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Competing coherent and dissipative dynamics close to quantum criticality
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We investigate the competition of coherent and dissipative dynamics in many-body systems at continuous
quantum transitions. We consider dissipative mechanisms that can be effectively described by Lindblad equations
for the density matrix of the system. The interplay between the critical coherent dynamics and dissipation is
addressed within a dynamic finite-size scaling framework, which allows us to identify the regime where they
develop a nontrivial competition. We analyze protocols that start from critical many-body ground states and put
forward general dynamic scaling behaviors involving the Hamiltonian parameters and the coupling associated
with the dissipation. This scaling scenario is supported by a numerical study of the dynamic behavior of a one-
dimensional lattice fermion gas undergoing a quantum Ising transition in the presence of dissipative mechanisms
such as local pumping, decaying, and dephasing.
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I. INTRODUCTION

Understanding the quantum dynamics of many-body sys-
tems is one of the greatest challenges of modern physics.
The recent progress in atomic physics and quantum optical
technologies has provided a great opportunity for a thorough
investigation of the interplay between the coherent quantum
dynamics and the (practically unavoidable) dissipative effects,
due to the interaction with the environment [1–4]. Likely,
the most intricate regime is the one characterized by an
actual competition of both dynamic mechanisms, which may
develop a nontrivial interplay. This can be responsible for the
emergence of further interesting phenomena in many-body
systems, in particular when they are close to a quantum phase
transition, where quantum critical fluctuations emerge and
correlations develop a diverging length scale [5].

In this paper we study the dynamics of open critical many-
body systems, whose Hamiltonians are close to a continuous
quantum critical point. We consider a class of dissipative
mechanisms that can be effectively described by Lindblad
equations for the density matrix of the system [6,7]. We
address the interplay between the critical coherent dynamics
and dissipative mechanisms by considering dynamic protocols
that start from ground states, or low-temperature Gibbs distri-
butions, close to quantum transitions. Our approach exploits a
dynamic finite-size scaling (FSS) framework, which accounts
for both the critical Hamiltonian and dissipation drivings
and allows us to identify the dynamic regime where a non-
trivial competition develops. General scaling behaviors are
put forward, involving both the Hamiltonian parameters and
the couplings associated with the dissipative terms. We thus
achieve the notable result of combining intrinsically different
dynamic mechanisms in a unique framework.

To verify the emerging scaling scenario, we consider
the paradigmatic one-dimensional Kitaev fermion model [8].
We study its dynamic behavior close to its quantum Ising
transition in the presence of local incoherent pumping, decay,
and dephasing. Numerical results reported below nicely sup-
port the general dynamic FSS theory addressing the competi-
tion between critical coherent dynamics and dissipation.

Our considerations apply to a generic d-dimensional many-
body system with Hamiltonian Ĥ , close to a zero-temperature
transition driven by quantum fluctuations [5,9]. A quantum
transition is generally characterized by few relevant perturba-
tions, whose tuning gives rise to quantum critical behaviors,
characterized by a diverging length scale and universal power
laws. However, these features generally disappear in the pres-
ence of dissipation. We assume that the many-body system
also interacts with the environment, so that the time depen-
dence of its density matrix ρ is described by the Lindblad
master equation [6]

∂ρ

∂t
= − i

h̄
[Ĥ , ρ] + u

∑
o

Do[ρ], (1)

where the first term provides the coherent driving, while the
second term accounts for the coupling to the environment. Its
form depends on the nature of the dissipation arising from the
interaction with the bath, which is effectively described by a
set of dissipators Do and a global coupling u > 0. In the case
of weak coupling to Markovian baths, the trace-preserving
superoperator Do[ρ] can be generally written as [10,11]

Do[ρ] = L̂oρL̂†
o − 1

2 (ρ L̂†
oL̂o + L̂†

oL̂oρ), (2)

where L̂o is the Lindblad jump operator associated to the
system-bath coupling scheme. In the following we will re-
strict our study to homogeneous dissipation mechanisms,
preserving translational invariance, as depicted, for example,
in Fig. 1. In quantum optical implementations, the condi-
tions leading to Eqs. (1) and (2) are typically satisfied [12];
therefore this formalism constitutes the standard choice for
theoretical investigations of such systems.

The dissipator D ≡ ∑
o Do typically drives the system to

a steady state, which is generally noncritical, even when
the Hamiltonian parameters are critical. However, one may
identify a dynamic regime where the dissipation is sufficiently
small to compete with the coherent evolution driven by the
critical Hamiltonian, leading to potentially novel dynamic
behaviors. This is the target of the present article. As discussed
below, such a low-dissipation regime naturally emerges within
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FIG. 1. Sketch of a Fermi lattice gas in one dimension. Particles
undergo coherent pairing and tunneling mechanisms (bidirectional
blue arrows) between neighboring lattice sites (black dots). The
bubble indicates the two-level nature of each site, with δE denoting
the corresponding onsite energy spacing, [δE = |μ|, for model (8)].
Each site is homogeneously and weakly coupled to an external
and independent bath B (vertical black arrows), whose effect is to
introduce local incoherent particle losses, pumping, or dephasing.

a dynamic FSS framework, assuming many-body systems of
linear size L (i.e., of dimension Ld ), where the effects of
coherent and dissipative driving terms are somehow measured
in terms of appropriate powers of L.

The paper is organized as follows. In Sec. II we introduce
a dynamic FSS framework addressing the interplay between
critical coherent dynamics and dissipation for systems de-
scribed by Lindblad master equations, in which the coupling
with the bath is homogeneous. Our predictions are verified
in Sec. III for the Kitaev quantum wire subjected to local
incoherent particle losses, pumping, or dephasing. Finally, in
Sec. IV we draw our conclusions. The Appendix provides
technical details on the procedure used to compute the time
trajectories for our model, starting from the corresponding
Lindblad master equation.

II. THEORETICAL FRAMEWORK

Our dynamic FSS framework extends the FSS theory
at quantum transitions already developed at equilibrium
[9,13,14] and in out-of-equilibrium conditions [15,16] for
closed systems. We assume that the system Hamiltonian has
one relevant parameter μ, whose tuning toward the point
μc develops a quantum critical behavior. The critical power
laws are generally characterized by the renormalization-group
(RG) dimension yμ of the relevant parameter μ̄ ≡ μ − μc and
the dynamic exponent z, so that the diverging length scale
behaves as ξ ≈ |μ̄|−ν with ν = 1/yμ and the suppression
of the gap (difference of the two lowest energy levels) as
� ≈ ξ−z. The finite system size L provides a further relevant
length scale. FSS is defined by taking the large-L limit, keep-
ing appropriate scaling variables fixed, such as ξ/L [13] and
�Lz (thus � ∼ L−z). To describe out-of-equilibrium dynamic
protocols, for example, arising from a quench of the Hamilto-
nian control parameter μ, a further time scaling variable θ ∝
t � has to be introduced [15]. For example, let us consider
a sudden quench of μ at t = 0, from μ̄i to μ̄ f , starting from
the ground state associated with the initial value μ̄i. We expect
that the coherent evolution of a generic observable, such as the
fixed-time correlation G12 of two local operators Ô1 and Ô2 at
a distance x, undergoes the asymptotic FSS behavior [15]

G12(x, t, μ̄i, μ̄ f , L) ≈ L−ϕG(X, θ, κi, κ f ), (3)

X ≡ x/L, θ ≡ tL−z, κi/ f ≡ μ̄i/ f Lyμ, (4)

where ϕ = y1 + y2 and yi are the RG dimensions of Ôi.

To account for the effects of the dissipators (2), we need
to extend the above dynamic FSS theory. We assume that at
t = 0, beside quenching the Hamiltonian parameter μ, the dis-
sipation is also turned on by effectively, and suddenly, switch-
ing the corresponding effective coupling from zero to some
finite value u > 0. We argue that the effects of a sufficiently
low dissipation can be taken into account by adding a fur-
ther dependence on a FSS variable associated with u in the
dynamic FSS ansatz (3), i.e., γ = uLζ , where ζ is a suitable
exponent, to ensure the substantial balance, thus competition,
with the critical coherent driving. Since dissipation is pre-
dicted to give rise to a relevant perturbation at the quantum
transition, we expect ζ > 0. Thus, the low-dissipation regime,
where the critical coherent dynamics and dissipation com-
pete, should be characterized by u ∼ L−ζ . An analogous FSS
behavior was put forward to describe the approach to ther-
malization of some specific open systems close to a quantum
transition [17].

We now argue that the exponent ζ generally coincides with
the dynamic exponent z. Indeed, we note that the parameter
u of the dissipator in Eq. (1) plays the role of decay rate,
i.e., of an inverse relaxation time, of the associated dissipative
process [6]. Since any relevant timescale ts at a quantum
transition behaves as ts ∼ �−1 [15], our working hypothesis
is that the dissipation scaling variable does not involve an
independent exponent, but

γ ≡ u Lz. (5)

This implies that to observe competition between critical co-
herent dynamics and dissipation, u ∼ L−z must be comparable
with the gap � ∼ L−z of the critical Hamiltonian. Under
the combined effect of coherent and dissipative driving, the
dynamic FSS ansatz reads

G12(x, t, μ̄i, μ̄ f , u, L) ≈ L−ϕG(X, θ, κi, κ f , γ ), (6)

which should be approached in the large-L limit, keeping the
scaling variables X , θ , κi, κ f , and γ fixed. The convergence
to the asymptotic dynamic scaling is generally characterized
by power-law suppressed corrections, as usually at continuous
quantum transitions.

We conjecture that the ansatz (6) describes the low-
dissipation regime of quenching protocols for many-body sys-
tems at quantum transitions. One may also consider an initial
condition given by a Gibbs distribution at temperature T . The
dependence on T can be taken into account as at equilibrium
[5], adding a further dependence on τ ≡ T Lz in the function
G of Eq. (6). Note that similarly to the scaling observed at
quantum transitions of closed systems, the dynamic scaling
(6) is expected to be largely independent of the microscopic
properties of the system, that is, it should only depend on the
universality class of the transition and the general properties
of the dissipative mechanism.

We may derive an analogous scaling ansatz in the infinite-
volume limit L → ∞, keeping the length scale of correlations
finite. In particular, assuming μ̄i and μ̄ f within the disordered
phase side (thus the quench protocol does not cross the critical
point μ̄ = 0), for which the ground-state length scales ξi, f

are large but finite, behaving as ξi, f ∼ |μ̄i, f |−ν , the thermo-
dynamic L/ξi, f → ∞ limit of the dynamic FSS ansatz (6) can
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be written as

G12 ≈ ξ
−ϕ
i G̃

(
x/ξi, ξ f /ξi, t ξ−z

i , u ξ z
i

)
. (7)

A more thorough analysis of the L → ∞ limit, supported by
numerical checks, has been reported in Ref. [18].

III. KITAEV QUANTUM WIRE COUPLED
TO LOCAL MARKOVIAN BATHS

We now present numerical evidence of the above conjec-
ture. To this purpose, we consider a Kitaev quantum wire
defined by the Hamiltonian [8]

ĤK = −J
L∑

j=1

(ĉ†
j ĉ j+1 + δ ĉ†

j ĉ
†
j+1 + H.c.) − μ

L∑
j=1

n̂ j, (8)

where ĉ j is the fermionic annihilation operator on the jth site
of the chain, n̂ j ≡ ĉ†

j ĉ j is the density operator, and δ > 0.
We set h̄ = 1, and J = 1 as the energy scale. We consider
antiperiodic boundary conditions, ĉL+1 = −ĉ1, and even L
for computational convenience. However, the dynamic scaling
scenario applies to general boundary conditions as well.

The Hamiltonian (8) can be mapped into a spin-1/2 XY
chain, through a Jordan-Wigner transformation [5]. It un-
dergoes a continuous quantum transition at μ = μc = −2,
independently of δ, between a disordered (μ < μc) and an
ordered quantum phase (|μ| < |μc|). This transition belongs
to the two-dimensional Ising universality class [5], character-
ized by the length-scale critical exponent ν = 1, related to the
RG dimension yμ = 1/ν = 1 of the Hamiltonian parameter μ

(more precisely of the difference μ̄ ≡ μ − μc). The dynamic
exponent associated with the unitary quantum dynamics is
z = 1. In the following we set δ = 1 (without loss of gener-
ality), such that the corresponding spin model is the quantum
Ising chain

ĤIs = −
∑

j

σ̂
(3)
j σ̂

(3)
j+1 − g

∑
j

σ̂
(1)
j , (9)

where σ̂
(k)
j are the Pauli matrices and g = −μ/2 [19].

We focus on the dynamic behavior of the Fermi lattice
gas (8) close to its quantum transition, in the presence of
homogeneous dissipation mechanisms following the Lindblad
equation (1). The dissipator

D[ρ] =
∑

j

D j[ρ] (10)

is a sum of local (single-site) terms, where D j[ρ] has the
same form as in Eq. (2) (the index o here corresponds to a
lattice site, denoted by j). The onsite Lindblad operators L̂ j

describe the coupling of each site with an independent bath B,
Fig. 1, and are associated with particle loss (l), pumping (p),
and dephasing (d), respectively [22,23]:

L̂l, j = ĉ j, L̂p, j = ĉ†
j , L̂d, j = n̂ j . (11)

With this choice of dissipators, the full open-system many-
body fermionic master equation enjoys a particularly simple
treatment, enabling a direct solvability for systems with up to
thousands of sites [23–25]. Indeed, the dynamics can be writ-
ten in terms of coupled linear differential equations, whose
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FIG. 2. Upper panel: Connected density-density correlation
function G(x, t ) for X = x/L = 1/4, as a function of the rescaled
time θ = t/L, after a quench from the ground state at the critical
point μ̄i = 0 to μ̄ f such that κ f = μ̄ f L = 2. Continuous curves
are for a purely unitary dynamics (u = 0), where the dynamic FSS
(3) is verified; dotted curves are in the presence of incoherent
particle losses, with the dissipative coupling u such that uL1.25 = 1.
Lower panel: Temporal decay of G(x, t ) for a dissipative dynamics
with u = 1 at criticality (μ̄i = μ̄ f = 0). A much faster decay to an
uncorrelated state emerges with a slope that asymptotically depends
only on x. All curves are sufficiently accurate to be considered as
practically exact on the scale of this and of all next figures. Here and
in the next figures, times are in units of h̄/J .

number scales linearly with L. We employ a fourth-order
Runge-Kutta method to numerically integrate them. Details
on the computation of the time trajectories from the Lindblad
Eq. (1) are reported in the Appendix. The uniqueness of the
eventual steady state has been proven for the above decay and
pumping operators [26–29].

Our protocol starts from the ground state of ĤK for a
generic μ̄i, sufficiently small to stay within the critical regime.
We then study the time evolution after a quench of the Hamil-
tonian parameter to μ̄ f and a simultaneous sudden turning on
of the dissipation coupling u (see Appendix for details). We
consider the fixed-time correlations

P(x, t ) = Tr[ρ(t ) (ĉ†
j ĉ

†
j+x + ĉ j+xĉ j )], (12a)

C(x, t ) = Tr[ρ(t ) (ĉ†
j ĉ j+x + ĉ†

j+xĉ j )], (12b)

G(x, t ) = Tr[ρ(t ) n̂ j n̂ j+x] − Tr[ρ(t ) n̂ j] Tr[ρ(t ) n̂ j+x], (12c)

where j, x ∈ [1, L/2] and ρ(t ) is the system’s density matrix.
The dynamic FSS behavior of the observables (12a)–(12c) is
expected to be given by Eq. (6) with yμ = 1, z = 1. Moreover,
ϕ = 1 for the correlations P and C (since the RG dimension
of the fermionic operator is yĉ = yĉ† = 1/2), while ϕ = 2
for G (since yn̂ = 1). This scaling scenario should hold for
all the considered dissipation mechanisms, cf. Eq. (11). Of
course, the corresponding scaling functions are expected to
differ.
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FIG. 3. The correlation functions P(x, t ) (upper panel), C(x, t )
(central panel), and G(x, t ) (lower panel) for X = 1/4 versus
θ = t/L. The system has been driven out of equilibrium through
a quench from the critical point κi = 0 to κ f = 2, and by the
dissipation induced by incoherent particle losses, for γ = uL = 1.
The curves clearly approach a scaling function with increasing L,
thus supporting the dynamic FSS in Eq. (6) (here and in Fig. 4, data
for L = 256 are hardly distinguishable from those for L = 1024).
Results for other values of X , κi, f , and γ confirm it.

Before analyzing the full model, let us neglect the bath
coupling and only consider the unitary dynamics (u = 0). As
is visible from the upper panel of Fig. 2, for density-density
correlations G(x, t ) (continuous curves), the scaling behavior
(3) emerges in the large-L limit after the proper rescaling of
the pre- and postquench control parameter and of time as in
Eq. (4). An analogous scenario emerges when u 	 L−z; for
example, for u ∼ L−ζ with ζ > z, the system asymptotically
converges to the dynamic FSS scenario with u = 0 (dotted
curves in the upper panel), and thus the coherent dynamics
prevails. Conversely, if the coupling u is switched on and kept
fixed with L, then the dissipative dynamics overcomes the
critical coherence. Indeed, the system exponentially collapses
to an uncorrelated state in a much shorter timescale (bottom
panel—the time t has not been rescaled here). The decay rate
only depends on the distance x, and thus no scaling behavior
emerges. Similar scenarios appear whenever u 
 L−z.

A nontrivial competition between critical coherence and
dissipation can be only observed for u ∼ L−z, cf. Eq. (5),
as shown in Fig. 3 for a quench protocol in the presence of
incoherent particle losses with rescaled strength γ = uLz = 1.
The dynamic FSS prediction (6) is clearly verified. A global
check is also provided by the results shown in Fig. 4 for the
integrated correlations

AP(z, t ) =
L/2∑
x=z

P(x, t ), AC (z, t ) =
L/2∑
x=z

C(x, t ), (13)

with 0 < z < L/2, which are expected to scale as

AO(z, t, μ̄i, μ̄ f , u, L) ≈ L1−2yOAO(Z, θ, κi, κ f , γ ) (14)
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FIG. 4. The integrated correlations AP and AC , for Z=z/L=1/4,
versus θ = t/L. The system is quenched from κi = 0 to κ f = 2,
and dissipation is induced either by the presence of incoherent
particle losses (L̂l, j , left panels) or by an incoherent dephasing mech-
anism (L̂d, j , right panels), with γ = 1. The results nicely support
Eq. (14), since curves appear to converge to a scaling function with
increasing L.

for Z ≡ z/L > 0. Note that this definition cannot be extended
to z → 0 (more precisely Z → 0), because the integral of the
two-point function is singular in that in the critical continuum
limit at equilibrium C(x) ∼ P(x) ∼ 1/x at small distance [5].

Analogous outcomes are obtained for the dissipators re-
lated to pumping (not shown) and dephasing (see right panels
of Fig. 4). We have validated our picture also for a lattice
gas of free nonrelativistic fermions, i.e., δ = 0 in Eq. (8),
which undergoes a quantum transition lying in a different
universality class, with dynamic exponent z = 2 (not shown).

IV. CONCLUSIONS

In summary, our findings confirm the existence of a dy-
namic regime characterized by the competition between criti-
cal coherent and dissipative dynamics, supporting the scaling
behaviors put forward within the dynamic FSS framework.
We will report elsewhere a more thorough discussion of the
numerical results; their convergence rate [which is generally
O(L−1) in the critical Kitaev model]; the particular features of
the scaling curves, such as the emerging spikes in the rescaled
time θ (reminiscent of the behavior at dynamical phase tran-
sitions [30], see Figs. 2 and 3); and the asymptotic behaviors
in the large-θ limit. The dynamic FSS framework can be also
used to study other protocols in the presence of dissipation, for
example, when slowly changing the Hamiltonian parameters
across a quantum transition.

The arguments leading to the above scaling scenario are
quite general. Analogous phenomena are expected to develop
in any homogeneous d-dimensional many-body system at a
continuous quantum transition, whose Markovian interaction
with the bath can be described by local or extended dissipators
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within a Lindblad equation (1). The regime showing compe-
tition of critical coherent and dissipative dynamics is realized
when the dissipation parameter u scales as the gap � of the
Hamiltonian of the many-body system, i.e.,

u ∼ �. (15)

Since at a quantum transition � ∼ L−z, this is a low-
dissipation regime. This reflects the fact that at a quantum
transition the perturbation arising from dissipation is always
relevant, such as the temperature at equilibrium [5,9,13].
Therefore, when u 
 �, critical coherent fluctuations do not
survive dissipation. These arguments should also apply to
non-Markovian system-bath couplings [31] (not described by
Lindblad equations), replacing u with the parameter control-
ling the decay rate.

This dynamic scenario has been checked within fermion
wires, cf. Eq. (8), in the presence of local dissipation mech-
anisms associated with the Lindblad operators (11). Further
studies would serve to achieve a conclusive validation of
our competition theory for other many-body systems and/or
dissipation mechanisms, including nonlocal ones [32–34].
Further interesting issues may concern quantum thermody-
namic properties [35–37] in the competition regime.

Other issues worth being investigated concern the emer-
gence, and characterization, of analogous competition scaling
phenomena at first-order quantum transitions, for which dy-
namic FSS frameworks have been also developed [15], and
new features may arise, like a particular sensitivity on the type
of boundary conditions [14,38].

We finally mention that some experimental breakthroughs
have been recently achieved in the control of dissipative quan-
tum many-body dynamics, through different platforms, such
as Rydberg atoms or circuit-QED technology. For example, a
quantum critical behavior in such out-of-equilibrium context
was reported [39–41]. These studies encourage the verifica-
tion of our competition theory, using a limited (relatively
small, say, a few tens) amount of controlled objects, which
may already suffice to highlight some signatures of dynamic
scaling.

All authors contributed equally.

APPENDIX: SOLUTION OF EQ. (1) FOR OUR
FERMI LATTICE GAS MODEL

It is useful to first distinguish between the different
schemes of system-bath coupling employed in this work.
Specifically, if the dissipation is linear in the creation and/or
annihilation operators, as is the case for incoherent particle
losses (L̂l, j = ĉ j) or pumping (L̂p, j = ĉ†

j ), then the corre-
sponding driven-dissipative quantum dynamics can be exactly
solved using an analogous strategy as for standard quadratic
Fermi models, which reduces the exponential complexity
of the problem to a polynomial one. In contrast, a differ-
ent method has to be adopted for a dephasing mechanism
(L̂d, j = n̂ j), where, although the full dynamics cannot be
simply obtained, it is, however, possible to track the time
evolution of certain expectation values, using a polynomial
amount of resources.

In this respect, this Appendix contains an excerpt of
some technicalities which have been already detailed in
Refs. [22–24]. These are reported here for the sake of clarity
and in order to make our discussion self-consistent and useful
to anyone who needs to reproduce our results. On top of that,
we also provide additional details on the specific observables
discussed in Sec. III and on the implementation of the antiperi-
odic boundary conditions for our model.

1. Quantum dynamics in the presence of
incoherent losses or pumping

For L̂ j = ĉ(†)
j , the dissipator D[ρ] = ∑

o Do[ρ] in Eq. (1)
turns out to be quadratic in the fermionic creation and anni-
hilation operators (notice that the index o here corresponds to
a lattice site, denoted by j). The same feature holds for the
Kitaev Hamiltonian in Eq. (8). As a consequence and since
the system is translationally invariant, it is useful to perform
a Fourier transformation applied to creation or annihilation
operators for fermions on the chain [5]:

ĉ j = e−iπ/4

√
L

∑
k

ĉkeik j, ( j = 1, . . . , L). (A1)

This transformation preserves the fermionic anticommutation
rules, that is,

{ĉ j, ĉl} = 0, {ĉ†
j , ĉl} = δ j,l , real space, (A2a)

{ĉk, ĉq} = 0, {ĉ†
k , ĉq} = δk,q, momentum space. (A2b)

Considering, without loss of generality, an even number L
of sites in the chain, antiperiodic boundary conditions can be
enforced by choosing the following set of momenta:

k =
{
±π

L
(2n + 1)

}
, n = 0, 1, . . . , L/2 − 1. (A3)

Indeed, adopting such choice and using the definition in
Eq. (A1), it is easy to see that

ĉ(†)
j+L = −ĉ(†)

j , ∀ j ∈ [1, L]. (A4)

The density operator ρ(t ) at time t = 0 is taken as the
ground state of ĤK . This can be cast in a tensor product form,
after going in momentum space:

ρ(0) =
⊗
k>0

ρk (0). (A5)

Here ρk (0) denotes the restricted density operator describ-
ing the configuration of the k sector (with k > 0), that is,
the sector containing contributions associated to excitations
having momentum ±|k|. Due to the structure of the Lindblad
master equation, ρ(t ) is factorized in momentum space for
any time t . As a consequence, the behavior in each k sector
can be determined by solving a differential system having the
following structure (in units of h̄ = 1):

d

dt
ρk (t ) = −i[Ĥk, ρk (t )] + uD[ρk], k > 0. (A6)
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The Hamiltonian

Ĥk =

⎡⎢⎣ 0 0 0 2 |sin k|
0 −2 fk (μ) 0 0
0 0 −2 fk (μ) 0

2 |sin k| 0 0 −4 fk (μ)

⎤⎥⎦,

(A7)
with fk (μ) = μ/2 + cos k [we put J = δ = 1 in Eq. (8)],
governs the dynamics in the four-dimensional state basis
{|0k〉, |1k〉, |1−k〉, |1k, 1−k〉}. The dissipator in the corre-
sponding k sector violates the fermion parity; for the case of
homogeneous particle losses (i.e., L̂ j = ĉ j) this is given by

D[ρk] = ĉkρk ĉ†
k − 1

2 (n̂kρk + ρkn̂k )

+ ĉ−kρk ĉ†
−k − 1

2 (n̂−kρk + ρkn̂−k ). (A8)

A very similar expression for D[ρk] holds, with analogous
properties as those for Eq. (A8), in the case of homogeneous
particle pumping (i.e., L̂ j = ĉ†

j ), provided these substitutions
are applied in the above equation:

ĉk → ĉ†
k , ĉ−k → ĉ†

−k, (A9a)

ĉ†
k → ĉk, ĉ†

−k → ĉ−k, (A9b)

n̂k → ĉk ĉ†
k , n̂−k → ĉ−k ĉ†

−k . (A9c)

Once the structure of all the ρk (t ) matrices is determined
by explicitly solving Eq. (A6) in the corresponding four-
dimensional Hilbert k subspace (recall that k > 0), the time
evolution of any observable can be computed simply by
inverting the mapping in Eq. (A1). Indeed, given an observ-
able Ô({ĉ j}, {ĉ†

j }) in real space, its explicit time evolution is

obtained by moving into momentum space, Ô({ĉk}, {ĉ†
k}), and

then considering the average

〈Ô〉(t ) = Tr

[
Ô({ĉk}, {ĉ†

k})
⊗
k>0

ρk (t )

]
. (A10)

In the present case, we also have that

〈ĉk〉(t ) = 〈ĉ†
k〉(t ) = 0, ∀t, k. (A11)

This can be easily shown by considering the equations of
motion for such amplitudes. As a consequence, the only

operators that can have nonzero expectation value are those
corresponding to products of an even number of fermionic
operators in each k subspace. In all the other cases, the
expectation values are zero, due to Eq. (A11) and to the
anticommutation rules (A2).

Let us now explicitly consider the pairing correlation func-
tion P(x, t ) [see Eq. (12a)], that is,

P(x, t ) = 〈ĉ†
j ĉ

†
j+x〉(t ) + 〈ĉ j+xĉ j〉(t ). (A12)

Such quantity in momentum space is given by

P(x, t ) =
⎡⎣eiπ/2

L

∑
k,q

e−i[k j+q( j+x)]〈ĉ†
k ĉ†

q〉(t )

⎤⎦ + H.c. (A13)

Due to the constraint listed above, we also have that

〈ĉk ĉq〉(t ) �= 0 ⇐⇒ k = −q. (A14)

As a consequence, the expression in Eq. (A13) further simpli-
fies into

P(x, t ) =
[

eiπ/2

L

∑
k

eikx〈ĉ†
k ĉ†

−k〉(t )

]
+ H.c., (A15)

which can be eventually written in a more compact form as

P(x, t ) = − 2

L

∑
k>0

sin(kx)[〈c†
kc†

−k〉(t ) + H.c.]. (A16)

By exploiting the same strategy, it is possible to decompose
any mean value as a combination of amplitudes that involve
expectation values in momentum space. For instance, if one
considers the correlation function C(x, t ) of Eq. (12b), one
finds the expression

C(x, t ) = 2

L

∑
k>0

cos(kx)[〈ĉ†
k ĉk〉(t ) + 〈ĉ†

−k ĉ−k〉(t )]. (A17)

As the number of operators in real space increases, the struc-
ture in momentum space becomes more cumbersome. This is
the case for the four-point connected density-density operator
G(x, t ) of Eq. (12c), which can be expressed as

G(x, t ) = δx,0

L

∑
k>0

[〈n̂k〉 + 〈n̂−k〉] + 2

L2

∑
k>0

{[cos(2kx) − 1][〈n̂k〉〈n̂−k〉 − 〈n̂k n̂−k〉 + 〈ĉ†
k ĉ†

−k〉〈ĉ−k ĉk〉]}

+ 4

L2

{∑
k>0

sin(kx)〈ĉ†
k ĉ†

−k〉
}{∑

k>0

sin(kx)〈ĉ−k ĉk〉
}

− 1

L2

{∑
k>0

[eikx〈n̂k〉 + e−ikx〈n̂−k〉]
}{∑

k>0

[e−ikx〈n̂k〉 + eikx〈n̂−k〉]
}

,

(A18)

where, for ease of compactness, we have omitted the time
dependence of all the expectation values.

We end up by mentioning that antiperiodic boundary con-
ditions are automatically guaranteed by adopting the choice of
momenta k written in Eq. (A3). The expressions we have re-
ported for the correlations in k space correspond to measuring

them in real space within the chain length, that is, by taking
j, x ∈ [1, L/2] in Eq. (A12) (and similar). Otherwise, a minus
sign would appear each time the boundary is crossed an odd
number of times, since

ĉ(†)
j+mL = (−1)mĉ(†)

j , ∀ j ∈ [1, L]. (A19)
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Notice also that the following symmetries always hold
(where x ∈ [1, L]), due to antiperiodic boundaries:

P(x, t ) = P(L − x, t ), (A20a)

C(x, t ) = −C(L − x, t ), (A20b)

G(x, t ) = G(L − x, t ). (A20c)

2. Quantum dynamics in the presence of dephasing

Unfortunately, the quantum dynamics of the fermionic
Kitaev chain in the presence of dephasing Lindblad terms
L̂d, j = n̂ j = ĉ†

j ĉ j does not factorize in momentum space,
since the dissipator D[ρ] now becomes quartic in the creation-
annihilation operators. As a consequence, the method de-
scribed in Appendix A 1 cannot be exploited and, in general,
an exact solution in terms of a polynomial scaling with L
cannot be obtained. Nonetheless, one could pay attention only
to the time evolution of certain observables of interest. We
recall that, in order to determine the behavior of a given
time-dependent expectation value 〈Ô〉(t ), one needs to solve
the following differential equation [6]:

d

dt
Ô = i[Ĥ, Ô] + u D̃[Ô], (A21)

where

D̃[Ô] =
∑

j

[
L̂†

j ÔL̂ j − 1
2 {L̂†

j L̂ j, Ô}] (A22)

denotes the dissipator in the Heisenberg picture.

Solving Eq. (A21) for a many-body system is generally a
hard task, unless explicit constructions as the one reported
in Appendix A 1 are possible. Indeed, the time evolution
of a given operator usually depends also on that of other
observables. As a consequence, solving a single equation
of motion actually requires that we deal with a number of
differential equations that usually grows exponentially with
the system size L.

In the present case, for the two-point observables P(x, t )
and C(x, t ) of Eqs. (12a) and (12b), it is, however, possible
to find a closed set of equations of motion, whose dimension
grows only polynomially with increasing L. Such a set is given
by all the quadratic observables in the fermionic operators. In
such a case, the time evolution of any two-point amplitude [as
is the case for P(x, t ) and C(x, t )] can be rephrased in terms
of the behavior of the following 4L amplitudes:

〈Âx〉(t ) ≡ 〈ĉ j ĉ j+x〉(t ), (A23a)

〈B̂x〉(t ) ≡ 〈ĉ j ĉ
†
j+x〉(t ), (A23b)

〈Ĉx〉(t ) ≡ 〈ĉ†
j ĉ j+x〉(t ), (A23c)

〈D̂x〉(t ) ≡ 〈ĉ†
j ĉ

†
j+x〉(t ). (A23d)

Here we always suppose that j ∈ [1, L] and j + x ∈ [1, L],
such that the boundaries of the chain are never crossed. By
plugging these operators into Eq. (A21), one arrives at the fol-
lowing set of 4L coupled differential equations governing the
time evolution of the corresponding amplitudes in Eqs. (A23):

dÂx

dt
= 2i(Âx−1 + Âx+1) + i(Ĉx−1 − Ĉx+1) − i(B̂x−1 − B̂x+1) + 2iμÂx − u Âx, (A24a)

dB̂x

dt
= i(D̂x−1 − D̂x+1) + i(Âx−1 − Âx+1) − u B̂x(1 − δx,0), (A24b)

d Ĉx

dt
= −i(D̂x−1 − D̂x+1) − i(Âx−1 − Âx+1) − u Ĉx(1 − δx,0), (A24c)

dD̂x

dt
= −2i(D̂x−1 + D̂x+1) + i(Ĉx−1 − Ĉx+1) − i(B̂x−1 − B̂x+1) − 2iμD̂x − u D̂x. (A24d)

Since one is looking for the structure of four different
kinds of amplitudes and x can take values from 0 to L − 1,
the number of coupled equations is 4L. Indeed, due to the
presence of first-neighbor coupling terms in the Kitaev chain,
the amplitudes corresponding to operators at distance x are
related to those at distance x + 1 and x − 1. However, due to
translational invariance and fermionic statistics, such ampli-
tudes possess symmetry properties that enable to reduce the
amount of coupled equations of motion to be solved. Indeed,
the following relations hold (x ∈ [0, L − 1]):

Âx = −Â−x, (A25a)

B̂x = −Ĉ−x + δx,0, (A25b)

D̂x = −D̂−x. (A25c)

In addition, by exploiting antiperiodic boundary conditions,
we have that (y ∈ [0, L/2 − 1]):

ÂL/2+y = ĉL/2ĉL+y = −ĉL/2ĉy = ĉyĉL/2 = ÂL/2−y, (A26a)

B̂L/2+y = ĉL/2ĉ†
L+y = −ĉL/2ĉ†

y = ĉ†
y ĉL/2 = ĈL/2−y, (A26b)

ĈL/2+y = ĉ†
L/2ĉL+y = −ĉ†

L/2ĉy = ĉyĉ†
L/2 = B̂L/2−y, (A26c)

D̂L/2+y = ĉ†
L/2ĉ†

L+y = −ĉ†
L/2ĉ†

y = ĉ†
y ĉ†

L/2 = D̂L/2−y, (A26d)

where we have plugged j = L/2 into Eqs. (A23). It is thus
clear that the full problem for the above two-point correlators
is actually (2L + 2) dimensional, since it is sufficient to
write the corresponding coupled equations for the operators:
Âx∈[1,L/2], B̂x∈[0,L/2], Ĉx∈[0,L/2], D̂x∈[1,L/2]. Notice also that one
trivially has Â0 = D̂0 = 0.
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The initial conditions for the differential system (A24) cor-
respond to the expectation values of such operators evaluated
on the ground state of the Kitaev chain for a given value of
the control parameter μ = μi and can be immediately found
by means of a Bogoliubov transformation in real space, which
generalizes the standard procedure in k space to nonhomo-
geneous quadratic systems. Once the time evolution of the

amplitudes (A23) is determined, the behavior of the two-point
observables P(x, t ) and C(x, t ) for x ∈ [1, L/2] can be easily
accessed by noticing that

P(x, t ) = 〈D̂x〉(t ) − 〈Âx〉(t ) = 2 Re[〈D̂x〉(t )], (A27a)

C(x, t ) = 〈Ĉx〉(t ) − 〈B̂x〉(t ). (A27b)
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