ∈ [0, 3/2). Then the solution to the equation

i∂T v +∆v − T−2W

(
X

T

)
v = G

satisfies the inequality

∥(−∆)s/2v(T, ·)∥L2
X
≤ C (1 + | log T |)s ∥v(1, ·)∥Hs

X
+ (4.9)

+C∥(−∆)s/2G∥L1((T,1);L2
X).

For s = 2 we can use the maximum principle for −∆+W and see that

∥(−∆+W )−1f∥L2 ≤ ∥(−∆)−1f∥L2

so

∥(−∆+W )−1∆f∥L2 ≤ C∥f∥L2 (4.10)

and by duality

∥∆(−∆+W )−1f∥L2 ≤ C∥f∥L2 .

From this estimate we find

∥∆f∥L2 = ∥∆(−∆+W )−1(−∆+W )f∥L2 ≤ C∥(−∆+W )f∥L2 (4.11)

Thus we can obtain the following
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Theorem 4.3. Assume s ∈ [3/2, 2]. Then the solution to the equation

i∂T v +∆v − T−2W

(
X

T

)
v = G

satisfies the inequality

∥(−∆)s/2v(T, ·)∥L2
X
≤ C|T |3/2−s−δ∥v(1, ·)∥Hs

X
+ (4.12)

+C|T |3/2−s−δ∥(1−∆)s/2G∥L1((T,1);L2
X).

Proof. It is sufficient to verify the estimate for s = 2 and then to apply interpola-
tion argument between s = 2 and s < 3/2 (established in the previous theorem).
For s = 2 we use (3.4) as well as (4.11) and see that

∥(−∆)v(T, ·)∥L2
X
≤ C∥v(1, ·)∥H2

X
+ C| log T |2∥v(1, ·)∥L2

X
+ (4.13)

+C∥(−∆)G∥L1((T,1);L2
X) + C∥WG∥L1((T,1);L2

X).

Now the estimate

∥Wf∥L2 ≤ C

T 1/2+δ
∥(−∆)3/2+δf∥L2 .

Hence the desired estimate with s = 2 is fulfilled. This completes the proof. �
Corollary 4.4. Assume s ∈ [3/2, 2]. Then for any δ > 0 one can find positive
constant C = C(s, δ) so that the solution to the equation

i∂T v +∆v − T−2W

(
X

T

)
v = G, T ∈ (0, 1)

satisfies the inequality

∥v(T, ·)∥Hs
X
≤ C|T |3/2−s−δ∥v(1, ·)∥Hs

X
+ (4.14)

+C|T |3/2−s−δ∥G∥L1((T,1);Hs
X).

5. Proof of Theorem 1.1

Our goal is to solve the nonlinear problem (2.2)

i∂T v +∆Xv − T−2W

(
X

T

)
v + T

3p−7
2 |v|p−1v = 0

with initial data
v(1, X) = φ(X) ∈ Hs, s > 3/2.

We shall assume that we deal with small initial data, i.e.

∥φ∥Hs
X
≤ ε.

We shall apply the contraction mapping principle for the Banach space sug-
gested by the estimate (4.14). Indeed, taking s = 3/2+ δ, with δ > 0, consider the
norm

|∥ v |∥δ= sup
0≤T≤1

T 2δ∥v(T, ·)∥Hs
X

(5.1)
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and the corresponding Banach space Bδ. The estimates

∥|v(T, ·)|p∥Hs
X
≤ C∥v(T, ·)∥pHs

X
(5.2)

∥|v(T, ·)− w(T, ·)|p∥Hs
X
≤ C∥v(T, ·)∥p−1

Hs
X
∥v(T, ·)− w(T, ·)∥Hs

X
+ (5.3)

+C∥w(T, ·)∥p−1
Hs

X
∥w(T, ·)− w(T, ·)∥Hs

X

are fulfilled for any s > 3/2. Possible reference for these estimates is Theorem
1, Section 5.4.3 in [17]. Using the estimate of Corollary 4.4, one can define the
sequence vk ∈ Bδ so that v0 is a solution to the linear Cauchy problem

i∂T v0 +∆Xv0 − T−2W

(
X

T

)
v0 = 0

with initial data
v0 = φ(X).

Then given any vk ∈ Bδ we define vk+1 as the unique solution to

i∂T vk+1 +∆Xvk+1 − T−2W

(
X

T

)
vk+1 + T

3p−7
2 |vk|p−1vk = 0

with initial data
v(1, X) = φ(X) ∈ Hs.

Applying the estimate of Corollary 4.4 as well as (5.2), we find

|∥ vk+1 |∥2δ≤ Cε+ C |∥ vk |∥2δ
∫ 1

T

τ3p−7−2pδdτ.

The assumption p > 5/3 guarantees that (taking δ > 0 small enough)∫ 1

T

τ3p−7−2pδdτ ≤ C <∞,

so
|∥ vk+1 |∥2δ≤ Cε+ C |∥ vk |∥p2δ .

From this estimate we easily get

|∥ vk |∥2δ≤ C1ε. (5.4)

In a similar way, we can use (5.3) and derive

|∥ vk+1 − vk |∥2δ≤ C |∥ vk − vk−1 |∥2δ
(
|∥ vk |∥p−1

2δ + |∥ vk−1 |∥p−1
2δ

)
≤

≤ Cεp−1 |∥ vk − vk−1 |∥2δ,
so taking ε > 0 small enough, we can apply contraction mapping principle and
find a solution

v ∈ Bδ ⊂ L∞([0, 1];Hs).

Turning back to the pseudoconformal transform (2.1), we see that for T = 1
we have

v(1, x) = u(1, x)ei
x2

4 . (5.5)
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and it is easy to see that the map

ψ(x) =⇒ φ(x) = ψ(x)ei
x2

4

maps Σs in Hs and

∥φ∥Hs ≤ C∥ψ∥Σs .

This completes the proof of Theorem 1.1.

6. Resolvent and Strichartz type estimates

In this section we discuss briefly the dispersive and Strichartz type estimates using
resolvent estimates. This link is possible in view of the following result due to Kato.

Theorem 6.1. (Kato [12]) Let H be a self-adjoint operator on the Hilbert space X ,
and for µ ∈ R,ℑµ ̸= 0, let

(H − µ)−1,

denote the resolvent. Suppose that A is a closed, densely defined operator, possibly
unbounded, from X into a Hilbert space Y . Suppose that

Γ := sup{∥A((H − µ)−1)A∗f∥Y ;ℑµ ̸= 0, f ∈ D(A∗), ∥f∥X = 1} <∞.

Then A is H-smooth and

∥A∥2H := sup

{
1

2π

∫ ∞

−∞
∥Ae−itHf∥2Ydt; f ∈ X , ∥f∥X = 1

}
≤ Γ2

π2
.

Typical application for Schrödinger equation is the choice X = L2 and A is
the multiplication operator

< x >−s: f(x) ∈ L2 −→< x >−s f(x) ∈ L2
s,

where here and below for any real s

L2
s = {f ∈ L2

loc, < x >s f ∈ L2}.

The study of the resolvent estimates is closely connected with the resonances
of the operator

−∆+W (|x|), x ∈ R3.

Definition 6.2. A real number λ is called a strong resonance of −∆ +W (|x|) if
there exists u ∈ L2

−a(R3) with a > 1/2, so that u(x) is not identically zero and
−∆u+W (|x|)u = λu in distribution sense in R3.

Theorem 6.3. (see Theorem IX.2 in [9]) Suppose the potential W (r) is a positive
decreasing function, such that there exist positive constants C∗, ε so that (H1) is
fulfilled. Then zero is not a strong resonance for −∆+W (|x|).

Remark 6.4. Since W is an exponentially decaying and real valued, the above
result implies that −∆+W (|x|) has no resonances .



12 V. Georgiev and B. Velichkov

In order to verify resolvent estimate of the perturbed operator −∆+W (|x|),
denote

R0(µ) = (−∆− µ2)−1,

the resolvent of the operator −∆, and set R+
0 (µ) = R0(µ) if ℑµ > 0 and respec-

tively R−
0 (µ) = R0(µ) for ℑµ < 0. Classical resolvent estimate (limiting absorbtion

principle) is the following one

lim
ℑµ↘0

∥ < x >−s (−∆− µ2)−1 < x >−s f∥L2(Rn) ≤ C∥f∥L2(Rn), (6.1)

where s > 1, ℜµ ≥ 0, and the constant C is independent of µ. We have also the
estimate

∥ < x >−s ∇(−∆− µ2)−1 < x >−s f∥L2(Rn) ≤ C∥f∥L2(Rn),

where

s >
1

2
, ℜµ ≥ 0,

so we can claim that the operators

< x >−s (−∆− µ2)−1 < x >−s

are compact ones in L2 provided s > 1 and ℑµ ≥ 0.

Hence

∥ < x >−s R+
0 (µ) < x >−s f∥L2(Rn) ≤ C∥f∥L2(Rn), s > 1, ℜµ ≥ 0,ℑµ = 0.

(6.2)

Set

R(µ) = (−∆+W − µ2)−1, A(µ) =< x >−s (−∆− µ2)−1W < x >s .

One have the following compactness result

Lemma 6.5. The operators A(µ) are compact in the space B(L2, L2), for

ℑµ ≥ 0, s > 1.

Moreover the following estimate is satisfied:

∥A(µ)∥B(L2,L2) → 0,

as ℑµ ≥ 0,ℜµ→ ∞.

This Lemma is a well-known standard result so we give only the idea of the
proof. It suffices to notice that < x >−s (−∆− µ2)−1 < x >−s is continuous and
compact as an operator in B(L2, L2), in the zone ℑµ ≥ 0. Since the potential W
is such that

< x >s W < x >s

is bounded in L2, we have the desired result.
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Lemma 6.6. Let us assume that the potential W satisfies (H1). For any s > 1 the
weighted resolvent operator < x >−s R+(µ) < x >−s has a continuous extension
from ℑµ > 0 to ℑµ ≥ 0. Moreover there exists a real constant C > 0 such that the
following estimate is true:

∥ < x >−s R+(µ) < x >−s f∥L2 ≤ C∥f∥L2 . (6.3)

for any Schwartz function f.

Proof. The result is well - known, so we briefly sketch the idea. The perturbed
resolvent R(µ2) = (−∆+W − µ2)−1 satisfies in ℑµ > 0 the relation

(−∆+W − µ2)−1 =
(
I + (−∆− µ2)−1W

)−1
(−∆− µ2)−1 (6.4)

provided the operator (I − (P0 − µ2)−1W ) is invertible. This relation implies

< x >−s (−∆+W − µ2)−1 < x >−s=(
I+ < x >−s (−∆− µ2)−1W < x >s

)−1
< x >−s (−∆− µ2)−1 < x >−s .

(6.5)
We can apply Fredholm Theory and the Theorem 6.3 that shows 0 is not resonance,
so we are able to say that the operator(

I+ < x >−s (−∆− µ2)−1W < x >+s
)−1

,

is continuous in ℑµ ≥ 0. �

Once resolvent estimate is established, one can use the approach from [5] and
derive the Strichartz type estimate. for the corresponding inhomogeneous Cauchy
problem

i∂tu−∆u = F , u(0) = f. (6.6)

We shall call the pair ( 1p ,
1
q ) sharp admissible (see [13] for this notion and the

properties of sharp admissible pairs), if it satisfies the condition:

n

4
=

1

p
+

n

2q
, 2 ≤ p ≤ ∞, (p, q, n) ̸= (2,∞, 2). (6.7)

If n = 3, then we can chose the end point

p∗ = 2, q∗ = 6

as admissible couple. Moreover, (6.7) becomes

3

4
=

1

p
+

3

2q
, 2 ≤ p ≤ ∞. (6.8)

Then we have

Theorem 6.7. If (p, q) and (p̃, q̃) satisfy (6.8), then the solution to the Cauchy
problem

i∂tu+△u−Wu = F , (t, x) ∈ (1,∞)× R3
x, (6.9)

u(1, x) = f(x),
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satisfies the estimate:

∥u∥Lp((1,∞);Lq
x) + ∥u∥C([1,∞);L2) ≤ C

(
∥F∥

Lp̃′ ((1,∞);Lq̃′
x )

+ ∥f∥L2

)
. (6.10)

Using the pseudoconformal transform, we make the substitution

v(T,X) =
1

T 3/2
u(

1

T
,
X

T
)ei

X2

4T ,

H(T,X) =
1

T 2+3/2
F (

1

T
,
X

T
)ei

X2

4T

h(X) = f(X)ei
X2

4 .

(6.11)

and see that v is a solution to the following Cauchy problem

i∂T v +∆Xv − T−2W

(
X

T

)
v = H , (T,X) ∈ (0, 1))× R3

x, (6.12)

u(1, x) = h(x).

A simple computation shows that

∥u∥Lp((1,∞);Lq
x) = ∥v∥Lp((0,1);Lq

X),

and

∥F∥
Lp̃′ ((1,∞);Lq̃′

x )
= ∥H∥

Lp̃′ ((0,1);Lq̃′
X )

provided the couples (p, q) and (p̃, q̃) are admissible ones. Since

∥u∥L∞((1,∞);L2) = ∥v∥L∞((0,1);L2),

we can take

p∗ = 2, q∗ = 6

as admissible couple and we arrive at the following.

Theorem 6.8. If n = 3, then the solution to the Cauchy problem (6.12) satisfies
the estimates:

∥v∥L2((0,1);L6
X) + ∥v∥L∞((0,1);L2

X) ≤ C
(
∥H∥

L2((0,1);L
6/5
X )

+ ∥h∥L2
X

)
. (6.13)

and

∥v∥L2((0,1);L6
X) + ∥v∥L∞((0,1);L2

X) ≤ C
(
∥H∥L1((0,1);L2

X) + ∥h∥L2
X

)
. (6.14)

7. Equivalence of Ḣs
W and Ḣs

Here we follow the argument of section 5 in [8] To show that Ḣs
WT

= Ḣs for s < 3
2

we will first prove the following

Lemma 7.1. Ḣ1
WT

= Ḣ1.
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Proof. The positivity of WT implies∥∥∥(−∆+WT )
1
2 f

∥∥∥2
L2

= ⟨(−∆+WT )f, f⟩L2 ≥ ⟨(−∆)f, f⟩L2 =
∥∥∥(−∆)

1
2 f

∥∥∥2
L2
.

The assumption (H1) implies

WT (X) = T−2W

(
X

T

)
≤ C

|X|2
.

The Hardy inequality yields

⟨(WT f, f⟩L2 ≤ C
∥∥∥(−∆)

1
2 f

∥∥∥2
L2

so ∥∥∥(−∆+WT )
1
2 f

∥∥∥2
L2

= ⟨(−∆+WT )f, f⟩L2 ≤ C
∥∥∥(−∆)

1
2 f

∥∥∥2
L2
.

This completes the proof. �

Lemma 7.2. For 0 ≤ s < 3/2 we have∥∥(−∆+WT )
s
2 f

∥∥2
L2 ∼

∥∥(−∆)
s
2 f

∥∥2
L2 .

Proof. Take 1 < s < 3
2 . We shall use the identity∥∥(−∆+W )

s
2 f

∥∥2
L2 =

(
(−∆+W )s−1f, (−∆+W )f

)
L2

=
(
(−∆+W )s−1f, (−∆)f

)
L2 +

(
(−∆+W )s−1f,Wf

)
L2 =

=
(
(−∆)1−

s
2 (−∆+W )s−1f, (−∆)

s
2 f

)
L2 +

(
|W |1− s

2 (−∆+W )s−1f,W
s
2 f

)
L2 .(7.1)

Let we set

I1 =
(
(−∆)1−

s
2 (−∆+W )s−1f, (−∆)

s
2 f

)
L2 ,

I2 =
(
W 1− s

2 (−∆+W )s−1f,W
s
2 f

)
L2 .

Now we can apply the lemma 7.1 and using the fact that 1
2 < 2 − s < 1, we get∥∥∥(−∆)

2−s
2 g

∥∥∥
L2

≤ C
∥∥∥(−∆+ V )

2−s
2 g

∥∥∥
L2
. Taking now g = (−∆+ V )s−1f , we get∥∥∥(−∆)

2−s
2 (−∆+W )s−1f

∥∥∥
L2

≤ C
∥∥(−∆+W )

s
2 f

∥∥
L2 . (7.2)

Hence

|I1| ≤ ∥f∥Ḣs
W
∥f∥Ḣs . (7.3)

Further we need the following

Lemma 7.3. We have the estimate∥∥W s
2 f

∥∥
L2 ≤ C ∥f∥Ḣs ,

where W =WT = T−2W (X/T ) and 0 ≤ s < 3
2 .
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Proof. Applying the Hölder inequality for Lorentz spaces and using the fact that∥∥|W | s2
∥∥
L( 3

s
,∞) ≤ C ∥W∥

s
2

L( 3
2
,∞)

≤ C
s
2
0 , we get∥∥W s

2 f
∥∥
L2 ≤ C

∥∥W s
2

∥∥
L( 3

s
,∞) ∥f∥L(q,2) , (7.4)

1

2
=
s

3
+

1

q
, q = 6 ∈ (2,∞) . (7.5)

Now we can apply the Sobolev’s embedding (see [3]) Ḣs ⊂ L(q,2) for 1
2 = s

3 + 1
q

and we get
∥∥|W | s2 f

∥∥
L2 ≤ C1 ∥f∥Ḣs . �

Now we are ready to estimate the term I2. We have

|I2| ≤
∥∥∥W 2−s

2 (−∆+W )s−1f
∥∥∥
L2

∥∥(W )
s
2 f

∥∥
L2 . (7.6)

Since 2− s ∈ (0, 32 ), we can apply Lemma 5.2 and get∥∥∥|W |
2−s
2 (−∆+W )s−1f

∥∥∥
L2

≤
∥∥∥(−∆)

2−s
2 (−∆+W )s−1f

∥∥∥
L2

(7.7)

and
∥∥|W | s2 f

∥∥
L2 ≤ C ∥f∥Ḣs . We estimate the right hand side of (7.7) using (7.2)

and find ∥∥∥W 2−s
2 (−∆+W )s−1f

∥∥∥
L2

≤ C
∥∥(−∆+W )

s
2 f

∥∥
L2 . (7.8)

From (7.2) (7.7) and (7.8) we obtain

|I2| ≤ C ∥f∥Ḣs
W
∥f∥Ḣs . (7.9)

This estimate, (7.2) and (7.1) lead to

∥f∥2Ḣs
W

≤ C ∥f∥Ḣs
W
∥f∥Ḣs .

Hence

∥f∥Ḣs
W

≤ C ∥f∥Ḣs , (7.10)

for 0 ≤ s < 3
2 .

To show the opposite inequality, we use the fact that WT is a non - negative
potential decaying faster than |x|−2 at infinity, so one can apply Theorem 1.1 of
the work [19] and get the following estimate of the heat kernel KW (t, x, y) of the
heat operator

∂t −∆+W

|KW (t, x, y)| ≤ CK0(t, x, y), (7.11)

where

K0(t, x, y) = ct−3/2e−c|x−y|2/(4t)

is the heat kernel of the free heat operator ∂t − 1
c∆.
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It is important to notice that the potentialW =WT depends o the parameter
T ∈ (0, 1), but the constant C in (7.11) is independent of this parameter, since we
have the inequality

|WT (x)| =
∣∣T−2W (x/T )

∣∣ ≤ C

|x|3
with some constant C independent of T ∈ (0, 1). Given any sectorial operator A
with spectrum σ(A) satisfying

z ∈ σ(A) =⇒ ℜz ≥ 0,

we can define the negative powers of A as follows (see for example section 1.4 in
[10])

A−k =
1

Γ(k)

∫ ∞

0

tk−1e−Atdt. (7.12)

Choosing k = 1,

A = −∆+W, A0 = −1

c
∆

and comparing the kernels of
e−At, e−A0t

by the aid of the estimate (7.12), we see

∥(−∆+W )−1f∥L2 ≤ C∥(−∆)−1f∥L2 .

This estimate shows that the operator

(−∆+W )−1(−∆)

is L2 bounded, so its dual
(−∆)(−∆+W )−1

is also L2 bounded and we see that

∥(−∆)f∥L2 ≤ C∥(−∆+W )f∥L2 .

Hence, by interpolation

∥f∥Ḣs
W

≤ C ∥f∥Ḣs , (7.13)

for 0 ≤ s ≤ 2.
This completes the proof. �
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