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Abstract. We define and study infinite root stacks of fine and saturated

logarithmic schemes, a limit version of the root stacks introduced by Niels
Borne and the second author in [BV12]. We show in particular that the infinite

root stack determines the logarithmic structure, and recovers the Kummer-flat

topos of the logarithmic scheme. We also extend the correspondence between
parabolic sheaves and quasi-coherent sheaves on root stacks to this new setting.
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1. Introduction

Logarithmic geometry. Logarithmic structures were introduced in the late ’80s, in
the work of Fontaine, Illusie, Deligne and Faltings, and studied systematically start-
ing with the work of K. Kato [Kat89]. The motivating philosophy was that, some-
times, a degenerate object behaves like a smooth one, when equipped with the
correct logarithmic structure.

For a quick introduction to the theory one can profitably consult [ACG+13] and
references therein. The flavor of the idea is the following. A logarithmic stucture
on a scheme X is a sheaf of commutative monoids MX on the small étale site
Xét of X, with a homomorphism of sheaves α : MX → OX (here the structure
sheaf is considered as a sheaf of monoids via multiplication), such that the induced
homomorphism α−1O×X → O×X is an isomorphism. We think of α as an exponential
map; a section s of MX is thought of as a logarithm of α(s), defined “up to period”.
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Suppose one has a proper morphism f : X → S, where S is a Dedekind scheme,
with a closed point s0 ∈ S. In a geometric context S would be a smooth curve,
while in an arithmetic context it could be the spectrum of a discrete valuation
ring, typically in mixed characteristic. Assume that f is smooth outside of s0,
while the fiber X0 over s0 is a divisor with normal crossings in X. Then one
can put logarithmic structures MX and MS on X and S, so that the morphism
X → S extends to a morphism of logarithmic schemes (X,MX)→ (X,MS), which
is smooth, in the sense of logarithmic geometry.

Now, logarithmic schemes have well-behaved cohomology theories: de Rham,
étale, crystalline, Hodge, and so on (see for example [KN99]). This makes logarith-
mic geometry a powerful tool for studying degenerations of cohomology theories,
and cohomologies of varieties with bad reduction over valued fields.

Logarithmic geometry is intimately connected with toric geometry and toroidal
embeddings (smooth logarithmic varieties are locally modeled on toric varieties).
Also, it has been successfully applied to moduli theory: adding a logarithmic
structure often isolates the “main component” of a moduli space, i.e. the clo-
sure of the locus of smooth objects (or its normalization); a few examples are
[Kat00, Ols04, Ols08a, Ols08b] (see also [ACG+13, Sections 4 and 10]).

Recently, logarithmic geometry was also employed to define Gromov-Witten in-
variants for singular targets [GS13, AC14, Che14] and to formulate a version of
mirror symmetry, in the form of the “Gross–Siebert program” [GS06, GS10, GS11].

Geometric incarnations of logarithmic schemes. Suppose that X is a fine and sat-
urated logarithmic scheme, in the sense of Kato. There have been at least two
attempts to produce a topological space, or a Grothendieck topology, that captures
the “logarithmic geometry” of X.

The first is for schemes of finite type over C (or more generally log-analytic
spaces), the so called Kato–Nakayama space X log, introduced in [KN99] (see also
[Ogu]). In simple cases, this is obtained as a “real oriented blowup” of X, along
the locus where the log structure is concentrated.

In a different direction, one would like to have analogues of the étale and fppf site
for a logarithmic scheme. There are natural notions of étale and flat map between
logarithmic schemes; however, they turn out to be too inclusive, and yield sites that
are much too large. For example, the log geometric version of blowups are étale
in the logarithmic sense, and although the topologies obtained by allowing such
maps to be coverings have been used for some purposes (see for example [Niz08]),
it is often better to restrict the allowed coverings to maps that do not change the
geometry of the space in such a drastic way.

The correct notions are those of Kummer-étale and Kummer-flat maps, intro-
duced by Kato. They allow to associate with X two sites XKét and XKfl, called
respectively the Kummer-étale and the Kummer-flat site; the first works well in
characteristic 0 and for studying l-adic cohomologies, while the second is more
suited for positive characteristic. Coherent sheaves on Kato’s Kummer flat site
XKfl have been used to define the K-theory of X in [Hag03, Niz08].

These two constructions are related: for example, if X is of finite type over C
and F is a constructible sheaf in the Kummer-étale topology, the cohomology of F
equals the cohomology of its pullback to X log ([KN99, Theorem 0.2(1)]).
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The infinite root stack. In this paper we construct an algebraic version of the Kato–
Nakayama space, the infinite root stack

∞√
X of X, which is a proalgebraic stack

over X. For this we build on the construction of the root stacks
B√
X in [BV12]

(denoted by XB/MX
there), which in turn is based on several particular cases

constructed by Olsson [MO05, Ols07]. Denote by αX : MX → OX the logarithmic
structure on X, a fine saturated logarithmic scheme, and set MX

def
= MX/O∗X ; then

MX is a sheaf of monoids on the small étale site Xét, whose geometric fibers are
sharp fine saturated monoids (these are the monoids that appear in toric geometry,
consisting of the integral points in a strictly convex rational polyhedral cone in
some Rn). A Kummer extension B of MX is, roughly speaking, a sheaf of monoids
containing MX , such that every section of B has locally a positive multiple in MX

(see [BV12, Definition 4.2]); the typical example is the sheaf 1
dMX of fractions of

sections ofMX with some fixed denominator d. Loosely speaking,
B√
X parametrizes

extensions β : N → OX of αX : MX → OX with N = B. When the logarithmic
structure is generated by a single effective Cartier divisor D ⊆ X, so that M is the
constant sheaf ND on D, and we take B to be 1

dND, then
B√
X is the root stack

d
√

(X,D) introduced in [AGV08, Cad07].

The infinite root stack
∞√
X can be thought of as the limit of the root stacks

B√
X as the sheaf B becomes larger. It is not an algebraic stack, as its diagonal is

not of finite type. If p is a geometric point of X and r is the rank of the group
M

gp

X,p, then the reduced fiber of
∞√
X over p is the classifying stack Bµr∞, where

µ∞
def
= lim←−µn, where µn is the group scheme of nth roots of 1. Over C of course

µ∞ is isomorphic to the profinite completion Ẑ; here we can see the similarity with
the Kato–Nakayama space, in which the fiber over a point p as above is Sr, which
is the classifying space BZr of the group Zr.

The infinite root stack of a fine saturated logarithmic scheme is very large, it is
not even an algebraic stack, and it may look discouragingly complicated. However,
it has a very explicit local description (Proposition 3.10); and the fact that it is
locally a quotient by the action of a diagonalizable group scheme, albeit not of finite
type, makes it very amenable to study. For example, one can apply to it results
of Toën–Riemann–Roch type [Toe99, VV02] to get very explicit formulas for its
K-theory (we plan to go back on this point in a future paper).

Our main results are as follows.

Reconstruction results. First of all, we show how the logarithmic structure can be
reconstructed from the infinite root stack (Corollary 5.23). In fact, we construct
a faithful functor from the category of fine saturated logarithmic schemes into the
2-category of proalgebraic stacks. This is not fully faithful; however, it induces a
bijection on isomorphisms. In particular if X and Y are fine saturated logarithmic
schemes, and if

∞√
X is equivalent to

∞√
Y as fibered categories, then X and Y are

isomorphic as logarithmic schemes. We describe the essential image of this functor,
and characterize the morphisms of proalgebraic stacks that come from morphisms
of fine saturated logarithmic schemes (Theorem 5.24).

In principle one could develop the theory of logarithmic structures entirely from
the point of view of infinite root stacks (not that we advocate doing this); a more
interesting point is that in this way we are enlarging the category of fine satu-
rated logarithmic schemes, and the morphisms of infinite root stacks that do not
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come from morphisms of logarithmic schemes (Example 5.19) could have interesting
applications.

Here is an example. Suppose that X → S is a morphism to a Dedekind scheme
of the type mentioned above (either a smooth curve, or the spectrum of a discrete
valuation ring). Then the special fiber X0 over the point s0 inherits a logarithmic
structure MX0

; however, (X0,MX0
) is not logarithmically smooth in the absolute

sense (it is not even “defined” over s0 equipped with the trivial log structure), but
it is only log smooth over the point s0 equipped with the logarithmic structure
induced by MS . Moreover, the logarithmic central fiber (X0,MX0

) has a nontrivial
logarithmic structure even at the points where X0 is smooth in the classical sense.
By passing to the induced morphism of infinite root stacks

∞√
X → ∞√

S, the em-
bedding of the point s0 ⊆ S lifts to a morphism of stacks s0 →

∞√
S, which does not

come from a morphism of logarithmic structures. Then one can take the pullback
s0×∞√S

∞√
X; this is a pro-algebraic stack that can be described very explicitly, but

is not an infinite root stack. It has some advantages over (X0,MX0); for example,

the projection s0×∞√S
∞√
X → X0 is an isomorphism where X0 is smooth. It would

be interesting to investigate to what extent s0 ×∞√S
∞√
X → X0 can be used as

a substitute for (X0,MX0
) in problems such as degenerations of Gromov–Witten

invariants.
We plan to go back to this in a later paper. This “central fiber” of the infinite

root stack, and much of the basic formalism developed in the present article, are
crucial in the recent work [SST16] about a logarithmic version of the derived McKay
correspondence, of S. Scherotzke, N. Sibilla and the first author.

The connection with the Kummer-étale and Kummer-flat topologies. The infinite
root stack is closely related to the Kummer-étale and Kummer-flat topologies.

For example, we show that a locally finitely presented morphism of fine saturated
logarithmic schemes is Kummer-flat (respectively Kummer-étale) if and only if the
corresponding morphism of infinite root stacks is representable, flat and finitely
presented (respectively representable and étale) (Theorems 6.23 and 6.25).

We also explain how to recover the Kummer-flat topos of X from
∞√
X. We

define the small fppf site
∞√
X fppf of

∞√
X, whose objects are representable, finitely

presented flat maps A → ∞√
X; substituting flat with étale we obtain the definition

of the small étale site
∞√
X ét. Sending a Kummer-flat (respectively Kummer-étale)

map Y → X into the induced morphism
∞√
Y → ∞√

X defines a morphism of sites
XKfl →

∞√
X fppf (respectively XKét →

∞√
X ét). We are not able to show that these

are equivalences; however we show that they induce equivalences of topoi (Theorems
6.16 and 6.22).

Quasi-coherent sheaves. Another major theme of this paper is quasi-coherent sheaves
on fine saturated logarithmic schemes. We argue that these should be defined as
quasi-coherent sheaves on the infinite root stack. If MX ⊆ B is a fine Kummer
extension, then one finds in [BV12] a definition of quasi-coherent parabolic sheaf
that generalizes those given in many particular cases in [MS80, MY92, Bis97, IS07,
Bor09]; the main result is [BV12, Theorem 6.1]: the category of parabolic sheaves
with coefficients in B is equivalent as an abelian category to the category of quasi-
coherent sheaves on the root stack

B√
X. The definition of a parabolic sheaf extends

immediately to the present case, giving a definition of a parabolic sheaf with arbi-
trary rational weights on a fine saturated logarithmic scheme. The proof of [BV12,
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Theorem 6.1] extends to the present setup, yielding an equivalence of the category of

parabolic sheaves on X and that of quasi-coherent sheaves on
∞√
X (Theorem 7.3).

This point of view is exploited in [Tal17a] to construct moduli spaces of par-
abolic sheaves with arbitrary rational weights. Furthermore, the correspondence
was recently extended, in the complex analytic case, to parabolic sheaves with real
weights and sheaves of modules on the Kato–Nakayama space [Tal17b].

We are aware of another possible definition of a quasi-coherent sheaf on a (de-
rived) logarithmic scheme, introduced by Steffen Sagave, Timo Schürg and Gabriele
Vezzosi in [SSV13]. We are not sure whether this is connected with ours.

We conclude by characterizing finitely presented sheaves on
∞√
X in purely para-

bolic terms (Theorem 7.7). By putting this together with Corollary 5.24, we obtain
a parabolic interpretation of finitely presented sheaves on the Kummer-flat site of
X.

There is an issue with the present construction: even when X is the spectrum
of a field, the structure sheaf of

∞√
X is in general not coherent (Example 4.17);

see [Niz08] for a discussion of this issue for the Kummer-flat site. This does not
happen when the logarithmic structure is simplicial, in the sense that the geometric
stalks of MX are isomorphic to the monoid of integral elements of a simplicial
rational polyhedral cone. This means that, even when X is noetherian, we can’t
expect finitely presented parabolic sheaves on X to form an abelian category, in
general. We don’t know whether this is inevitable, or it can be fixed with a different
construction.

The connection with the Kato–Nakayama space. The relation between the infinite
root stack and the Kato–Nakayama space of a fine saturated logarithmic scheme
X locally of finite type over C is more than an analogy. This has been clarified in
later work.

In fact, if X is a fine saturated logarithmic scheme, locally of finite type over C,
there exists a map from the the Kato–Nakayama space X log of X to the topolog-
ical stack (

∞√
X)top associated with

∞√
X, that induces an equivalence of profinite

homotopy types [CSST17]. This map, constructed in [CSST17] by gluing together
locally defined maps, has in fact a natural interpretation, due to the fact that X log

can be defined as a “transcendental infinite root stack”, in which instead of adding
roots of all orders, one adds logarithms [TV17].

Description of content. Section 2 contains a list of conventions and preliminary
definitions and results that will be used in the rest of the paper; in 2.2 we review the
notion of projective limit of fibered categories that will be used, and 2.3 contains
a review of the nonstandard point of view on logarithmic structures introduced in
[BV12], which is the one most suitable for the purposes of this paper. In particular
the notion of parabolic bundles is stated in this language; and the construction
of the logarithmic structure starting from an infinite root stack, which plays a
fundamental role, is most naturally carried out with this formalism.

The definition of the infinite root stack
∞√
X of a fine saturated logarithmic

scheme X appears in Section 3; we also show that
∞√
X is a limit of finite root

stacks
n√
X. The next Section 3.1 contains a local description of infinite root stacks

(Proposition 3.10), which is fundamental for the rest of the paper. In 3.2 we take
a somewhat different point of view, and define an abstract infinite root stack over
a scheme, by assuming the local description of Proposition 3.10 as an axiom. This
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gives the correct framework for describing how to recover the logarithmic structure
of X from

∞√
X.

Section 4 contains a discussion of quasi-coherent sheaves on an infinite root stack.
We begin by considering in 4.1 the case of quasi-coherent sheaves on a more general
fibered category. In one definition given for example in [KR00], they are cartesian
functors into the category of modules. On the other hand, quasi-coherent sheaves on
a ringed site are defined as sheaves of O-modules that locally have a presentation.
Both points of view are useful to us, so we show that for an infinite root stack,
or, more generally, for a fibered category with an fpqc cover by a scheme the
categories of quasi-coherent sheaves in the first sense is equivalent to the category
of quasi-coherent sheaves on three different associated sites with the fpqc topology
(Proposition 4.13). Subsection 4.2 specializes the discussion to infinite root stacks
and is dedicated to the proof of some technical results on quasi-coherent sheaves
on them.

The heart of the paper is Section 5, in which we show how to produce a loga-
rithmic scheme from an infinite root stack; this cost us fairly intense suffering. It
requires some very technical work on fine saturated monoids, and an analysis of the
Picard group of infinite root stacks over algebraically closed fields. This work pays
off in 5.4, where we show (Theorem 5.24) that the category of fine saturated log-
arithmic schemes is equivalent to the category of abstract infinite root stacks; the
morphisms of infinite root stacks are defined as base-preserving functors satisfying
a technical condition.

Section 6 is about the comparison between the Kummer-flat site of a logarithmic
scheme and the fppf site of its infinite root stack. In 6.1 we introduce the small fppf
site of an infinite root stack, and we show that the categories on finitely presented
sheaves on the root stack and on this fppf site coincide. The next subsection
contains our results (Theorems 6.23 and 6.16, and Corollary 6.17) on the connection
between the infinite root stack and the Kummer-flat site of a finitely presented
logarithmic scheme.

Finally, Section 7 contains the parabolic description of quasi-coherent and finitely
presented sheaves on an infinite root stack.

Acknowledgments. This paper builds on approximately half of the PhD thesis
of the first author, which was developed under the supervision of the second author
at the Scuola Normale Superiore, in Pisa. During the latest phase of writing, the
first author was supported by the Max Planck Institute for Mathematics of Bonn.

We would like to thank Johan De Jong for a very useful conversation. Further-
more, the second author would like to express his debt toward his collaborator Niels
Borne; this paper builds on ideas in their previous joint paper, and owes much to
discussions that they have had over the years.

Finally, we are grateful to the anonymous referee for a thorough reading, a long
list of useful comments, and, overall, an outstanding job. In particular, he or she
suggested several simplifications and corrections.

2. Preliminaries

In this preliminary section we fix some notations, recall the notion of projective
and inductive limits of fibered categories and the formalism of Deligne–Faltings
structures in logarithmic geometry.
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2.1. Notations and conventions. All monoids will be commutative. Often they
will be fine, saturated and sharp, in which case they are also torsion-free (the
geometric stalks of the sheaf MX of a fine saturated logarithmic scheme X are
of this type). If P is a monoid, XP will always denote the spectrum SpecZ[P ]
of the monoid algebra Z[P ], which will also usually be equipped with the natural
logarithmic structure. For p ∈ P , the corresponding element of Z[P ] will be denoted
by xp, and the same notation will be used for k[P ] where k is a field.

All symmetric monoidal functors will be strong, meaning that the morphisms
FX ⊗ FY → F (X ⊗ Y ) will be isomorphisms.

All fibered categories will be fibered over the category (Aff) of affine schemes,
which can also be seen as the dual of the category of commutative rings. If X is a
fibered category over (Aff), we will always denote by pX : X → (Aff) the structure
functor.

We will identify as usual the fibered category (Aff/X) → (Aff) of maps into a
scheme X with X itself; thus, a fibered category over X will be a fibered category
over (Aff) with a cartesian functor to (Aff/X), or, equivalently, a fibered category
over (Aff/X).

We will usually refer to categories fibered in groupoids over (Aff) as “stacks”.
The fibered categories we will deal with are indeed stacks in the fpqc topology, but
this fact will not play a major role in our treatment. The point is that “stack”
is short, and saying, for example, “open substack” is more convenient that “open
fibered subcategory”.

A morphism of categories fibered in groupoids on (Aff) will be called “repre-
sentable” if it is represented by schemes. Algebraic spaces will not play any role in
this paper.

If X = SpecA is an affine scheme over a ring R, and G is an affine group scheme
over R acting on X, we denote by X/G the spectrum of the ring of invariants AG.

We will use ∗ to denote the Godement product (or “horizontal composite”) of
natural transformations, see for example [ML98, II.5].

If X is a scheme, we denote by Xét the small étale site of X, whose objects are
étale maps U → X, where U is an affine scheme. Of course one could extend this
to all schemes étale over X, but the resulting topos would be equivalent.

We will use the following notation: if X is a logarithmic scheme, we denote the
logarithmic structure by αX : MX → OX , and the corresponding Deligne–Faltings
structure by (AX , LX) (see 2.3). Also, since sometimes we will have to distinguish
between fibered products in the category of fine saturated logarithmic schemes, and
fibered products of the underlying schemes, which do not coincide, we will adopt a
standard notation and denote by X the underlying scheme to a logarithmic scheme
X.

If C is a site, we denote by Sh C the topos of sheaves of sets on C .
The symbol ♠ will denote the end of a proof or the absence of one.

2.2. Projective and inductive limits of fibered categories. Let C be a cate-
gory. Suppose that I is a filtered partially ordered set, considered as a category. A
projective system (Mi, Fij)of categories fibered over C consists of a strict 2-functor
from Iop to the 2-category of categories fibered over C . Concretely, for each i ∈ I
we have a fibered category Mi → C , with a cartesian functor Fij : Mj →Mi, such
that FijFjk = Fik for every triple (i, j, k) such that i ≤ j ≤ k and Fii = idMi

for
all i (where equality should be interpreted as strict equality).
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Remark 2.1. Of course to give a definition of projective limit one should take a lax
2-functor, or, equivalently, assume that I is a filtered 2-category, i.e., a 2-category
that is equivalent to a filtered partially ordered set. However, for the purposes of
this paper the present context is sufficient.

We define the projective limit lim←−i(Mi, Fij) as in [BV15, Definition 3.5].

Definition 2.2. An object (T, {ξi}, {φij}) of lim←−i Mi = lim←−i(Mi, Fij) consists of

the following data.

(a) An object T of C , and an object ξi of C (T ) for all i ∈ I.
(b) For each pair (i, j) with i ≤ j, an isomorphism φij : Fijξj → ξi in Mi(T ).

These are required to satisfy the following condition: if i ≤ j ≤ k, then

φik = φij ◦ (Fijφjk) : Fikξk −→ ξi .

An arrow (φ, {fi}) : (T ′, {ξ′i}, {φ′ij})→ (T, {ξi}, {φij}) consists of an arrow φ : T ′ →
T in C and an arrow fi : ξ

′
i → ξi in Mi for each i, satisfying the following conditions.

(i) The image of fi in C is φ for all i.
(ii) For each pair (i, j) with i ≤ j, the diagram

Fijξ
′
j Fijξj

ξ′i ξi

Fijfj

φ′ij φij

fi

commutes.

It is easily seen that lim←−i Mi is a fibered category over C . The functor lim←−i Mi →
C is the obvious one, sending (T, {ξi}, {φij}) to T . An arrow (φ, {fi}) is cartesian
if and only if each fi is cartesian. In particular, if each Mi is fibered in groupoids,
then lim←−i Mi is also fibered in groupoids.

Remark 2.3. As pointed out by the referee, one can also see a projective system
of fibered categories over C indexed by I as a fibered category over I × C . The
limit can then be seen as the pushforward of this fibered category to the category
C .

We are also going to use filtered inductive limits, in a slightly more general
situation. Suppose that I is a filtered partially ordered set as above. A lax inductive
system (Ci, Fij) of categories is a lax 2-functor from I to the category of categories.
We define the colimit lim−→I

(Ci, Fij) in the obvious way: the class of objects is the

disjoint union
⊔
I Ob Ci, while if ξi ∈ Ob Ci and ξj ∈ Ob Cj we define Hom(ξi, ξj)

as the colimit lim−→k
HomCk

(Fkiξi, Fkjξj) over the set {k ∈ I | k ≥ i, k ≥ j}.

2.3. Logarithmic schemes, Deligne-Faltings structures and charts. In this
section we outline the theory of logarithmic schemes, using the nonstandard ap-
proach of [BV12].

Assume that X is a scheme, and denote by DivXét
the fibered category over X ét

consisting of pairs (L, s) where L is an invertible sheaf and s is a global section.

Definition 2.4. A Deligne-Faltings structure onX is a symmetric monoidal functor
L : A→ DivXét

with trivial kernel, where A is a sheaf of monoids on the small étale
site X ét.

A logarithmic scheme is a scheme X equipped with a Deligne–Faltings structure.
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We refer the reader to Sections 2.4 and 2.5 of [BV12] for background about
symmetric monoidal categories and functors, and for a full discussion of the above
definition.

The phrase “with trivial kernel” means that for U → X étale, the only section
of A(U) with image isomorphic to the object (OU , 1) is the zero section.

We will denote a logarithmic scheme by (X,A,L) or just X, when the Deligne–
Faltings structure is understood.

Recall that the standard definition of a logarithmic scheme ([Kat89]) is that of
a scheme X with a sheaf of monoids M on X ét, with a morphism α : M → OX
(where OX is a sheaf of monoids with the multiplication) such that the restriction of
α to α−1(O×X) induces an isomorphism α|α−1(O×X) : α−1(O×X)→ O×X . A logarithmic

scheme in this sense is quasi-integral if the natural resulting action of O×X on M is
free.

The link between our definition and the standard notion of a quasi-integral
logarithmic scheme is the following: given a morphism of sheaves of monoids
α : M → OX , one takes the stacky quotient by O×X to obtain a symmetric monoidal

functor L : M → [OX/O
×
X ] ' DivXét

, and sets A = M . In other words, a section
of A is sent by L to the dual La of the invertible sheaf Na, associated to the Gm-
torsor given by the fiber Ma of M →M = A over a (meaning that Na is the sheaf
of sections of the line bundle over X associated to the Gm-torsor Ma), and the
restriction of α to Ma → OX gives the section of La.

In the other direction, starting with a Deligne–Faltings structure L : A→ DivXét

we can take the fibered product A×DivXét
OX → OX , and verify that M = A×DivXét

OX is equivalent to a sheaf.

Remark 2.5. The fact that we are taking a dual in the identification [OX/O
×
X ] '

DivXét
might look unnatural. In fact, we could have worked equally well with the

stack Div′Xét
of line bundles with a map to OX , instead of a global section, and the

natural isomorphism [OX/O
×
X ] ' Div′Xét

does not involve taking any duals.
This choice would for example have the following effect on the treatment of

parabolic sheaves (see [BV12], or Section 7): adding an element p to the index of
the sheaf would correspond to twisting by the line bundle L∨p . If the log structure
is induced by a single effective Cartier divisor D, this would make adding 1 to the
index correspond to twisting by OX(−D), which also looks unpleasant.

We prefer to perform this change of sign right away in the definition of a Deligne–
Faltings structure, and have translation by 1 correspond to twisting by the line
bundle OX(D).

We will denote the logarithmic structure of X by αX : MX → OX , and the
corresponding Deligne–Faltings structure by (AX , LX). When necessary we will
denote by X the bare scheme underlying the logarithmic scheme X.

Definition 2.6. A morphism (A,L)→ (B,N) of Deligne–Faltings structures on a
scheme X is a pair (f, α) where f : A → B is a morphism of sheaves of monoids,
and α : N ◦ f ' M is a monoidal isomorphism of symmetric monoidal functors
A→ DivXét

.

Remark 2.7. If f : Y → X is a morphism of schemes and (A,L) is a Deligne–Falt-
ings structure on X, one defines a pullback Deligne–Faltings structure f∗(A,L) =
(f∗A, f∗L) (see [BV12, Proposition 3.9]). The sheaf of monoids f∗A is, like the
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notation suggests, the usual pullback as a sheaf of sets to Y ét, and if g : Z → Y
is another morphism of schemes, there is a canonical isomorphism g∗f∗(A,L) '
(fg)∗(A,L).

Definition 2.8. A morphism of logarithmic schemes (X,A,L) → (Y,B,N) is a
pair (f, f [), where f : X → Y is a morphism of schemes, and f [ : f∗(B,N)→ (A,L)
is a morphism of Deligne–Faltings structures on X.

Morphisms can be composed in the evident way, and logarithmic schemes form
a category.

Definition 2.9. A morphism of logarithmic schemes (f, f [) : (X,A,L)→ (Y,B,N)
is strict if f [ is an isomorphism.

Strict morphisms are morphisms that do not change the logarithmic structure.
We will be interested only in Deligne–Faltings structures that arise from local

models. Recall that a homomorphism of monoids φ : P → Q is a cokernel if the
induced homomorphism P/φ−1(0) → Q is an isomorphism. A morphism A → B
of sheaves of monoids on X ét is a cokernel if the homomorphism induced on every
stalk is a cokernel.

Definition 2.10. A chart for a sheaf of monoids A on X ét is a homomorphism of
monoids P → A(X) such that the induced map of sheaves PX → A is a cokernel.

A sheaf of monoids A on X ét is coherent if A has charts with finitely generated
monoids locally for the étale topology of X.

A logarithmic scheme (X,A,L) is coherent if the sheaf A is coherent.

Remark 2.11. Equivalently, a chart for a Deligne–Faltings structure (A,L) on X
can be seen as a symmetric monoidal functor P → Div(X) for a monoid P , that
induces the functor L : A → DivXét

(basically by “sheafifying and trivializing the
kernel”, see [BV12, Proposition 3.3] for the precise construction).

This differs from the standard notion of chart for a logarithmic scheme, which
is a morphism of monoids P → OX(X) that induces the logarithmic structure
α : M → OX (see [Kat89, Section 1] for details). We will distinguish the two
notions by calling the standard charts Kato charts. Every Kato chart P → OX(X)
induces a chart by composing with OX(X)→ Div(X).

Moreover one can show that having finitely generated charts étale locally is
equivalent to having finitely generated Kato charts étale locally [BV12, Proposition
3.28].

Remark 2.12. Note that for a monoid P , the scheme SpecZ[P ] has a natural
Deligne–Faltings structure induced by the composition P → Z[P ]→ Div(SpecZ[P ]).

Giving a Kato chart on X with monoid P is the same as giving a strict morphism
of logarithmic schemes X → SpecZ[P ], and giving a chart is the same as giving

a strict morphism X → [SpecZ[P ]/P̂ ], where P̂ is the Cartier dual of P gp, the
action is the natural one, and the Deligne–Faltings structure of the quotient stack
is defined by descent from the one of SpecZ[P ].

From now on SpecZ[P ] and [SpecZ[P ]/P̂ ] will be equipped with these Deligne–
Faltings structures without further mention.

One can show that on a coherent logarithmic scheme, charts can be constructed
by taking as monoid P the stalk of the sheaf A over a geometric point of X. More
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precisely, any geometric point x of X has an étale neighborhood where we have a
chart with monoid Ax ([BV12, Proposition 3.15]).

Using charts one can also describe the logarithmic part of morphisms between
coherent logarithmic schemes by using homomorphisms of monoids.

Definition 2.13. A chart for a morphism of sheaves of monoids A → B on X ét

is given by two charts P → A(X) and Q → B(X) for A and B, together with a
homomorphism of monoids P → Q making the diagram

P Q

A(X) B(X)

commutative.
A chart for a morphism of logarithmic schemes (f, f [) : (X,A,L)→ (Y,B,N) is

a chart for the morphism of sheaves of monoids f∗B → A given by f [.

In other words, a chart for a morphism of logarithmic schemes (f, f [) : (X,A,L)→
(Y,B,N) can be seen as two symmetric monoidal functors P → Div(Y ) and
Q→ Div(X) that are charts for (B,N) and (A,L) respectively, and a morphism of
monoids P → Q inducing f [ : f∗(B,N)→ (A,L).

Definition 2.14. A Kato chart for a morphism (f, f [) : (X,A,L) → (Y,B,N) of
logarithmic schemes is a chart such that the functors P → Div(Y ) and Q→ Div(X)
lift to P → OY (Y ) and Q→ OX(X).

Equivalently a Kato chart can be seen as a commutative diagram of logarithmic
schemes

(X,A,L) SpecZ[Q]

(Y,B,N) SpecZ[P ]

with strict horizontal arrows, and analogously a chart can be seen as such a commu-

tative diagram, with the quotient stacks [SpecZ[P ]/P̂ ] and [SpecZ[Q]/Q̂] in place
of SpecZ[P ] and SpecZ[Q] respectively.

One can show [BV12, Proposition 3.17] that it is always possible to find local
charts for morphisms (X,A,L)→ (Y,B,N) between coherent logarithmic schemes,
and moreover one can take the monoids of the charts to be stalks of the sheaves A
and B.

We recall the definition of fine and saturated logarithmic schemes. These are the
kind of logarithmic schemes we will be interested in.

Recall that a monoid P is integral if the natural homomorphism P → P gp is
injective, or equivalently if p+ r = q+ r in P implies p = q. An integral monoid P
is saturated if whenever for p ∈ P gp we have a positive integer n such that np ∈ P ,
then p ∈ P .

Definition 2.15. A logarithmic scheme (X,A,L) is fine if it is coherent and the
stalks of A are fine monoids (i.e. integral and finitely generated).

A logarithmic scheme (X,A,L) is fine and saturated if it is fine, and the stalks
of A are (fine and) saturated monoids.
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Remark 2.16. Equivalently one can check these conditions on charts, i.e. a loga-
rithmic scheme (X,A,L) is fine (resp. fine saturated) if and only if it is coherent
and it admits local charts by fine (resp. fine and saturated) monoids.

From now on all our logarithmic schemes will be assumed to be fine saturated.

Example 2.17 (Log points). Let k be a field and P a sharp monoid. Then we
have a Deligne–Faltings structure on Spec k given by the functor P → Div(Spec k)
sending 0 to (k, 1) and everything else to (k, 0). This is the logarithmic point on
Spec k with monoid P . If k is algebraically closed, one can show that every fine
saturated Deligne–Faltings structure on Spec k is of this form.

In particular if P = N we obtain what is usually called the standard logarithmic
point (over k).

3. Infinite root stacks of logarithmic schemes

Let X = (X,A,L) be a fine saturated logarithmic scheme, j : A→ B an injective
homomorphism of sheaves of monoids on Xét. With this we associate a category
B√
X = B

√
(X,A,L) fibered in groupoids over (Aff/X), as in [BV12, Definition 4.16],

with the difference that here we do not assume that B has local models given by
fine monoids.

Given a morphism t : T → X, where T is an affine scheme, an object (M,α) of
B√
X(T ) is a pair (M,α), where M : t∗B → DivXét

is a symmetric monoidal functor,
and α : t∗L→M ◦ t∗j is an isomorphism of symmetric monoidal functors from t∗L
to the composite M ◦ t∗j : t∗A→ DivTét

.
An arrow h from (M,α) to (M ′, α′) is an isomorphism h : M →M ′ of symmetric

monoidal functors B → DivTét
, such that the diagram

L

M ◦ t∗j M ′ ◦ t∗j

α′α

h◦j

commutes.
Given a morphism T ′ → T of affine X-schemes there is an obvious pullback func-

tor
B√
X(T )→ B√

X(T ′), which gives a structure of pseudo-functor from (Aff/X) to

groupoids. The associated fibered category is
B√
X.

Remark 3.1. Since logarithmic structures satisfy descent conditions for the Zariski
topology, it is easy to check that for any morphism of schemes T → X (where T is
not necessarily affine), there is an equivalence between the category of morphisms

T → B√
X and pairs (M,α) defined as above.

If the morphism j : A → B is Kummer and B is coherent, then the root stack
B√
X is algebraic [BV12, Proposition 4.19]. This follows from Corollary 3.13 below.

Recall that j is Kummer if for every geometric point x of X, the map jx : Ax → Bx
is a Kummer homomorphism of monoids, i.e. it is injective, and every element of
Bx has a multiple in the image. Moreover if the sheaf B is saturated as well, one
easily checks that

B√
X → X is the coarse moduli space.

There is an obvious variant of this construction, when P → A(X) is a chart for
the logarithmic structure of X and P → Q is a Kummer homomorphism, that we
denote by

Q√
X (see also [BV12, Definition 4.12]). If P → Q is a chart for B → A,
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we have a canonical equivalence
Q√
X ' B√

X of fibered categories over (Aff/X)
[BV12, Proposition 4.18].

If A → B and B → B′ are injective homomorphisms of sheaves of monoids

on Xét, there is a base-preserving functor
B′√
X → B√

X, defined as follows. If

(M ′, α) is an object of
B′√
X(T ), call M the composite B → B′

M ′−−→ DivXét
. Then

the restriction of M to A equals the restriction of M ′, so (M,α) is an object of
B√
X(T ). This, together with the obvious map on arrows, defines a base-preserving

functor
B′√
X → B√

X.

Proposition 3.2. Let A → B, B → B′ and B′ → B′′ be homomorphisms of
sheaves on monoids on (Aff/X). The composite of the induced base-preserving

functors
B′′√

X → B′√
X and

B′√
X → B√

X equals the base-preserving functor
B′′√

X →
B√
X induced by the composite B → B′ → B′′. ♠

Here “equals” really implies equality, not just the existence of an isomorphism.
The proof is a straightforward check.

If n is a positive integer, we set 1
nA

def
= A, while the morphism A → 1

nA is
multiplication by n. We have a maximal Kummer extension of A given by A→ AQ,
where AQ is the sheaf of monoids lim−→n

1
nA. Note that the formation of 1

nA and AQ
is compatible with pullback, i.e. if f : Y → X is a morphism of schemes, then we
have natural isomorphisms f∗ 1

nA '
1
nf
∗A and f∗AQ ' (f∗A)Q.

We define the infinite root stack as the root stack corresponding to this maximal
Kummer extension.

Definition 3.3. The infinite root stack of X is
∞√
X

def
=

AQ
√
X.

We also define
n√
X

def
=

1
n

A√
X. The section a ∈ A(T ) will be denoted by a/n when

it is considered as a section of 1
nA.

As a matter of notation, when we need to specify the logarithmic structure of
the logarithmic scheme X we will use the notations ∞

√
(X,A,L) and n

√
(X,A,L),

or simply ∞
√

(A,L) and n
√

(A,L) when the scheme X is fixed throughout the dis-
cussion.

Formation of root stacks and infinite root stacks commutes with base change.

Proposition 3.4. Let (A,L) be a Deligne–Faltings structure on a scheme X, and
let f : Y → X be a morphism of schemes. Then we have canonical equivalences of
fibered categories

∞
√
f∗(A,L) ' Y ×X

∞
√

(A,L)

and
n
√
f∗(A,L) ' Y ×X

n
√

(A,L)

over Y . ♠

The proof is immediate.
If m and n are positive integers and m | n, we can factor A→ 1

nA as A→ 1
mA→

1
nA, where the homomorphism 1

mA →
1
nA is multiplication by n/m, sending a/m

into (n/m)a
n . This gives a base-preserving functor

n√
X → m√

X.
Let Z+ be the set of positive integer ordered by divisibility. The construc-

tion above gives a strict 2-functor from Z+ to categories fibered in groupoids over
(Aff/X).
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The factorizations A→ 1
nA→ AQ induce base-preserving functors

∞√
X → n√

X,

and a morphism
∞√
X → lim←−n

n√
X.

Proposition 3.5. The morphism
∞√
X → lim←−n

n√
X described above is an equiva-

lence of fibered categories.

Proof. Given a morphism t : T → X, where T is an affine scheme, note prelimi-
narily that there is a natural isomorphism lim−→n

t∗ 1
nA ' t∗AQ of sheaves on Tét.

Consequently, we have

HomX(T, lim←−
n

n√
X) ' lim←−

n

HomX(T,
n√
X)

' lim←−
n

Hom(t∗ 1
nA,DivTét

)

' Hom(lim−→
n

t∗ 1
nA,DivTét

)

' Hom(t∗AQ,DivTét
)

' HomX(T,
∞√
X)

where in the middle lines we are considering the categories of symmetric monoidal
functors. This proves the statement. ♠

Remark 3.6. Suppose that {Bi} is a directed system of subsheaves of monoids of
AQ. We say that {Bi} is cofinal if AQ is the sheaf-theoretic union of the Bi; for
example if A→ B is a Kummer extension, the system { 1

nB}n∈N is cofinal.

The same proof as in Proposition 3.5 shows that
∞√
X = lim←−i

Bi
√
X.

3.1. Local models for infinite root stacks. Let P be a fine saturated monoid,
n a positive integer. Set XP

def
= SpecZ[P ], where Z[P ] is the monoid algebra of

P . Then, as mentioned in 2.3, XP has a canonical fine saturated Deligne–Faltings
structure, that we denote by (AP , LP ). By definition, any fine saturated logarithmic
structure on a scheme X is étale-locally the pullback of (AP , LP ) along a morphism
X → XP , for some P .

We aim at describing the infinite root stack
∞√
XP . For each positive integer n

set
X [n]
p

def
= SpecZ[ 1

nP ];

we will consider X
[n]
p as a scheme over XP , via the ring homomorphism Z[P ] →

Z[ 1
nP ] induced by the embedding P ⊆ 1

nP . We also set

X
[∞]
P

def
= SpecZ[PQ] .

Notice that X
[∞]
P = lim←−nX

[n]
P , where the projective limit is taken on the set of

positive integers ordered by divisibility. Call r the rank of the free abelian group
P gp, and

µn(P )
def
= HomZ

(
1
nP

gp/P gp,Gm

)
the Cartier dual over SpecZ of the finite group 1

nP
gp/P gp ' (Z/nZ)r. Clearly

µn(P ) is isomorphic to µrn as a group scheme over Z.
We also call

µ∞(P )
def
= HomZ

(
P gp
Q /P gp,Gm

)
the Cartier dual of P gp

Q /P gp ' (Q/Z)r; we have a natural isomorphism µ∞(P ) '
lim←−n µn(P ).
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The ( 1
nP

gp/P gp)-grading of Z[ 1
nP ] induced by the tautological 1

nP -grading in-

duces an action of µn(P ) on X
[n]
P . Similarly, µ∞(P ) acts on X

[∞]
P ; the natural

morphism X
[∞]
P → X

[n]
P is µ∞(P )-equivariant, when we let µ∞(P ) act on X

[n]
P via

the projection µ∞(P )→ µn(P ).
Notice that the kernel of the projection µ∞(P )→ µn(P ) equals µ∞( 1

nP ).

Lemma 3.7. The natural homomorphism X
[∞]
P → X

[n]
P induces an isomorphism

X
[∞]
P /µ∞( 1

nP ) ' X [n]
P .

In particular, X
[∞]
P /µ∞(P ) = XP .

Proof. We have µ∞( 1
nP ) = Spec

(
Z[P gp

Q / 1
nP

gp]
)
; the statement above is equivalent

to the statement that the part of degree 0 with respect to the P gp
Q / 1

nP
gp-grading

in Z[PQ] is Z[ 1
nP ]. This follows from the equality PQ ∩ 1

nP
gp = 1

nP , which holds
because P is integral and saturated. ♠

Definition 3.8. The infinite root stack of a fine saturated monoid P is the fpqc

quotient RP
def
= [X

[∞]
P /µ∞(P )].

In other words, RP is the fibered category over (Aff) defined as follows. An
object (T,E, f) of RP , consist of an affine scheme T , a µ∞(P )-torsor E → T

and an equivariant map f : E → X
[∞]
P . An arrow (φ,Φ): (T ′, E′, f ′) → (T,E, f)

consists of a morphisms of schemes φ : T ′ → T and Φ: E′ → E, such that Φ is
µ∞(P )-equivariant, and the diagram

E′ E X
[∞]
P

T ′ T

Φ

f ′

f

φ

commutes.
Given an object (T,E, f) of RP , because of Lemma 3.7 the µ∞(P )-equivariant

map E → X
[∞]
P induces a map T → XP ; this gives a base-preserving functor

RP → (Aff/XP ). So RP is a fibered category over XP .

Remark 3.9. Note that if {Gi → S}i∈I is a projective system of affine group
schemes of finite type and G := lim←−Gi, then the isomorphism classes of G-torsors
on S form a set. Here is a sketch of proof: if T → S is a G-torsor, we obtain a
projective system of Gi-torsors T ×G Gi → S, and T = lim←−i(T ×

G Gi). Hence T is

a projective limit of schemes of finite type over S indexed by I, and this limits its
size.

We are aiming at the following result.

Proposition 3.10. We have an equivalence
∞√
XP ' RP of fibered categories over

XP .

Remark 3.11. This clarifies the nature of infinite root stacks considerably. On
the one hand, we see that they are not algebraic stacks in the usual sense. On the
other hand, étale-locally on X they are projective limits of tame algebraic stacks,
in the sense of [AOV08]. This makes them very concrete and possible to study.
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Let us start from the following lemma, which is an analogue of Proposition 4.18
of [BV12].

Lemma 3.12. Let (X,A,L) be a logarithmic scheme with a chart P → A(X).
Then the fibered category on Xét of liftings of P → Div(X) to a symmetric monoidal

functor PQ → Div(−) is equivalent to the infinite root stack ∞
√

(X,A,L).

Proof. The category of liftings in the statement can be seen as the inverse limit of
the categories of liftings of P → Div(X) to a symmetric monoidal functor 1

nP →
Div(−). By [BV12, Proposition 4.18], this latter category of liftings is equivalent

to the n-th root stack n
√

(X,A,L). These equivalences are compatible with the
structure maps of the two inverse systems, and hence the statement follows. ♠

We thank the referee for suggesting the following short proof of Proposition
3.10.

Proof of Proposition 3.10. By the previous lemma, we can identify
∞√
XP with the

fibered category on (XP )ét of liftings of P → Div(XP ) to a symmetric monoidal
functor PQ → Div(−).

Note that there is a morphism X
[∞]
P → ∞√

XP , given by the natural symmetric

monoidal functor PQ → O
X

[∞]
P

→ Div(X
[∞]
P ) lifting P → Div(XP ). Then, if

T → ∞√
XP is a morphism corresponding to a lifting PQ → Div(T ) of P → Div(T ),

then the lifts to a map T → X
[∞]
P correspond to choices of a trivialization of

PQ → Div(T ) → (BGm)(T ), lifting the natural trivialization of P → Div(XP ) →
(BGm)(XP ). These liftings exist locally in T , and any two of them differ by a
homomorphism P gp

Q /P gp → Gm, so they form a torsor under µ∞(P ). Hence we

have an equivalence
∞√
XP ' [X

[∞]
P /µ∞(P )]. ♠

From this description and the fact that root stacks are compatible with strict
base-change (Proposition 3.4) we get the following corollary, which gives a local
description of root stacks of a general fine saturated logarithmic scheme.

Corollary 3.13. Let X be a fine saturated logarithmic scheme with a Kato chart
P → OX(X), corresponding to a strict morphism X → XP . Then we have isomor-
phisms

n√
X ' [(X ×XP

X
[n]
P )/µn(P )]

and
∞√
X ' [(X ×XP

X
[∞]
P )/µ∞(P )]

of stacks over X. ♠

3.2. Abstract infinite root stacks. Now we introduce an “abstract” definition
for an infinite root stack over a scheme X. We will ultimately prove that these
are the same objects as infinite root stacks of Deligne–Faltings structures over X,
but this alternative definition will give a convenient framework for describing the
procedure that recovers the logarithmic structure from the infinite root stack.

Definition 3.14. If X is a scheme, an infinite root stack on X is a stack R on
(Aff/X) with the étale topology, such that there exists an étale covering {Ui → X},
and for each i a morphism fi : Ui → SpecZ[Pi], where Pi is a fine saturated monoid,
and an equivalence Ui ×X R ' Ui ×SpecZ[Pi] RPi

of stacks over Ui.
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If f : R → X is a base-preserving functor of stacks in the étale topology on
(Aff), we say that R is an infinite root stack over X if for any affine scheme T and
any object of X (T ), the fibered product T ×X R is an infinite root stack over T .

Note that in the definition above Ui ×SpecZ[Pi] RPi
is the infinite root stack of

the logarithmic structure on Ui given by pullback from SpecZ[Pi] (by 3.4). An
explicit quotient presentation for this stack was just described in Corollary 3.13.

Remark 3.15. It is obvious from the definition that if R is an infinite root stack
over a scheme X and Y → X is a morphism of schemes, the pullback Y ×X R is
an infinite root stack over Y . Since the property of being an infinite root stack is
clearly local in the étale topology, we see that R is an infinite root stack over a
scheme X if an only if it is an infinite root stack over (Aff/X). In other words, the
second part of the definition generalizes the first.

Proposition 3.16. Let (A,L) be a fine saturated Deligne–Faltings structure on a

scheme X. Then ∞
√

(A,L) is an infinite root stack over X. More generally, the

morphism ∞
√

(A,L) → n
√

(A,L) makes ∞
√

(A,L) into an infinite root stack over
n
√

(A,L).

Proof. It follows easily from étale descent of logarithmic structures that ∞
√

(A,L)

and n
√

(A,L) are stacks in the étale topology.

The fact that ∞
√

(A,L) → X is an infinite root stack follows immediately from
Proposition 3.10.

Let us check that ∞
√

(A,L) is an infinite root stack over n
√

(A,L). Let T be an

affine scheme, T → n
√

(A,L) a morphism, corresponding to a morphism f : T → X
and a Deligne–Faltings structure ( 1

nf
∗A,M) on T . It is clear from the definition

that the fibered product T ×n
√

(A,L)

∞
√

(A,L) is equivalent to ∞
√

( 1
nf
∗A,M), reduc-

ing the second statement to the first. ♠

We will need a description of the geometric fibers of an infinite root stack, or,
equivalently, a description of an infinite root stack over an algebraically closed field.

Let P a sharp fine saturated monoid, and k a field. We will denote by ∞
√
P/k

the infinite root stack of the logarithmic point on k with monoid P (Example 2.17),
i.e. the Deligne–Faltings structure (A,L) on Spec k, where A is the constant sheaf
of monoids on (Spec k)ét corresponding to P , and L : A→ Div(Spec k)ét

corresponds
to the homomorphism Λ: P → k that sends 0 to 1 and everything else to 0.

In other words ∞
√
P/k is the fibered product Spec k×SpecZ[P ]RP , where Spec k →

SpecZ[P ] corresponds to the ring homomorphism Z[P ]→ k determined by Λ. Or,
again, by Corollary 3.13 we have

∞
√
P/k =

[
Spec(k[PQ]/(P+))/µ∞(P )

]
where P+ def

= P r{0}, and the action of µ∞(P ) on Spec(k[PQ]/(P+)) is determined
by the natural P gp

Q /P gp-grading on k[PQ]/(P+).

The reduced substack (∞
√
P/k)red is the classifying stack

Bkµ∞(P ) =
[
Spec k/µ∞(P )

]
.

If k is algebraically closed, every logarithmic structure on Spec k is of the form
above. Since every infinite root stack comes étale-locally from a logarithmic struc-
ture, and the étale topology on Spec k is trivial, we obtain the following.
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Proposition 3.17. If k is an algebraically closed field, an infinite root stack over
Spec k is of the form ∞

√
P/k for some sharp fine saturated monoid P .

Let π : X → X be a category fibered in groupoids on a scheme X. If U ⊆ X is
an open substack, the inverse image π−1(U)

def
= U ×X X is an open substack of X .

We say that π is a homeomorphism if this gives a bijective correspondence between
open subschemes of X and open substacks of X . We say that π is a universal
homeomorphism if for any morphism Y → X, the projection Y ×X X → Y is a
homeomorphism.

Definition 3.18. Let X be a category fibered in groupoids over (Aff). An fpqc
atlas U →X is a map from a scheme U that is representable by fpqc maps (in the
sense of [Vis05, Definition 2.34]).

Here are some important properties of infinite root stacks, which we collect in
the following Proposition.

Proposition 3.19. Let π : R → X be an infinite root stack.

(a) The morphism π is a universal homeomorphism for the Zariski topology.
(b) If Ω is an algebraically closed field, π induces a bijection between isomorphism

classes in R(Ω) and X(Ω).
(c) If T is a scheme, any morphism R → T factors through a unique morphism

X → T .
(d) The diagonal R → R ×X R is affine.
(e) The fibered product of two schemes over R is a scheme.
(f) The stack R has an fpqc atlas.

Properties (b) and (c) are usually expressed by saying that X is the moduli space
of R.

Remark 3.20. One can show that property (c) also holds when T is an algebraic
space. We omit the proof, as this fact won’t be needed in this paper.

Proof of Proposition 3.19.

Proof of (b). We can base change and assume that X = Spec Ω, with Ω an alge-

braically closed field. Then by Proposition 3.17 R is of the form R = ∞
√
P/Ω, so

that R(Ω) ' (Rred)(Ω) ' (BΩµ∞(P ))(Ω). Since µ∞(P ) is profinite and Ω is alge-
braically closed, every µ∞(P )-torsor is trivial, so R(Ω) has only one isomorphism
class, which is exactly what we need.

Proof of (a). First of all, being an infinite root stack is a stable property under base
change, so it is enough to prove that π : R → X is a homeomorphism.

The morphism π : R → X is an fpqc cover, hence it satisfies descent for open
substacks. But the two projections R×XR → R are bijective on geometric points,
by (b), and they have continuous sections, hence they are homeomorphisms. So
R → X is a homeomorphism, as claimed.

Proof of (c). Let f : R → T be a morphism. Assume that T and X are affine,
and that R is a pullback X ×XP

RP for a certain map X → XP , where P is a
fine saturated monoid. Then the result follows immediately from the facts that

R =
[
(X ×XP

X
[∞]
P )/µ∞(P )

]
and (X ×XP

X
[∞]
P )/µ∞(P ) = X.

In the general case, take a covering {Ta} of T by affine open subschemes. By (a)
the open substack f−1(Ta) ⊆ R is the inverse image π−1(Va) of an open subscheme
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Va ⊆ X. Let {Ui → X} be an étale covering of X such that for each i the image
of Ui in X is contained in some Va, and the pullback Ui ×X R comes from a map
Ui → XPi . Then it follows from the previous case that for each i the composite
RUi

→ R → T factors uniquely through Ui. By étale descent of morphisms to T ,
this proves the uniqueness of the factorization R → X → T . On the other hand
this uniqueness applied to the fibered products Ui×X Uj shows that the composites

Ui ×X Uj
pr1−−→ Ui → T and Ui ×X Uj

pr2−−→ Uj → T are equal, so the maps Ui → T
glue to a map X → T , which gives the required factorization.

Proof of (d). This is a local problem in the étale topology of X, so we may assume
that X is affine, and that R is of the form X ×XP

RP for some fine saturated

monoid P and some map X → XP . Set once again Z
def
= X ×XP

X
[∞]
P , so that

R = [Z/µ∞(P )]. Then the diagonal R → R ×X R corresponds to the morphism

[Z/µ∞(P )] −→ [Z ×X Z/µ∞(P )× µ∞(P )]

induced by the diagonals Z → Z×X Z and µ∞(P )→ µ∞(P )×µ∞(P ). Hence the
result follows from Lemma 3.21 below.

Proof of (e). This follows formally from (d).

Proof of (f). Let {Ui → X} be an étale covering such that each pullback Ui×X R is
obtained as Ui×XPi

RPi for a certain map Ui → XPi for some fine saturated monoid

Pi. Set Zi
def
= Ui ×XPi

X
[∞]
Pi

, so that Ui ×X R = [Zi/µ∞(Pi)]. Set X ′
def
=
⊔
i Ui and

U
def
=
⊔
i Zi. The natural morphism U → X ′ ×X R is affine and faithfully flat,

while the projection X ′ ×X X → R is étale and surjective. Hence, the composite
U → X ′ ×X R → R is fpqc. ♠

Lemma 3.21. Let G be a diagonalizable group scheme over a ring R, and H ⊂ G
a diagonalizable subgroup scheme. Suppose that X and Y are schemes over R, that
G acts on X, H acts on Y , and f : Y → X is an H-equivariant affine morphism
of R-schemes. Then the induced morphism [Y/H] → [X/G] is representable and
affine.

Furthermore, if the quotient G/H and the morphism Y → X are finitely pre-
sented, then [Y/H]→ [X/G] is also finitely presented.

Proof. Since fpqc descent for affine maps is effective, we have the following fact.
Suppose that F and G are stacks for the fpqc topology of (Aff/R), where R is
a ring, and Φ: G → F is a base-preserving functor. Assume that there exists
a representable fpqc cover X → F , where X is a scheme, such that G ×F X is
represented by schemes that are affine over X. Then Φ is is representable and
affine.

For the proof of the Lemma, notice that we have a cartesian diagram

[Y/H] [X/H] [X/G]

BRH BRG

hence it is enough to show that [Y/H]→ [X/H] and BRH → BRG are affine.
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For the first, we have a cartesian diagram

Y X

[Y/H] [X/H] .

For the second, the point is that the stack quotient [G/H] = G/H is represented
by an affine diagonalizable group scheme, and the diagram

[G/H] SpecR

BRH BRG

is cartesian. ♠

4. Quasi-coherent and finitely presented sheaves
on infinite root stacks

This section is dedicated to a discussion of quasi-coherent sheaves on an infinite
root stack. We start off by considering quasi-coherent sheaves on an arbitrary
fibered category, and then step by step we specify the situation to an infinite root
stack over a scheme, as defined in 3.2.

4.1. Quasi-coherent sheaves on fibered categories. Let pX : X → (Aff) be a
category fibered in groupoids. Define the presheaf OX : X op → (Ring) by sending
an object ξ ∈ X into O(pX ξ). A presheaf of OX -modules is defined in the
obvious way: it is a functor F : X op → (Ab) with a structure of O(pX ξ) module
on each F (ξ), such that if φ : η → ξ is an arrow, the corresponding homomorphism
φ∗ : F (ξ)→ F (η) is linear with respect to the ring homomorphism φ∗ : O(pX η)→
O(pX ξ).

There is an obvious notion of homomorphism of presheaves of OX -modules; the
resulting category of OX modules is an abelian category, denoted by Mod X .

The category Mod X has an obvious symmetric monoidal structure given by
tensor product: if F and G are presheaves of OX -modules, we define F ⊗OX G via
the rule (F ⊗OX G)(T ) = F (T )⊗O(T ) G(T ).

Remark 4.1. In this paper we are not concerning ourselves with set-theoretic
difficulties; however, it is hard to ignore the fact that the category Mod X is not
locally small, and we don’t see a general method for reducing its size. Fortunately,
this problem does not arise with quasi-coherent sheaves on stacks with an fpqc
atlas, which are the only ones that really interest us.

The following is the definition of quasi-coherent sheaf used in [KR00].

Definition 4.2. A presheaf of OX -modules F is quasi-coherent if for every arrow
η → ξ in X , the induced homomorphism O(pX η) ⊗O(pX ξ) F (ξ) → F (η) is an
isomorphism.

Remark 4.3. The category of quasi-coherent (pre)sheaves on X is a full additive
subcategory QCoh X of Mod X . It is also a monoidal subcategory, because it
is easy to see that tensor products of quasi-coherent sheaves are quasi-coherent.
However, kernels of homomorphism of quasi-coherent presheaves in Mod X are not
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necessarily quasi-coherent, so it is not clear to us (and probably not true) that
QCoh X is abelian in general.

Alternatively, a presheaf F is quasi-coherent if for every affine scheme U and
every object of X (U), the pullback of F to (Aff/U) via the corresponding base-
preserving functor (Aff/U)→X is isomorphic to the presheaf defined by an O(U)-
module.

Here is an alternative definition. Call (QCoh) the fibered category of quasi-
coherent sheaves over (Aff). A clean way is to think of (Aff) as the dual of the
category of commutative rings, and define (QCoh) as the dual of the category of
modules, in the following sense. An object of (QCoh) is a pair (A,M), where A
is a commutative ring and M is an A-module. An arrow from (B,N) to (A,M)
is a pair (φ,Φ), where φ : A → B is a ring homomorphism, and Φ: M → N is a
homomorphism of groups that is φ-linear.

The category (QCoh) is fibered over (Aff); an arrow (B,N) → (A,M) is carte-
sian if and only if the induced homomorphism B ⊗AM → N is an isomorphism.

Then an OX -module corresponds to a base-preserving functor X → (QCoh) of
categories fibered over (Aff). Such a functor is quasi-coherent if and only if it is
cartesian.

Remark 4.4. Any topology on (Aff) induces a topology on X : a set of arrows
{ξi → ξ} is a covering if their images {pX ξi → pX ξ} are a covering. In particular,
we have fpqc, fppf, étale and Zariski topologies on X .

Remark 4.5. Descent theory for modules easily implies that a quasi-coherent sheaf
on a fibered category is a sheaf in the fpqc topology. This justifies the terminol-
ogy “quasi-coherent sheaf” as opposed to the more cumbersome “quasi-coherent
presheaf”.

Suppose that X and Y are categories fibered in groupoids over (Aff), and
let f : Y → X be a base-preserving functor. There is an obvious pullback map
f∗ : Mod X → Mod Y sending each presheaf F of OX into the presheaf η 7→
F (fη); this sends QCohX into QCohY . Furthermore, we have f∗OX = OY

tautologically.
Suppose that X has an fpqc atlas U → X (Definition 3.18). Then the fibered

product R
def
= U ×X U is represented by a scheme, and we obtain an fpqc groupoid

R⇒ U . We consider the category QCoh (R⇒ U) of quasi-coherent sheaves F on
U (in the classical sense) with descent data pr∗2 F ' pr∗1 F .

The following is a standard application of fpqc descent.

Proposition 4.6. Let X and R⇒ U be as above. Then we have an equivalence
of additive categories of QCoh X with QCoh (R⇒ U).

In particular, if X is a scheme the category of quasi-coherent sheaves on (Aff/X)
is equivalent to the category of quasi-coherent sheaves on X. ♠

Since QCoh (R⇒ U) is clearly abelian, we have the following.

Corollary 4.7. If X has an fpqc atlas, the category QCoh X is abelian. ♠

Remark 4.8. The category QCoh (R⇒ U) is locally small, so in each of the fol-
lowing proofs we can take the stacks X with an fpqc atlas and substitute a locally
small category for QCoh X .
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We are going to use the following particular case of Proposition 4.6. If G is
an affine group scheme over Z acting an on a ring R, we define an equivariant R-
module as an R-module M with an action of G, such that for every ring A, every
r ∈ R⊗Z A, m ∈M ⊗Z A, and g ∈ G(A), we have (gr)(gm) = g(rm).

Proposition 4.9. Suppose that X = SpecA is a affine scheme, G an affine group
scheme over Z acting on X. Then there is an equivalence of tensor categories
between QCoh [X/G] and the category of G-equivariant A-modules. ♠

Let X be a category fibered in groupoids over (Aff) and F be a sheaf of OX

modules. We define F (X ) = H0(X , F ) to be HomOX (OX , F ) = limX F . This is
a (large) module over the commutative ring O(X )

def
= OX (X ). It is easy to see

that O(X ) can also be seen as the ring of base-preserving functors X → A1
Z.

Let f : Y → X be a base-preserving functor of categories fibered in groupoids
over (Aff). The pullback functor f∗ : Mod X → Mod Y induces a homomorphism

F (X ) = HomOX (OX , F )
f∗−→ HomOY (f∗OX , f∗F ) = (f∗F )(Y ) .

Given a sheaf of OY -modules G, we can also define a sheaf of OX -modules f∗G
as follows. For each affine scheme T and each object ξ of X (T ) we consider the
fibered product

YT
def
= (Aff/T )×X Y ,

where the morphism (Aff/T )→X corresponds to ξ, with the projection πT : YT →
Y . We define f∗G(T )

def
= (π∗TG)(YT ). The natural homomorphism O(T )→ O(YT )

makes f∗G(T ) into an O(T )-module, and the obvious arrows make f∗G into a sheaf
of OX -modules.

In what follows we will shorten (π∗TG)(YT ) into G(YT ); this should not give rise
to confusion.

Let φ : G′ → G be a morphism of sheaves of OY -modules; this induces a homo-
morphism f∗φ : f∗G

′ → f∗G. If we ignore set-theoretic problems, we have defined
an additive functor f∗ : Mod Y → Mod X , which is easily checked to be a left
adjoint to f∗ : Mod X → Mod Y .

Wishing to be a little more careful, assume that Y has an fpqc atlas U → Y ,
that the diagonal X → X ×X is representable, and that G is quasi-coherent.
Then UT

def
= T ×Y U is a scheme, and the projection UT → YT is an fpqc atlas.

Hence the pullback f∗G(T )
def
= G(YT ) → G(UT ) is injective. On the other hand

G(UT ) is in canonical bijection with the set of global sections of the restriction of
G to the Zariski site of UT . This allows us to replace G(UT ) with a set, defining
a functor f∗ : QCoh Y → Mod X , with the property that for every sheaf of OX -
module F there is a canonical isomorphism HomOY (f∗F,G) ' HomOX (F, f∗G)
that is functorial in F and in G.

This proves the following.

Proposition 4.10. Let f : Y →X be a base-preserving functor between categories
fibered in groupoids over (Aff). Assume that Y has an fpqc atlas and the diagonal
X →X ×X is representable. Then there exists an additive functor

f∗ : QCoh Y −→ Mod X

with the property that for every quasi-coherent sheaf G in Y and every presheaf of
OX modules F , there is a canonical isomorphism

HomOY (f∗F,G) ' HomOX (F, f∗G)
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that is functorial in F and in G. ♠

Remark 4.11. When X is a scheme, the category ModX
def
= Mod(Aff/X) is much

larger than the category of OX -modules on the small Zariski site of X, even though
the corresponding subcategories of quasi-coherent sheaves are equivalent.

Also, if G is a quasi-coherent coherent sheaf on X, the pushforward f∗G is not
necessarily quasi-coherent, even if f : Y → X is, for example, a proper map of
noetherian schemes. In fact, f∗G is quasi-coherent if and only if the restriction of
f∗G to the small Zariski site of X is quasi-coherent, and the formation of f∗G in
the Zariski topology commutes with base change.

There is an alternate definition of the category of quasi-coherent sheaves. Recall
that if C is a site with a sheaf OC of commutative rings, a sheaf of OC -modules
is quasi-coherent if it has local presentations, that is, for any object ξ there is a
covering {ξi → ξ}, such that the restriction F |(C/ξi) to the comma site (C /ξi) is

the cokernel of a homomorphism of free sheaves O⊕B(C/ξi)
→ O⊕A(C/ξi)

, where the sets

A and B are not necessarily finite. To avoid confusion, we will refer to such sheaves
as sheaves with local presentations.

We will use the following lemma.

Lemma 4.12. Let C be a site with finite fibered products and a sheaf of rings
OC . Let D ⊆ C be a full subcategory closed under fibered products, considered as a
ringed site with the induced topology, and the restriction OD of OC . Suppose that
each object ξ of C has a covering {ηi → ξ} in which each ηi is in D . Then the
embedding D ⊆ C induces an equivalence of topoi of sheaves of sets on C and D ,
and an equivalence of the categories of sheaves with local presentations on C and
on D .

Proof. From [Sta14, Tag 039Z]) we see that the embedding D ⊆ C induces an
equivalence of topoi. The second result follows easily. ♠

We will consider X as a site with the fpqc topology (Remark 4.4). This site can
be enlarged in two ways.

One is the category Xsch whose objects are morphisms U → X , where U is
a scheme. The arrows from U → X to V → X are isomorphism classes of 2-
commutative diagrams

U V

X

There is an obvious fpqc topology on Xsch (a set of arrows {(Ui →X )→ (U →
X )} is an fpqc covering if the corresponding set of morphisms {Ui → U} is an fpqc
covering).

The 2-categorical version of Yoneda’s lemma gives a fully faithful functor X →
Xsch.

The other is the category Xrep, each of whose objects consist of a category
fibered in groupoids A and a representable base-preserving functor A → X . An
arrow from A →X to B →X consists of an isomorphism class of 2-commutative
diagrams

A B

X



24 MATTIA TALPO AND ANGELO VISTOLI

Let us define the fpqc topology on the categoryXrep. Given a set {Ai →X }i∈I
of representable base-preserving functors, we denote by

⊔
i∈I A →X the object of

X whose fibers over an affine scheme T are the disjoint union of the fibers of the
Ai →X . More precisely, an object ({Ti, ξi}) of

⊔
i∈I Ai over an affine scheme T is

a set of open and closed subschemes Ti ⊆ T such that T =
⊔
i Ti, and ξi ∈ Ai(Ti).

The arrows are defined in the obvious way.
Then an fpqc covering {(Ai →X )→ (A →X )}i∈I is a set of maps such that

the induced morphism
⊔
i∈I Ai → A is fpqc (it is automatically representable).

The category Xrep comes equipped with a natural structure sheaf OXrep , which
restricts to the structure sheaf OX on X . This associates with every representable
map A →X the ring O(A ).

The category Xsch is a full subcategory of Xrep.

Proposition 4.13. Let X be a category fibered in groupoids on (Aff) with an fpqc
atlas U → X ; set R

def
= U ×X U . Then we have equivalences of additive tensor

categories among the following.

(a) The category QCoh (R⇒ U) of quasi-coherent sheaves with descent data on the
groupoid R⇒ U .

(b) The category QCoh X of quasi-coherent sheaves on X .
(c) The category of sheaves with local presentations on the site X with the fpqc

topology.
(d) The category of sheaves with local presentations on the site Xsch with the fpqc

topology.
(e) The category of sheaves with local presentations on the site Xrep with the fpqc

topology.

We thank the referee for suggesting a simplification in the last step of the proof.

Proof. We have already discussed the equivalence between (a) and (b).
Consider the fully faithful functor X → Xsch; this preserves fibered products.

Since every scheme has an fpqc cover by affine schemes, from Lemma 4.12 we obtain
an equivalence between (c) and (d). An analogous argument with the fully faithful
functor Xsch →Xrep give the equivalence of (d) and (e).

Let us produce an equivalence between (b) and (c); more precisely, let us show
that a presheaf of OX -modules F : X op → (Ab) is quasi-coherent if and only if it
is an fpqc sheaf with local presentations. The fact that F is an fpqc sheaf follows
easily from descent theory (see Remark 4.5).

Let us show that it has local presentations.
Suppose that ξ is an object of X , and set T

def
= pX ξ. Choose a presentation

O(T )⊕B → O(T )⊕A → F (ξ) → 0 of F (ξ) as an O(T )-module. This extends
uniquely to a sequence

O⊕B(X /ξ) −→ O⊕A(X /ξ) −→ F |(X /ξ) −→ 0 .

Since F is quasi-coherent and tensor product is right exact, it follows that the
sequence of sheaves above is exact, which gives a local presentation for F .

Let us remark that this gives an embedding of QCoh X into the category of
sheaves of OX -modules in the fpqc topology. We claim that this embedding is
right exact, that is, it preserves cokernels. This is clear when X is a scheme, and
is easily reduced to this case using the atlas U →X .
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Conversely, let F : X op → (Ab) be an fpqc sheaf of OX -modules with local
presentations. Suppose that η → ξ is an arrow in X ; denote by V → T its image
in (Aff). We need to show that the corresponding homomorphism

(4.1) O(V )⊗O(T ) F (ξ) −→ F (η)

is an isomorphism. This will be done in two steps.

Step 1. It is straightforward to check that (4.1) holds when F = O⊕AX is a
free sheaf (not necessarily of finite type): by definition every fpqc covering of an
affine scheme has a finite subcovering, and so we have F (ξ) = O(pX ξ)⊕A for every
object ξ of X . Since the embedding of QCoh X into the category of sheaves of
OX -modules in the fpqc topology preserves cokernels, our conclusion is also true
for a cokernel of a homomorphism of sheaves O⊕BX → O⊕AX . We can conclude that
if the restriction of F to the comma category (X /ξ) has a finite presentation, (4.1)
is an isomorphism.

Step 2. Now notice that the presheaf η 7→ O(V )⊗O(T )F (ξ) on the site (X /ξ) is
quasi-coherent (this is an easy check). Therefore, by Remark 4.5, it is a sheaf. As
η 7→ F (η) is also a sheaf on the same site, to verify that the map O(V )⊗O(T )F (ξ)→
F (η) is an isomorphism is a local problem on ξ, and hence we can replace ξ with a
covering where F has a presentation. This reduces the general case to the previous
step. ♠

Definition 4.14. Let X be a category fibered in groupoids on (Aff). A sheaf F of
OX -modules is called finitely presented if it is quasi-coherent, and for each object
ξ of X (T ), the corresponding O(T )-module F (ξ) is finitely presented.

We will denote by FP X the full subcategory of QCoh X consisting of finitely
presented sheaves. We have the following obvious variant of Proposition 4.13.

Proposition 4.15. Let X be a category fibered in groupoids on (Aff) with an
fpqc atlas U → X . Then we have equivalences of additive categories among the
following.

(a) The category FP X of finitely presented sheaves on X .
(b) The category of finitely presented sheaves on the site X with the fpqc topology.
(c) The category of finitely presented sheaves on the site Xsch with the fpqc topology.
(d) The category of finitely presented sheaves on the site Xrep with the fpqc topology.

4.2. Quasi-coherent sheaves on an infinite root stack. In this short subsec-
tion we specialize the general theory to infinite root stacks, and collect some results
that will be useful later.

We are going to need the following.

Proposition 4.16. Let X be a stack on (Aff) with an fpqc atlas, and π : R →X
an infinite root stack. Let F be a quasi-coherent sheaf on X and G a quasi-coherent
sheaf on R.

(a) The pushforward π∗G is a quasi-coherent sheaf on X .
(b) The pushforward π∗ : QCoh R → QCoh X is exact.
(c) If G is finitely presented, then π∗G is finitely presented.
(d) The canonical homomorphism OX → π∗OR is an isomorphism.
(e) (Projection formula for infinite root stacks) The natural morphism F ⊗OX

π∗G→ π∗(π
∗F ⊗OR G) is an isomorphism.

(f) The unit homomorphism F → π∗π
∗F is an isomorphism.
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Proof. All the statements are local in the fpqc topology, so we may assume that
X = X = SpecR, where R is a ring, and R = X ×XP

RP for some fine saturated
monoid P and some map X → XP . Set A

def
= R ⊗Z[P ] Z[PQ], G

def
= µ∞(P ), so that

R = [SpecA/G] by Corollary 3.13. By Lemma 3.7 we have R = AG. The quasi-
coherent sheaf F corresponds to anR-moduleM , while by Proposition 4.9 the quasi-
coherent sheaf G corresponds to a G-equivariant A-module N . The pushforward
π∗ corresponds to the R-module NG. Thus, the proposition can be translated into
algebraic terms (we omit the translation of (d), which becomes tautological).

(a) If R→ S is a homomorphism of rings, the natural homomorphism S⊗RNG →
(S ⊗R N)G is an isomorphism.

(b) The functor N 7→ NG is exact.
(c) If N is finitely presented on A, then NG is finitely presented over R.
(e) The natural homomorphism M ⊗R (NG)→ (M ⊗R N)G is an isomorphism.
(f) The natural homomorphism M → (M ⊗R A)G is an isomorphism.

Since G is diagonalizable, every abelian group with an action of G decomposes
as a sum of eigenspaces; this is easily seen to imply (a), (b), (e) and (f). We have
only left to prove (c).

The character group Ĝ equals P gp
Q /P gp, and we have a decomposition A =

⊕λ∈P gp
Q /P gpAλ. For each λ ∈ P gp

Q /P gp let A(λ) be the A-module A with the G-

action defined by the grading A(λ)µ = Aλ+µ.
Consider the decomposition N = ⊕λ∈P gp

Q /P gpNλ; the A module N is generated as

an A-module by a finite number of homogeneous elements of degrees, say, λ1, . . . λr,
so N is a quotient of

⊕r
i=1A(−λi). The kernel of the surjection

⊕r
i=1A(−λi)→ N

is also finitely generated, so we have a presentation

s⊕
j=1

A(−µj) −→
r⊕
i=1

A(−λi) −→ N −→ 0 .

By taking invariants we obtain a presentation

s⊕
j=1

A−µj −→
r⊕
i=1

A−λi −→ NG −→ 0 .

Hence it is enough to show that each Aλ is finitely presented as an R-module. Since
Aλ = R ⊗Z[P ] Z[PQ]λ it is enough to show that Z[PQ]λ is finitely presented as a
Z[P ]-module. Since Z[P ] is noetherian, it is enough to prove that Z[PQ]λ is finitely
generated. Moreover, we can identify Z[PQ]λ with the free abelian group generated
by Pλ

def
= {p ∈ PQ | [p] = λ ∈ P gp

Q /P gp}. If v1, . . . vm is a set of generators of P
giving a basis of P gp, and

S
def
= {a1v1 + · · ·+ amvm | ai ∈ Q, 0 ≤ ai < 1 for all i} ,

it is clear that Z[PQ]λ is generated by {ta | a ∈ S ∩ Pλ}, as a Z[P ]-module: given
a monomial ta with a ∈ Pλ, write a = a1v1 + · · ·+ amvm with ai ≥ 0 for all i, and
note that for every index we can subtract off the vector vi until the corresponding
coefficient is non-negative and strictly less than 1. We end up with an element of
the form tp · ta′ , with p ∈ P and a′ ∈ S∩Pλ, and this implies the claim made above.
Now S is bounded in P gp

Q and Pλ is discrete, so S ∩Pλ is finite. This completes the
proof of Proposition 4.16. ♠
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Unfortunately, finitely presented sheaves on an infinite root stack ∞
√

(X,A,L)
are not as well-behaved as one would wish. Specifically, we do not believe that they
form an abelian category; the reason for this is that the ringed site ∞

√
(X,A,L) is

not coherent, in general, even over noetherian schemes. This issue is discussed in
[Niz08] in the context of quasi-coherent sheaves in the Kummer-flat site.

Recall that a sheaf of commutative rings O on a site C is coherent when for
any object T of C , every finitely generated sheaf of ideals on the restriction of O
to (C /T ) is finitely presented. This condition ensures that all finitely presented
sheaves of O-modules have the corresponding property, and that they form an
abelian category.

Example 4.17. Let P be the submonoid of Q3 generated by e1
def
= (1, 0, 0), e2

def
=

(0, 1, 0), e3
def
= (0, 0, 1) and e4

def
= e2 + e3 − e1; then P is sharp, fine and saturated.

The associated rational cone PQ ⊆ Q3 is given by the inequalities

PQ = {(a1, a2, a3) ∈ Q3 | a1 ≥ 0, a2 ≥ 0, a1 + a3 ≥ 0, a2 + a3 ≥ 0}.
Let k be a field, and set X = Spec k[P ]. Let R be the infinite root stack

of the usual logarithmic structure on X; by Proposition 3.10 we have that R =
[Spec k[PQ]/µ∞(P )]. We will show that OR is not coherent.

Set R
def
= k[PQ], and let xi = xei ∈ R be the element corresponding to ei. The

sheaves of ideals of OR correspond to ideals in R that are homogeneous with respect
to the natural P gp

Q /P gp-grading. Let I = (x1, x3) ⊆ R; we will show that I is not
finitely presented, by showing that the kernel

K = {(f1, f3) ∈ R2 | x1f1 + x3f3 = 0}
of the presentation of I is not finitely generated.

To check this, we will show that its image J ⊆ R along the first projection
R2 → R is not finitely generated. Since J is a homogeneous ideal, it corresponds
to an ideal A ⊆ PQ, the set of degrees of non-zero elements in J .

We claim we can describe A as the set of a ∈ PQ such that a− e3 + e1 ∈ PQ, or
equivalently as

A = {(a1, a2, a3) ∈ Q3 | a1 ≥ 0, a2 ≥ 0, a1 + a3 ≥ 0, a2 + a3 ≥ 1}.
In fact, if a ∈ A then there exist f1, f3 ∈ R such that x1f1 + x3f3 = 0, with f1

of degree a. Note that necessarily f3 6= 0, and call b the degree of f3. Then we
conclude that a+ e1 = b+ e3, and consequently a− e3 + e1 is in PQ. Conversely if
a− e3 + e1 ∈ PQ and a ∈ PQ, we have that x1x

a − x3x
a−e3+e1 = 0 (where as usual

xp denotes the element of k[PQ] corresponding to p ∈ PQ), so a ∈ A.
Now consider

A0 = {a = (a1, a2, a3) ∈ A | a1 = 0, a2 + a3 = 1}
= {(0, a2, a3) ∈ Q3 | a2 ≥ 0, a3 ≥ 0, a2 + a3 = 1}.

It is easy to check that a + b ∈ A0 implies a = 0 for a ∈ PQ and b ∈ A, and this
says that any set of generators of A as an ideal of PQ must contain all elements of
A0, and thus must be infinite. In conclusion the ideal J is not finitely generated.

This kind of unpleasantness does not happen when the logarithmic structure is
simplicial, in the following sense.

Definition 4.18. A monoid P is simplicial if it is fine, saturated and sharp, and
PQ is generated by linearly independent vectors in P gp

Q .
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A Deligne–Faltings structure (A,L) on a scheme is simplicial if all the geometric
stalks of A are simplicial.

If (A,L) is simplicial, then étale-locally on the scheme X there exists a Kato
chart P → O(X), where P is a simplicial monoid.

Proposition 4.19. If (A,L) is a simplicial Deligne–Faltings structure on a locally

noetherian scheme X, the structure sheaf on the infinite root stack ∞
√

(A,L) is
coherent.

Proof. The problem is local in the étale topology, so we may assume that X =
SpecR is affine, and that the Deligne–Faltings is generated by a homomorphism of
monoids P → R, where P is simplicial. By Proposition 3.10 we have

∞
√

(A,L) = [Spec(R⊗Z[P ] Z[PQ])/µ∞(P )] ;

it is enough to show that the ring R⊗Z[P ]Z[PQ] is coherent. But PQ is isomorphic to
the monoid NrQ of r-tuples of non-negative rational numbers; so Z[PQ] is an inductive

limit lim−→n
Z[ 1

nN
r] of finitely generated Z-algebras with flat transition maps. Hence

R⊗Z[P ]Z[PQ] is a limit of of finitely generated R-algebras with flat transition maps,
and it is an easy exercise to show that an inductive limit of coherent rings with flat
transition maps is coherent. ♠

See also the discussion in [Niz08, §3].

5. Logarithmic structures from infinite root stacks

Let us show how one can produce a Deligne–Faltings structure from an infinite
root stack π : R → X. Here we describe our results and state them without proving
them right away. We collect most of the proofs in 5.3, after a discussion of the
fundamental notion of infinite quotients in a fine saturated monoid.

Denote by DivRét
the fibered category over the small étale site Xét, whose objects

are pairs (U → X,Λ), where U → X is an étale map, and Λ is an object of Div(RU ).
Note that we can also describe DivRét

as the pushforward π∗DivR, and there is an
obvious pullback functor DivXét

→ DivRét
.

By definition, and by descent theory, given a Deligne–Faltings structure (A,L)

on X, and set R
def
= ∞
√

(A,L), there exist a symmetric monoidal functor L̃ : AQ →
DivRét

, and an isomorphism of symmetric monoidal functors between the restriction

of L̃ to A, and the composite of L with the pullback DivXét
→ DivRét

.

Definition 5.1. Let π : R → X be an infinite root stack. Consider the symmetric
monoidal fibered category AR → Xét defined as follows. For each étale map U →
X, the objects of AR(U) are of the form (Λn, αm,n), where:

(a) For each positive integer n, Λn is an object of Div RU .
(b) The object Λ1 of Div RU is isomorphic to a pullback π∗Λ, where Λ is an object

of DivU .
(c) For each m | n, αm,n : Λ

⊗(n/m)
n ' Λm is an isomorphism in Div RU .

(d) Suppose that p is a point of X; denote by Rp the fiber of R over p. If n
is sufficiently divisible and Λn = (Ln, sn), then the restriction of sn to Rp is
nonzero.

We require the isomorphisms αm,n to be subject to the following compatibility
conditions.
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(i) αn,n = idΛn
for any n.

(ii) if m | n and n | p, then

αm,p = α⊗(p/n)
m,n ◦ αn,p : Λ⊗(p/n)

p ' Λm.

The arrows (Λn, αm,n) → (Λ′n, α
′
m,n) are given by isomorphisms of invertible

sheaves with a section Λn ' Λ′n that are compatible with the αm,n’s.
The fibered structure is obtained from the evident pseudo-functor structure.
We call the objects of AR(U) infinite roots.

The point of the previous definition is that if R = ∞
√

(A,L), then, as we explain
later, to every local section of the sheaf A we can associate an infinite root on
R, and every infinite root arises in this way. Hence this construction will recover
the Deligne–Faltings structure that we start with, and if R is only an infinite root
stack in the sense of Definition 3.14, it will produce a Deligne–Faltings structure
(AR, LR) on X (AR will be the sheaf of isomorphism classes of objects of the

fibered category AR) such that R ' ∞
√

(AR, LR).

Remark 5.2. Notice that the object Λ of DivU and the isomorphism φ : π∗Λ ' Λ1

are in fact unique, up to a unique isomorphism. What’s more, there is a canonical
choice for Λ and φ.

The point is this. Set Λ1 = (L1, s1) and Λ = (L, s). Then the isomorphism
φ : π∗L ' L1 corresponds by adjunction to a homomorphism L→ π∗L1; by Propo-
sition 4.16(f) this is an isomorphism, and carries s into s1 ∈ L1(U) = (π∗L)(U).
This gives a canonical isomorphism of Λ with (π∗L1, s1).

We call the object (π∗L1, s1) of DivU the base of the infinite root (Λn,Λm,n);
we think of an infinite root as an infinite sequence of roots of its base.

We obtain a symmetric monoidal functor AR(U) → DivU by sending each
infinite root into its base.

Remark 5.3. It is immediate from the definition that the formation of AR com-
mutes with arbitrary base change on X.

The symmetric monoidal structure is given by tensor product; this is well defined
thanks to the following lemma.

Lemma 5.4. (Λn, αm,n) and (Λ′n, α
′
m,n) be infinite roots in an infinite root stack

R. Then the tensor product

(Λn ⊗ Λ′n, αm,n ⊗ α′m,n)

is also an infinite root.

Proof. Here the essential point is to show that if we set Λn = (Ln, sn) and Λ′n =
(L′n, s

′
n), then the restriction of sn ⊗ s′n to any geometric fiber is nonzero for suf-

ficiently divisible n. This follows from the second statement in Lemma 5.17 be-
low. ♠

The proof of the following proposition, of Proposition 5.7 and of Theorem 5.9
will be postponed (see Section 5.3).

Proposition 5.5. Let R → X be an infinite root stack. Then the symmet-
ric monoidal category AR is fibered in equivalence relations (i.e. equivalent to
a presheaf).



30 MATTIA TALPO AND ANGELO VISTOLI

Hence by passing to isomorphism classes we get a sheaf of monoids AR : Xét →
(ComMon), and the projection AR → AR is an equivalence. By choosing a symmet-
ric monoidal quasi-inverse AR → AR and composing with the symmetric monoidal
functor AR → DivXét

that sends an infinite root to its base, we obtain a symmetric
monoidal LR : AR → DivXét

, unique up to a unique isomorphism.
As with the fibered category AR, the formation of LR and AR commutes with

arbitrary base change on X.

Proposition 5.6. The sheaf AR is fine saturated.

Proof. Since being fine saturated is a local condition in the étale topology, and
étale-locally R comes from a fine saturated Deligne–Faltings structure, this follows
from Proposition 5.7 below. ♠

Hence, from an infinite root stack R → X we obtain a fine saturated Deligne–
Faltings structure (AR, LR).

Suppose that (A,L) is a Deligne–Faltings structure on X, and R = ∞
√

(A,L).
Let U → X be an étale map, and a ∈ A(U). Then we obtain an object L(a) of

DivU . Furthermore, for each positive integer n we also obtain an object L̃(a/n) ∈
Div RU . The fact that the functor is symmetric monoidal gives, for each m | n,

isomorphisms αm,n : L̃(a/n)⊗(n/m) ' L̃(a/m) in Div RU . Furthermore, the isomor-
phism between the restriction of L to A, and the composite of L with the pullback

DivU → Div RU yields an isomorphism φ : Λ1 = L̃(a) ' L(a). This gives a sym-
metric monoidal functor A → AR; by definition, the composite of A → AR with
AR → DivXét

is precisely L.

Proposition 5.7. Suppose that (A,L) is a fine saturated Deligne–Faltings struc-

ture on X, and set R
def
= ∞
√

(A,L). Then the composite A → AR → AR is an
isomorphism.

Corollary 5.8. The Deligne–Faltings structures (A,L) and (AR, LR) are isomor-
phic. ♠

Given an infinite root stack R → X, let us produce a functor R → ∞
√

(AR, LR).

Let f : T → R be a morphism; we need to construct a map T → ∞
√

(AR, LR), i.e.
an extension (f∗AR)Q → DivTét

of the Deligne–Faltings structure f∗LR : f∗AR →
DivTét

. Call f−1AR the pullback presheaf on Tét; its sections on an étale map
V → T are colimits lim−→AR(U), where the colimit is taken over all factorizations
V → U → X, with U → X étale, of the composite V → T → R → X. The
sheafification of the presheaf BT on Tét sending V to (f−1AR)(V )Q is the sheaf
(f∗AR)Q; by [BV12, Proposition 3.3], every symmetric monoidal functor BT →
DivTét

extends uniquely to a symmetric monoidal functor (f∗AR)Q → DivTét
.

Consider the filtered category IV defined as follows. The objects are pairs
(m,V → U → X), where m is a positive integer and V → U → X is a factor-
ization of the composite V → T → R → X. An arrow φ : (m,V → U → X) →
(n, V → U ′ → X) exists only when m | n, in which case it consists of a morphism
φ : U → U ′ such that the diagram

U

V X

U ′

φ
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commutes. Composition is the obvious one.
There is a lax 2-functor from Iop

V into the 2-category of symmetric monoidal
categories, sending each (m,V → U → X) into AR(U), and each morphism
φ : (m,V → U → X) → (n, V → U ′ → X) into the composite of the pullback
φ∗ : AR(U ′) → AR(U) with the functor AR(U) → AR(U) given by raising to the
(n/m)th power. We have a canonical equivalence of symmetric monoidal categories
between lim−→IV

AR(U) and the monoid BT (V ).

There is also a symmetric monoidal functor lim−→IV
AR(U) → Div V that sends

an object (Λn, αm,n
)

over (m,V → U → X) to h∗Λm, where h : V → RU is the
morphism induced by V → U and the composite V → T → R. By composing
this with a quasi-inverse of the equivalence lim−→IV

AR(U) → BT (V ) we obtain a

symmetric monoidal functor BT (V )→ Div V . This induces the desired symmetric
monoidal functor BT → DivTét

.

This way we defined a functor R → ∞
√

(AR, LR).

Theorem 5.9. The functor R → ∞
√

(AR, LR) above is an equivalence.

5.1. Infinite quotients in sharp fine saturated monoids. To prove the state-
ments of the previous section we need to investigate the notion of an infinite quotient
in a sharp fine saturated monoid.

Let P be a sharp fine saturated monoid, and assume that P gp has rank r. In
other words we have P gp ' Zr, and consequently P gp

Q ' Qr. Moreover P gp
Q /P gp =

P gp ⊗ (Q/Z) is isomorphic to (Q/Z)r. We consider P gp
Q as a topological space via

the usual metric topology on Qr.
Set

qP = lim←−
n

(P gp
Q /P gp)[n] = P gp ⊗ Ẑ ' Ẑr,

where with the square brackets we denote the n-torsion, the map (P gp
Q /P gp)[n]→

(P gp
Q /P gp)[m] for m | n is given by multiplication by n/m, and Ẑ denotes as usual

the profinite completion of Z. An element of qP consists of a collection {λn} of
elements of P gp

Q /P gp such that λ1 = 0, and (n/m)λn = λm whenever m | n.
Set

∆P = PQ r (P+ + PQ) ,

where P+ = P r {0}. Since ∆P is the complement of an ideal in PQ, it has the
property that if γ, δ ∈ PQ and γ + δ ∈ ∆P , then γ and δ are in ∆P . Hence, if n is
a positive integer, γ ∈ P gp

Q , and nγ ∈ ∆P , then γ ∈ ∆P .

The set ∆P is clearly bounded in P gp
Q . Also, if v1, . . . vm are the indecomposable

elements of P we have

∆P = PQ r
m⋃
i=1

(vi + PQ) ;

since PQ is closed in P gp
Q , we have that ∆P is open in PQ.

We set
∆0
P =

{
γ ∈ ∆P | (γ + P gp) ∩∆P = {γ}

}
.

Figure 1 below illustrates what ∆P and ∆0
P look like in a simple but significant

example.
By definition, the restriction of the projection P gp

Q → P gp
Q /P gp to ∆0

P is injective.

Lemma 5.10. The set ∆0
P is a neighborhood of 0 in PQ.
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(2, 0)

(0, 2)

(1, 1)

PQ

∆P

∆0
P

Figure 1. The cone PQ and the open loci ∆P and ∆0
P for the

monoid P = 〈(0, 2), (1, 1), (2, 0)〉 ⊆ Z2.

Proof. It is easy to see that 0 ∈ ∆0
P . Also, we have

∆0
P =

⋂
γ∈P gpr{0}

(
∆P r (γ + ∆P )

)
;

but ∆P is bounded, so there exists a finite number of γ ∈ P gp r {0} such that
∆P ∩ (γ+ ∆P ) 6= ∅. So it is enough to prove that ∆P r (γ+ ∆P ) is a neighborhood
of 0 in PQ for all γ ∈ P gp r {0}.

If γ ∈ −PQ ∩ (P gp r {0}) = −P r {0} we have

∆P ∩ (γ + ∆P ) = γ +
(
∆P ∩ (−γ + ∆P )

)
= ∅

since −γ ∈ P r{0} = P+, and by definition of ∆P . Otherwise, we have 0 /∈ γ+PQ,
so ∆P r (γ+PQ) is neighborhood of 0 in PQ, and ∆P r (γ+PQ) ⊂ ∆P r (γ+ ∆P ).
This finishes the proof. ♠

There is a group homomorphism P gp → qP sending each p ∈ P gp into the element

p/∞ def
= {[p/n]} ∈ qP . This is easily seen to be injective. Consider the restriction

P → qP .
We need to recognize elements in qP that come from P . To do so, we introduce

the following definition, in which we think of an element λ ∈ P gp
Q /P gp as a coset of

P gp in P gp
Q .

Definition 5.11. An element {λn} of qP is an infinite quotient if there exists a
positive integer m0 such that for any positive integer j there exists a sequence γ1,
. . . , γj of elements of λjm0 ∩∆P such that γ1 + · · ·+ γj ∈ ∆P .

We call such an m0 a characteristic integer for {λn}.
We denote the set of infinite quotients in P by P/∞.

The following is straightforward.
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Lemma 5.12. If {λn} is an infinite quotient and m0 is a characteristic integer,
then any positive multiple of m0 is also a characteristic integer for {λn}. ♠

Let us note that the image p/∞ = {[p/n]} of an element p ∈ P is an infinite
quotient. In fact, by Lemma 5.10 there exists m0 such that p/jm0 ∈ ∆P for all
positive integers j; then it is enough to take γ1 = · · · = γj = p/jm0.

The following proposition says in particular that the converse holds, i.e. infinite

quotients in qP correspond exactly to elements of P .

Proposition 5.13.

(a) Let {λn} be an infinite quotient in P . For every sufficiently divisible n we have
λn = [γ] for some γ ∈ ∆0

P .
(b) Let {λn} and {λ′n} be infinite quotients in P . For every sufficiently divisible n

we have λn = [γ] and λ′n = [γ′] with γ + γ′ ∈ ∆0
P .

(c) The image of P in qP is precisely P/∞, hence the map P → P/∞ is an iso-
morphism.

Proof. Let us show that there is a norm |−| on P gp
Q with the property that |γ + δ| =

|γ| + |δ| for any γ and δ in PQ. For this, notice that there is a basis v1, . . . vr of
P gp
Q ' Qr with the property that every vector in PQ has non-negative coordinates

(in fact, since P is sharp the cone in the dual space (P gp
Q )∨ that is dual to PQ has

nonempty interior, so it contains a basis of P∨Q , and the dual basis in P gp
Q has this

property). Then the norm defined by |x1v1 + · · ·+ xrvr|
def
= |x1|+ · · ·+ |xn| has this

property.
Now let m0 be a characteristic integer for {λn} and pick a positive real number

ε such that every γ ∈ PQ with |γ| ≤ ε is in ∆0
P . Since ∆P is bounded in P gp

Q we can
also choose N > 0 with the property that Nε is larger than the diameter of ∆P .
If n is divisible by m0 and n/m0 > N , then we claim that we there exists γ ∈ λn
with |γ| ≤ ε, so that γ ∈ ∆0

P , which will conclude the proof of part (a).
Write n = jm0; it follows immediately from Definition 5.11 that λn = [γ] for

some γ ∈ ∆P . If |γ| > ε for all γ ∈ λn ∩∆P , then for any sequence γ1, . . . γj in
λn ∩∆P we have

|γ1 + · · ·+ γj | = |γ1|+ · · ·+ |γj | > jε > Nε ,

hence γ1, . . . γj /∈ ∆P , and this contradicts Definition 5.11.

For (c), we already showed that p/∞ ∈ P/∞.
Conversely, suppose that {λn} ∈ P/∞. Let m0 be a characteristic integer for

{λn}; from Lemma 5.12 and part (a), we see that we can takem0 such that λn = [γn]
with γn ∈ ∆0

P for all n divisible by m0. Then by definition of infinite quotients and
the fact that γjm0

is the only representative of λjm0
in ∆P for all positive j (by

definition of ∆0
P ), we have jγjm0 ∈ λm0 ∩∆P for all j > 0, and hence γm0 = jγjm0

for all j > 0. Setting q
def
= m0γm0 , we have γn = q/n for all n divisible by m0, which

implies that for all n we have λn = [q/n], so that {λn} = q/∞.

Part (b) follows immediately from (a) and (c). ♠

5.2. Picard groups of infinite root stacks over geometric points. Next we
need some results on the Picard group of an infinite root stack over a geometric
point. We will show that it can be identified with the quotient P gp

Q /P gp, where P
is the stalk of the sheaf A at the point.

We recall our notations for logarithmic points.
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Notation 5.14. If k is a field and P is a sharp fine saturated monoid, we will denote
by (AP , LP ) the Deligne–Faltings structure on Spec k, where AP is the constant
sheaf of monoids on (Spec k)ét corresponding to P , and LP : A → Div(Spec k)ét

corresponds to the homomorphism Λ: P → k that sends 0 into 1 and everything
else into 0.

We also set ∞
√
P/k

def
= ∞
√

(AP , LP ).

As explained in Section 3.2, the infinite root stack ∞
√
P/k is isomorphic to the

fibered product Spec k ×Spec k[P ]

[
Spec k[PQ]/µ∞(P )

]
, where Spec k → Spec k[P ]

corresponds to the ring homomorphism k[P ]→ k determined by Λ. We also have

∞
√
P/k =

[
Spec(k[PQ]/(P+))/µ∞(P )

]
where the action of µ∞(P ) on Spec(k[PQ]/(P+)) is determined by the natural

P gp
Q /P gp-grading on k[PQ]/(P+). Moreover the reduced substack (∞

√
P/k)

red
is the

classifying stack Bkµ∞(P ) =
[
Spec k/µ∞(P )

]
.

Set R
def
= k[PQ]/(P+), and note that for the natural P gp

Q /P gp-grading, we have

Rλ = ⊕γ∈λ∩∆P
Rγ , for λ ∈ P gp

Q /P gp. Invertible sheaves on ∞
√
P/k correspond to

P gp
Q /P gp-graded invertible modules on R; this gives a very concrete description of

Pic(∞
√
P/k). There is a natural homomorphism

P gp
Q /P gp = Hom(µ∞(P ),Gm

)
−→ Pic(

∞
√
P/k)

that sends γ ∈ P gp
Q /P gp into the graded R-module R(λ), where R(λ) = R as an

R-module, but the P gp
Q /P gp-grading is defined by R(λ)µ = Rλ+µ.

Since R is the inductive limit of the local artinian rings k[ 1
nP ]/(P+), every

invertible module on R is trivial; hence, every P gp
Q /P gp-graded invertible module on

R is of the form R(λ) for λ ∈ P gp
Q /P gp. So the homomorphism above is surjective.

Since R(λ)⊗Rk = k(γ) is a P gp
Q /P gp-graded vector space, we see that R(λ) ' R(µ)

if and only if λ = µ, and the homomorphism is also injective.
Let us record this in a lemma.

Lemma 5.15. The natural homomorphism

P gp
Q /P gp = Hom

(
µ∞(P ),Gm

)
−→ Pic(

∞
√
P/k)

is an isomorphism. ♠

Furthermore, if λ = [L] ∈ Pic(∞
√
P/k) = P gp

Q /P gp, we have H0(∞
√
P/k, L) =

R(λ)0 = Rλ. So dimk H0(∞
√
P/k, L) = ](λ ∩∆P ).

Let (Λn, αm,n
)

and (Λ′n, α
′
m,n

)
be infinite roots on ∞

√
P/k, and set Λn = (Ln, sn)

and Λ′n = (L′n, s
′
n). The following will be used later.

Lemma 5.16. For sufficiently divisible n, we have dimk H0(∞
√
P/k, Ln) = 1, and

the multiplication map

H0(
∞
√
P/k, Ln)⊗k H0(

∞
√
P/k, L′n) −→ H0(

∞
√
P/k, Ln ⊗ L′n)

is an isomorphism.

Proof. This follows from 5.13(a) and (b). ♠
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5.3. Proofs. Here we collect the proofs of the statements that we left without proof
in the previous sections.

Lemma 5.17. Let π : R → X be an infinite root stack, and let (Λn, αm,n) be in
infinite root on R. Set Λn = (Ln, sn).

If X is quasi-compact, then for sufficiently divisible n the sheaf π∗Ln is an in-
vertible sheaf on X, and the section sn ∈ H0(X,π∗Ln) does not vanish anywhere.

Furthermore, let (Λ′n, α
′
m,n) be another infinite root on R, and set Λ′n = (L′n, s

′
n).

Then for sufficiently divisible n the multiplication map

π∗Ln ⊗ π∗L′n −→ π∗(Ln ⊗ L′n)

is an isomorphism.

Proof. Since X is quasi-compact, there is a finite étale covering Xi → X such that
for all i, the stack RXi

is the pullback of the canonical infinite root stack on XPi

for some fine saturated monoid Pi. Since the covering is finite, the formation of
AR commutes with base change on X, and the pushforward π∗ also commutes with
base change, we may assume that X = XPi

. In particular, we may assume that X
is affine and noetherian.

Each Ln is invertible on R and π∗OR = OX , so we see that the annihilator
of π∗Ln is trivial. Since each π∗Ln is coherent, by Lemma 4.16(c), to prove the
statement it is enough to check that sn generates all the fibers of π∗Ln. Again
because π∗ commutes with base change, and by Nakayama’s lemma, we can reduce
to the case X = Spec k, where k is a field.

We can also assume that k is algebraically closed. Then R = ∞
√
P/k for a

certain sharp fine saturated monoid P . Since sn 6= 0 for sufficiently divisible n, by
definition of infinite root, the result follows from Lemma 5.16. ♠

Proof of Proposition 5.5. Since the category AR is fibered in groupoids, it is enough
to show that an object of some AR(U) has no non-trivial automorphisms. We may
assume that X = U , and X is quasi-compact. Choose an object (Λn, αm,n

)
of

AR(X), and set Λn = (Ln, sn). An automorphism of (Λn, αm,n
)

is given by a

sequence of elements ξn ∈ O×R(R) = O×X(X) with ξnsn = sn for all n, and such

that ξ
(m/n)
n = ξm whenever m | n. From Lemma 5.17 we see that ξn = 1 when n is

sufficiently divisible, and this implies that ξn = 1 for all n. ♠

Proof of Proposition 5.7. The statement can be checked on the geometric stalks;
since formation of AR commutes with base change, we may assume that X =
Spec k is the spectrum of an algebraically closed field k, so that the logarithmic
structure is given by a sharp fine saturated monoid P and the monoidal functor
L : P → Div(Spec k)ét

sending 0 to (OSpec k, 1) and everything else to (OSpec k, 0).

Then the root stack R = ∞
√

(P,L) equals R =
[
Spec(k[PQ]/(P+))/µ∞(P )

]
.

Let us identify Pic R with P gp
Q /P gp. We have a homomorphism of monoids

AR → qP sending an infinite root (Λn, αm,n
)

to {[Ln]}, where Λn = (Ln, sn).

Lemma 5.18. {[Ln]} ∈ qP is an infinite quotient.

Proof. Set R = k[PQ]/(P+) as above, and λn = [Ln] ∈ Pic R ' P gp
Q /P gp. As

before, we denote by Rλ the piece of degree λ ∈ P gp
Q /P gp of the P gp

Q /P gp-graded
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ring R. We will write the elements of R as linear combinations
∑
i aix

γi , where
ai ∈ k and γi ∈ ∆P . The multiplication in R is given by the rule

xγxγ
′

=

{
xγ+γ′ if γ + γ′ ∈ ∆P

0 otherwise

for any γ and γ′ in ∆P .
Let m0 such that sm0 6= 0; we claim that m0 is a characteristic integer for {[Ln]}.

Let j be a positive integer; choose an isomorphism between Ljm0 and the invertible
sheaf corresponding to the invertible R-module R(λjm0

) (which, recall, is just the
R-module R, but with P gp

Q /P gp-grading defined by R(λjm0
)µ = Rλjm0+µ), yielding

an isomorphism H0(R, Ljm0
) ' Rλjm0

. The section sjm0
corresponds to an element∑

γ∈λjm0∩∆P
aγx

γ ; since s⊗jjm0
6= 0, we have( ∑

γ∈λjm0
∩∆P

aγx
γ
)j 6= 0 ∈ R .

This implies that there must be a sequence of elements γ1, . . . γj of λjm0
∩ ∆P

such that xγ1 . . . xγj 6= 0, which implies γ1 + · · ·+ γj ∈ ∆P . This show that m0 is
a characteristic integer, and completes the proof of the Lemma. ♠

Let (Λn, αm,n
)

and (Λ′n, α
′
m,n

)
be two infinite roots on R. Assume that [Ln] =

[L′n] for all n. Notice that an automorphism of Ln is given by an invertible element
of H0(R,O) = k; hence the isomorphisms Ln ' L′n, which exist by hypothesis, are
well determined up to multiplication by scalars. Then from Lemma 5.16 we see
that for sufficiently divisible n there is a unique isomorphism Ln ' L′n carrying sn
to s′n. These give an isomorphism of the two infinite roots. This implies that the
homomorphism AR → P/∞ is injective.

Now consider the composite P = A→ AR → P/∞, which is easily seen to send
p ∈ P into p/∞ ∈ P/∞. Since AR → P/∞ is injective and P → P/∞ is an
isomorphism, by Proposition 5.13(c), the result follows. ♠

5.4. Morphisms of infinite root stacks. Let us fix a scheme X. Let φ =
(φ,Φ): (A,L) → (B,M) be a morphism of fine saturated Deligne–Faltings struc-
tures on X. Recall that this means that φ : A→ B is a homomorphism of sheaves of
monoids on X ét, while Φ: L 'M ◦φ is a base-preserving isomorphism of symmetric
monoidal functors A→ DivXét

.
A morphism of fine saturated Deligne–Faltings structures as above induces a

morphism of fibered categories ∞
√
φ : ∞
√

(B,M)→ ∞
√

(A,L) by composition. More
precisely, let t : T → X be a morphism of schemes, with T affine. An object
(N,α) of ∞

√
(B,M)(T ) consists of a Deligne–Faltings structure N : t∗BQ → DivTét

,
together with an isomorphism α : t∗M ' N |t∗B of symmetric monoidal functors

t∗B → DivTét
. From this we obtain an object (N ◦ t∗φQ, idt∗φ ∗ α) of ∞

√
(A,L)(T ),

where idt∗φ ∗ α : t∗L ' N |t∗B ◦ t∗φ is the Godement product.
Together with the obvious action on arrows, this gives a functor from the opposite

of the category of Deligne–Faltings structures on X, to the category of categories
fibered in groupoids on X. This functor, however, is not full.

Example 5.19. Take X = Spec k and (A,L) to be the trivial Deligne–Faltings
structure on X, while (B,M) is the Deligne–Faltings structure corresponding to the
standard logarithmic point (Example 2.17). In other words, (B,M) is obtained from
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the chart N→ DivX, in which n is sent to (O, 1) if n = 0 and to (O, 0) if n 6= 0. It is
immediate to check that there is no homomorphism of Deligne–Faltings structures
(B,M)→ (A,L). On the other hand ∞

√
(A,L) = Spec k while ∞

√
(B,M) = ∞

√
N/k;

since ∞
√
N/k

red
= Bkµ∞, there is a morphism Spec k → Bkµ∞ ⊆

∞
√

(B,M)
corresponding to the trivial torsor.

There is a necessary condition for a base-preserving functor f : ∞
√

(B,M) →
∞
√

(A,L) of infinite root stacks over X to come from a morphism of Deligne–
Faltings structures.

Suppose that f : S → R is a morphism of fibered categories over (Aff/X), where
S and R are infinite root stacks over X. Let t : T → X be a morphism of schemes,
with T affine, and λ = (Λn, αm,n) be an infinite root on RT . Set Λn = (Ln, sn).
Consider the pullback f∗λ

def
= (f∗Λn, f

∗αm,n). This is not necessarily an infinite
root on ST ; the issue is that f∗Λn = (f∗Ln, f

∗sn), and it is not necessarily true
that f∗sn does not vanish on each geometric fiber of S → X for sufficiently divisible
n. This justifies the following definition.

Definition 5.20. A morphism f : S → R of infinite root stack over X is an
isomorphism class of base-preserving functors f : S → R, such that for any geo-
metric point p : Spec Ω→ X and any infinite root λ on the geometric fiber Rp, the
pullback f∗pλ is again an infinite root on Sp.

The composite of two morphisms of infinite root stack is a morphism of infinite
root stacks; thus, with this notion of morphism infinite root stacks over X form a
category.

Remark 5.21. As suggested by the referee, we can reinterpret Definition 5.1 as fol-
lows: given an infinite root (Λn, αm,n) on the infinite root stack R over X, each Λn
gives us a morphism of stacks fn : R → [A1/Gm], and the isomorphisms αm,n give

natural isomorphisms between fm and the composite R
fn−→ [A1/Gm] → [A1/Gm],

where m | n and the last morphism raises a line bundle with a section to the n/m-th
power. Note that this map [A1/Gm]→ [A1/Gm] is exactly the projection from the
n/m-th root stack of [A1/Gm], equipped with its tautological logarithmic struc-
ture. Thus, an infinite root induces a morphism of fibered categories over schemes
R → ∞

√
[A1/Gm] = lim←−n[A1/Gm], and a compatible morphism X → [A1/Gm],

given by the base of the infinite root (see Remark 5.2).
Condition (d) of Definition 5.1 then exactly says that the morphism R →

X ×[A1/Gm]
∞
√

[A1/Gm] is a morphism of infinite root stacks over X, in the sense of
the definition above.

Corollary 5.8 implies that the base-preserving functor ∞
√
φ : ∞
√

(B,M)→ ∞
√

(A,L)
induced by a morphism of fine saturated Deligne–Faltings structures φ : (A,L) →
(B,M) is a morphism of infinite root stacks: for a geometric point p : Spec Ω→ X,

an infinite root on ∞
√

(A,L)
p

comes from an element of the stalk Ap, and the pull-

back to ∞
√

(B,M)
p

coincides with the image of that element via the map Ap → Bp,

and hence is also an infinite root. So we obtain a functor from the opposite of the
category of Deligne–Faltings structures to the category of infinite root stacks.

We can also define a functor going in the opposite direction, from infinite root
stacks to Deligne–Faltings structures. At the level of objects, we send an infinite
root stack R to (AR, LR). If f : S → R a morphism of infinite root stacks, pullback
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of infinite roots defined above defines a base-preserving functor f∗ : AR → AS , and
hence a morphism of Deligne–Faltings structures f∗ : (AR, LR)→ (AS , LS ).

Consider the morphism ∞√f∗ : ∞
√

(AS , LS )→ ∞
√

(AR, LR) induced by f∗. It is
easy to show that the diagram

S R

∞
√

(AS , LS ) ∞
√

(AR, LR)

f

∞√
f∗

is 2-commutative.

Theorem 5.22. The functors above define an equivalence between the opposite of
the category of fine saturated Deligne–Faltings structures on X and the category of
infinite root stacks on X.

Proof. This follows from Proposition 5.7 and Theorem 5.9. ♠

Since an equivalence of fibered categories between infinite root stacks is clearly
a morphism of infinite root stacks, we obtain the following.

Corollary 5.23. Let (A,L) and (B,M) be Deligne–Faltings structures on a scheme

X. An equivalence of infinite root stacks ∞
√

(B,M) ' ∞
√

(A,L) over X induces an
isomorphism of Deligne–Faltings structures (A,L) ' (B,M).

The theorem can be restated in global terms, without fixing a base scheme.
Consider the category (FSLogSch) of fine saturated logarithmic schemes. Let us
define a category (RootStack) in which the objects are pairs (X,R), where X is a
scheme and R → X is an infinite root stack on X. The arrows (Y,S ) → (X,R)
are isomorphism classes of commutative diagrams

S R

Y X

with the property that the induced base-preserving functor S → Y ×X R is a
morphism of infinite root stacks over Y . Note that the map Y → X is actually
determined by the functor S → R, by Proposition 3.19.

On the other hand if (X,A,L) and (Y,B,M) are fine saturated logarithmic
schemes, a morphism of logarithmic schemes (Y,B,M)→ (X,A,L) corresponds to
a morphism of schemes f : Y → X and a morphism of Deligne–Faltings structures
f∗(A,L) → (B,M). Since ∞

√
f∗(A,L) = Y ×X ∞

√
(A,L), we have the following

variant of Theorem 5.22.

Theorem 5.24. There is an equivalence between the category of fine saturated
logarithmic schemes and the category of infinite root stacks, sending a fine saturated
scheme (X,A,L) into

(
X, ∞
√

(A,L)
)
. ♠

Remark 5.25. Note in particular that if X and Y are fine saturated logarith-
mic schemes and a base-preserving functor F :

∞√
X → ∞√

Y is representable and
faithfully flat, then the associated pullback will automatically carry infinite roots
to infinite roots, and thus F is a morphism of infinite root stacks. Because of the
previous theorem it will then come from a unique morphism of logarithmic schemes
X → Y .
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For later use we add the following.

Lemma 5.26. Let φ : (A,L) → (B,M) and ψ : (A,L) → (C,N) be morphisms of
Deligne–Faltings structures on a scheme X, such that ψ is Kummer. Suppose that
f : ∞

√
(B,M) → ∞

√
(C,N) is a morphism of fibered categories over X making the

diagram

∞
√

(B,M) ∞
√

(C,N)

∞
√

(A,L)

f

∞√
φ

∞√
ψ

commute. Then f is a morphism of infinite root stacks.

Proof. We need to check that f sends infinite roots in geometric fibers to infinite
roots; by base change, we may assume that X = Spec k, where k is an algebraically
closed field. For consistency with the previous notation, set P

def
= A, Q

def
= B

and R
def
= C; we need to check that the homomorphism f∗ : Rgp

Q /R
gp → Qgp

Q /Q
gp

induced by f sends R/∞ into Q/∞ (here we are using the identification Qgp
Q /Q

gp '
Pic ∞

√
Q/k). Taking projective limits and using the identifications qP ' P gp⊗ Ẑ we

obtain a commutative diagram

P gp ⊗ Ẑ

Rgp ⊗ Ẑ Qgp ⊗ Ẑf∗

in which the two diagonal arrows take P into R and Q respectively. We need to
show that f∗ takes R into Q. Since the homomorphism P → R is Kummer, given
r ∈ R we can find a positive integer n such that nr comes from P ; this implies

that nf∗(r) = f∗(nr) is in Q. Since Ẑ/Z is torsion free, by the Lemma below, so is

(Qgp⊗ Ẑ)/Qgp = Qgp⊗ (Ẑ/Z), because Qgp is free. Hence we see that f∗(r) ∈ Qgp;
since Q is saturated this implies f∗(r) ∈ Q, and this concludes the proof. ♠

Lemma 5.27. The abelian group Ẑ/Z is torsion-free.

Proof. Consider the embeddings Ẑ =
∏
p Zp ⊆

∏
pQp and Q ⊆

∏
pQp. Since

(
∏
p Zp) ∩ Q = Z, we have that the natural homomorphism Ẑ/Z → (

∏
pQp)/Q is

injective, which proves the result. ♠

The preceding Lemma 5.26 has the following immediate corollary.

Corollary 5.28. Let f : Y → X and g : Z → X be two morphisms of fine saturated
logarithmic schemes, such that Y → X is Kummer. Then every morphism

∞√
Z →

∞√
Y fitting in a commutative diagram

∞√
Z

∞√
Y

∞√
X

∞√g ∞√
f

comes from a morphism Z → Y of logarithmic schemes over X. ♠
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6. The small fppf site of an infinite root stack
and Kato’s Kummer-flat site

In this section we introduce the small fppf site of an infinite root stack, a site
obtained by using a natural flat topology, and we compare it with Kato’s Kummer-
flat site of the corresponding logarithmic structure.

Our main result here is that there is a natural comparison functor, that induces
an equivalence of the corresponding topoi; in other words sheaves on the Kummer-
flat site of a logarithmic scheme are the same as sheaves on the fppf site of its
infinite root stack.

6.1. Finitely presented sheaves and the small fppf site of an infinite root
stack. Let R be an infinite root stack over a scheme X. Set Rn

def
= n
√

(X,AX , LX);
by Proposition 3.5 we have R = lim←−n Rn. We will denote by πn : R → Rn the

canonical map.
The pullback functors FP Rn → FP R induce a functor lim−→n

FP Rn → FP R.

Proposition 6.1. Assume that X is quasi-compact and quasi-separated. Then the
functor lim−→n

FP Rn → FP R is an equivalence.

Proof. Assume that the logarithmic structure on X comes by pullback from a map
X → XP for some sharp fine saturated monoid P . Denote by Un and U∞ the fibered

products X ×XP
X

[n]
P and X ×XP

X
[∞]
P respectively, by Rn and R∞ the products

Un ×SpecZ µn(P ) and U∞ ×SpecZ µ∞(P ). We have that lim←−n Un ' U∞, lim←−nRn '
R∞, and lim←−n(Rn×Un Rn) ' (R∞×U∞ R∞); furthermore, the isomorphisms above

are compatible with the structure maps of the groupoids Rn⇒Un and R∞⇒U∞,
that give presentations for Rn and R respectively. Consequently R∞⇒ U∞ is the
projective limit of the Rn ⇒ Un in the category of groupoid schemes.

By [Gro66, Théorème 8.5.2], if Yλ is a projective system of affine schemes over a
fixed quasi-compact and quasi-separated scheme X, and Y

def
= lim←−λ Yλ, the pullbacks

FPYλ → FPY induce an equivalence lim−→FPYλ ' FPY . From this we obtain an

equivalence of the category FP(R∞⇒U∞) of finitely presented sheaves with descent
data on the groupoid R∞⇒ U∞ and the inductive limit lim−→n

FP(Rn ⇒ Un). But

FP(R∞⇒U∞) is equivalent to FP R, while FP(Rn⇒Un) is equivalent to FP Rn;
the resulting equivalence lim−→n

FP Rn ' FP R is easily seen to be isomorphic to the

functor in the statement.
In general, let {Xi → X}1≤i≤r be an étale covering of X, such that for each i

the restriction of the logarithmic structure on X to Xi comes by pullback from a
map Xi → XPi

for some sharp fine saturated monoid Pi. Set

X ′
def
=
∐
i

Xi ,

X ′′
def
= X ′ ×X X ′ =

∐
i,j

(Xi ×X Xj) ,

R′n
def
= X ′ ×X

n√
X ,

R′′n
def
= X ′′ ×X

n√
X ,

R′
def
= X ′ ×X R ,

R′′
def
= X ′′ ×X R .
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Notice that the functors lim−→n
FP R′n → FP R′ and lim−→n

FP R′′n → FP R′′ are

equivalences, because of the previous case, and because filtered inductive lim-
its commute with finite products. Furthermore, the natural functors FP Rn →
FP(R′n⇒R′′n) and FP R → FP(R′⇒R′′) are equivalences, by étale descent; hence
it is enough to show that the functor

lim−→
n

FP(R′n ⇒ R′′n) −→ FP(R′⇒ R′′)

is an equivalence. In fact, since filtered inductive limits are exact, we easily see that
lim−→n

FP(R′n⇒R′′n) is equivalent to the category of objects of lim−→n
FP R′n = FP R′

with descent data in lim−→n
FP R′′n = FP R′′, as desired. ♠

Recall from Proposition 4.15(d) that if X is a category fibered in groupoids over
(Aff), the category FP X of finitely presented sheaves on X is equivalent to the
category FP Xrep whose objects are representable maps A → X , endowed with
the fpqc topology. For root stacks, we have a much smaller site with an equivalent
category of finitely presented sheaves.

Definition 6.2. Let X be a category fibered in groupoids over (Aff). The small
fppf site Xfppf is the full subcategory of Xrep whose objects are flat locally finitely
presented representable base-preserving functors A →X .

A covering {Ai → A } is a collection of arrows in Xfppf such that the induced
base-preserving functor

⊔
i Ai → A is surjective and fppf.

This site is particularly important for our purposes, because as we will see (The-
orem 6.16) the topos of the small fppf site of an infinite root stack is equivalent to
Kato’s Kummer-flat topos of the corresponding logarithmic scheme.

Since any representable fppf morphism A →X is also fpqc, we have an inclusion
functor i : Xfppf → Xrep, which is a morphism of sites, in the sense of [Sta14,
Tag 00X0], and induces a morphism of topoi (i∗, i

−1) : Sh Xrep → Sh Xfppf . The
functor i∗ : Sh Xrep → Sh Xfppf is given by restriction. We define the structure
sheaf OXfppf

as i∗OXrep ; this makes (i∗, i
−1) into a morphism of ringed topoi.

We denote by i∗ : Mod OXfppf
→ Mod OXrep

the corresponding pullback of
sheaves of O-modules; we will use the same symbol for the functors i∗ : QCoh Xfppf →
QCoh Xrep and i∗ : FP Xfppf → FP Xrep induced by restriction.

If Y is another category fibered in groupoids and f : Y →X is a base-preserving
functor, then we have pushforward and pullback functors f∗ : Sh Yfppf → Sh Xfppf

and f−1 : Sh Xfppf → Sh Yfppf , together with an adjunction f−1 a f∗. These
functors are defined in the usual manner; for example the pushforward f∗ is defined
by the formula f∗F (A → X ) = F (A ×X Y → Y ) on objects, and by the
analogous formula on arrows. Note that in this case (f∗, f

−1) is not necessarily a
morphism of topoi, as f−1 might not be left exact.

Remark 6.3. Additionally, pullback on quasi-coherent sheaves is compatible with
the morphism (i∗, i

−1), i.e. the following diagram is 2-commutative

QCoh Xfppf QCoh Xrep

QCoh Yfppf QCoh Yrep

i∗

f∗ f∗

i∗

where we used the same symbol i∗ for X and Y .
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Lemma 6.4. Suppose that X is an algebraic stack over (Aff) with schematic di-
agonal. Then the functors

i∗ : QCoh Xfppf −→ QCoh Xrep and i∗ : FP Xfppf −→ FP Xrep

are equivalences.

The assumption that the diagonal is schematic is unnecessary, but it will be
satisfied in the cases where we apply this lemma.

Proof. The point is that in this case there exists a representable fppf map U →X ,
where U is a scheme. Set R

def
= U×X U , which is again a scheme by assumption. De-

note by Xs.fppf and Xsch the subcategories of Xfppf and Xrep respectively, consist-
ing of maps T →X in which T is a scheme (Xsch already appeared in section 4.1).
It follows from Lemma 4.12 that the embeddings Xs.fppf ⊆Xfppf and Xsch ⊆Xrep

induce equivalences of the corresponding topoi, hence equivalences of the categories
of quasi-coherent and finitely presented sheaves. By Proposition 4.13, the obvious
functor QCoh Xsch → QCoh (R⇒ U) is an equivalence; and easy descent argu-

ments show that the composite QCoh Xs.fppf
i∗−→ QCoh Xsch → QCoh (R⇒ U) is

also an equivalence. The first statement follows from this.
The second statement follows from the fact that being of finite presentation is a

local property in the fpqc topology. ♠

In general the pullback i∗ : QCoh Xfppf → QCoh Xrep will not be an equivalence
for an arbitrary fibered category with an fpqc atlas (see Remark 6.9). Nonetheless,
this is true if we restrict to finitely presented sheaves on an infinite root stack R.

Proposition 6.5. Let R be an infinite root stack over a quasi-separated scheme.
The functor

i∗ : FP Rfppf −→ FP Rrep

is an equivalence.

Proof. Assume that X is also quasi-compact.
If n is a positive integer we have a 2-commutative diagram of categories

FP(Rn)fppf FP Rfppf

FP(Rn)rep FP Rrep

π∗n

i∗n i∗

π∗n

where, as before, Rn is the n-th root stack of the logarithmic structure determined
by R, πn : R → Rn is the projection, and in : (Rn)fppf → (Rn)rep is the embedding.
Thus we get a 2-commutative diagram

lim−→n
FP(Rn)fppf FP Rfppf

lim−→n
FP(Rn)rep FP Rrep .

lim−→ i∗n i∗

lim−→π∗n

The left hand column is an equivalence by Lemma 6.4, while the bottom row is an
equivalence by Proposition 6.1. From this it follows that i∗ : FP Rfppf → FP Rrep

is full and essentially surjective. It remains to show that it is faithful. So, take two
finitely presented sheaves F and G on Rfppf , and a morphism φ : G → F that is
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0 when pulled back to Rrep; we need to show that φ is 0. This seems surprisingly
non-trivial to us.

We will make use of the following result, that is a consequence of Lemma 6.19,
proven below.

Lemma 6.6. Let R be an infinite root stack over a scheme X, and let A → R
be a representable fppf morphism. Then there exists a representable fppf morphism
S → A , where S → Y is an infinite root stack over a scheme Y .

Lemma 6.7. Let R be an infinite root stack over a scheme X. Then the restriction
i∗ : QCoh Rrep → Mod ORfppf

is exact.

Proof. Since i∗ is a right adjoint, it is enough to prove that it is right exact.
Let φ : G → F be a surjective homomorphism of quasi-coherent sheaves on R;
we need to show that i∗φ : i∗G→ i∗F is surjective. Let A → R be a representable
finitely presented flat map, and s ∈ F (A ); we need to show that there exists a
representable fppf map B → A such that the pullback of s to F (B) is in the
image of G(B).

By Lemma 6.6 stated above, there exists a representable fppf morphism S → A
where S → Y is an infinite root stack over a scheme Y . By base-changing to S ,
we can assume that A = R. Furthermore, the problem is clearly local in the
fppf topology of X; hence we can assume that X = SpecR is affine, and that the
logarithmic structure of X comes from a morphism Z[P ]→ R, where P is a sharp
fine saturated monoid. Set A

def
= R ⊗Z[P ] Z[PQ] and H

def
= µ∞(R); then H acts

on A, and R = [SpecA/H] (Corollary 3.13). We also have R = AH . The quasi-
coherent sheaves G and F correspond to H-equivariant A-modules N and M , and
φ : G → F corresponds to a H-equivariant morphism of A-modules Φ: N → M .
Then G(R) = NH and F (R) = MH . But the group scheme H is diagonalizable,
hence the functor M →MH is exact. This shows that s ∈ F (R) comes from G(R),
and completes the proof. ♠

Lemma 6.8. If F is a finitely presented sheaf on Rfppf , the unit homomorphism
F → i∗i

∗F is an isomorphism.

Proof. Let A → R be a representable fppf cover, such that there is an exact
sequence of OAfppf

-modules O⊕nAfppf
→ O⊕mAfppf

→ F → 0. Using Lemma 6.19 again,

by refining A we may assume that A is an infinite root stack. Since i∗ is right
exact and because of Lemma 6.7 we have a commutative diagram

O⊕nAfppf
O⊕mAfppf

F 0

i∗O
⊕n
Arep

i∗O
⊕m
Arep

i∗i
∗F 0

with exact rows. But i∗OXrep = OXfppf
, and since i∗ commutes with finite direct

sums the two left-hand vertical maps are isomorphisms; this implies the thesis. ♠

The fact that i∗ is faithful follows immediately from Lemma 6.8. This completes
the proof of Proposition 6.5 when X is quasi-compact.

For the general case, when X is not necessarily quasi-compact, notice that by
assigning to each open subscheme U ⊆ X the categories FP(U ×X R)fppf and
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FP(U ×X R)rep we get a stack in the Zariski topology, and i∗ extends to a base-
preserving functor of Zariski stacks. If {Uα} is a covering by quasi-compact open
subschemes, then

i∗ : FP(Uα ×X R)fppf −→ FP(Uα ×X R)rep

and

i∗ : FP(Uαβ ×X R)fppf −→ FP(Uαβ ×X R)rep ,

where we have set Uαβ
def
= Uα×XUβ , are equivalences for all α and β. Consequently

i∗ : FP Rfppf → FP Rrep is also an equivalence. ♠

Remark 6.9. It follows from the proof of Proposition 6.5 that the image of the
pullback i∗ : QCoh Rfppf → QCoh Rrep is equivalent to the colimit lim−→n

QCoh Rn.

It is easy to show that lim−→n
QCoh Rn is not closed under infinite direct sums, when

R is not trivial (if for each n we pick a quasi-coherent sheaf Fn on Rn that is not
a pullback of a sheaf Rm for any proper divisor m of n, the direct sum ⊕nFn will
not come from the direct limit). Hence i∗ : QCoh Rfppf → QCoh Rrep is not an
equivalence.

6.2. The relation with Kato’s Kummer-flat site. In this section we will show
that the Kummer-flat topos of a logarithmic scheme ([Kat91, Niz08, INT13]) can
be recovered as the fppf topos of the corresponding infinite root stack.

We briefly recall the construction of the Kummer-flat topos of a logarithmic
scheme.

Recall that a morphism of logarithmic schemes f : Y → X is log-flat if the
following holds: fppf locally on X and Y we can find Kato charts P → MX and
Q→MY and a morphism P → Q such that the diagram

(6.1)

Y XQ

X XP

commutes, and the induced map Y → X ×XP
XQ is flat (here, as usual, XP =

SpecZ[P ] for a monoid P ). Recall also that a homomorphism of monoids P → Q
is Kummer if it is injective, and every element of Q has a positive multiple in the
image. A morphism f : Y → X is Kummer if the corresponding f∗AX → AY
is Kummer, meaning that the homomorphism of monoids (f∗AX)y → (AY )y is
Kummer for any geometric point y → Y .

Definition 6.10 (Kazuya Kato). A morphism of fine saturated logarithmic schemes
f : Y → X is Kummer-flat if it is log-flat and Kummer, and the underlying map of
schemes is locally of finite presentation.

Remark 6.11. The finite presentation of the underlying map of schemes is not
essential, but will be useful for our purposes, so we include it in the definition.

Since charts can be made up from stalks, if f : Y → X is Kummer-flat, then
locally we can find charts as above such that in addition P → Q is Kummer, and
it is proved in [INT13, Proposition 1.3] that we can also make Y → X ×XP

XQ

locally of finite presentation.
For a logarithmic scheme X, there is a site, called the Kummer-flat site and

denoted by XKfl, whose objects are morphisms of logarithmic schemes U → X



INFINITE ROOT STACKS 45

that are Kummer-flat, with morphisms of logarithmic schemes over X as arrows,
and with jointly surjective families {Ui → U}i∈I of Kummer-flat morphisms as
coverings. The corresponding topos ShXKfl is called the Kummer-flat topos of X.

Remark 6.12. The site XKfl has a final object, the identity morphism X = X,
and fibered products. Given a diagram

V

Z Y

in XKfl, the fibered product is given by the fibered product V ×Y Z in the category
of fine saturated logarithmic schemes over k, together with the induced Kummer-
flat map V ×Y Z → X. Notice, however, that the underlying scheme of the fibered
product V ×Y Z may not be the fibered product V ×Y Z (see Section 2.4 of [Ogu]).

Remark 6.13. If we have two objects Y → X and Z → X of XKfl, then any
morphism Z → Y in XKfl is also Kummer. This follows from the fact that if two
morphisms of fine saturated torsion-free monoids P → Q and P → R are Kummer
and we have a commutative diagram

P R

Q

then Q→ R is also Kummer.
Indeed, any r ∈ R has some multiple nr coming from p, which means that it also

comes from Q. Moreover the map is injective: if q and q′ go to the same element r,
take a positive integer n such that nr, nq and nq′ all come from P . Then if p goes,
say, to nq and p′ goes to nq′, since P → R is injective and p, p′ both go to nr, we
must have p = p′, which means that nq = nq′, and so q = q′ by torsion-freeness.

Proposition 6.14. Let f : Y → X be a Kummer-flat (resp. Kummer-étale) mor-

phism of logarithmic schemes. Then the induced morphism ∞√f :
∞√
Y → ∞√

X
between the infinite root stacks is representable, locally finitely presented and flat
(resp. representable and étale).

Proof. Let us prove the result for Kummer-flat maps. Since the question is local
for the fppf topology of X and Y , we can assume that we have a diagram

Y X ×XP
XQ XQ

X XP

in which the map XQ → XP is induced by a Kummer homomorphism P → Q,
X → XP and Y → XQ are strict, and Y → X×XP

XQ is flat and finitely presented,
and also strict. By Proposition 3.4 we see that we have two cartesian diagrams

∞
√
X ×XP

XQ
∞
√
XQ

∞√
X

∞√
XP
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and
∞√
Y ∞

√
X ×XP

XQ

Y X ×XP
XQ ;

hence it is enough to prove that the map ∞
√
XQ → ∞√

XP is representable, flat
and finitely presented. But the Kummer homomorphism P → Q induces and iso-

morphism PQ → QQ, hence an isomorphism X
[∞]
P ' X

[∞]
Q . On the other hand

the homomorphism µ∞(P ) → µ∞(Q) is Cartier dual to the group homomor-
phism P gp

Q /P gp → Qgp
Q /Q

gp, which is surjective with kernel Qgp/P gp. Call Γ
def
=

Hom(Qgp/P gp,Gm) the Cartier dual to Qgp/P gp; we see that µ∞(P ) → µ∞(Q)
is injective, with cokernel Γ. Since Γ is finitely presented, being Cartier dual to a
finite group, the conclusion follows from Lemma 3.21. ♠

Because of proposition 6.14 there is a natural functor F : XKfl →
∞√
X fppf from

the Kummer-flat site of X to the small fppf site of
∞√
X, acting on objects by taking

f : Y → X to ∞√f :
∞√
Y → ∞√

X, and on arrows by taking g : Z → Y over X to
∞√g :

∞√
Z → ∞√

Y over
∞√
X.

Lemma 6.15. The functor F preserves fibered products.

Proof. The statement means that if

W V

Z Y

is a cartesian diagram in XKfl, then the diagram

∞√
W

∞√
V

∞√
Z

∞√
Y

is 2-cartesian, i.e. the induced morphism
∞√
W → ∞√

Z×∞√Y
∞√
V is an equivalence.

Recall first of all that the morphisms Z → Y and V → Y are Kummer, and
denote by A, B, C and D the sheaves of monoids giving the logarithmic structures
of Y , V , Z and W respectively. Recall ([Ogu, Section 2.4]) that W is obtained
in the following way: we first form the fibered product of the underlying schemes
V ×Y Z and, locally where we have charts P → A,Q → B,R → C, equip it with

the logarithmic structure coming from the pushout Q⊕P R of the diagram

P Q

R Q⊕P R

and then base change along SpecZ[(Q ⊕P R)fs] → SpecZ[Q ⊕P R] (here (−)fs

denotes the “fine saturation” of a monoid, see [Ogu, Section 1.2]). Now note that
since the functor P 7→ PQ preserves pushouts (being a left adjoint; its right adjoint
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is the inclusion of the category of monoids M such that M →MQ is an isomorphism
into all fine saturated monoids), the diagram

PQ QQ

RQ (Q⊕P R)Q

is also a pushout; but in this case the maps PQ → QQ and PQ → RQ are isomor-
phisms, since P → Q and P → R are Kummer. Consequently the remaining two
maps in the diagram are also isomorphisms, and we have (Q⊕P R)Q = PQ.

Now we construct a quasi-inverse to the natural functor
∞√
W → ∞√

Z×∞√Y
∞√
V .

Take an object of (
∞√
Z×∞√Y

∞√
V )(T ), i.e. a triple (ξ, η, f) where ξ : (BT )Q → DivTét

and η : (CT )Q → DivTét
are liftings of the Deligne–Faltings structures coming from

V and Z respectively, and f is an isomorphism between their restrictions to (AT )Q.
Call E the pushout of the diagram

AT BT

CT

of sheaves of monoid over T . The preceding remarks imply that (AT )Q, (BT )Q, (CT )Q
are all isomorphic, and they are also isomorphic to EQ, so we have an induced
Deligne–Faltings structure EQ → DivTét

. Moreover since EQ = (AT )Q is integral
and saturated, the map E → EQ factors through E → Efs, the fine saturation of
the sheaf E. By restriction along Efs → EQ, this gives a logarithmic structure on
T that makes the diagram

T V

Z Y

a commutative diagram of fine saturated logarithmic schemes. Consequently there
is an induced strict morphism T →W , and together with the lifting (DT )Q ' EQ →
DivTét

of the Deligne–Faltings structure coming from W this gives our object of
∞√
W (T ). We leave the remaining verifications to the reader. ♠

From Lemma 6.15 we see that F gives a morphism of sites
∞√
X fppf → XKfl, in

the sense of [Sta14, Tag 00X0]; this in turn induces a morphism of topoi

(F∗, F
−1) : Sh(

∞√
X fppf) −→ Sh(XKfl) .

Theorem 6.16. The morphism of topoi (F∗, F
−1) : Sh(

∞√
X fppf)→ Sh(XKfl) is an

equivalence.

Putting Theorem 6.16 together with Propositions 4.15 and 6.5 we obtain one of
the main results of this paper.

Corollary 6.17. If X is a fine saturated quasi-separated logarithmic scheme, there
is an equivalence of additive tensor categories between the categories of finitely
presented sheaves on the Kummer-flat site XKfl and finitely presented sheaves on
the infinite root stack

∞√
X. ♠
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Proof of Theorem 6.16. We will apply the following lemma from the Stacks Project.

Lemma 6.18 ([Sta14, Tag 039Z]). Let C and D be sites and F : C → D a functor.
Assume that the following conditions hold.

(a) F is continuous and cocontinuous.
(b) Given two arrows a, b : U ′ → U in C such that Fa = Fb, there exists a covering
{fi : U ′i → U ′} in C such that a ◦ fi = b ◦ fi for every i.

(c) Given two objects U and U ′ of C and a morphism c : FU ′ → FU in D , then
there exists a covering {fi : U ′i → U ′} in C and morphisms ci : U

′
i → U such

that Fci = c ◦ Ffi for every i.
(d) Given V ∈ D , then there exists a covering of V in D of the form {FUi → V }.

Then the induced morphism of topoi (F∗, F
−1) : Sh D → Sh C is an equivalence.

The fact that F is continuous follows from Lemma 6.15 and Proposition 6.14.
Showing that it is cocontinuous amounts to proving that for any Kummer-flat map
Z → X, any covering {Aj →

∞√
Z} of the corresponding object in

∞√
X fppf can

be refined by the family of maps {∞
√
Zi →

∞√
Z}, for some Kummer-flat covering

{Zi → Z}. Clearly this will follow from (d) applied to Z in place of X.
Part (b) (local faithfulness) follows directly from Theorem 5.22, which implies

that if two morphisms of fine saturated logarithmic schemes Z → Y induce equiva-
lent morphisms

∞√
Z → ∞√

Y , then they coincide, and part (c) (local fullness) from

Corollary 5.28, that implies that every morphism
∞√
Z → ∞√

Y in
∞√
X fppf comes

from a morphism Z → Y of logarithmic schemes. In fact, in both instances the
adjective “local” can be removed, but this is not needed to apply the lemma. All
that is left is to prove (d).

We do it in the form of the following lemma, which therefore will conclude the
proof.

Lemma 6.19. Let A → ∞√
X be an object of

∞√
X fppf . Then there exists a

Kummer-flat morphism Y → X with a factorization
∞√
Y → A → ∞√

X, such
that

∞√
Y → A is fppf.

From now on we focus on the proof of this lemma.
After shrinking X in the étale topology, we can assume that X is affine, and

that we have a Kato chart P → OX(X) for the logarithmic structure of X. Call

U∞ and Un the pullbacks of X
[∞]
P and X

[n]
P to X (see 3.1 for the notation); also,

set G∞
def
= µ∞(P ) and Gn

def
= µn(P ). Then

∞√
X = [U∞/G∞] and

n√
X = [Un/Gn].

Let V
def
= A ×∞√X U∞, so that A = [V/G∞].

Next we need a technical lemma.

Lemma 6.20. Let V a scheme with an action of a profinite diagonalizable group
scheme G → SpecZ, and p ∈ V . Then there exists a diagonalizable subgroup
scheme H ⊆ G of finite index and an open affine H-invariant neighborhood of p in
V .

Here by profinite we mean that G is a projective limit of finite diagonalizable

group schemes, or, equivalently, that the group of characters Ĝ is torsion.

Proof. If k(p) is the residue field of p, the action of G on V induces a morphism
φp : Gk(p) → V sending the origin to p. Let V ′ be a an open affine neighborhood of

p, consider the inverse image φ−1
p (V ′) ⊆ Gk(p). The subgroup schemes of the form
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Hk(p), where H is a diagonalizable subgroup scheme of finite index in G, form a
basis of open neighborhoods of the origin in Gk(p). By restricting to a diagonalizable

subgroup scheme of finite index H ⊆ G such that Hk(p) ⊆ φ−1
p (V ′), we can assume

that Gk(p) = φ−1
p (V ′), i.e. the orbit of p is contained in V ′.

Denote by α : G × V → V the action and by π : G × V → V the projection.
Notice that since π is an affine integral map, it is closed, and consequently, so is α.
Let Z be the complement of V ′ in V ; then α

(
π−1(Z)

)
is a closed invariant subset

of V whose complement contains p and is contained in V ′. By substituting V with
the complement of α

(
π−1(Z)

)
we may assume that V is an open subscheme of an

affine scheme.
Set A

def
= O(V ) and V

def
= SpecA. The action of G on V induces an action of G

on V , and the natural morphism j : V → V , is G-equivariant. If V were quasi-affine
(that is, according to [Gro61, Définition 5.1.1], it were also quasi-compact) then j
would be an open embedding. In general we don’t know whether j is always an
open embedding; however, if i : V → Y is an open embedding into an affine scheme
Y , there is an induced morphism V → Y . Let W be the inverse image of V in V :
we obtain a cartesian diagram

W V

V Y

j

i

s

Thus j factors as a section s : V →W , which is closed embedding, because W → V
is affine, followed by the open embedding W ⊆ V . Let Z be the complement of
W in V , and pick an element f ∈ A = O(V ) that vanishes along Z, but not at

s(p). Write f =
∑
λ∈Ĝ fλ, where Ĝ is the group of characters of G. Since Ĝ is

torsion the intersection of the kernels of the λ ∈ Ĝ with fλ 6= 0 is a finite index
subgroup scheme H ⊆ G; by restricting the action to H, we may assume that f is
G-invariant. Then G acts on V f = SpecAf , and V f ⊆W . The subscheme j−1(V f )
is an affine G-invariant neighborhood of p, and this concludes the proof. ♠

Now, let {Vi} be an open covering of V with open affine subschemes, such that
for each i there exists a subgroup scheme Hi ⊆ G∞ of finite index such that Vi
is Hi-invariant. Clearly, the induced morphisms [Vi/Hi] → [V/G∞] are affine,
finitely presented and flat. Assume that for each i we have found a fine saturated
logarithmic scheme Yi with a Kummer-flat morphism Yi → X, and a factorization
∞√
Yi → [Vi/Hi] such that

∞√
Yi → [Vi/Hi] is fppf. If we set Y

def
=
⊔
i Yi, we get a

morphism of logarithmic schemes Y → X, such that the induced base-preserving
functor

∞√
Y → ∞√

X factors as

∞√
Y =

⊔
∞
√
Yi −→

⊔
i

[Vi/Hi] −→ A −→ ∞√
X,

and the base-preserving functor
∞√
Y → A is fppf.

This means that we can replace A with [Vi/Hi]; in this case the morphism

A → ∞√
X, which we are assuming to be locally finitely presented, is affine, hence

finitely presented. This means that V is affine, and finitely presented over U∞.



50 MATTIA TALPO AND ANGELO VISTOLI

Denote by Γn the kernel of the homomorphism G∞ → Gn, and set Vn
def
= V/Γn.

We have a commutative diagram

(6.2)

V U∞

Vn Un ;

we claim that for for sufficiently divisible n the homomorphism Vn → Un is flat
and finitely presented, and the diagram is cartesian. This is a consequence of the
following lemma.

Lemma 6.21. Let G be a profinite diagonalizable group over SpecZ; write G =
lim←−i∈I Gi, where I is a filtered partially ordered set and the Gi are finite diagonal-

izable groups. Denote by Γi the kernel of the homomorphism G→ Gi.
Suppose that G acts on two rings R and A, and let R → A a finitely presented

G-equivariant ring homomorphism. For each i ∈ I set Ri = RΓi and Ai = AΓi .
Then there exists i0 ∈ I such that for all i ≥ i0 we have the following.

(a) The induced homomorphism Ri → Ai is finitely presented.
(b) The natural homomorphism Ai ⊗Ri

R→ A is an isomorphism.
(c) If R→ A is flat, then Ri → Ai is also flat.

Proof. Suppose that A has a presentation with m generators (a1, . . . , am). Since G
is profinite we have that A is the union of the Ai; hence for sufficiently large i the
generators are Γi-invariant. Let x = (x1, . . . , xm) be a sequence of indeterminates,
and consider the surjective homomorphism R[x] → A that sends each xj to aj . If
we let Γi act on R[x] by acting on the coefficients and leaving the xj invariant, this
homomorphism is Γi-equivariant.

If the ideal of relations I ⊆ R[x] is generated by n elements, we have an exact
sequence

R[x]⊕n −→ R[x] −→ A −→ 0 ;

by enlarging i we can arrange that the generators be also Γi-invariant, and the the
sequence above is Γi-equivariant. Taking invariants under Γi is an exact functor,
because Γi is diagonalizable; clearly R[x]Γi = Ri[x], so for all sufficiently large i we
have an exact sequence

Ri[x]⊕n −→ Ri[x] −→ Ai −→ 0 .

This proves (a).
Part (b) is immediate when A = R[x] and Γi acts leaving the indeterminates

fixed. In the general case it follows from the exact sequence above, and right
exactness of the tensor product.

For part (c) see [Gro66, Théorème 11.2.6]. ♠

We are now ready to finish the proof of Lemma 6.19 (and this will also conclude
the proof of Theorem 6.16). Recall that we have reduced the statement to consider-

ing the case of an object of
∞√
X fppf of the form A = [V/G∞]→ ∞√

X = [U∞/G∞],
where V is affine and the G∞-equivariant morphism V → U∞ is finitely presented.
By the previous lemma we can find an n sufficiently large such that Vn = V/Γn is
flat and finitely presented over Un, and diagram (6.2) is cartesian. The scheme Un
has a tautological fine saturated logarithmic structure coming from the morphism
Un →

n√
X; with this logarithmic structure, the morphism Un → X is obviously
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Kummer-flat. We have
∞√
Un = [U∞/Γn] by Corollary 3.13; if we give to Vn the

logarithmic structure pulled back from Un, then Vn → X is Kummer-flat, and by
Proposition 3.4 we have

∞
√
Vn ' Vn ×Un

∞
√
Un ' [V/Γn].

So [V/Γn] is an infinite root stack. Since the morphism [V/Γn] → [V/G∞] is
representable, faithfully flat and finitely presented, this concludes the proof. ♠

As a variation on this one can consider the small Kummer-étale site XKét of a
fine saturated logarithmic scheme X, whose objects are Kummer-étale morphism
Y → X (see [IKN05, Niz08]). The definition of Kummer-étale is obtained by
replacing “flat” with “étale” in the definition of the Kummer-flat morphism, and
assuming that in diagram (6.1) the order of the cokernel of P gp → Qgp is not
divisible by the characteristic of the residue field of any point of X.

We can link the site XKét with the small étale site
∞√
X ét, whose objects are rep-

resentable étale morphisms A → ∞√
X. More precisely one can prove the following.

Theorem 6.22. If Y → X is a Kummer-étale morphism of fine saturated log-
arithmic schemes, the induced base-preserving functor

∞√
Y → ∞√

X is étale and
representable. The resulting functor XKét →

∞√
X ét induces an equivalence of topoi

Sh(
∞√
X ét) ' Sh(XKét). ♠

Therefore we also obtain an equivalence of categories Sh(
∞√
X ét) ' Sh(XKét). In

characteristic 0 (that is, if X is a scheme over Q) the stack
∞√
X is a limit of Deligne–

Mumford stacks, and one can show that there is also an equivalence of categories
FP(

∞√
X ét) and FP(

∞√
X); however, this fails in positive characteristic. This is a

reflexion of the fact that the Kummer-étale site works very well in characteristic 0,
but is not adequate for many applications in positive characteristic.

Using Lemma 6.19 we can also prove a converse to Proposition 6.14.

Theorem 6.23. Let f : Y → X be a morphism of fine saturated logarithmic
schemes, such that the underlying morphism of schemes is locally of finite presen-
tation. Then ∞√f :

∞√
Y → ∞√

X is flat, locally finitely presented and representable
if and only if f is Kummer-flat.

Proof. The “if” part of the statement follows directly from Proposition 6.14. Let
us prove the converse.

Let y : Spec Ω → Y be a geometric point of Y , and x
def
= f ◦ y. Set P

def
= MX,x

and Q
def
= MY,y. By refining X and Y in the étale topology we may assume that

they are affine, and there exists a commutative diagram

Y XQ

X XP

f

in which the rows are strict, and the right-hand column is induced by f∗ : P → Q.

Set U∞
def
= X ×XP

X
[∞]
P and V∞

def
= Y ×XQ

X
[∞]
Q , so that

∞√
X = [U∞/µ∞(P )] and
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∞√
Y = [V∞/µ∞(Q)]. We have a commutative (non-cartesian) diagram

V∞ U∞

∞√
Y

∞√
X.

We will prove the theorem by first showing that f∗ : P → Q is Kummer, and
then that f is log-flat.

Step 1: f∗ : P → Q is injective. For this purpose we may base change through
x, and assume that X = Spec Ω with the logarithmic structure given by MX =
O×X ⊕ P , so that

∞√
X = ∞

√
P/Ω =

[
Spec(Ω[PQ]/(P+))/µ∞(P )

]
. The flatness of

∞√
Y → ∞√

X implies the flatness of the composite V∞ →
∞√
Y → ∞√

X, which
equals the composite V∞ → U∞ →

∞√
X. In turn, since flatness is preserved by

base-change, this implies the flatness of the projection V∞ ×∞√X U∞ → U∞.
Note that V∞ ×∞√X U∞ = V∞ × µ∞(P ); the projection

(6.3) V∞ × µ∞(P ) −→ U∞ ,

which is flat by the argument above, is obtained by composing the morphism V∞×
µ∞(P )→ U∞ × µ∞(P ) with the action U∞ × µ∞(P )→ U∞.

Now, consider a prime p, which equals the characteristic of Ω if this is positive,
and is arbitrary if it is 0. For any torsion abelian group A we will denote by A{p} the
p-primary torsion part, and by A{p′} the prime to p part; clearly A = A{p}⊕A{p′}.
If G is a profinite diagonalizable group scheme over Ω, with character group Ĝ, we
call G{p} and G{p′} the diagonalizable group schemes over Ω with character groups

Ĝ{p} and Ĝ{p′} respectively, so that G = G{p} × G{p′}. By abuse of notation,
we will use µ∞(P ) to denote the fibered product Spec Ω×SpecZ µ∞(P ). We claim
that the morphism

(6.4) V∞ × µ∞(P ){p} −→ U∞

obtained by composing the morphism (6.3) with the embedding V∞×µ∞(P ){p} ⊆
V∞ × µ∞(P ), is flat. Since (6.3) is flat, it is enough to show that the embedding
µ∞(P ){p} ⊆ µ∞(P ) is flat. But this is clear, since this is obtained by taking a
limit of the embeddings µ∞(P ){p} ⊆ µ∞(P ){p} × µn(P ) for n not divisible by p,
and each µn(P ) is étale over Ω.

Since (6.4) is flat and U∞ = Spec Ω[PQ]/(P+) is topologically a point, we see
that (6.4) is faithfully flat. Now write Y = SpecR: then (6.4) corresponds to a
homomorphism of Ω-algebras

Φ: Ω[PQ]/(P+) −→ (R⊗Ω[Q] Ω[QQ])⊗Ω Ω[P gp ⊗ (Q/Z){p}] ,

which must then be injective. The homomorphism Φ can be described as follows.
If a ∈ PQ we denote by ta the corresponding element of Ω[PQ]/(P+), and if b ∈ QQ
we denote by ub the corresponding element of Ω[QQ]. We also denote by π : PQ →
P gp
Q → (P gp

Q /P gp){p} ' P gp ⊗ (Q/Z){p} the projection, and by vc the element of

Ω[P gp ⊗ (Q/Z){p}] corresponding to some c ∈ P gp ⊗ (Q/Z){p}. Then we have

Φ(ta) = 1⊗ uf
∗(a) ⊗ vπ(a) .

Now, assume that f∗ : P → Q is not injective, and take a, a′ ∈ P with a 6= a′

and f∗(a) = f∗(a). Fix a prime l different from p. Then for sufficiently large m
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we have ta/l
m 6= ta

′/lm , while f∗(a/lm) = f∗(a′/lm) and π(a/lm) = 0 = π(a′/lm).

Therefore Φ(ta/l
m

) = Φ(ta
′/lm), and this gives a contradiction.

Step 2: P → Q is Kummer. Lemma 6.19 implies the existence of a Kummer-flat
morphism g : Z → X such that ∞

√
g :

∞√
Z → ∞√

X factors as

∞√
Z

∞√
Y

∞√
X ,

ψ
∞√
f

where ψ is a morphism of stacks that is representable, flat and surjective. By
Theorem 5.24 (and the remark following it) ψ is a morphism of infinite root stacks,

and there exists a morphism of logarithmic schemes h : Z → Y with
∞√
h = ψ, and

g = f ◦ h. Let z : Spec Ω → Z be a geometric point; set y = h(z) and x = f(y).
We need to show that f∗ : MX,x → MY,y is Kummer. However, the composite

MX,x
f∗−→MY,y

h∗−→MZ,z is Kummer, and h∗ : MY,y →MZ,z is injective (from step

1 applied to
∞√
Z → ∞√

Y ). Now the result follows from an easy check.

Step 3: f : Y → X is log-flat. By definition, the morphism Y → X factors
through the root stack

Q√
X of X with respect to the Kummer homomorphism

P → Q (see the first paragraphs of Section 3). We also have
∞√
Y = lim←−n

n√
Y and

∞√
X = lim←−n

1
n

Q√
X. If n is a positive integer, we have a commutative diagram

∞√
Y

n√
Y Y XQ

∞√
X

1
n

Q√
X

Q√
X

X XP

∞√
f fn

f

in which the two left squares are cartesian. From this it follows that
n√
Y →

1
n

Q√
X

is representable. We claim that it is also flat when n is sufficiently divisible.

Set Un
def
= X ×XP

X 1
nQ

and Wn
def
= Un × 1

n
Q√
X

n√
Y ; since Un →

1
n

Q√
X is flat

and surjective, it is enough to show that Wn → Un is flat when n is sufficiently

divisible. We have lim←−n Un = U∞, lim←−n
( 1

n
Q√
X
)

=
∞√
X, and lim←−n

n√
Y =

∞√
Y , hence

lim←−nWn = U∞ ×∞√X
∞√
Y . Furthermore, if m | n we have a diagram

Wn Un

n√
Y

1
n

Q√
X

m√
Y

1
m

Q√
X

Wm Um

in which the upper, middle and lower squares are cartesian; hence Wn = Wm ×Um

Un. Since the projection U∞ ×∞√X
∞√
Y → U∞ is flat, because it is obtained by
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base change from ∞√f , we can apply [Gro66, Théorème 11.2.6] and conclude that
Wn → Un is flat when n is sufficiently divisible. Choose such an n.

Now set Vn
def
= Y ×XQ

X 1
nQ

and V ′n
def
= Vn × 1

n
Q√
X
Un. We have a commutative

diagram

V ′n Un

Vn
n√
Y

1
n

Q√
X ;

let us endow Un, Vn and V ′n with the tautological logarithmic structures coming from

the maps into
1
n

Q√
X (notice that in the case of Vn and V ′n these coincide with the

ones coming from the maps into
n√
Y ). The maps V ′n → Un and V ′n → Vn are flat and

strict, hence Kummer-flat. On the other hand Vn → Y and Un → X are Kummer-
flat by definition, so the composites V ′n → Y and V ′n → X are Kummer-flat. From
[INT13, Theorem 0.2] (which we recall below) we conclude that f : Y → X is
log-flat. This concludes the proof of Theorem 6.23. ♠

Lemma 6.24. [INT13, Theorem 0.2] Let f : X → Y and g : Y → Z be morphisms
of fine saturated logarithmic schemes, and assume that f is surjective and Kummer.
If f and g◦f are log-flat (resp. log-étale), then g is also log-flat (resp. log-étale). ♠

Analogous arguments prove the following.

Theorem 6.25. Let f : Y → X be a morphism of fine saturated logarithmic
schemes, such that the underlying morphism of schemes is locally of finite pre-
sentation. Then ∞√f :

∞√
Y → ∞√

X is étale if and only if f is Kummer-étale. ♠

7. Parabolic sheaves on fine saturated logarithmic schemes

In this section we extend the parabolic interpretation of quasi-coherent sheaves
on finite root stacks given in [BV12] to infinite root stacks. Let us review some
definitions from [BV12], specialized to the case of integral monoids, the only one
that is of interest here.

Let P be an integral monoid. We define the weight lattice Pwt as the set P gp,
with the partial order relation defined x ≤ y when y − x ∈ P ⊆ P gp. We will
interpret Pwt as a category in which there is at most one arrow between any two
objects, in the usual way.

If X is a scheme and A is a sheaf of integral monoids on Xét, we define a fibered
category Awt → Xét. If U → X a map with U affine, then Awt(U) is the set Agp(U)
with the ordering defined by x ≤ y if y − x ∈ A(U). We will think of Awt as a
fibered category on Xét whose fibers are partially ordered sets.

Let us fix a fine saturated logarithmic scheme X with a Deligne–Faltings struc-
ture L : A→ DivXét

.

Definition 7.1. Assume at first that there is a global chart P → A(X). A parabolic
sheaf E on the logarithmic scheme X is a functor E : Pwt

Q → QCohX that we

denote by a 7→ Ea, for a an object or an arrow of Pwt
Q , with an additional datum

for any p ∈ P gp and a ∈ P gp
Q of an isomorphism of OX -modules

ρEp,a : Ep+a ' Lp ⊗ Ea
called the pseudo-periods isomorphism.
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These isomorphism are required to satisfy some compatibility conditions. Let p,
p′ ∈ P gp, r ∈ P , q ∈ PQ and a ∈ P gp

Q . Then the following diagrams

Ea Er+a

OX ⊗ Ea Lr ⊗ Ea

Er

ρEr,a

σr⊗id

Ep+a Lp ⊗ Ea

Ep+q+a Lp ⊗ Eq+a

ρEp,a

Eq id⊗Eq

ρEp,q+a

Ep+p′+a Lp+p′ ⊗ Ea

Lp ⊗ Ep′+a Lp ⊗ Lp′ ⊗ Ea,

ρE
p+p′,a

ρE
p,p′+a

µp,p′⊗id

id⊗ρE
p′,a

where µp,p′ : Lp+p′ ' Lp ⊗ Lp′ is the natural isomorphism given by the symmetric
monoidal functor L, are commutative. Furthermore we assume that the composite

Ea = E0+a

ρE0,a−−→ L0 ⊗ Ea ' OX ⊗ Ea
coincides with the natural isomorphism Ea ' OX ⊗ Ea.

A homomorphism E′ → E of parabolic sheaves onX is given by a base-preserving
natural transformation of functors Pwt

Q → QCohX, which is moreover compatible
with the pseudo-periods isomorphisms.

As in the case of parabolic sheaves with fixed weights, the definition extends to
the general case (without a global chart), where one requires the commutativity
of the diagrams and compatibility of ρE with pullback. One shows that in the
presence of a global chart, the corresponding categories are equivalent (the analogue
of [BV12, Proposition 5.10]).

More precisely, denote by (QCoh)Xét
the fibered category on Xét associated with

the pseudo-functor from Xét into abelian categories, sending each map U → X with
U affine into the category of quasi-coherent sheaves on U .

Definition 7.2. A parabolic sheaf E on X consists of the following data.

(a) A cartesian base-preserving cartesian functor E : Awt
Q → (QCoh)Xét

, denoted
by a→ Ea.

(b) For any U → X in Xét, any a ∈ Awt(U) and b ∈ Awt
Q (U), an isomorphism of

OU -modules
ρEa,b : Ea+b ' La ⊗ Eb.

These data are required to satisfy the conditions analogous to those of Defini-
tion 7.1, and the following.

If f : U → V is an arrow in Xét, a ∈ Awt(V ) and b ∈ Awt
Q (V ), then the isomor-

phism
ρEf∗a,f∗b : Ef∗(a+b) = Ef∗a+f∗b ' Lf∗a ⊗ Ef∗b

is the pullback of jEa,b : Ea+b ' La⊗Eb (note that f∗Ea ' Ef∗a for every a ∈ Awt
Q (V )

since E is cartesian).
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This gives an abelian category ParX of parabolic sheaves on X.
The following is an analogue of [BV12, Theorem 6.1].

Theorem 7.3. There is an equivalence of abelian categories between ParX and
QCoh

∞√
X.

Proof. Let us describe the functor Φ: QCoh
∞√
X → ParX. Denote by π :

∞√
X →

X the projection, and by Λ: AQ → Div∞√X ét
the universal Deligne–Faltings struc-

ture on
∞√
X (that we denoted by L̃ in Section 5). Moreover consider the induced

functor Awt
Q → Pic∞√X ét

; by abuse of notation we will still denote it by Λ.

Let F ∈ QCoh
∞√
X be a quasi-coherent sheaf, U → X be an étale morphism

with U affine, and v ∈ Awt
Q (U) be a section on U . We define a sheaf (ΦF )v as

(ΦF )v = π∗(F ⊗∞√X Λv).

This is a quasi-coherent sheaf on X because of Proposition 4.16.
Now for v ∈ Awt

Q (U) and a ∈ AQ(U) we get a morphism (ΦF )v → (ΦF )v+a by
applying π∗ to the morphism

F ⊗ Λv → (F ⊗ Λv)⊗ Λa ' F ⊗ Λv+a

induced by the section sa of Λa.
Finally, for a ∈ Awt(U) and b ∈ Awt

Q (U), the isomorphism

ρΦF
a,b : (ΦF )a+b ' La ⊗ (ΦF )b

is given by the following composition, where we use the projection formula for π:

(ΦF )a+b = π∗(F ⊗ Λa+b)

' π∗(F ⊗ Λb ⊗ Λa)

' π∗(F ⊗ Λb ⊗ π∗La)

' La ⊗ π∗(F ⊗ Λb)

' La ⊗ (ΦF )b.

One easily verifies that this gives a parabolic sheaf on X, and that this construction
can be extended to an additive functor QCoh

∞√
X → ParX.

Let us also describe the quasi-inverse Ψ: ParX → QCoh
∞√
X, that we can con-

struct étale locally. Hence we may assume that X has a chart X → [SpecZ[P ]/P̂ ]

(in the sense of Definition 2.10). Call η : E → X the corresponding P̂ -torsor, and
A = η∗OE , a P gp-graded OX -algebra. We leave it to the reader to check that the
infinite root stack has a quotient presentation as

∞√
X ' [(E ×SpecZ[P ] SpecZ[PQ])/P̂Q] = [Spec

X
(A⊗Z[P ] Z[PQ])/P̂Q]

where the action is via the induced P gp
Q -grading onA⊗Z[P ]Z[PQ]. This is analogue to

Corollary 3.13 and [BV12, Proposition 4.13]. Hence, a quasi-coherent sheaf on
∞√
X

can be described as a P gp
Q -graded quasi-coherent sheaf of A⊗Z[P ] Z[PQ]-algebras on

X.
Given a parabolic sheaf E : Pwt

Q → QCohX, consider the P gp
Q -graded quasi-

coherent sheaf
⊕

a∈P gp
Q
Ea on X. This has a structure of A-module, coming from

the isomorphisms Ea ⊗ Lp ' Ea+p (note that A '
⊕

p∈P gp Lp), and a structure

of SpecZ[PQ]-algebra, coming from the maps Eq : Ea → Ea+q for a ∈ P gp
Q and

q ∈ PQ. By the properties of a parabolic sheaf, the two actions of Z[P ] via the
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maps to Z[P ] → A and Z[P ] → Z[PQ] are compatible, and induce a structure of
P gp
Q -graded quasi-coherent sheaf of A ⊗Z[P ] Z[PQ]-modules. Hence we obtain the

desired object Ψ(E) ∈ QCoh
∞√
X.

The rest of the proof of Theorem 6.1 in [BV12] goes through without changes. ♠

7.1. Finitely presented parabolic sheaves. We are interested in characterizing
parabolic sheaves corresponding to finitely presented sheaves on

∞√
X. Being finitely

presented is a local condition, so we may assume that X is quasi-compact, and that
there is a global chart P → A(X), where P is a fine saturated sharp monoid.

Suppose that F is a quasi-coherent sheaf on
∞√
X, and call E : Pwt

Q → QCohX the

corresponding parabolic sheaf. For each a ∈ Pwt
Q we have Ea = π∗(F ⊗O∞√

X
Λa);

hence, by 4.16(c) each Ea is finitely presented on X. However, the converse is not
true.

Example 7.4. Let X be the standard logarithmic point (2.17), and consider the
parabolic sheaf E ∈ ParX given by Eq = k for q ∈ Z and Eq = 0 otherwise, with
the only possible maps and the trivial quasi-periods isomorphisms. Although Eq
is finitely presented for every q ∈ Q, we claim that E is not finitely presented as a
quasi-coherent sheaf on

∞√
X.

In fact it is immediate from 6.1 and the explicit description of the pullback along
π :

∞√
X → n√

X given below that a finitely presented parabolic sheaf F ∈ ParX
has the property that for any q ∈ Q, for small enough q′ > 0 we have Fq ' Fq+q′ ,
and this is not true for the sheaf E.

This property is generalized by 7.7 below.

It is, however, true for the finite root stack
n√
X: if E : 1

nP
wt → QCohX is a

parabolic sheaf, such that Ea is finitely presented on X for all a ∈ 1
nP

wt, then the

corresponding quasi-coherent sheaf on
n√
X is finitely presented. This follows easily

from the construction of the functor from parabolic sheaves to sheaves on
n√
X given

in [BV12]: by inspecting the construction, one sees that the sheaf ΨE ∈ QCoh
n√
X

corresponding to the parabolic sheaf E is constructed by taking a finite direct sum
of the sheaves Ea on a smooth cover of the stack

n√
X, and then by using descent.

Since the sheaves Ea are finitely presented and the sum is finite, ΨE is also finitely
presented. This fact can be exploited as follows.

Let n be a positive integer; denote by πn :
∞√
X → n√

X the projection. The
sheaf πn∗F corresponds to the restriction of E to 1

nP
wt. Set F [n]

def
= π∗nπn∗F , and

call E[n] : Pwt
Q → QCohX the corresponding parabolic sheaf. We have that Ea

is finitely presented for all a ∈ Pwt
Q if and only if each F [n] is finitely presented,

because of the fact above. Furthermore whenever m | n the morphism πm has a

factorization
∞√
X

πm−−→ n√
X

πm
n−−→ m√

X; the isomorphism πmn∗πm∗F ' πn∗F gives
a map πm∗F → πmn∗πn∗F ; applying π∗m we obtain a morphism F [m] → F [n]; this

defines an inductive system of sheaves {F [n]} on
∞√
X. The natural homomorphisms

F [n]→ F induce a homomorphism lim−→n
F [n]→ F .

Proposition 7.5. The homomorphism lim−→n
F [n]→ F is an isomorphism.

Proof. The statement is local in the étale topology, hence we can assume that
X = SpecR is affine, and that the logarithmic structure is induced by a morphism
X → XP . Set A

def
= R⊗Z[P ]Z[PQ], An

def
= R⊗Z[P ]Z[ 1

nP ] and G
def
= µ∞(P ); moreover

call Gn
def
= µ∞( 1

nP ) ⊆ G, i.e. the kernel of the projection µ∞(P )→ µn(P ).
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Then F corresponds to a G-equivariant A-module M , the pushforward πn∗F
corresponds to the (µn(P )-equivariant) An-module MGn , and F [n] to the tensor
product MGn ⊗Z[ 1

nP ] Z[PQ]; so it is enough to check that the natural morphism

lim−→n
(MGn ⊗Z[ 1

nP ] Z[PQ])→M is an isomorphism. We have a factorization⋃
n

MGn = lim−→
n

MGn −→ lim−→
n

(MGn ⊗Z[ 1
nP ] Z[PQ]) −→M

of the embedding
⋃
nM

Gn ⊆ M . Since Z[PQ] =
⋃
n Z[ 1

nP ], we have that the map

lim−→n
MGn → lim−→n

(MGn⊗Z[ 1
nP ]Z[PQ]) is surjective; hence it is enough to show that⋃

nM
Gn = M . This is standard, using the coaction µ : M →M ⊗Z[P gp

Q /P gp]. We

have that
⋃
n Z[ 1

nP
gp/P gp] = Z[P gp

Q /P gp]. If m ∈ M , write µ(m) =
∑
imi ⊗ ai,

and choose n such that ai ∈ Z[ 1
nP

gp/P gp] for all i. Then m ∈MGn . ♠

So if F is finitely presented each of the F [n] is finitely presented, and F [n] = F
for some n (or, equivalently, for all sufficiently divisible n). It remains to translate
this into a criterion for the parabolic sheaf E. For this we need a formula for E[n].

Let ParnX be the category of parabolic sheaves on X with weights in 1
nP , as

defined in [BV12, Definition 5.6]; then we have an equivalence ParnX ' QCoh
n√
X.

The functor πn∗ : QCoh
∞√
X → n√

X corresponds to the restriction functor Resn : ParX →
ParnX that sends each E : Pwt

Q → QCohX into its restriction to 1
nP

wt → QCohX.
Let us define an induction functor Indn : ParnX → ParX.

Let E′ : 1
nP

wt → QCohX be a parabolic sheaf with coefficients in 1
nP . For each

a ∈ PQ consider the subset

1
nP
≤a def

= {u ∈ 1
nP | u ≤ a}

and set
(IndnE

′)a = colimu∈ 1
nP
≤a E′u .

If a ≤ b the inclusion 1
nP
≤a ⊆ 1

nP
≤b gives a homomorphism of quasi-coherent

sheaves (IndnE
′)a → (IndnE

′)b; this defines a functor IndnE
′ : Pwt

Q → QCohX.

If p ∈ P then 1
nP
≤p+a = p+ 1

nP
≤a; hence

(IndnE
′)p+a = colimu∈ 1

nP
≤a E′p+u .

By taking the colimit, the isomorphisms E′p+u ' Lp ⊗ E′u induce a pseudo-period
isomorphism (IndnE

′)p+a ' Lp ⊗ (IndnE
′)a. We leave it to the reader to verify

that this gives a structure of parabolic sheaf to IndnE
′, and defines a functor

Indn : ParnX → ParX.

Proposition 7.6. The induction functor Indn : ParnX → ParX is left adjoint to
the restriction functor Resn : ParX → ParnX.

Proof. If a ∈ 1
nP we have (IndnE

′)a = E′a, so that E′ ' Resn IndnE
′. This gives

an isomorphism of functors idParnX ' Resn ◦ Indn.
On the other hand if E is a parabolic sheaf in ParX, there is an obvious

homomorphism colim
u∈ 1

nP
≤a
Eu → Ea, which induced a natural transformation

Indn ◦Resn → idParX . We leave it to the reader to check that these are respec-
tively the counit and the unit of an adjunction. ♠

Hence Indn : ParnX → ParX corresponds to the functor π∗n : QCoh
n√
X →

QCoh
∞√
X.
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Putting all this together we get the following characterization of finitely presented
parabolic sheaves on X.

Theorem 7.7. Let E : Pwt
Q → QCohX be a parabolic sheaf on X. Then E corre-

sponds to a finitely presented sheaf on QCoh
∞√
X if and only if the following two

conditions are satisfied.

(a) Ea is finitely presented as a quasi-coherent sheaf on X for all a ∈ PQ.
(b) There exists a positive integer n such that for all a ∈ PQ the natural homomor-

phism

colimu∈ 1
nP
≤a Eu −→ Ea

is an isomorphism. ♠

Remark 7.8. It is an interesting open question to characterize the finitely pre-
sented parabolic sheaves E on X such that the corresponding quasi-coherent sheaf
on

∞√
X is locally free. If X is a regular scheme with the logarithmic structure in-

duced by a divisor with normal crossings, then it is shown in [Bor09, Proposition 2]
that this happens if and only if Ea is locally free on X for all a. In general this
condition is neither necessary nor sufficient, and the exact characterization of these
parabolic sheaves is probably subtle.
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