
PARABOLIC SHEAVES WITH REAL WEIGHTS

AS SHEAVES ON THE KATO-NAKAYAMA SPACE

MATTIA TALPO

Abstract. We define quasi-coherent parabolic sheaves with real weights on a fine saturated log
analytic space, and explain how to interpret them as quasi-coherent sheaves of modules on its Kato-
Nakayama space. This recovers the description as sheaves on root stacks of [5] and [23] for rational
weights, but also includes the case of arbitrary real weights.
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1. Introduction

The aim of the this paper is to present a correspondence between parabolic sheaves with real
weights on a fine saturated log analytic space, and certain sheaves of modules on its Kato-Nakayama
space. This was inspired by the corresponding equivalence for rational weights and root stacks
[5, 23], and by the analogy between the infinite root stack and the “profinite completion” of the
Kato-Nakayama space [6, 24].

Parabolic bundles were first defined by Mehta and Seshadri on curves in the ’80s [17], and
then studied in increasingly more general situations by several authors [15, 18, 10, 4], until Borne
and Vistoli [5] connected them to logarithmic structures, and gave a general definition (for rational
weights with bounded denominator) on a coherent log scheme. They also constructed an equivalence
of abelian categories between parabolic sheaves with weights in a fixed Kummer extension, and
quasi-coherent sheaves on the corresponding stack of roots. Versions of this correspondence were
earlier investigated by Biswas [1] and Borne [4], and it was further generalized to arbitrary rational
weights by the author and Vistoli in [23].

Assume for simplicity in this introduction that X is a scheme of finite type over C, whose log
structure is determined by a single effective Cartier divisor D ⊆ X, or, equivalently, by the line
bundle with section (L, s) := (OX(D), 1D) (this data also gives a log analytic space, by analytifying
X and D). In the algebraic setting, parabolic sheaves with weights in the group 1

nZ are sequences

of quasi-coherent sheaves {Ea} on X for a ∈ 1
nZ, with: a system of compatible maps Ea → Eb every

time b ≥ a, isomorphisms Ea+1
∼= Ea ⊗OX L for every a, and such that Ea → Ea+1

∼= Ea ⊗OX L
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coincides with multiplication by s ∈ Γ(L). Clearly, such an object is completely determined by its
restriction to the segment [0, 1], i.e. the diagram

E0
// E 1

n

// · · · // En−1
n

// E1
∼= E0 ⊗OX L.

For a general fine saturated log scheme, a parabolic sheaf is also a system of sheaves with maps,
indexed by a constructible sheaf of (possibly higher-rank) lattices.

The root stack
n√
X parametrizes roots of the pair (L, s), i.e. a morphism T → n√

X corresponds
to a map f : T → X and a pair (N, t) on T consisting of a line bundle with a section, with an

isomorphism (N, t)⊗n ∼= f∗(L, s). There is a coarse moduli space morphism π :
n√
X → X, which is

an isomorphism outside of D. Points in the preimage of D have a non-trivial stabilizer, the group of
n-th roots of unity µn. As for parabolic sheaves, the definition can be generalized to fine saturated
log schemes. The main result of [5], in this particular case, says that there is an equivalence of
abelian categories between parabolic sheaves with weights in 1

nZ and quasi-coherent sheaves on
n√
X.
The functor Φn : Qcoh(

n√
X) → Par(X, 1

nZ) is easily described as follows: for a given F ∈
Qcoh(

n√
X), one sets Φn(F ) 1

n
k := π∗(F ⊗On√

X
N⊗k), where N is the universal “root line bundle”

on
n√
X. Moreover, for 1

nk ≤
1
nk
′, there is a natural map N⊗k → N⊗k′ given by the appropriate

power of the global section t of N , that induces a morphism Φn(F ) 1
n
k → Φn(F ) 1

n
k′ . The projection

formula for π assures that the other properties in the definition of a parabolic sheaf are satisfied.
Heuristically, the presence of the non-trivial stabilizers µn along the divisor (and its action on fibers
of sheaves) allows to encode the different pieces of the parabolic sheaves in a single sheaf on the
root stack.

If we allow the index of the root to vary, these equivalences are compatible with the natural
projections

m√
X → n√

X for n | m, and in fact there is an analogous statement at the limit, on the

infinite root stack
∞√
X = lim←−n

n√
X [23, Theorem 7.3]. This “stacky” point of view allows to treat

parabolic sheaves as “plain” quasi-coherent sheaves on a slightly more complicated object, and has
been useful in several instances (see for example [9], [2] and [25]).

In the original definition of Mehta and Seshadri, as well as in later instances, parabolic sheaves
are allowed to have arbitrary real weights. In the situation of a scheme X with a divisor D as above,
a parabolic sheaf with real weights is going to be a system of indexed sheaves as in the rational
case, but the index group is the set of real numbers R. Finitely presented sheaves (appropriately
defined) will be still determined by finitely many sheaves Er for r ∈ [0, 1] and the maps between
them, but for general quasi-coherent sheaves, this is not the case.

As can certainly be expected, irrational weights are hard to handle in a purely algebraic manner.
In this paper, we extend to real weights the correspondence with sheaves on root stacks, but using
the Kato-Nakayama space instead. This forces us to work over the complex numbers.

Recall that the Kato-Nakayama space Xlog is a topological space with a continuous proper pro-
jection Xlog → X, where X is now a (fine saturated) log analytic space. Morally, this construction
replaces the log structure of X with non-trivial topology in Xlog. For example, in the situation
above, where the log scheme is determined by a single smooth divisor D ⊆ X in a smooth analytic
space X, the space Xlog is the “real oriented blowup” of D in X.

The use of the Kato-Nakayama spaceXlog is heuristically justified by the fact that the infinite root

stack is a sort of “profinite algebraic incarnation” of the former: there is a morphism Xlog →
∞√
Xtop

to the topological realization of
∞√
X, which is a “profinite equivalence” [6, Theorem 6.4]. The fiber

of Xlog → X over a point x can be identified with a real torus (S1)r, and the fiber of
∞√
Xtop → X
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with BẐr, where r is the “rank of the log structure” at x. Thinking of S1 as BZ, the morphism

between the fibers BZr → BẐr ∼= B̂Zr is the map to the profinite completion. Morally, while the
profinite monodromy (i.e. stabilizer group) in the fibers of

∞√
X → X can only allow for rational

weights in the parabolic sheaves, the fibers of Xlog → X have “monodromy” (i.e. fundamental
group) with elements of infinite order, and the S1s in the fibers can also encode real weights.

Assume that we are still in the simple situation of a log structure given by a divisor D ⊆ X
outlined above, and fix a submonoid Λ of R+, the non-negative real numbers, containing N. In
order to make the heuristic of the previous paragraph precise, we adapt a procedure of Ogus [19]
to construct on Xlog a sheaf of rings OΛ, that extends the pullback of OX by adding sections of the

form fλ, where f is a local equation of D and λ ∈ Λ (if Λ = 1
nN, we are extracting n-th roots, in

analogy with root stacks). The intuition for why this can be done, is that passing to Xlog somewhat
corresponds to extracting a logarithm of these local sections f , and if we have a logarithm we can
also define fα = exp(α log(f)) for any α ∈ R+.

After tensoring OΛ over the pullback of OX with the “structure sheaf” Olog
X of Xlog (see [8,

Section 1]), we obtain a sheaf of rings Olog
Λ on Xlog, that allows us to encode parabolic sheaves with

weights in Λ as quasi-coherent sheaves. The following is our main result.

Main Theorem (Theorem 5.1). Let X be a fine saturated log analytic space with log structure
α : M → OX , and Λ a M

gp
-saturated quasi-coherent sheaf of monoids, with M ⊆ Λ ⊆ MR =

M ⊗ R+ (here, as usual, M denotes the sheaf of monoids M/O×X).
Then we have an exact equivalence of categories

Qcoh(Olog
Λ ) ∼= Par(X,Λ)

between quasi-coherent sheaves of Olog
Λ -modules on Xlog and quasi-coherent parabolic sheaves on X

with weights in Λ.

We remark that quasi-coherence in this setting is a less transparent condition than in the al-
gebraic case (see Remark 3.21 and the discussion in (4.5)). The equivalence restricts to finitely
presented sheaves on both sides, that are perhaps more natural objects. Moreover, this equivalence
is compatible with the ones for root stacks of [5] and [23] via the natural maps Xlog →

n√
Xtop, as

we verify in (5.1).
We plan to make use of this equivalence in future work, in at least a couple of directions.

First, there are probably interesting interactions between these parabolic structures and integrable
logarithmic connections, through Ogus’ version of the Riemann-Hilbert correspondence [19]. The
sheaves of rings on Xlog that he uses are closely related to the ones we use, and in fact his work
on this subject was a fundamental inspiration. Second, the point of view advocated in this paper
might be useful to study moduli spaces of parabolic sheaves with arbitrary real weights, and in
particular for questions related to the variations of the weights. In moduli problems where there is
a stability parameter, very often one has a wall-and-chamber decomposition of the space of possible
parameters, and the moduli spaces undergo interesting transformations as the parameter crosses a
wall. In the setting of parabolic sheaves, some versions of these questions have been investigated
in [3, 27].

Outline. Let us describe the contents of each section of the paper. We being by briefly recalling
some basics about log schemes and log analytic spaces, and the construction of root stacks and
Kato-Nakayama spaces in Section 2. In Section 3 we extend the definition of parabolic sheaves on
a log scheme of [5] to the case of arbitrary real weights. We also include a brief reminder about
the proof of the correspondence with quasi-coherent sheaves on root stacks, that we will adapt
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to the different context when proving Theorem 5.1. We then proceed in Section 4 to describe
how to equip the Kato-Nakayama space Xlog of a fine saturated log analytic space X with several
sheaves of rings (depending on the monoid encoding the weights), and we discuss quasi-coherent
and finitely presented sheaves on Xlog. Finally, Section 5 contains the proof of our main result. We
also describe how the correspondence with sheaves on the Kato-Nakayama space is related to the
one on root stacks, via the natural map between the two objects.

Acknowledgements. I am grateful to Niels Borne and Angelo Vistoli for allowing me to include
in this work the basics on parabolic sheaves with real weights, that they had partly worked out in a
preliminary version of [5]. I am also happy to thank Clemens Koppensteiner for useful conversations,
and the anonymous referee for several helpful comments and corrections.

This work was supported by the University of British Columbia, the Pacific Institute for the
Mathematical Sciences and Simon Fraser University.

Notations and conventions. All monoids will be commutative. The terminology “toric” for a
monoid will mean fine, saturated and sharp (and hence torsion-free). If P is a monoid, we will
denote by P gp the associated group, and by P+ = P \ {0}. If P is a monoid and S ⊆ P is a subset,
〈S〉 ⊆ P will denote the ideal of P generated by S (recall that I ⊆ P is an ideal if i + p ∈ I for
every i ∈ I and p ∈ P ). We denote by R+ the commutative monoid of non-negative real numbers,
where the operation is addition, and by R≥0 the monoid with the same underlying set, but where
the operation is multiplication. If P is a monoid and X is a topological monoid, we will denote by
X(P ) the topological monoid given by Hom(P,X).

We will typically use the same symbol for a locally finite type scheme over C, its associated
complex analytic space and the underlying topological space of the latter (i.e. the set of closed
points of the scheme), occasionally adding a subscript “an” for analytifications. If P is a finitely
generated monoid, we will denote by C(P ) the complex analytic space (SpecC[P ])an.

Sheaves and stacks on a complex analytic space X will always be sheaves and stacks on the
classical analytic site. A quasi-coherent sheaf on a complex analytic space X will be a sheaf of
OX -modules that can locally be written as a filtered colimit of coherent sheaves, as in [7, Section
2.1]. If (T,OT ) is a ringed space, we will denote by Mod(OT ) the category of sheaves of OT -modules
on T , and by ModOT the stack over (the classical site of) T , of sheaves of OT -modules. A sheaf of
OT -modules will be called finitely presented if locally on T it is the cokernel of a morphism of free
OT -modules of finite rank.

If T is a topological space and G is a topological monoid, or group, etc. we denote by GT the
sheaf of continuous functions towards G on opens of T (with the induced structure of a sheaf of
monoids, or groups, etc.). If S is a set, the locally constant sheaf with fiber S on the space T will
be denoted by ST . This will also have the induced structure, if S is a monoid, or group, etc.

2. Preliminaries

In this section we briefly recall the basics of log schemes and log analytic spaces, root stacks and
the Kato-Nakayama space. For more details, we refer the reader to [6, Appendix] and references
therein.

2.1. Log schemes and analytic spaces. A log scheme is a scheme X equipped with a sheaf of
monoids M on its small étale site, and a homomorphism α : M → OX (where OX is equipped
with multiplication), that induces an isomorphism α|α−1O×X

: α−1O×X ∼= O
×
X . Assuming that M

is a sheaf of integral monoids, this additional data is equivalent to a “Deligne-Faltings structure”
(abbreviated by DF from now on), i.e. a symmetric monoidal functor L : A → DivX with trivial
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kernel (meaning that if L(a) is an invertible object, then a = 0), where A is a sheaf of sharp
monoids on X and DivX is the stack of line bundles with a section on the small étale site of X.
Given a log structure α : M → OX , the functor L is obtained by modding out in the stacky sense
by the action of O×X (so in particular the sheaf A is the quotient M = M/O×X).

A morphism of log schemes f : X → Y is a morphism of schemes, together with a homomorphism
of sheaves of monoids f−1MY →MX that is compatible with the maps to the structure sheaves. A
morphism of log schemes is strict if this last homomorphism is an isomorphism (i.e. the log structure
of X is obtained by that of Y by pullback). There is an analogous description of morphisms using
DF structures.

If P is a toric monoid, then the scheme SpecZ[P ] (or k[P ] if we are working over a field k)
has a canonical log structure, determined by the homomorphism of monoids P → Z[P ] in the
following manner. Starting from the induced morphism of sheaves of monoids a : PX → OSpecZ[P ],

one obtains a log structure by forming the pushout M = PX ⊕a−1O×
Spec Z[P ]

O×SpecZ[P ] in the category

of sheaves of monoid on X, and considering the induced homomorphism of sheaves of monoids
α : M → OSpecZ[P ]. More generally, a Kato chart for the log scheme X is a homomorphism of
monoids P → O(X) that induces the log structure α : M → OX via the procedure just outlined.
Equivalently, it is a strict morphism X → SpecZ[P ].

We will work with fine saturated log schemes, those for which, locally for the étale topology, we
can find charts as above with P integral, finitely generated and saturated (one can moreover take
it to be sharp - this follows from example from [21, Proposition 2.1]). All of this also applies word
for word to complex analytic spaces, more generally to ringed spaces or even just spaces equipped
with a sheaf of monoids [26], where instead of the étale topology we use the “classical” topology.
In particular, a log structure on a locally finite type scheme X over C induces a log structure on
the analytification Xan (see for example [24, Section 2.5]).

2.2. Root stacks. Let X be a fine saturated log scheme or log analytic space. Assume that
M → B is a system of denominators, in the language of [5], i.e. it is an injective map of Kummer
type (every section of B locally has a multiple in M), and B has local charts by finitely generated
monoids (a homomorphism of monoids Q→ B(X) with Q finitely generated, such that the induced
morphism of sheaves f : Q

X
→ B is a cokernel of sheaves of monoids, i.e. B ∼= Q

X
/ ker f). A typical

example is the inclusion M → 1
nM .

The root stack with respect to B, denoted
B√
X, is the stack over X parametrizing liftings of

L : M → DivX to a symmetric monoidal functor B → DivX . It is a tame algebraic stack (Deligne-

Mumford in characteristic 0), with a proper quasi-finite coarse moduli space morphism
B√
X → X.

Roughly,
B√
X is the stack obtained by extracting roots out of sections of M , with respect to indices

dictated by the sections of the sheaf of monoids B (for instance if B = 1
nM , we are extracting n-th

roots of all sections of M).
Locally where M → B has a chart P → Q (meaning that this is a Kummer homomorphism,

P →M(X) and Q→ B(X) are charts, and the obvious square commutes), and the chart for M is

a Kato chart (i.e. it lifts to P →M(X)), the root stack
B√
X is isomorphic to the quotient stack

[Spec
X

(OX [P gp]⊗Z[P ] Z[Q])/Q̂],

where the group Q̂ = Hom(Qgp,Gm) acts on

Spec
X

(OX [P gp]⊗Z[P ] Z[Q]) ∼= Spec
X

(OX [P gp])×SpecZ[P ] SpecZ[Q]
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via the natural grading of the second factor, and via the homomorphism Q̂→ P̂ on the first factor

[5, Remark 4.14]. In particular, quasi-coherent sheaves on
B√
X can be identified with quasi-coherent

sheaves of OX [P gp]⊗Z[P ] Z[Q]-modules on X that have a Qgp-grading, compatible with the module
structure.

This quotient presentation is more convenient to describe the correspondence with parabolic
sheaves, but there is a perhaps simpler one, where the group that we quotient by is finite. Precisely,
in presence of a Kato chart as above, there is an isomorphism

(1)
B√
X ∼= [(X ×SpecZ[P ] SpecZ[Q])/µQ/P ],

where µQ/P is the Cartier dual of the quotient Qgp/P gp, acting on SpecZ[Q] in the natural manner.

For n ∈ N, denote
1
nM
√
X by

n√
X. These root stacks form an inverse system: if n | m there is a

natural map
m√
X → n√

X. The inverse limit is the infinite root stack
∞√
X := lim←−n

n√
X.

2.3. The Kato-Nakayama space. Let X be a log analytic space. Its Kato-Nakayama space Xlog

is a topological space (in good cases, a manifold with corners), defined as follows. As a set, elements
of Xlog are pairs (x, φ) consisting of a point x ∈ X and a homomorphism of groups φ : Mgp

x → S1

such that φ(f) = f(x)
|f(x)| for every f ∈ O×X,x ⊆M

gp
x .

If X = C(P ) = (SpecC[P ])an for a fine monoid P , then the space Xlog can be identified with
Hom(P,R≥0 × S1). More generally, if the log analytic space X has a Kato chart X → C(P ),
then Xlog can be identified with a closed subset of the topological space X ×Hom(P gp,S1) (where
Hom(P gp,S1) has its natural topology), and we can equip it with the induced topology. This can
be shown to be independent of the particular Kato chart that we choose, and we obtain a topology
on the set Xlog for a general X.

The natural projection τ : Xlog → X that sends (x, φ) to x is continuous and proper. The

fiber over a point x ∈ X can be identified with the space Hom(M
gp
x ,S1), which is non-canonically

isomorphic to a real torus (S1)r, where r is the rank of the (finitely generated) free abelian group
M

gp
x . If X = C(P ), the map Xlog → X is identified with Hom(P,R≥0× S1)→ C(P ) = Hom(P,C),

sending a homomorphism P → R≥0×S1 to the composite with R≥0×S1 → C, defined as (r, a) 7→ r·a.
If the log structure of X is given by a normal crossings divisor D ⊆ X, then the space Xlog is the
“real oriented blowup” of X along D.

In the following we will also make us of a covering space X̃log → Xlog, that can be constructed

in presence of a Kato chart X → C(P ). For C(P ) itself, this is defined as C̃(P )log := Hom(P,H),

where H is the “closed complex half-plane” R≥0 × R ⊆ C (note that usually H denotes the open

half-plane), and the map C̃(P )log → C(P )log = Hom(P,R≥0 × S1) is given by composing with the

map H→ R≥0×S1 described as (x, y) 7→ (x, eiy). For a general X, the map X̃log → Xlog is obtained
by base change along the Kato chart X → C(P ).

In both cases, X̃log → Xlog is a covering space, with group of deck transformations given by
Z(P ) := Hom(P,Z) (or, more precisely, Hom(P,Z(1)) where Z(1) = 2πiZ - we will systematically
omit these “Tate twists” in the notation). Note that this can be non-canonically identified with
Zn, via Hom(P,Z) = Hom(P gp,Z) and the fact that P gp ∼= Zn for some n. This covering space
should be thought of as an “atlas” of Xlog, the analogue of the scheme X ×SpecZ[P ] SpecZ[Q] in
the local description (1) for root stacks.

In fact, if Q = 1
nP , and P → Q = 1

nP is the inclusion, the group µQ/P is isomorphic to
µn(P ) := Hom(P,Z/nZ) ∼= µrn, where r is the rank of P gp, and the group of deck transformations

Z(P ) = Hom(P,Z) of the cover X̃log → Xlog naturally maps to µn(P ). There is also a canonical map
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X̃log → X ×C(P ) C( 1
nP ) that is (Z(P )→ µn(P ))-equivariant, and this gives a canonical morphism

from Xlog to the root stack
n√
X (more precisely, to the underlying topological stack). If X = C(P ),

the map C̃(P )log = Hom(P,H)→ C( 1
nP ) = Hom( 1

nP,C) is given by composing 1
nP
∼= P → H with

H → H given by (x, y) 7→ ( n
√
x, y/n) (this steps “compensates” the identification 1

nP
∼= P ), and

then with H→ C given by (x, y) 7→ x · eiy.
The construction of this map can be globalized (see [6] and [24]), so for every fine saturated

log analytic space X and every n (including n = ∞) there is a canonical morphism of topological

stacks φn : Xlog →
n√
Xtop. The rough idea here is that on Xlog we have logarithms of sections of

M , so in particular we also have n-th roots of such sections, for any n, since (exp( 1
n log(z)))n = z.

On Xlog there is a sheaf of rings Olog
X , that is generated over τ−1OX by formal logarithms of

sections of the sheaf M . Its precise definition will be recalled later (Section 4.3).

3. Parabolic sheaves with real weights

For this section, X will be either a fine saturated log scheme or log analytic space.

3.1. Sheaves of weights. As recalled in (2.2), to define root stacks and parabolic sheaves with
finitely generated weights, one considers an injective map of Kummer type M → B with B a
coherent sheaf of monoids (i.e. admitting local charts by finitely generated monoids). The root

stack
B√
X parametrizes extensions N : B → DivX of the DF structure of X, and parabolic sheaves

are cartesian functors E : Bwt → QcohX , where Bwt is the “category of weights” associated with
B: its objects are sections of Bgp, and an arrow s → t is a section b of B such that t = s+ b (see
[5, Section 5]). Note that since M → B is Kummer, we can see B as a subsheaf of BQ ∼= MQ (for
a monoid P , we denote by PQ the positive rational cone spanned by P in P gp ⊗Z Q, and we use
the same notation for the analogous construction on sheaves of monoids). In the limit, when we

consider the infinite root stack
∞√
X, the sheaf B is MQ itself.

Here we want to generalize these concepts to the case where we have weights in a sheaf of monoids
Λ with M ⊆ Λ ⊆MR, where MR =“M ⊗R+” is the positive real cone spanned by M in M

gp⊗ZR.
In other words, sections of MR are sums of sections of the form m⊗ r in M

gp ⊗Z R, with m ∈M
and r ∈ R+. Note that Λ might well not be finitely generated as a monoid (this already happens
for MQ). The concept of parabolic sheaves with real weights that we will define is a generalization
of earlier definitions (for example [17, 15, 9]).

Since finitely presented parabolic sheaves will be defined as the ones obtained by applying an
induction functor via a “fine sub-system of weights” (see Definition 3.9 below) that does not have
to be a sheaf of monoids, we will discuss sheaves of weights in a more general context, just requiring
that they be sheaves of pre-ordered sets, with an action of the sheaf M

gp
. Part of what follows is

taken from a section in a preliminary version of [5], that was removed in the final version. I am
grateful to A. Vistoli and N. Borne for allowing me to include this material here.

Recall that a pre-ordered set is a set W equipped with a reflexive and transitive relation, that
we denote by ≤ (or ≤W when we have to specify W ). Pre-ordered sets form a category (PreOrd),
where morphisms W → W ′ are increasing functions f : W → W ′, i.e. such that f(w) ≤W ′ f(w′)
if w ≤W w′. Pre-ordered sets can also be seen as small categories with at most one morphism (in
each direction) between any two objects.

Definition 3.1. Let P be an integral monoid. A weight system for P is a pre-ordered set W with
an action of P gp, that we denote by (p, w) 7→ p+w, such that: (a) if w ≤ w′, then for every p ∈ P gp

we have p+ w ≤ p+ w′, and (b) for every p ∈ P we have p+ w ≥ w.
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Let C be a site, that we will later specify to be the small étale site of a scheme, or the classical
site of a complex analytic space.

Definition 3.2. A pre-sheaf of pre-ordered sets on C is a functor W : Cop → (PreOrd). A sheaf
of pre-ordered sets on C is a pre-sheaf of pre-ordered set, which is furthermore a sheaf of sets, and
such that if w,w′ ∈W (U) are such that f∗i w ≤ f∗i w′ for a covering {fi : Ui → U} in C, then w ≤ w′
in W (U).

One can sheafify a pre-sheaf of pre-ordered sets to a sheaf of pre-ordered sets in a unique way.
Let now X be a log scheme or log analytic space, with DF structure L : M → DivX .

Definition 3.3. A pre-weight system on X is a pre-sheaf of pre-ordered sets W , together with an
action of M

gp
, such that for every U the set W (U) is a weight system for the monoid M(U). A

pre-weight system is a weight system if W is a sheaf of pre-ordered sets.

Example 3.4. Assume that B is a sheaf of integral monoids containing M . Then there is a natural
partial order on Bgp, by declaring that b ≤ b′ if and only if there exists c ∈ B such that b′ = b+ c.
Moreover, there is an action of M

gp ⊆ Bgp, given by the monoid operation. We will denote the
corresponding weight system by Bwt.

If M → B is a Kummer extension, these weight systems Bwt are the ones appearing in [5].

3.2. Diagrams of O-modules. Let X be a scheme or analytic space, with a symmetric monoidal
functor L : P → Div(X) for an integral monoid P . We denote the image of p ∈ P by (Lp, sp).
Recall that the functor L can be extended to a functor P gp → Pic(X) (that we continue to denote
by L), by sending p − p′ to the invertible sheaf Lp ⊗OX L∨p′ (see [5, Proposition 5.2]). Denote
by λa,b : La+b

∼= La ⊗OX Lb and ε : L0
∼= OX the isomorphisms that are part of the data of the

symmetric monoidal functor L (as in [5, Definition 2.1]).
Let W be a weight system for the monoid P . The following is the straightforward adaptation of

[5, Definition 5.6] to this more general setting.

Definition 3.5. A diagram of O-modules (E, jE) for the above data is a functor E : W →
Mod(OX), denoted w 7→ Ew and (w ≤ w′) 7→ E(w,w′), together with an isomorphism

ρEa,w : Ea+w
∼= La ⊗OX Ew

for every a ∈ P gp and w ∈W , such that

(a) for every p ∈ P the diagram

Ew
E(w,p+w) //

∼=
��

Ep+w

ρEp,w
��

OX ⊗OX Ew
sp⊗id // Lp ⊗OX Ew

commutes,
(b) for every w ≤ w′ in W and a ∈ P gp, then the diagram

Ea+w

ρEa,w //

E(a+w,a+w′)
��

La ⊗OX Ew
id⊗E(w,w′)
��

Ea+w′

ρE
a,w′ // La ⊗OX Ew′

commutes,



PARABOLIC SHEAVES ON THE KATO-NAKAYAMA SPACE 9

(c) for every a, b ∈ P gp and w ∈W , the diagram

Ea+b+w

ρEa+b,w //

ρEa,b+w
��

La+b ⊗OX Ew
λa,b⊗id

��
La ⊗OX Eb+w

id⊗ρEb,w // La ⊗OX Lb ⊗OX Ew

commutes, and
(d) for every w ∈W the composite

Ew = E0+w

ρE0,w−−→ L0 ⊗OX Ew
ε⊗id−−−→ OX ⊗OX Ew

coincides with the natural isomorphism Ew ∼= OX ⊗OX Ew.

A morphism of diagrams of O-modules is a natural transformation φ : E → E′, such that for
every a ∈ P gp and w ∈W , the diagram

Ea+w

ρEa,w //

φa+w

��

La ⊗OX Ew
id⊗φw
��

E′a+w

ρE
′

a,w // La ⊗OX E′w

commutes. Diagrams of O-modules on X with respect to W form an abelian category Mod(X,W ).
The structure of abelian category is defined “component-wise”.

We say that a diagram of O-modules E is quasi-coherent if the functor E has values in Qcoh(X).
We denote by Qcoh(X,W ) the full sub-category of Mod(X,W ) of quasi-coherent diagrams of O-
modules.

Assume now that X is a log scheme or log analytic space, with DF structure given by L : M →
DivX , and assume that we have a weight system W for M on X.

Definition 3.6. A diagram of O-modules for the above data is a cartesian functor E : W →
ModOX , with an isomorphism of OU -modules

ρEa,w : Ea+w
∼= La ⊗OU Ew

for every open U → X (either an étale morphism, or an open immersion of analytic spaces),

a ∈Mgp
(U) and w ∈W (U), such that

a) for every open U → X, the restriction E(U) : W (U)→ Mod(OU ) is a diagram of O-modules
on U with weights in W (U), and

b) for every arrow f : (U → X) → (V → X) between opens of X, and for every a ∈ Mgp
(V )

and w ∈W (V ), the isomorphism

ρEf∗a,f∗w : Ef∗(a+w) = Ef∗a+f∗w
∼= Lf∗a ⊗OU Ef∗w

coincides with the pullback of ρEa,w : Ea+w
∼= La ⊗OV Ew.

Sometimes we will refer to the sheaves Ew as pieces of the diagram of O-modules E. Similarly
to the previous case, there is an abelian category Mod(X,W ) of diagrams of OX -modules on X
with weights in W , and a full subcategory Qcoh(X,W ) ⊆ Mod(X,W ) of quasi-coherent diagrams.

These definitions coincide with to the ones of [5, Section 5.2], if the weight system is given by a
Kummer extension of sheaves of monoids M → B.
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3.2.1. Functoriality. Let X be a log scheme and W,W ′ two weight systems, with an injective M
gp

-
equivariant map j : W →W ′. We will call such a map an embedding of weight systems.

In this situation, we can define two adjoint functors between diagrams of O-modules, that we
call restriction

ResW
′

W : Mod(X,W ′)→ Mod(X,W )

and induction

IndW
′

W : Mod(X,W )→ Mod(X,W ′).

Restriction is simply defined by restricting a diagram of O-modules E : W ′ → ModOX and the
isomorphisms ρE along the embedding W → W ′. Note that this operation sends quasi-coherent
diagrams to quasi-coherent diagrams.

Induction is more complicated to describe. Assume that E : W → ModOX is a diagram of O-
modules, and let U → X be an open, and w′ ∈ W ′(U). We want to define a sheaf of OU -modules

Ẽw′ .
For an open f : V → U , consider the subset of W (V ) given by

Ww′(V ) = {w ∈W (V ) | w ≤W ′ f∗w′}

with the induced pre-order. We have a functor from Ww′(V ) to the category of abelian groups,
sending w to Ew(V ). Define

Ẽpre
w′ (V ) = lim−→

w∈Ww′ (V )

Ew(V ).

Moreover, given a further open g : V ′ → V , we have a morphism of pre-ordered sets g∗ : Ww′(V )→
Ww′(V

′). For every w ∈ Ww′(V ) we have an isomorphism g∗Ew ∼= Eg∗w, and these induce a
homomorphism

Ew(V )→ Eg∗w(V ′)→ lim−→
w′′∈Ww′ (V

′)

Ew′′(V
′) = Ẽpre

w′ (V ′).

By taking the colimit we obtain a homomorphism Ẽpre
w′ (V ) → Ẽpre

w′ (V ′). This makes Ẽpre
w′ into a

pre-sheaf of OU -modules. Let Ẽw′ be the associated sheaf.

We define a cartesian functor Ẽ : W ′ → ModOX sending w′ to Ẽw′ . Note that if w′ ≤ w′′ in
W ′, then there is an inclusion of pre-ordered sets Ww′(V )→ Ww′′(V ) for every open V → U , and
this induces a homomorphism of OU -modules Ew′ → Ew′′ . Since pullbacks respect direct limit and
sheafifications, it also follows that the functor is cartesian. Moreover the isomorphisms ρEa,w induce

isomorphisms ρẼa,w′ : Ẽa+w′
∼= La ⊗OX Ẽw′ by taking colimits.

It is straightforward now to define the functor IndW
′

W sending E to Ẽ. Moreover, one also easily

checks that IndW
′

W is left adjoint to ResW
′

W , and fully faithful (equivalently, the unit of the adjunction

id→ ResW
′

W ◦ IndW
′

W is an isomorphism). We record this in the following proposition.

Proposition 3.7. The restriction functor ResW
′

W has a left adjoint IndW
′

W , which is moreover fully
faithful. �

There are obvious (simpler) versions of these constructions for diagrams of O-modules for a
weight system relative to a monoid P and a symmetric monoidal functor L : P → Div(X).

Using the equivalence between parabolic sheaves and quasi-coherent sheaves on root stacks of [5],
these two functors are identified with pullback and pushforward along the canonical map between
the two corresponding root stacks, and this adjunction is the usual one. This is explained for
example in [25, Section 2.2] and [23, Section 7.1].
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Remark 3.8. While ResW
′

W always preserves quasi-coherence, the functor IndW
′

W probably does
not, in full generality. One can show that it is true with some additional assumptions on the weight
systems, but this fact will not be needed.

3.2.2. Local models. We now discuss charts for weight systems. Assume that X is a log scheme
or a log analytic space, with DF structure L : M → DivX with a global chart P → M(X), and
that R is a weight system for P . Then we obtain an induced weight system W for M as follows.
Call K ⊆ PX the kernel of the map to M , and consider the (sheaf) quotient W = RX/K. This
is a weight system for M , for the pre-order defined by w ≤ w′ in W (U) if there exists a covering
{fi : Ui → U} and wi, w

′
i ∈ RX(Ui) such that wi ≤ w′i for every i, and f∗i w = wi, f

∗
i w
′ = w′i for

every i. There is a natural map R→W (X) of pre-ordered sets.

Definition 3.9. In the situation we just described, we say that the pair (P →M(X), R→W (X))
is a chart for the weight system W on X.

A chart is said to be fine if P is finitely generated, and R is the union of a finite number of orbits
for the action of P gp.

Sometimes we will refer to a chart for a weight system just via the morphism R→W (X).

Example 3.10. Consider the weight system associated with the monoid 1
nM . If the DF structure

has a global chart P →M(X), this weight system also has a global chart, given by 1
nP →

1
nM(X).

This chart is also fine if P is finitely generated, since the pre-ordered set 1
nP

wt has finitely many
orbits with respect to the action of P gp.

Analogously the weight system associated with MQ has a chart given by PQ →MQ(X), but this
chart is not fine.

Definition 3.11. A weight system W for a log scheme X is said to be quasi-coherent if it locally
admits charts. It is said to be fine if it locally admits fine charts.

3.3. Parabolic sheaves. Assume now that Λ is a sheaf of monoids on the fine saturated logarith-
mic scheme X, such that M ⊆ Λ ⊆ MR, and that it is quasi-coherent, i.e. it admits local charts.
This means that locally on X there is a chart P → M(X) and a monoid Λ0 with P ⊆ Λ0 ⊆ PR,
with a chart Λ0 → Λ(X) that makes the obvious diagram commute. One can check that this
is equivalent to asking that Λ be log constructible [19, 3.2] (briefly, this means that it is locally
constant on the stratification associated to the log structure of X).

We will also always assume that Λ ⊆ MR is saturated for the action of M
gp

(or M
gp

-saturated,
for short). This will mean the following: if λ ∈ MR is such that λ + p ∈ Λ for some p ∈ M , then

λ ∈ Λ. This condition can also be formulated by considering the projection π : M
gp
R →M

gp
R /M

gp ∼=
M

gp ⊗Z (R/Z), and requiring that Λ = π−1π(Λ) ∩MR. This condition can be checked on charts
for M and Λ.

Example 3.12. If the log structure has a chart with P = N, then we have PR = R+, and for every
number c ∈ R+ we can consider as Λ0 the Z-saturated submonoid of R+ generated by c. If c is
irrational this is not just the submonoid {nc | n ∈ N} consisting of positive multiples of c (this
does not even contain N), but is the subset {nc + m | n ∈ N, m ∈ Z and nc + m ≥ 0}. Notice
that as a monoid this is not finitely generated. In fact, in general if a monoid Λ as above is finitely
generated, then it is necessarily contained in some 1

nM .

Recall that Λ determines a weight system Λwt for M
gp

(see Example 3.4).

Definition 3.13. A parabolic sheaf on X with weights in Λ is a diagram of O-modules for the
weight system Λwt.
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The same definition applies in the presence of a Kato chart P → M(X) and a P gp-saturated
monoid P ⊆ Λ0 ⊆ PR, and gives a notion of parabolic sheaf on X with weights in Λ0.

Proposition 3.14. Let X be a fine saturated log scheme, and Λ be a M
gp

-saturated sheaf of
monoids with M ⊆ Λ ⊆ MR, with a global chart (P → M(X),Λ0 → Λ(X)). Then there is an
equivalence of categories ι : Mod(X,Λwt)→ Mod(X,Λwt

0 ).

Proof. The functor ι is defined by restricting E : Λwt → ModOX and the isomorphisms ρEa,w along

Λwt
0 → Λwt(X).
The fact that ι is an equivalence is proven exactly as in [5, Proposition 5.10] (the only change is

that in [5, Lemma 5.11] one has to consider a section l such that k ≤ l ≤ mk for some m ∈ N). �

Remark 3.15. In the algebraic case, if one wants to work in the étale topology then for the
statement of the previous proposition to be true one needs to replace Mod by Qcoh (the problem
is that Mod is not a stack for the étale topology). Since the main focus for this paper is on the
analytic case, we will not worry about this.

As for the case of schemes and finite systems of weights treated in [5], we want to restrict to a
class of “quasi-coherent” parabolic sheaves. One natural choice would be to consider quasi-coherent
diagrams of O-modules as in the definition above, but we will do something a little different. Let
us define finitely presented sheaves first.

Definition 3.16. A parabolic sheaf E with weights in Λ is finitely presented if for all λ ∈ Λwt the
sheaf Eλ is a finitely presented sheaf of OX -modules on X, and locally on X there exists a fine
sub-weight system R ⊆ Λwt such that E is in the essential image of the induction functor

IndΛwt

R : Mod(X,R)→ Mod(X,Λwt).

Intuitively, the last condition says that locally the parabolic sheaf is completely determined by
finitely many of its pieces Eλ. It is not hard to check that the induction functors of the kind that
appear in the definition above preserve quasi-coherence of the diagrams (as defined in (3.2)): using
Proposition 3.14 one can reduce to the case of constant monoids, and then the statement reduces
to the fact that a finite colimit of quasi-coherent sheaves is quasi-coherent. Note that this assertion
may fail for non-finite colimits in the analytic context (see [7, Remark 2.1.5]).

Example 3.17. In Example 3.12, for every number c ∈ R+ we can consider the weight system R
given by the subset {c+ k | k ∈ Z} inside the weight system Λwt

0 = {mc+ n | m ∈ Z, n ∈ Z}. This
R is a fine weights system, since it consists of a single orbit for the action of Z.

Example 3.18. Continue to assume that the log structure has a global chart with monoid N (so
the DF structure is given by a line bundle with a section (L, s) ∈ Div(X)), and take Λ = R. In
this case a parabolic sheaf with weights in Λ is the assignment of an OX -module Er for each r ∈ R,
with maps Er → Er′ when r ≤ r′, that are compatible with respect to composition, and such that
Er → Er+1

∼= L⊗OX Er is identified with multiplication by the section s.
For such a sheaf, being finitely presented means that each Er is a finitely presented sheaf on X,

and moreover there exist finitely many real numbers 0 ≤ r1 < · · · < rk < 1, such that for every
r ∈ R the sheaf Er is obtained in this way: consider the largest integer brc which is ≤ r, and the
fractional part s = {r} = r − brc; then Er ∼= Eri ⊗ Lbrc via the given map, where ri is the largest
of the fixed numbers that is ≤ s.

In other words, the parabolic sheaf E is completely determined by the weights ri, the finitely
presented sheaves Eri , and the maps between them.
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Remark 3.19. Note that if X is a noetherian (or more generally coherent) scheme or an analytic
space, finitely presented sheaves coincide with coherent sheaves. In the next sections we will work
with complex analytic spaces or schemes of finite type over C, so this comment will apply.

In the category of parabolic sheaves with weights in Λ, we can form colimits by taking the
colimits “level-wise”.

Definition 3.20. A parabolic sheaf with weights in Λ is quasi-coherent if locally on X it can be
written as a filtered colimit of finitely presented parabolic sheaves with weights in Λ.

Remark 3.21. This definition is inspired by the definition of a quasi-coherent sheaf on an analytic
space of [7]. We opted to use this notion, instead of the perhaps more natural one requiring that all
sheaves Eλ are quasi-coherent on X, for technical convenience. Note that, if X itself is coherent, for
a quasi-coherent sheaf in the sense of the definition it is indeed the case that Eλ is quasi-coherent
for every λ (it is locally a filtered colimit of finitely presented sheaves, which are also coherent if
OX itself is), but it is not clear if the two notions would coincide in general.

See also the discussion about quasi-coherent sheaves on Xlog in (4.5).

We will denote by Par(X,Λ) the category of quasi-coherent parabolic sheaves on X with weights
in Λ, and by FPPar(X,Λ) the full subcategory of finitely presented parabolic sheaves. More-
over, Par(X,Q) will be a shorthand for the category Par(X,MQ), and Par(X,R) for the category

Par(X,MR)). Note that it is not clear that these are abelian categories, but we can talk about
exactness by embedding these categories into the abelian category Mod(X,Λwt) of diagrams of
O-modules for Λwt.

To conclude this section we briefly note that, over the complex numbers, there is a version for
finitely presented parabolic sheaves of the GAGA equivalence, that relates parabolic sheaves on a
proper scheme X over C and parabolic sheaves on the associated analytic space. Assume that X is a
fine saturated log scheme locally of finite type over the complex numbers. Then the analytification
Xan inherits a fine saturated log structure (on its classical site), and we can compare parabolic

sheaves on the two sides. Let Λ be a M
gp

-saturated quasi-coherent sheaf of monoids on X such
that M ⊆ Λ ⊆MR, and denote by Λan the induced sheaf on the classical site of Xan.

Proposition 3.22. There is a natural analytification functor

(−)an : FPPar(X,Λ)→ FPPar(Xan,Λan)

which is exact. If X is proper, this functor is an equivalence of categories.

Proof. Note that since X is noetherian, the pieces of a finitely presented parabolic sheaf are coherent
sheaves. The analytification functor is then defined by analytifying all the pieces and the maps of a
parabolic sheaf, and all the assertions follow immediately from the classical GAGA theorems. �

Remark 3.23. The previous proposition assures that if X is a proper scheme over C, Theorem
5.1 applies also to “algebraic” parabolic sheaves on X (since in that case they are the same as
“analytic” ones on Xan).

In general, our main result gives a correspondence between analytic parabolic sheaves on Xan,
and certain sheaves of modules on Xlog. If X is a scheme of finite type over C which is not proper,
one can still ask if algebraic parabolic sheaves with real weights on X correspond to some kind
of sheaves on Xlog. There should indeed be a variant of the constructions that we will describe
starting in the next section, giving a correspondence involving algebraic parabolic sheaves, but for
simplicity of exposition we will restrict our treatment to analytic sheaves on Xan (which is anyway
the most natural setting, given the use of the Kato-Nakayama space).
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3.4. Correspondence with sheaves on root stacks. Since our proof of Theorem 5.1 will follow
quite closely the one of [5, Theorem 6.1], we give a short reminder about the correspondence with
sheaves on root stacks.

Let X be a fine saturated log scheme, and consider a system of denominators M → B (i.e. a
Kummer extension of sheaves of monoids, admitting local charts). We are going to sketch the

construction of the functor Φ: Qcoh(
B√
X)→ Par(X,B), and the proof that it is an equivalence.

Recall that π :
B√
X → X carries a universal DF structure LB : π−1B → DivB√

X
that extends the

pullback π∗L : π−1A→ DivB√
X

. Given a quasi-coherent sheaf F ∈ Qcoh(
B√
X) and b ∈ Bwt(U) for

U → X étale, set

Φ(F )b := π∗(F |π−1U ⊗OB√
U
LBb ).

Note that for b ≤ b′, i.e. b′ = b+ c with c ∈ B(U), we have LBb′
∼= LBb ⊗OX LBc , and hence we obtain

a map Φ(F )b → Φ(F )b′ , given by multiplication by the section sc of LBc . The projection formula

for π provides the isomorphisms ρ
Φ(F )
m,b : Φ(F )b+m ∼= Lm⊗OX Φ(F )b for b ∈ Bwt(U) and m ∈M(U).

Easy verifications show that Φ(F ) is a parabolic sheaf on X with weights in B.
To prove that this functor is an equivalence, since both categories extend to stacks for the

étale topology of X, one can localize where there is a Kato chart X → SpecZ[P ] and a chart
(Q → B(X), P → Q) for M → B, and construct a quasi-inverse locally. Recall from (2.2) that in

the presence of such charts, quasi-coherent sheaves on
B√
X can be identified with quasi-coherent

sheaves of OX [P gp]⊗Z[P ] Z[Q]-modules on X that have a Qgp-grading compatible with the module
structure.

Given a parabolic sheaf E with weights in Q, one forms the sheaf
⊕

q∈Qgp Eq on X. This has

a structure of OX [P gp] ⊗Z[P ] Z[Q]-module, determined by the maps Eq → Eq′ for q ≤ q′ that are
part of the definition of a parabolic sheaf, and a Qgp-grading that is compatible with the module

structure. Hence we obtain a quasi-coherent sheaf on
B√
X, and this gives the desired quasi-inverse.

One can also show that if X is noetherian, coherent sheaves on
B√
X correspond to parabolic sheaves

such that each Eb is coherent.

4. Sheaves on the Kato-Nakayama space

From now on X will be a fine saturated complex analytic space (which might for example be
the analytification of a fine saturated log scheme locally of finite type over C). We will denote by
τ : Xlog → X the Kato-Nakayama space of X with its natural projection.

4.1. Indexed algebras. Assume for the moment that (T,OT ) is an arbitrary ringed space.
We start by describing a construction of a sheaf of OT -algebras A associated with an extension

(2) 0 // O×T // M
π // M // 0

of sheaves of monoids on T , which could be associated with a log structure in the case where T is
the underlying space of a complex analytic space (but we will also apply this procedure to exact
sequences on the Kato-Nakayama space). By an extension of sheaves of monoids, we mean a pair
of maps f : P ′ → P and g : P → P ′′, such that f is an isomorphism onto the submonoid g−1(0)
of P , and g induces an isomorphism P/P ′ ∼= P/f−1(0) ∼= P ′′. The following construction is taken
from a paper of Lorenzon [14], via the work of Ogus [19].

For an open U ⊆ T and a section a ∈ M(U), the sheaf of preimages of a in M is an O×U -torsor
that we denote by Pa. This corresponds to a line bundle Na (i.e. an invertible sheaf of OU -modules)

on U , given by the contracted product Pa ×O
×
U OU , where O×U → OU is the natural inclusion. We
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define A(U) = ⊕a∈M(U)Na(U) as an OT (U)-module. The natural restriction maps give a sheaf of

OT -modules A. To ease notation, we will succinctly write A =
⊕

a∈M Na. Moreover if a, b ∈M(U),
we have a natural map Na⊗OT Nb → Na+b, and this gives A the structure of a sheaf of OT -algebras.
There is also a natural morphism of monoids M → A (where the operation on A is multiplication),
since a m of M trivializes the torsor Pπ(m).

Assume now that we have a homomorphism of sheaves of monoids M → OT (where OT is
equipped with multiplication), such that the composite O×T →M → OT coincides with the canon-
ical inclusion. Then every Na has a canonical co-section ta : Na → OT , induced by the map
Pa ⊆M → OT .

Example 4.1. Assume we are considering the extension (2) associated with the natural log struc-
ture given by the origin on X = A1 = (SpecC[z])an. In this case the sheaf A is as follows. If U ⊆ A1

does not contain the origin, then A|U ∼= OU , since in this case the restriction of the extension is
trivial (i.e. M = 0). If U does contain the origin, then Γ(U,M) = N, and A(U) ∼=

⊕
n∈N t

n ·OX(U),
where tn is just a placeholder variable.

The map Na ⊗OT Nb → Na+b is given by the natural isomorphism

(tn · OA1)⊗OA1 (tm · OA1) ∼= tn+m · OA1 ,

and the co-section Na → OX is determined by tn · OA1 → OA1 sending tn · 1 to zn. A similar
description can be given for affine toric varieties X = C(P ) = (SpecC[P ])an with the natural log
structure.

In particular note that the sheaf A is not quasi-coherent, even in the algebraic case (and this
is in fact typical). If it were quasi-coherent, it would be the sheaf associated to the C[z]-module
Γ(A1,A) =

⊕
n∈N t

n ·C[z], but this is clearly incorrect, since the restriction of A to A1\{0} coincides
with the structure sheaf OA1\{0}.

Denote by Div(T,OT ) the symmetric monoidal category over T of pairs (L, s) consisting of an OT -
line bundle L (i.e. a locally free sheaf of OT -modules of rank 1) with a section s. From the extension
(2) and the previous construction we also obtain a symmetric monoidal functor M → Div(T,OT ) by

sending a ∈M(U) to the dual La = N∨a of the line bundle Na associated to the torsor Pa, together
with the section sa : OT → La induced by the co-section ta.

Definition 4.2. If X is a log analytic space, and extension (2) comes from the log structure, we
will denote the associated sheaf of OX -algebras by AX .

4.2. Extensions on Xlog. Let X be a fine saturated log analytic space. We will explain how
to produce various extensions of the form (2) on the Kato-Nakayama space Xlog, besides the one
coming from the log structure of X. We will use these extensions to produce sheaves of rings OΛ

on Xlog for a quasi-coherent sheaf of submonoids Λ ⊆ MR = M ⊗ R+ containing M . Morally, the
sheaf OΛ will be generated by the pullback of OX and the products of powers mi

αi where mi are
sections of M and αi ∈ R+, such that

∑
imi ⊗ αi ∈ Λ ⊆MR (see the description in (4.4)).

Recall that the universal object parametrized by the topological space Xlog with the projection
τ : Xlog → X is a homomorphism c : τ−1Mgp → S1

Xlog
of sheaves of abelian groups of Xlog, such

that c(f) = f/|f | for f ∈ τ−1O×. Recall that if T is a topological space and G is a topological
monoid, or group, etc. we denote by GT the sheaf of continuous functions towards G on opens of
T (with the induced structure of a sheaf of monoids, groups, etc.).
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Consider the sheaf of abelian groups L = τ−1Mgp×S1
Xlog

iRXlog
on Xlog, where iRXlog

→ S1
Xlog

is

given by the exponential. This sits in a commutative diagram with exact rows

0 // 2πiZ //

=

��

L

��

// τ−1Mgp //

c
��

0

0 // 2πiZ // iRXlog
// S1
Xlog

// 0.

In other words, sections of L over an open U are pairs consisting of a section m of τ−1Mgp and
a continuous function θ : U → iR, such that c(m) = eθ as functions U → S1. If we think of c as
assigning a phase to every section of τ−1Mgp that is not in τ−1O×X , then L records also the choice
of an angle, i.e. a pre-image in iR of the phase. In this sense, L is a sheaf of “logarithms” of

sections of Mgp. The structure sheaf Olog
X of Xlog is constructed by formally adjoining to OX the

sections of the sheaf L (see (4.3) for details).

Example 4.3. Recall that the standard log point (SpecC,N) is the log analytic space given by the
analytic space SpecC (i.e. a reduced point), with monoid C× ⊕ N and morphism C× ⊕ N → C =
OSpecC described by (a, n) 7→ a · 0n, where 00 = 1. In general we denote by (SpecC, P ) the log
point with monoid P , defined in the analogous manner.

The Kato-Nakayama space of the standard log point is Hom(N,S1) ∼= S1, and the sheaf L can be
described as follows: on the universal cover π : R → S1, consider the constant sheaf Z⊕ CR, and
make the group of deck transformations Z act on this sheaf by k · (k′, c) = (k′, c+ 2kk′πi) (so that
the sheaf acquires an equivariant structure). The result of descent to S1 is precisely L. The map
2πiZ→ π−1L can be described as 2πik 7→ (0, 2πik), and π−1L → π−1τ−1Mgp ∼= Z⊕ C×R is given
by (k, c) 7→ (k, exp(c)).

There is an injective homomorphism of sheaves of abelian groups τ−1OX → L defined on an open
subset U by sending a holomorphic function f ∈ τ−1OX to the pair (exp(f), i Im(f)), where exp(f)

is seen as a section of τ−1O×X ⊆ τ−1Mgp. Moreover, we also have a homomorphism L → τ−1M
gp

given by composing the first projection L → τ−1Mgp with the quotient map τ−1Mgp → τ−1M
gp

.
These maps fit into a short exact sequence

(3) 0 // τ−1OX // L // τ−1M
gp // 0

of sheaves of abelian groups on Xlog: if a section (m, θ) of L maps to zero in τ−1M
gp

, then m is a

section of τ−1O×X , and there is a unique “logarithm” for this pair, i.e. a section f ∈ τ−1OX such
that (exp(f), i Im(f)) = (m, θ).

The following construction is taken from [19, Section 3.3]. Let us tensor (3) by the constant
sheaf C (over Z - we will omit this from the notation). We obtain

0 // τ−1OX ⊗ CXlog
// L ⊗ CXlog

// τ−1M
gp ⊗ CXlog

// 0.

Now let us consider the map τ−1OX ⊗CXlog
→ τ−1O×X defined on generators as f ⊗ c 7→ ec·f , and

the induced diagram

0 // τ−1OX ⊗ CXlog
//

��

L ⊗ CXlog
//

��

τ−1M
gp ⊗ CXlog

//

=

��

0

0 // τ−1O×X // Mgp
log

// τ−1M
gp ⊗ CXlog

// 0
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where Mgp
log is the pushout of the diagram to its left.

Finally, given a quasi-coherent sheaf of monoids Λ on X, with Λ ⊆MR = M⊗R+ ⊆M
gp⊗CXlog

,

we can pullback the bottom extension of the last diagram to an extension of sheaves of monoids on
Xlog

(4) 0 // τ−1O×X // MΛ
// τ−1Λ // 0.

Remark 4.4. In [19], the symbol Λ is used in this same context to denote a log constructible sheaf

of abelian groups in M
gp ⊗ CXlog

, and not a sheaf of monoids.

Definition 4.5. We will denote by AΛ the sheaf of τ−1OX -algebras on Xlog, associated with the
extension (4), by the procedure outlined in (4.1).

It is clear that the construction of these extensions, as well as the objects that we are going to
describe next, are compatible with strict base change.

4.3. Sheaves of rings on Xlog. Now consider Λ = M , so that AΛ = τ−1AX , and note that
there is a natural homomorphism of τ−1OX -algebras τ−1AX → τ−1OX , which is the pullback of
a homomorphism AX → OX on X: each homogeneous piece Na of AX has a morphism of OX -
modules into OX given by the co-section sa : Na → OX , and the resulting map AX → OX is a
homomorphism of algebras.

Moreover for every Λ we have a natural homomorphism τ−1AX → AΛ. We set

OΛ := AΛ ⊗τ−1AX τ
−1OX .

This is a sheaf of rings on Xlog, together with an injective map τ−1OX → OΛ.
As anticipated above, OΛ should be loosely thought of as τ−1OX [

∏
im

αi
i ], where

∑
imi⊗αi are

the sections of Λ ⊆M⊗R+, and the obvious relations are satisfied, for example, m1
i is identified with

a corresponding local section fi ∈ τ−1OX . See Remark 4.12 below for a more precise statement, in
a particular case.

Example 4.6. Assume that X is the standard log point (SpecC,N), and let N ⊆ Λ ⊆ R+ be a
Z-saturated monoid. The algebra AX in this case can be described as the C-algebra

⊕
n∈N t

n · C.

The morphism AX → OX = C sends t0 to 1, and tn to 0 for n > 0.
The Kato-Nakayama space Xlog is isomorphic to S1, and the sheaf τ−1AX is the constant sheaf⊕
n∈N t

n · C
S1

. As for AΛ, we have AΛ =
⊕

λ∈ΛNλ for τ−1C = CS1-invertible sheaves Nλ.

For λ /∈ N, this line bundle will have non-trivial monodromy with respect to the action of the
fundamental group π1(S1) ∼= Z, and that can be described as follows. Consider the universal cover
π : R→ S1, and denote the composite R→ S1 → SpecC by τ̃ . For every λ, the pullback π−1Nλ is
locally constant on R, hence it is constant, Nλ

∼= CR. Let us formally write tλ for a generator, so
that Nλ = tλ · CR. The group Z of deck transformations of π acts on this sheaf (in the sense that
the sheaf has a Z-equivariant structure), by k · (tλc) = e2πikλtλc. With this notation, we can write
π−1AΛ =

⊕
λ∈Λ t

λ · CR.

Furthermore, recall that OΛ = AΛ ⊗τ−1AX τ−1OX . This has the effect (on the universal cover

R) of identifying tn with its image in CR = τ̃−1OX , in the description above. Hence, if λ > 1 and
since Λ is Z-saturated, this forces the image of tλ to be 0, since tλ = tλ−1 · t, and t maps to 0 in C.
Hence we have

π−1OΛ =
⊕

λ∈Λ∩[0,1)

Sλ · CR,

where multiplication is determined by Sλ · Sλ′ = Sλ+λ′ if λ+ λ′ < 1, and 0 otherwise.
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Here Sλ should be thought of as “ zλ ”, where z is the coordinate of the A1, of which the standard
log point is the origin (i.e. the generator of M = N).

One of the main points of this paper is that the ringed space (Xlog,OΛ) can be seen as a sort

of root stack of X with respect to coefficients in Λ, for any given M
gp

-saturated quasi-coherent
sheaf of monoids M ⊆ Λ ⊆MR. In fact, there is a canonical homomorphism of sheaves of monoids
αΛ : MΛ → OΛ: as explained in [14, I.2.3], a section m ∈ MΛ determines a trivialization of the
torsor Pm of preimages in MΛ of m (which denotes the image of m in τ−1Λ), and consequently
a section em ∈ Nm ⊆ AΛ of the associated line bundle. We set αΛ(m) to be the image of em in
OΛ = AΛ⊗τ−1AX τ

−1OX . The map αΛ is not properly a log structure, since the units in OΛ are in

general bigger than the units in τ−1OX (already for example for the standard log point), but the
induced homomorphism MΛ = MΛ ⊕τ−1O×X

O×Λ → OΛ is a log structure.

From the following extension (derived from extension (4))

0 // O×Λ //MΛ
// τ−1Λ // 0

together with the homomorphism MΛ → OΛ, as described in (4.1) we obtain a symmetric monoidal
functor LΛ : τ−1Λ→ Div(Xlog,OΛ) from τ−1Λ to the stack over opens of Xlog of OΛ-invertible sheaves

with a global section. If Nλ is the invertible sheaf of τ−1OX -modules associated with λ ∈ τ−1Λ
via the extension (4) above, then the invertible sheaf of OΛ-modules associated with λ via the
last extension is canonically isomorphic to Nλ ⊗τ−1OX OΛ, and hence the corresponding sheaf of
OΛ-algebras is simply

AΛ ⊗τ−1OX OΛ =
⊕

λ∈τ−1Λ

(Nλ ⊗τ−1OX OΛ).

These data give a log structure on Xlog that extends the one of X by adjoining “real powers” of

the sections of M to the structure sheaf. The invertible sheaves LΛ(λ) = (LΛ
λ , sλ) ∈ Div(Xlog,OΛ) for

sections λ ∈ τ−1Λ, duals of the sheaves Nλ ⊗τ−1OX OΛ mentioned above, will be fundamental for

the correspondence with parabolic sheaves (strictly speaking, after tensoring them with Olog
X - see

below). If the log structure is divisorial, morally sλ should be thought of as fλ, where f is a local
equation of a branch of the boundary divisor, and the sheaf LΛ

λ is to be thought of as f−λ · OΛ.

Example 4.7. If for example X = A1 and N ⊆ Λ ⊆ R+, then AΛ is isomorphic to τ−1OX outside
τ−1(0), and AΛ(U) =

⊕
λ∈ΛNλ(U) for U intersecting τ−1(0).

Here the sheaf Nn for n ∈ N can be seen as the pullback to Xlog of tn · OX , i.e. of the sheaf OX
for n = 0, and the sheaf defined by (tn ·OX)(U) := OX(U) if U contains the origin and 0 otherwise,
for n 6= 0 (so that in this case tn is “supported at the origin”). In general Nλ can be described,
on the universal cover H = R≥0 × R→ R≥0 × S1 = Xlog, as the sheaf tλ · OX (where tλ is likewise
supported on the preimage of the origin, for λ 6= 0), with the Z-equivariant structure determined
by k · tλ = e2πikλtλ.

The sheaf AΛ is the direct sum of these line bundles, and the sheaf OΛ = AΛ ⊗τ−1AX τ−1OX
can be described on H by adjoining to OX sections Sλ for λ ∈ Λ (supported on the preimage of the

origin), on which Z acts as above, and with multiplication defined so that Sλ = zn ·Sλ′ if λ = n+λ′

and n ∈ N. Note that the restriction of this description to the origin in A1 recovers the discussion
of Example 4.6.

For reasons that will be explained later (see Remark 4.21), we need to also tensor the sheaves OΛ

and the line bundles LΛ
λ with the “structure sheaf” Olog

X of Xlog. We briefly recall the construction
of this sheaf; see [12, Section 3], [8, Section 1] or [19, Section 3.3] for more details.
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The sheaf Olog
X is the universal sheaf of τ−1OX -algebras with a compatible morphism of sheaves

of abelian groups L → Olog
X , where L is the sheaf of abelian groups of (4.2). An explicit construction

is as the quotient

Olog
X = (τ−1OX ⊗Z SymZL)/I

where I is the sheaf of ideals generated by local sections of the form f⊗1−1⊗h(f) for f ∈ τ−1OX ,
and where h : τ−1OX → L is the map in the exact sequence (3), defined by

h(f) = (exp(f), i Im(f)) ∈ L ∼= τ−1Mgp ×S1
Xlog

iRXlog
.

The stalks of Olog
X can be described as follows: let y ∈ Xlog be a point with image x = τ(y), and let

m1, . . . ,mr be elements of Ly, whose image under Ly → (τ−1M
gp

)y ∼= M
gp
x is a Z-basis. Then there

is an OX,x-linear isomorphism OX,x[T1, . . . , Tr] ∼= Olog
X,y given by Ti 7→ mi, where we are slightly

abusing notation in denoting the image of mi in Olog
X,y by the same symbol. Hence, morally Olog

X

should be thought of as the sheaf τ−1OX [log(m1), . . . , log(mr)], where m1, . . . ,mr is a local basis
of M

gp
.

Example 4.8. Assume that X is the standard log point X = (SpecC,N). The sheaf Olog
X on the

Kato-Nakayama space S1 can be described as follows. As usual take the universal cover X̃log
∼=

R → S1, and consider the constant sheaf of C-algebras C[T ]
R

, equipped with the Z-equivariant

structure determined by k · T = T − 2πik. The result of descent to Xlog = S1 is the sheaf Olog
X .

In other words, for every point y ∈ S1 we have Olog
X,y
∼= C[T ], but by moving around the circle

once, T becomes T − 2πi (this makes sense if we think of T as “ log z ”, where z is the coordinate
of A1, and the standard log point is the origin). For a detailed explanation of the “minus” sign in
this action, we refer the reader to [13, Appendix A1].

Note that the global sections of Olog
X are only the constants, i.e. τ∗Olog

X
∼= OX in this case. This

is true also in general (Proposition 4.22).

Remark 4.9. As mentioned in the introduction of [24], it is natural to ask if the map of topological

stacks φ∞ : Xlog →
∞√
Xtop (whose construction is recalled briefly in (2.3)) can be promoted in a

natural way to a morphism of ringed topological stacks, where we are equipping Xlog with the sheaf

Olog
X , and

∞√
Xtop with its structure sheaf O∞. The idea here would be the Olog

X has logarithms of

local sections of M , so the n-th roots of such sections in the sheaf O∞ should have an image in

Olog
X .
It turns that it is hard to make sense of this if we want a map of rings: if we want to define

O∞ → Olog
X as a sort of logarithm, by sending t

1
n to 1

n log(t), then it will not be a homomorphism

of rings. A second possibility would be to pass to convergent power series in Olog
X , and try to

impose that exp( 1
n log(t)) = image of t

1
n . This also makes little sense in some situations, because

an exponential had better be invertible, but t
1
n sometimes is nilpotent, for example if X is the

standard log point.
Instead of trying to make sense of this, the solution that we adopt in this paper is to adjoin all

needed roots to Olog
X (as is done in [8, Section 4], for example), in order to have a map as above.

We will set

Olog
Λ := OΛ ⊗τ−1OX O

log
X .
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This is again a sheaf of rings on Xlog, with an injective homomorphism τ−1OX → Olog
Λ . Morally,

on top of adding every possible real power mλ of sections of M and exponents in Λ, we are also
adding formal logarithms log(m).

By tensoring with Olog
X we can lift the symmetric monoidal functor LΛ : τ−1Λ → Div(Xlog,OΛ)

to a symmetric monoidal functor τ−1Λ → Div
(Xlog,Olog

Λ )
, that we will keep denoting by the same

symbol. The line bundle associated with λ ∈ τ−1Λ via this new symmetric monoidal functor is

simply LΛ
λ ⊗τ−1OX O

log
X (and will be denoted again by LΛ

λ - we will make no use of the invertible

sheaf before tensoring with Olog
X ).

The functor LΛ : τ−1Λ→ Div
(Xlog,Olog

Λ )
extends the symmetric monoidal functor L : M → DivX

on X, so in particular for λ = m ∈M we have LΛ
m
∼= τ−1Lm ⊗τ−1OX O

log
Λ (and the global sections

are also identified). Moreover, as in [5, Proposition 5.2], we get an induced symmetric monoidal
functor τ−1Λgp → Pic

(Xlog,Olog
Λ )

, that we will also denote by LΛ, by setting LΛ
λ−µ = LΛ

λ ⊗Olog
Λ

(LΛ
µ )∨.

Remark 4.10. Some version of the construction of Olog
Λ has appeared in [8]. In (5.1) below we

point out that the sheaf of rings Oklog
X that is used in that paper, and is obtained using the Kummer-

étale site of X, is canonically isomorphic to our Olog

MQ
. In [19], Ogus uses larger sheaves of rings

Olog
X ⊗τ−1OX AΛgp , that are related to our Olog

Λ , but not exactly the same.

4.4. Local description. We will need a local description of some of the constructions that we
described up to this point.

Let us suppose that X has a Kato chart X → C(P ). Note first of all that with this assumption,
every line bundle La coming from the DF structure L : P → Div(X) of X is canonically trivialized.
For the log analytic space C(P ) with its natural log structure we have C(P )log = (R≥0 × S1)(P ) =

Hom(P,R≥0 × S1), and we will also use the universal cover C̃(P )log = H(P ) = Hom(P,H) (recall

that H = R≥0 × R). The morphism C̃(P )log → C(P )log is induced by the map H → R≥0 × S1

given by (x, y) 7→ (x, eiy), and it is a Z(P ) = Hom(P,Z)-principal bundle. Note that Hom(P,Z) =
Hom(P gp,Z) ∼= Zr non-canonically, where r is the rank of the free abelian group P gp.

As for the analytic space X, there is a diagram with cartesian squares

X̃log
//

��

H(P )

��
Xlog

//

��

(R≥0 × S1)(P )

��
X // C(P )

where X̃log → Xlog is a Z(P ) = Hom(P,Z)-covering space for the action induced on X̃log =
X×C(P )H(P ) by the one on the second factor. We will need to consider the analogous constructions

of the sheaves AΛ and OΛ and Olog
Λ on the space X̃log: in this case we will add a tilde to remind

ourselves that we are on X̃log rather than on Xlog. We will denote by π : X̃log → Xlog the natural
map, and by τ̃ the composite τ ◦ π.

Note that, since the bottom map of the last diagram is strict, every extension of the form

0 // τ−1O×X // MΛ
// τ−1Λ // 0
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where Λ is pulled back from a quasi-coherent sheaf of monoids on C(P ), is also pulled back from the

analogous extension on C(P )log. The same is true of the sheaves AΛ, ÃΛ,OΛ, ÕΛ,Olog
Λ , Õlog

Λ and of

the Deligne-Faltings structure giving the sheaves LΛ
λ and L̃Λ

λ (both before and after tensoring with

Olog
X ).

According to this description of Xlog as the quotient of X̃log for the free action of Z(P ), we will

describe sheaves and maps between sheaves on Xlog as objects on X̃log that are Z(P )-equivariant.

Assume now that M ⊆ Λ ⊆ MR is a M
gp

-saturated quasi-coherent sheaf of monoids, together

with a global chart Λ0 → Λ(X), with P ⊆ Λ0 ⊆ PR. Let us describe the sheaf ÕΛ in terms of Λ0.

Notation 4.11. In order to avoid confusion, in this situation and for p ∈ P we will denote

• by xp the element of C[P ], image of p via P → C[P ],
• by fp the section of OX , image of p via P → OX(X),
• by tp the “placeholder variable” in the sheaf AP =

⊕
p∈P t

p · OX on X, and

• by sp the global section of the invertible sheaf Lp, image of p via P → Div(X).

Consider the sheaf ÃΛ0 := ÃP ⊗C[P ] C[Λ0], where C[P ] → ÃP sends xp to the element tp of

ÃP =
⊕

p∈P t
p · τ̃−1OX . We also set

ÕΛ0 := ÃΛ0 ⊗ÃP τ̃
−1OX = τ̃−1OX ⊗C[P ] C[Λ0],

where ÃP → τ̃−1OX sends tp the the section fp ∈ τ̃−1OX , and correspondingly C[P ] → τ̃−1OX
sends xp to fp. Note that the group Z(P ) acts on these sheaves, by acting on C[Λ0] via g · tλ =

e2πigR(λ)tλ, where here and from now on we denote by gR : P gp⊗ZR→ R the natural linear extension
of the homomorphism g : P gp → Z. Here tλ should be read as e2πiλ·log(t), and the action of g is by
“translation” on log(t).

There are surjective homomorphisms ÃΛ0 → ÃΛ and ÕΛ0 → ÕΛ, whose kernel is the ideal
generated by sections of the form “ tλ−1 ” (interpreted in the obvious way in the two sheaves) with

λ a local section in the kernel of (Λ0)X → Λ. This gives an explicit description for the sheaves ÃΛ

and ÕΛ, similar to the one we obtained above for ÃΛ0 and ÕΛ0 , where the monoid Λ0 is replaced
by the sheaf Λ. Examples 4.13 and 4.14 below give completely explicit descriptions of these sheaves
over log points.

Remark 4.12. If X = C(P ) and Λ has a chart P ⊆ Λ0 ⊆ PR, we can describe OΛ on Xlog even
more concretely, in the style of [8, (1.1) and (3.2)].

Let U = (SpecC[P gp])an ⊆ X, and note that this embedding lifts to j : U ⊆ Xlog. Moreover the

constant sheaf P gp
Xlog

can be seen as a subsheaf of j∗O×U . Then the sheaf OΛ can be identified

with the subsheaf of rings of j∗OU , generated by τ−1OX and by local sections of the form
∏
i p
αi
i ,

for
∑

i pi ⊗ αi ∈ Λ0 ⊆ P ⊗ R+, and where the pi are seen as sections of P gp
Xlog
⊆ j∗O×U . Here by

pα with p ∈ P and α ∈ R+ we mean the following: by identifying p as a section of j∗O×U , if we are
on a small enough open subset we can choose a logarithm, i.e. a function log(p) ∈ j∗OU such that
exp(log(p)) = p for the usual exponential map j∗OU → j∗O×U . Then pα := exp(α · log(p)) ∈ j∗OU .
Of course different choices of log(p) will give different sections “of the form pα”, that are related
by the action of the monodromy around the boundary.

In the same manner, the sheaf Olog
Λ is obtained by adding, on top of the previous sections, also

local logarithms log(p) for sections of P gp
Xlog

. For Λ = MQ, this coincides with the description of

Oklog
X in [8, 3.2].
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We can also describe the invertible sheaf L̃Λ
λ on X̃log (before tensoring with Olog

X ): this is an

invertible sheaf of ÕΛ-modules, which is globally trivial, and we will think about it as L̃Λ
λ = t−λ ·ÕΛ.

This sheaf also has a natural Z(P )-equivariant structure, a “shifted” version of the one of ÕΛ: for

a section t−λ · s, an element g ∈ Z(P ) acts by g · (t−λ · s) = e−2πigR(λ)(t−λ · (g · s)), where g acts

on s ∈ ÕΛ as explained above. The sheaf on Xlog obtained by descent is LΛ
λ . The global section

s̃λ, given by the natural map ÕΛ → L̃Λ
λ (that can be seen as multiplication by tλ ∈ ÕΛ), also

descends to the global section sλ of LΛ
λ . As already noted above, as sheaves of ÕΛ-modules, we

have L̃Λ
λ
∼= ÕΛ, but the action of Z(P ) is different, unless λ = 0 in Λgp/M

gp
, i.e. λ ∈ Mgp

. In

fact, observe also that if λ is a section m of M
gp

, then L̃Λ
λ = t−m · ÕΛ

∼= τ̃−1Lm⊗τ̃−1OX ÕΛ, where

L : M
gp → PicX is the functor associated with the Deligne-Faltings structure of the log analytic

space X.

Now let us bring the sheaf Olog
X into the picture. On X̃log we can tensor the sheaf ÕΛ and the

various line bundles L̃Λ
λ with Õlog

X over τ̃−1OX to obtain Õlog
Λ and the Õlog

Λ -line bundles L̃Λ
λ ⊗τ̃−1OX

Õlog
X (along with the induced global sections), that, as in the previous section, we will continue to

denote by L̃Λ
λ .

The local descriptions of these sheaves are obtained from the ones described above, by tensoring

with the sheaf Õlog
X on X̃log. A description of this latter sheaf is given in [19, Lemma 3.3.4]: if I

denotes the sheaf of ideals in τ̃−1OX ⊗Z SymZP
gp generated by elements of the form fp⊗ 1− 1⊗ p

for p a local section of P that maps to a unit in M (via the chart morphism P → M), then we
have an isomorphism

Õlog
X
∼= (τ̃−1OX ⊗Z SymZP

gp)/I.

The resulting sheaves have an induced Z(P )-action, and the results of descent to Xlog are the sheaf

Olog
Λ and the line bundles LΛ

λ .
To conclude this discussion, we give a completely explicit description of these sheaves on fibers

of the map X̃log → X (or equivalently over log points). These will be important for a few proofs
later on.

Example 4.13. Let us give an explicit description of the sheaf Õlog
X on the fibers of τ̃ : X̃log → X

(generalizing Example 4.8). Fix x ∈ X, and call P = Mx. Then we can find a Kato chart with
monoid P for X around x.

Taking the fibers over x, we can write (Xlog)x ∼= Hom(P gp,S1) and (X̃log)x ∼= Hom(P gp,R). If

we fix an isomorphism P gp ∼= Zr, we are looking at the universal cover Rr → (S1)r. The sheaf Õlog
X

on (X̃log)x = Rr is the constant sheaf C[T1, . . . , Tr]Rr , and it has a Zr-equivariant structure, where

the i-th standard generator gi acts on Tj by sending it to Tj − 2πiδij , where δij is the Kronecker

delta. By descending this to (Xlog)x = (S1)r, we obtain the sheaf Olog
X .

Example 4.14. Generalizing the previous example, let us also describe the sheaf Õlog
Λ and the line

bundles L̃Λ
λ on the fibers of X̃log → X. By base changing via x → X, we can assume that X is a

log point X = (SpecC, P ), where as in the previous example P = Mx.

Choose elements p1, . . . , pr ∈ P forming a basis of P gp as a Z-module. The pullback L̃Λ
λ to X̃log

is the constant sheaf on X̃log associated with

t−λ · C[T1, . . . , Tr, S
λ′ | λ′ ∈ Λ+]/(Sλ

′+λ′′ − Sλ′ · Sλ′′ , Sp | λ′, λ′′ ∈ Λ+, p ∈ P+)
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where Ti are independent variables (for λ = 0 this gives a description of the sheaf of rings Õlog
Λ ).

Note that Sλ
′ ·Sλ′′ = 0 if λ′+λ′′ ∈ 〈P+〉 ⊆ Λ, where recall that P+ = P \ {0} and 〈−〉 denotes the

generated ideal in Λ. In particular every Sλ
′

is nilpotent, since nλ′ ∈ 〈P+〉 for n big enough.
This sheaf has a natural Z(P ) = Hom(P,Z)-equivariant structure: denote by gi ∈ Z(P ) the dual

of the chosen basis element pi (i.e. the only element of Z(P ) such that gi(pj) = δij), then

gi · t−λ = e2πi(gi)R(λ)t−λ

gi · t−λTj = e2πi(gi)R(λ)t−λ(Tj − 2πiδij)

gi · t−λSλ
′

= e2πi(gi)R(λ′−λ)t−λSλ
′

where δij is the Kronecker delta, and (gi)R denotes as usual the extension of gi : P
gp → Z to a

linear map (gi)R : P gp ⊗Z R→ R.
The result of descent to Xlog is the line bundle LΛ

λ (which is therefore a locally constant sheaf).
We can loosely write

LΛ
λ = t−λ · C[log(pi),

∏
j

q
αj
j ]

where log(pi) and
∏
j q

αj
j for qj ∈ P and αj ∈ R+ denote local sections that are the result of descent

respectively of the sections Ti and of the sections Sλ, with λ =
∑

j qj ⊗ αj ∈ Λ ⊆ PR over some

open subset of Xlog. These sections are the restrictions of the local sections of Remark 4.12 (the
log point X = (SpecC, P ) can be identified with the “vertex” of the affine toric variety SpecC[P ]).

We will need a slight variant of this description, where we have a point SpecC, and this is regarded
as a locally ringed space via a local ring A, and equipped with a log structure β : A× ⊕ P → A,
where P is a toric monoid. The Kato-Nakayama space Xlog in this case topologically is the same
as the one of the log point (SpecC, P ), but all the sheaves on it are also tensored with A over C.

In this situation we have an analogous description of the line bundle L̃Λ
λ on X̃log as the constant

sheaf associated with the Õlog
Λ -module

t−λ ·A[T1, . . . , Tr, S
λ′ | λ′ ∈ Λ+]/(Sλ

′+λ′′ − Sλ′ · Sλ′′ , Sp − fp | λ′, λ′′ ∈ Λ+, p ∈ P+)

but notice that this time if λ′+λ′′ = p+µ with λ′, λ′′, µ ∈ Λ+ and p ∈ P+, then Sλ
′ ·Sλ′′ = fp ·Sµ

(recall from Notation 4.11 that fp denotes the image of p ∈ P in A via β). By descending on Xlog,
we can loosely write

LΛ
λ = t−λ ·A[log(pi),

∏
j

q
αj
j ]

where again here log(pi) and
∏
j q

αj
j denote local sections.

4.5. Sheaves of modules on Xlog. The last ingredient that we need in order to discuss the
correspondence with parabolic sheaves is a discussion of quasi-coherent sheaves of modules on Xlog

and their properties.
In general if (T,OT ) is a ringed space, the usual meaning for “quasi-coherent sheaf of OT -

modules” refers to the existence of local presentations

O⊕JT // O⊕IT // F // 0

with possibly infinite index sets I, J . In complete generality, it is not clear how well-behaved the
category of such sheaves is.

We will instead adopt the terminology of [7, Section 2.1] (as for parabolic sheaves, see Remark

3.21). For quasi-coherence of sheaves of Olog
Λ -modules on Xlog, we will use the following definition.
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As usual we denote by τ : Xlog → X the projection, and Λ is a M
gp

-saturated quasi-coherent sheaf

of monoids with M ⊆ Λ ⊆MR.

Definition 4.15. We will say that a sheaf F of Olog
Λ -modules on Xlog is finitely presented if locally

on X (i.e. locally on Xlog for open sets of the form τ−1U , with U ⊆ X open) it admits a presentation
of the form ⊕

j L
Λ
λj

//
⊕

i L
Λ
λi

// F // 0

for which the index sets for i and j are finite.

We will say that a sheaf F of Olog
Λ -modules on Xlog is quasi-coherent if locally on X it can be

written as filtered colimit of finitely presented sheaves.

Here the sheaves LΛ
λ are the line bundles on Xlog of (4.3).

Remark 4.16. We refrain from using the term “coherent” for the sheaves that locally admit finite
presentations, because already on the infinite root stack, the structure sheaf might not be coherent
(see [23, Example 4.17]), so that “finitely presented” and “coherent” are not equivalent notions.
We expect the same to happen in this context. Note that, since OX is coherent, on X itself it is
indeed true that finite presentation and coherence are equivalent.

We will denote the category of finitely presented sheaves of Olog
Λ -modules by FPΛ(X), and the

category of quasi-coherent sheaves by QcohΛ(X).

Remark 4.17. Some comments about the definition above are in order.
First of all, note that the line bundles LΛ

λ are locally isomorphic to Olog
Λ on Xlog, so a finitely

presented sheaf as we defined it will also be finitely presented in the “standard” sense (of admitting
local presentations as a cokernel of a map between free sheaves of finite rank) on the ringed space

(Xlog,Olog
Λ ). In view of the correspondence with parabolic sheaves, though, we want to restrict to

the class that admit local presentations on opens pulled back from X. Once we choose to do this,
using direct sums of the non-trivial line bundles LΛ

λ is forced.
This condition on having presentations for a topology of Xlog that is coarser than the natural

one should be compared with the situation of root stacks: the map n
√
X → X is a homeomorphism

on the associated topological spaces, and even though one can localize in the étale topology around
points of n

√
X where there are non-trivial stabilizers, one can not “physically” localize on the fibers

(since they are single points!), as one can do on the Kato-Nakayama space.

We will talk about exact sequences of sheaves in QcohΛ(X) or FPΛ(X), meaning that the same

sequence is exact when viewed in Mod(Olog
Λ ).

Let us consider pullback and pushforward along the morphism of ringed spaces τ : (Xlog,Olog
Λ )→

X. We will omit the sheaf of weights Λ from the notation of those functors, since there will be no
risk of confusion.

We can define pullback τ∗ : Mod(OX)→ Mod(Olog
Λ ) and pushforward τ∗ : Mod(Olog

Λ )→ Mod(OX)

as usual. Since τ∗OX ∼= Olog
Λ and τ∗ commutes with colimits and is right exact, it is also clear that

the pullback functor will restrict nicely to the subcategories of quasi-coherent and finitely presented
sheaves, inducing functors τ∗ : Qcoh(X) → QcohΛ(X) and τ∗ : FP(X) → FPΛ(X). It is less clear
that the pushforward will behave well. This is what the rest of this section will be about.

The main point here will be showing that the functor τ∗ : QcohΛ(X)→ Mod(OX) is exact. Note

that by standard arguments we can define a derived pushforward functor Rτ∗ : D+(Mod(Olog
Λ ))→

D+(Mod(OX)).
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Proposition 4.18. The functor τ∗ : QcohΛ(X)→ Mod(OX) is exact.

Proof. As usual the pushforward is left exact. We will show that for every quasi-coherent sheaf

F ∈ QcohΛ(X) we have R1τ∗F = 0 (where the derived functor is computed in Mod(Olog
Λ )), and

this will imply the exactness. Since τ is proper and the spaces are locally compact, Rτ∗ commutes
with filtered colimits (because it coincides with Rτ! and therefore is a left adjoint - see for example
[11, Section 3.1]), and hence we can assume that F is finitely presented.

In order to show R1τ∗F = 0, let us fix a point x ∈ X and check that the stalk (R1τ∗F )x is zero.
By proper base change (as formulated for example in [13, Appendix A2]) via the cartesian diagram

(Xlog)x ∼= (x)log
i //

��

Xlog

��
x // X

we have an isomorphism (R1τ∗F )x = H1((x)log, i
−1F ) (notice the i−1, instead of i∗). We can

therefore assume that X is the log locally ringed space given by the point SpecC, but equipped
with the local ring A = OX,x instead of C, and with log structure β : A×⊕P → A where P → A is

obtained from a chart of the log structure around x, with P = Mx. The space (x)log in this case
is the Kato-Nakayama space of the log point (SpecC, P ), but the corresponding sheaves living on
it are also tensored with the local ring A, which acts as “ring of coefficients” in place of the base
field C.

We will need the following lemma.

Lemma 4.19. Let X be the point SpecC, equipped with a local ring A and a log structure β : A×⊕
P → A where P is a toric monoid. Then for every λ ∈ Λgp and m > 0, we have Hm(Xlog, L

Λ
λ ) = 0.

Proof. This was proven in [8, Proposition 3.7], [16, Proposition 4.6] and [13, Proposition 2.2.10] in
the case where X is a fine saturated log analytic space, Λ = M and λ = 0, so that there are no

“added roots”, and LΛ
λ = Olog

X .
The proof we give is along the same lines of the one of [13, Proposition 2.2.10]. Call pi ∈ P

elements that give a Z-basis of P gp. Recall the description of Example 4.14: we can write

LΛ
λ
∼= t−λ ·A[log(pi),

∏
j

q
αj
j ]

where both log(pi) and
∏
j q

αj
j denote local sections. Here the

∏
j q

αj
j appearing are exactly the

ones for which
∑

j qj ⊗αj ∈ Λ+ \ 〈P+〉 ⊆ PR, and if
∑

j qj ⊗αj +
∑

k qk ⊗αk = p+
∑

l ql⊗αl with

p ∈ P then the product
∏
j q

αj
j ·

∏
k q

αk
k is equal to fp ·

∏
l q
αl
l (where fp ∈ A is the image of p via

β). Since this sheaf is locally constant on Xlog, we have

Hm(Xlog, L
Λ
λ ) = Hm(Z(P ), (LΛ

λ )y)

where y is a fixed point of Xlog, and the right term is group cohomology, with respect to the action
of the fundamental group Z(P ) = Hom(P,Z) of Xlog.

Now (LΛ
λ )y, as an abelian group, is a direct sum of copies of

t−λ ·
∏
j

q
αj
j ·A[log(p1), . . . , log(pr)] ∼= A[T1, . . . , Tr]

where the action of the generator ga ∈ Z(P ) dual to the element pa ∈ P is given by

ga(Tb) = e2πi(ga)R(
∑
j qj⊗αj−λ)(Tb − 2πiδab)
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where δab is the Kronecker delta. Consequently, Hm(Z(P ), (LΛ
λ )y) is the direct sum of the coho-

mologies of these subgroups, and it suffices to show that these are all zero for m > 0.
For 0 ≤ l ≤ r, let Γl be the subgroup of Z(P ) generated by the elements gk for l < k ≤ r, and

let Rl ⊆ A[T1, . . . , Tr] be the submodule A[T1, . . . , Tl]. We prove by descending induction on l that
RΓ(Γl, A[T1, . . . , Tr]) is either equal to Rl in degree 0 (with the induced action of the quotient group
Z(P )/Γl = 〈g1, . . . , gl〉) or to the zero complex. For l = 0 this will give that RΓ(Z(P ), A[T1, . . . , Tr])
is concentrated in degree zero, which finishes the proof.

For j = r the statement is obvious, since Γr is the trivial group. Now for the inductive step,
assume that RΓ(Γl, A[T1, . . . , Tr]) = Rl or 0. Then

RΓ(Γl−1, A[T1, . . . , Tr]) = RΓ(Γl−1/Γl, RΓ(Γl, A[T1, . . . , Tr]))

so if RΓ(Γl, A[T1, . . . , Tr]) = 0 we are done. Otherwise, by inductive assumption and the fact
that the quotient Γl−1/Γl is cyclic generated by gl, the right-hand side coincides with the complex
(gl − 1) : Rl → Rl. It is not hard to check that this map is surjective, and its kernel is either Rl−1

if (gl)R(
∑

j qj ⊗ αj − λ) ∈ Z, or otherwise 0, as required. �

Back to the proof of Proposition 4.18, assuming that X is the point SpecC equipped with the
local ring A = OX,x and log structure β : A× ⊕ P → A, we have to check that if F is a finitely

presented sheaf of Olog
Λ -modules on Xlog, then H1(Xlog, F ) = 0. Since F is finitely presented, we

have a presentation ⊕
j L

Λ
λj

//
⊕

i L
Λ
λi

f // F // 0,

with finitely many summands on the whole Xlog (the only non-empty open subset of SpecC is the

whole space), and by Lemma 4.19 we have H i(Xlog, L
Λ
λ ) = 0 for every λ and i > 0.

Let us consider the kernel F1 of the map f in the presentation above, fitting in a short exact
sequence

0 // F1
//
⊕

i L
Λ
λi

f // F // 0,

and the induced long exact sequence in cohomology. Using the fact that H i(Xlog, L
Λ
λ ) = 0 for i > 0

and any λ, we see that H i(Xlog, F ) ∼= H i+1(Xlog, F1) for i > 0. Now we claim that F1 also has a
presentation of the form ⊕

k L
Λ
λk

//
⊕

j L
Λ
λj

// F1
// 0,

(where
⊕

k L
Λ
λk

might have infinitely many summands). This will allow us to iterate this process.
Our objective therefore is now to prove the following lemma.

Lemma 4.20. In the situation described above, the kernel of any morphism of sheaves
⊕

j L
Λ
λj
→⊕

i L
Λ
λi

on Xlog admits a surjection from some
⊕

k L
Λ
λk

(the index sets for i, j and k need not be

finite).

Proof. Let us preliminarily note that

(5) Hom(LΛ
λ , L

Λ
µ ) = Hom(Olog

Λ , LΛ
µ−λ) = Γ(LΛ

µ−λ)

where Hom denotes the group of homomorphisms of sheaves of Olog
Λ -modules on Xlog. Then, from

the description in Section 4.4, we see that Γ(LΛ
µ−λ) is trivial unless the difference µ − λ ∈ Mgp

=

P gp ⊆ Λgp (so that gR(µ − λ) ∈ Z for every g ∈ Z(P ) = Hom(P,Z)). In this case, we have
Γ(LΛ

µ−λ) ∼= Γ(X,Lµ−λ) ∼= A (see Proposition 4.22 below for a generalization of this fact), and

the homomorphism LΛ
λ → LΛ

µ corresponding to a ∈ A is described on local sections of LΛ
λ by
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t−λ 7→ at−µ. Therefore, the map
⊕

j L
Λ
λj
→
⊕

i L
Λ
λi

is determined by a “matrix” (aij) of elements

of A, and sends the local section t−λj to
∑

i aijt
−λi . Of course, even if the index sets are infinite,

for every j there is only a finite number of indices i for which aij 6= 0.

To prove the statement we pass to the universal cover X̃log = Hom(P gp,R)→ Xlog = Hom(P gp,S1).

On X̃log the sheaves L̃Λ
λ are constant sheaves. Recall the description of Example 4.14: set

(6) B = A[T1, . . . , Tr, S
λ′ | λ′ ∈ Λ+]/(Sλ

′+λ′′ − Sλ′ · Sλ′′ , Sp − fp) | λ′, λ′′ ∈ Λ+, p ∈ P+).

where fp ∈ A is the image of p via β.

Then Õlog
Λ is the constant sheaf B

X̃log
, and the sheaf L̃Λ

λ is the constant sheaf associated with

the B-module t−λ ·B (recall that t−λ is a formal symbol, that keeps track of the Z(P )-equivariant

structure). The pullback to X̃log of the map
⊕

j L
Λ
λj
→
⊕

i L
Λ
λi

that we are considering is then

completely determined by a homomorphism of B-modules φ :
⊕

j t
−λj ·B →

⊕
i t
−λi ·B, that sends

t−λj to
∑

i aijt
−λi with aij ∈ A.

Let K be the kernel of φ. Then the kernel K of the map of sheaves
⊕

j L̃
Λ
λj
→
⊕

i L̃
Λ
λi

is the

constant sheaf on X̃log associated with the B-module K. Let us fix a point y ∈ X̃log. We will prove

that every element of the stalk Ky ∼= K is in the image of a morphism of sheaves
⊕

k L̃
Λ
λk
→
⊕

j L̃
Λ
λj

on the whole X̃log of the form t−λk 7→
∑

j cjkt
−λj with cjk ∈ A, that moreover lands entirely in

K. The fact that cjk ∈ A assures that this morphism of sheaves will descend to a morphism⊕
k L

Λ
λk
→
⊕

j L
Λ
λj

on Xlog. This will be enough to conclude the proof of the lemma, by taking a

big direct sum indexed by all elements of the stalks of the sheaf K.

Let us fix an element k =
∑

j bjt
−λj in the stalk of the kernel Ky ⊆

⊕
j(L̃

Λ
λj

)y ∼=
⊕

j t
−λj · B

(so that bj ∈ B). First, note that thanks to (5) we can group together the terms of k such that
λj ≡ λj′ mod P gp. Every resulting partial sum of terms will still be in Ky, so we can assume that
λj ≡ λj′ mod P gp for every λj and λj′ appearing with non-zero coefficient in k.

The fact that k is in the kernel of φ implies that

φ

∑
j

bjt
−λj

 =
∑
j

bj

(∑
i

aijt
−λi

)
=
∑
i

∑
j

aijbj

 t−λi = 0

in
⊕

i t
−λi · B. Therefore for every i we have

∑
j aijbj = 0 in B. Now using the description of B

given by (6), let us write

bj =
∑
a,µ

γj,a,µT
aSµ ,

where a denotes a vector (a1, . . . , ar) of r non-negative integers, µ ∈ Λ \ 〈P+〉, T a = T a1
1 · · ·T arr

and γj,a,µ ∈ A. The equation
∑

j aijbj = 0 gives then
∑

j,a,µ aijγj,a,µT
aSµ = 0 for every i. This in

turn implies that
∑

j aijγj,a,µ = 0 for every i, a and µ.

This shows that for every fixed a, µ, the element
∑

j γj,a,µt
−λj of (

⊕
j L̃

Λ
λj

)y is actually in Ky.
Choose any λ ∈ Λgp such that λ ≡ some λj mod P gp. We can then define a morphism of sheaves

L̃Λ
λ →

⊕
j L̃

Λ
λj

by sending t−λ to
∑

j γj,a,µt
−λj . This lands entirely in K, and at y the element

ka,µ =
∑
j

γj,a,µT
aSµt−λj
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is in the image of this map. Now observe that k =
∑

a,µ ka,µ. This finally implies that the element k

is in the image of the map
⊕

a,µ L̃
Λ
λ → K ⊆

⊕
j L̃

Λ
λj

defined by t−λa,µ 7→
∑

j γj,a,µt
−λj . This concludes

the proof of the lemma. �

Back to sheaf cohomology, we can now iterate the argument outlined before the last lemma, and
obtain a chain of isomorphisms

H i(Xlog, F ) ∼= H i+1(Xlog, F1) ∼= H i+2(Xlog, F2) ∼= · · · ∼= H i+k(Xlog, Fk)

for i > 0. For i = 1, as soon as 1 + k > r (where r is the rank of P gp), the last cohomology group
has to vanish (as Xlog

∼= (S1)r is a manifold of dimension r), and hence we get H1(Xlog, F ) = 0, as
we wanted to prove. �

Remark 4.21. The previous proposition is the reason why it is important to bring the sheaf Olog
X

into the picture: without tensoring the other sheaves by it, this proposition does not hold.
For example, consider the standard log point (SpecC,N), with Kato-Nakayama space τ : S1 →

SpecC. The structure sheaf downstairs is C, and its pullback is the constant sheaf CS1 . Clearly

R1τ∗τ
−1OSpecC = R1τ∗CS1 = H1(S1,C) 6= 0

in this case. On the other hand we do have R1τ∗(τ
−1C⊗τ−1C O

log
SpecC) = 0.

The heuristic here is that the non-trivial geometry that is introduced by the Kato-Nakayama

construction obstructs the exactness of τ∗, and tensoring with the sheaf Olog
X (which has sections

that interact with this geometry) balances this out.
Without exactness, it might still be that part of the arguments go through, but for example

it is not clear that the equivalence between parabolic sheaves and sheaves on Xlog would respect
exactness, something which is certainly desirable.

Now we can deduce that τ∗ respects quasi-coherence and finite presentation. We will need the
following proposition.

Proposition 4.22. The natural morphism OX → τ∗Olog
Λ is an isomorphism, and for every λ ∈

Λgp(X) the sheaf τ∗L
Λ
λ is finitely presented.

Proof. The first assertion was proven in [8, Proposition 3.7] in the case Λ = M . In the general case
the proof is similar.

For the second point, we can localize where X and Λ have charts P → M(X) and Λ0 → Λ(X)
with P ⊆ Λ0 ⊆ PR. We claim that for every λ ∈ Λgp

0 there is an isomorphism

τ∗L
Λ0
λ
∼= lim−→

P gp 3 p≤λ
Lp

where the map Lp → Lp′ for p ≤ p′, i.e. p′ = p+ q for some q ∈ P and Lp′ ∼= Lp ⊗OX Lq, is given
by multiplication by the section sq ∈ Γ(Lq). After we prove this, it is sufficient to note (because P
is finitely generated) that this is a finite colimit of coherent sheaves, hence coherent itself.

To prove the claim, note that there is a natural map τ∗Lp → LΛ0
λ for every p ≤ λ, that by

adjunction gives Lp → τ∗L
Λ0
λ . Taking the colimit we obtain a map lim−→P gp 3 p≤λ Lp → τ∗L

Λ0
λ . We

can check that this is an isomorphism on the stalks. Let us denote by p1, . . . , pk ∈ P gp the elements
of P gp that are maximal among those such that p ≤ λ, so that lim−→P gp 3 p≤λ Lp is a quotient of

Lp1 ⊕ · · · ⊕ Lpk .
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For a point x ∈ X, set A = OX,x. Note that the map (lim−→P gp 3 p≤λ Lp)x → (τ∗L
Λ0
λ )x can be

identified with the natural map

lim−→
P gp 3 p≤λ

t−pA→ (t−λB)Z(P )

where B as in Example 4.14 is the ring

A[T1, . . . , Tr, S
λ′ | λ′ ∈ Λ0

+]/(Sλ
′+λ′′ − Sλ′ · Sλ′′ , Sp − fp | λ′, λ′′ ∈ Λ0

+, p ∈ P+)

(here fp is the image of p via β : A×⊕P → A, the restriction of the log structure of X to the local

ring at x) and where Z(P ) denotes taking invariants with respect to the the action of the group Z(P )
(see Example 4.14 for a description of the action). Let us check that this map is an isomorphism.

For injectivity, it suffices to check that every t−piA→ (t−λB)Z(P ) is injective, where pi ∈ P gp is

one of the maximal elements with p ≤ λ. In fact, this map is given by a · t−pi 7→ aSλ
′ · t−λ, where

λ′ ∈ Λ0 is λ − pi. In fact, λ′ ∈ Λ0 \ 〈P+〉 (because of maximality of pi), and therefore aSλ
′

= 0
implies a = 0, showing injectivity.

Let us check now that the map is surjective. Take an element s =
∑

a,µ γa,µT
aSµ · t−λ ∈ t−λB,

where the notation is as in the proof of Lemma 4.20: a = (a1, . . . , ar) is a vector of non-negative
integers, T a = T a1

1 · · ·T arr , µ ∈ Λ0 \ 〈P+〉 and γa,µ ∈ A.
By how Z(P ) acts on the Ti, it is clear that for s to be invariant we need to have γa,µ = 0 for

a 6= 0. Assuming this, the action of g ∈ Z(P ) on s is then given by

g ·

(∑
µ

γµS
µ · t−λ

)
=
∑
µ

e2πigR(µ−λ)γµS
µ · t−λ

and s is invariant if and only if gR(µ− λ) ∈ Z for every g ∈ Z(P ) (i.e. µ− λ ∈ P gp) and for every
µ with γµ 6= 0.

Assuming this is satisfied, for every such µ, let pµ = λ − µ. Since µ ∈ Λ0 we have pµ ≤ λ, and
since µ ∈ Λ0 \ 〈P+〉, it follows that pµ is one of the maximal elements pi. Now for this fixed µ we

have that γµS
µ · t−λ is in the image of lim−→P gp 3 p≤λ t

−pA→ (t−λB)Z(P ), precisely it is the image of

the element γµ · t−pµ ∈ t−pµA. This immediately implies surjectivity of this map, and concludes
the proof. �

Proposition 4.23. The functor τ∗ : Mod(Olog
Λ ) → Mod(OX) sends QcohΛ(X) into Qcoh(X) and

FPΛ(X) into FP(X).

Proof. First note that, since τ is a proper map of topological spaces, the functor τ∗ commutes with
filtered colimits.

Since τ∗ : QcohΛ(X) → Mod(OX) is exact (Proposition 4.18) and τ∗L
Λ
λ is finitely presented

(Proposition 4.22), a local presentation for F ∈ FPΛ(X) gives a local presentation of τ∗F as
a cokernel of a map of coherent sheaves of OX -modules, so τ∗F ∈ Coh(X). The fact that τ∗
commutes with filtered colimits lets us conclude also that τ∗QcohΛ(X) ⊆ Qcoh(X). �

To conclude this section, we point out that the projection formula holds for the map τ : Xlog → X
and quasi-coherent sheaves on the Kato-Nakayama space. This is in analogy with the projection
formula for the root stacks of [25, Proposition 2.2.10] and [23, Proposition 4.16].

Proposition 4.24 (Projection formula). We have:

• for F ∈ QcohΛ(X) and G ∈ Qcoh(X), the natural map

τ∗F ⊗OX G→ τ∗(F ⊗Olog
Λ
τ∗G)
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is an isomorphism, and
• for G ∈ Qcoh(X) the natural map G→ τ∗τ

∗G is an isomorphism.

The last item has been proven, in the case where Λ = M , in [8, Proposition 3.7 (3)].

Proof. This follows formally from exactness of τ∗ (Proposition 4.18) and the fact that τ∗Olog
Λ
∼= OX

(Proposition 4.22), for example as in [20, Corollary 5.3]. �

5. The correspondence

We are now ready to state and prove the main result of this paper.

Theorem 5.1. Let X be a fine saturated log analytic space, with log structure α : M → OX . Then
for every M

gp
-saturated quasi-coherent sheaf of monoids M ⊆ Λ ⊆ MR there is an equivalence of

categories Φ: QcohΛ(X) → Par(X,Λ). Moreover, the equivalence respects exactness, and restricts
to the subcategories of finitely presented sheaves FPΛ(X) and FPPar(X,Λ).

The proof will be an adaptation of the one of [5, Theorem 6.1], that we briefly recalled in (3.4)
above.

Example 5.2. Before proceeding with the proof in the general case it is useful to sketch it for the
standard log point.

Let therefore X be the standard log point (SpecC,N), and assume we have a Z-saturated monoid
N ⊆ Λ ⊆ R+. For the Kato-Nakayama space and its universal cover we have natural homeomor-

phisms Xlog
∼= S1 and X̃log

∼= R. Recall from Example 4.14 that the sheaf Õlog
Λ is the constant

sheaf associated with the ring

B = C[T, Sλ | λ ∈ Λ+]/(Sλ+λ′ − Sλ · Sλ′ , Sn | n ∈ N)

with the Z-equivariant structure given by

k · T = T − 2πik

k · Sλ = e2πikλSλ

for k ∈ Z. Note that the ring B can alternatively be described as C[T, Sλ | λ ∈ Λ ∩ (0, 1)] where

Sλ · Sλ′ = Sλ+λ′ if λ + λ′ < 1, and 0 otherwise. In the same way, the line bundle L̃Λ
λ on X̃log is

the constant sheaf associated with the B-module t−λ · B, where the Z(P )-equivariant structure is

“twisted” by e2πi(−)λ.
Let us define the functor Φ: QcohΛ(X)→ Par(X,Λ): for λ ∈ Λwt and a quasi-coherent sheaf F

of Olog
Λ -modules, we set Φ(F )λ = τ∗(F ⊗Olog

Λ
LΛ
λ ). For λ ≤ λ′ (i.e. λ′ = µ+λ for some µ ∈ Λ) there

is a map Φ(F )λ → Φ(F )λ′ , induced by the multiplication LΛ
λ → LΛ

λ ⊗Olog
Λ
LΛ
µ
∼= LΛ

λ′ by the section

sµ of LΛ
µ . The projection formula for τ∗ gives the isomorphisms ρ

Φ(F )
a,λ required by Definition 3.5,

and the action of the functor Φ on arrows is clear.
Let us describe the quasi-inverse Ψ: Par(X,Λ) → QcohΛ(X). Starting from a quasi-coherent

parabolic sheaf E : Λwt → Qcoh(X), we consider the direct sum

Ẽ =
⊕

λ∈Λgp∩[0,1)

τ̃−1Eλ

on X̃log, and the tensor product Ψ̃(E) = Ẽ ⊗τ̃−1OX Õ
log
X . We are going to equip this sheaf with a

structure of Z-equivariant sheaf of Õlog
Λ -modules. This will give the quasi-coherent sheaf of Olog

Λ -

modules Ψ(E) corresponding to E by descent along X̃log → Xlog.
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First, we define the action of k ∈ Z on a section f ∈ τ̃−1Eλ as k · f = e2πikλf , and on the

section T of Õlog
X (corresponding to the “formal logarithm” of the generator of the monoid N) by

k · T = T − 2πik as usual. As for the structure of Õlog
Λ -module, using the description of this sheaf

of rings recalled above we let T act naturally on the factor Õlog
X and trivially on Ẽ. The variable

Sλ
′

on the other hand acts trivially on Õlog
X , and acts on f ∈ τ̃−1Eλ as the pullback of the map

E(λ,λ+λ′) : Eλ → Eλ+λ′ coming from the structure of parabolic sheaf if λ+λ′ < 1, otherwise we also
compose with the isomorphism Eλ+λ′

∼= Eλ+λ′−1⊗L1
∼= Eλ+λ′−1. Here L1 denotes the line bundle

associated with 1 ∈ N via the DF structure L : N→ Div(X) of X, and it is canonically trivialized,
since X has a Kato chart. One can check that the Z-equivariant structure is compatible with this

Õlog
Λ -module structure.
Let us sketch the proof that Ψ is a quasi-inverse for Φ: starting with a parabolic sheaf E ∈

Par(X,Λ) and for λ ∈ Λ, we have Φ(Ψ(E))λ = τ∗(Ψ(E) ⊗Olog
Λ
LΛ
λ ). This can also be computed as

τ̃Z∗ (Ψ̃(E)⊗Õlog
Λ
L̃Λ
λ ), where Z denotes taking Z-invariants. We want to show that for every λ we have

Eλ ∼= τ̃Z∗ (Ψ̃(E) ⊗Õlog
Λ
L̃Λ
λ ) (and these isomorphisms will also be compatible with the maps giving

the parabolic structure).

If λ ∈ Λgp ∩ [0, 1), then the map Eλ → τ̃Z∗ (Ψ̃(E) ⊗Õlog
Λ
L̃Λ
λ ) is defined by sending f ∈ Eλ to the

Z-invariant section

(f ⊗ 1)⊗ t−λ ∈

( ⊕
λ∈Λgp∩[0,1)

τ̃−1Eλ

)
⊗τ̃−1OX Õ

log
X

⊗Õlog
Λ
L̃Λ
λ .

This is clearly injective, and it is not hard to prove that it is surjective (see the coming proof of
Theorem 5.1 for details). For a general λ ∈ Λwt, let λ0 ∈ [0, 1) be the unique element such that

λ ≡ λ0 mod Z. Then we have Eλ ∼= Eλ0 and L̃Λ
λ
∼= L̃Λ

λ0
(note that as for L1, all line bundles La

coming from the DF structure on X for a ∈ Z are canonically trivialized). The existence of the
desired isomorphism for λ follows.

On the other hand, given a quasi-coherent sheaf F of Olog
Λ -modules on Xlog, we want to check

that Ψ(Φ(F )) ∼= F . By passing to X̃log, it suffices to check that Ψ̃(Φ(F )) ∼= π−1(F ) (where

π : X̃log → Xlog is the projection). Note that for every λ ∈ Λgp ∩ [0, 1) we have a map

τ̃−1Φ(F )λ = τ̃−1(τ̃Z∗ (F ⊗Õlog
Λ
L̃Λ
λ ))→ π−1(F )

described by f ⊗ t−λ 7→ f . This induces a map Φ̃(F ) =
⊕

λ∈Λgp∩[0,1) τ̃
−1Φ(F )λ → π−1F , and then

a map

η : Ψ̃(Φ(F )) =

 ⊕
λ∈Λgp∩[0,1)

τ̃−1Φ(F )λ

⊗τ̃−1OX Õ
log
X → π−1F.

This map is an isomorphism.
We refer to the proof of the theorem for a complete justification of this claim. Here we just

explain briefly why it is surjective, if F is in addition finitely presented. In that case we have a

surjective morphism
⊕

i L̃
Λ
λi
→ π−1F on X̃log, so given a section of π−1F , this is going to be the

image of some element
∑

i ait
−λi , where ai is a section of Olog

Λ (since X is a log point, all these

sheaves are constant sheaves on X̃log, and the description of Example 4.14 applies). Let fi ∈ π−1F

be the image of the section t−λi . We argue that every fi is in the image of the map η above:
in fact, the action of Z on fi is given by k · fi = e−2πikλifi, and hence fi ⊗ tλi is a section of
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τ̃Z∗ (F ⊗Õlog
Λ
L̃Λ
−λi). If µi is the unique element in Λgp∩ [0, 1) with µi ≡ −λi mod Z, then L̃Λ

−λi
∼= L̃Λ

µi

(recall once again that all line bundles La on X for a ∈ Z are canonically trivialized), and hence

there is a corresponding element fi ⊗ t−µi ∈ τ̃Z∗ (F ⊗Õlog
Λ
L̃Λ
µi), whose image under η is exactly the

section fi. This justifies surjectivity of η.

The proof of Theorem 5.1 in the general case will be along the same lines as the one sketched in
the previous example. The construction of the quasi-coherent sheaf Ψ(E) on Xlog corresponding
to the parabolic sheaf E will be slightly more complicated though, because in general there is no
nice set of lifts of the elements of Λgp/M

gp
to Λ, as it happens when N ⊆ Λ ⊆ R+, where we can

just take Λgp ∩ [0, 1).

Proof of Theorem 5.1. We will proceed in a few steps.

Construction of Φ:

Let us construct the functor Φ. Recall that on Xlog we have a symmetric monoidal func-

tor LΛ : Λgp → Div
(Xlog,Olog

Λ )
(see (4.3)). Assume that we are given a quasi-coherent sheaf F ∈

QcohΛ(X) on Xlog, and we want to produce a parabolic sheaf with weights in Λ. Suppose U ⊆ X
is open, and take an object λ ∈ Λwt(U). Set

Φ(F )λ := τ∗(F |τ−1U ⊗Olog
Λ |τ−1U

LΛ
λ ).

For an arrow λ → λ′ in Λwt(U), corresponding to µ ∈ Λ(U) such that λ′ = µ + λ, we define
Φ(F )λ → Φ(F )λ′ to be the morphism induced by multiplication by the section sµ from LΛ

λ to

LΛ
λ ⊗Olog

Λ |τ−1U
LΛ
µ
∼= LΛ

λ′ , by tensoring by F and pushing forward to X.

If λ′ = m+ λ with m ∈Mgp
(U), we have

Φ(F )λ′ = Φ(F )λ+m = τ∗(F |τ−1U ⊗Olog
Λ |τ−1U

LΛ
λ+m)

∼= τ∗(F |τ−1U ⊗Olog
Λ |τ−1U

LΛ
λ ⊗Olog

Λ |τ−1U
τ∗Lm)

∼= τ∗(F |τ−1U ⊗Olog
Λ |τ−1U

LΛ
λ )⊗OU Lm

= Φ(F )λ ⊗OU Lm,

where we used the projection formula for τ . This gives the required isomorphism ρ
Φ(F )
m,λ , and the

map Φ(F )λ → Φ(F )λ′ corresponds to multiplication by the section sm of Lm.
If V ⊆ U ⊆ X, then it is clear that Φ(F )λ|V ∼= Φ(F |Vlog

)λ|V canonically, and this restriction is

also compatible with the isomorphisms ρ
Φ(F )
m,λ . The other conditions in the definition of a parabolic

sheaf are easily verified.
Finally, we check that Φ(F ) is a quasi-coherent parabolic sheaf. This is a local question on X,

so we can assume that F is a filtered colimit of finitely presented sheaves, as in Definition 4.15.
Assume for the time being that we have proven that Φ sends finitely presented sheaves to finitely
presented parabolic sheaves (Definition 3.16). Then, since Φ respects filtered colimits (because
tensor product does, and τ∗ does as well since τ is a proper map), Φ(F ) will be a filtered colimit of
finitely presented parabolic sheaves, and hence quasi-coherent. We will verify the assertion about
finitely presented sheaves at the end of the proof.

We leave the construction of the action of the functor Φ: QcohΛ(X) → Par(X,Λ) on arrows to
the reader.

Local construction of the quasi-inverse Ψ:
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To prove that the functor Φ is an equivalence we will construct an inverse locally on X (observe
that both QcohΛ|−(−) and Par(−,Λ|−) are stacks on the classical site of X). So we may assume

that X has a Kato chart X → C(P ) for a toric monoid P , and that Λ has a compatible chart
Λ0 → Λ(X), with P ⊆ Λ0 ⊆ PR.

In this case we have fairly explicit descriptions of the sheaves AΛ and OΛ in terms of their

pullback to the covering space X̃log of Xlog. Recall from (4.4) that in this situation we have a
cartesian diagram

X̃log
//

��

H(P )

��
Xlog

//

��

(R≥0 × S1)(P )

��
X // C(P )

where the two top vertical maps are covering spaces for the group Z(P ) = Hom(P,Z). Moreover,
as in the previous example, all line bundles La for a ∈ P gp are canonically trivialized, although
this will not be an important point in the present proof. Finally, recall from Proposition 3.14 that
there is a natural equivalence Par(X,Λ) ∼= Par(X,Λ0).

Let us assume that E : Λwt
0 → Qcoh(X) is a parabolic sheaf for Λ0. We will produce a sheaf

of Õlog
Λ -modules on X̃log equipped with a Z(P )-equivariant structure. This will give a sheaf of

Olog
Λ -modules on Xlog by descent.

Recall that τ̃ : X̃log → X denotes the natural projection. Also, in this situation the sheaf ÕΛ is
a quotient of the sheaf

ÕΛ0 = τ̃−1OX ⊗C[P ] C[Λ0],

where C[P ] → τ̃−1OX is obtained from the map X → C(P ). The kernel of ÕΛ0 → ÕΛ is locally
generated by elements of the form tλ− 1, where λ is in the kernel of the map of sheaves of monoids
(Λ0)X → Λ.

Starting from E, we consider the direct sum
⊕

λ∈Λgp
0
Eλ as a sheaf of OX -modules on X. We

pull this back to X̃log and obtain

Ẽ :=
⊕
λ∈Λgp

0

τ̃−1Eλ,

which is a sheaf of τ̃−1OX -modules.
Consider the sheaf of τ̃−1OX -algebras A :=

⊕
a∈P gp τ̃−1La ∼=

⊕
a∈P gp t−a · τ̃−1OX , where t−a is

just a placeholder variable. First note that, on top of its natural τ̃−1OX -module structure, Ẽ is

also a sheaf of A-modules, via the map Ẽ ⊗OX A→ Ẽ constructed as follows: we can define

Ẽ ⊗τ̃−1OX A =
⊕

a∈P gp, λ∈Λgp
0

(τ̃−1Eλ ⊗τ̃−1OX τ̃
−1La)→ Ẽ =

⊕
λ∈Λgp

0

τ̃−1Eλ

by using the pullback via τ̃ of the given isomorphisms Eλ⊗OX La ∼= Eλ+a for a ∈ P gp and λ ∈ Λgp
0 .

Moreover, the sheaf Ẽ on X̃log has a Z(P )-equivariant structure: if g ∈ Z(P ) and f is a section

of τ̃−1Eλ, we define g · f = e2πigR(λ)f as a section of τ̃−1Eλ. Moreover, Ẽ has an action of the

constant sheaf C[Λ0] on X̃log: for a section xλ of C[Λ0], we define the action on the piece τ̃−1Eµ to
be the pullback via τ̃ of the map Eµ → Eµ+λ coming from the structure of parabolic sheaf. This is
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compatible (by property (a) in Definition 3.5) with the action of C[P ], induced by C[P ]→ A, where
this map sends xp to the section t−p ·fp ∈ t−p ·τ̃−1OX ⊆ A (recall from Notation 4.11 that fp denotes

the image of p ∈ P in OX). This makes Ẽ into a Z(P )-equivariant sheaf of A⊗C[P ] C[Λ0]-modules.

Now consider the morphism of sheaves of algebras A → Õlog
X determined by sending each t−a

with a ∈ P gp to 1 ∈ τ̃−1OX ⊆ Õlog
X . The tensor product

Ψ̃(E) := Ẽ ⊗A Õlog
X

has a structure of a Z(P )-equivariant sheaf of Õlog
X ⊗C[P ]C[Λ0] = Õlog

Λ0
-modules. This last operation

has the effect of imposing that the action of P gp is trivial (i.e. it identifies eλ ∈ Eλ with the image

eλ ⊗ t−p ∈ Eλ ⊗OX Lp ∼= Eλ+p for p ∈ P gp), and of “adding the sections of Olog
X as coefficients”.

Remark 5.3. Imposing that the action of P gp is trivial might look strange, but should be compared
with the following situation for root stacks: as recalled in (3.4), given a parabolic sheaf E with
weights in the Kummer extension P → Q, to obtain a quasi-coherent sheaf on the root stack

Q
√
X = [(X ×SpecZ[P ] SpecZ[Q])/µQ/P ] ∼= [Spec

X
(OX [P gp]⊗Z[P ] Z[Q])/Q̂]

one forms the sheaf
⊕

q∈Qgp Eq on X, and equips it with a structure of Qgp-graded OX [P gp]⊗Z[P ]

Z[Q]-module to obtain a Q̂-equivariant sheaf on Spec
X

(OX [P gp]⊗Z[P ] Z[Q]).
However, the presentation that we are using for the Kato-Nakayama space is closer to the first

expression of
Q√
X as a quotient stack, and the way to obtain a sheaf for that presentation is to

pullback along the zero section X → Spec
X

(OX [P gp]) = X × P̂ , where P̂ is the Cartier dual of

P gp, i.e. the algebraic torus Hom(P gp,Gm). This corresponds to forcing the action of P gp to be

trivial, since the sheaf of ideals of X in X×P̂ is exactly generated by the elements tp−1 in OX [P gp]
for p ∈ P gp.

By descent along π : X̃log → Xlog, this gives us a sheaf of Olog
Λ0

-modules on Xlog. Now observe

that the action of Olog
Λ0

factors through Olog
Λ : it is not hard to check that if λ is a local section in

the kernel of (Λ0)X → Λ, then the action of tλ ∈ OΛ0 is given by the identity on the pieces of the

parabolic sheaf E, and hence also on the sheaf Ẽ. Denote the resulting sheaf of Olog
Λ -modules by

Ψ(E).
It is straightforward to define the action on arrows, so that Ψ becomes a functor Par(X,Λ) →

Mod(Olog
Λ ). Note that Ψ respects filtered colimits: in fact, we can check that Ψ̃ does so, and this

is clear, because direct sums and tensor products commute with filtered colimits. Therefore, again
assuming that we have proven that Ψ sends finitely presented parabolic sheaves to finitely presented
sheaves, it follows that if E is a quasi-coherent parabolic sheaf, then Ψ(E) is a quasi-coherent sheaf

of Olog
Λ -modules.

This defines the quasi-inverse Ψ: Par(X,Λ)→ QcohΛ(X).

Ψ is a quasi-inverse:

Let us check that, still in the case where there is a Kato chart X → C(P ), the functors Φ and Ψ
are quasi-inverses. Consider a parabolic sheaf E ∈ Par(X,Λ0), and the parabolic sheaf Φ(Ψ(E)).

For every λ ∈ Λwt
0 , the sheaf Φ(Ψ(E))λ is the pushforward τ∗(Ψ(E)⊗Olog

Λ0

LΛ0
λ ) ∈ Qcoh(X). We can

also compute this as τ̃
Z(P )
∗ (Ψ̃(E)⊗Õlog

Λ0

L̃Λ0
λ ) (the superscript Z(P ) denotes Z(P )-invariants).

Note that there is a natural OX -linear injective morphism

Eλ → τ̃
Z(P )
∗ (Ψ̃(E)⊗Õlog

Λ0

L̃Λ0
λ ),
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that sends f ∈ Eλ to the section

(f ⊗ 1)⊗ t−λ ∈

( ⊕
λ∈Λgp

0

τ̃−1Eλ

)
⊗A Õlog

X

⊗Õlog
Λ0

L̃Λ0
λ .

We claim that this map is an isomorphism.

Let s =
∑

i(ai ⊗ bi)⊗ ci be a section of τ̃
Z(P )
∗ (Ψ̃(E)⊗Õlog

Λ0

L̃Λ0
λ ), seen as a Z(P )-invariant section

of Ψ̃(E) ⊗Õlog
Λ0

L̃Λ0
λ on X̃log. In particular ai are “homogeneous” sections of Ẽ (i.e. in some Eλi),

bi are sections of Õlog
Λ0

, and ci are sections of L̃Λ0
λ . By bilinearity and by moving the coefficients to

the other factors, we can assume that ci = t−λ (the local generator of the line bundle) for every

i. Moreover, it is clear that if s is Z(P )-invariant, then bi has to be in τ̃−1OX ⊆ Õlog
X for every

i (recall that locally Õlog
X is a polynomial ring with coefficients in τ̃−1OX , and Z(P ) acts on each

“indeterminate” by adding integer multiples of 2πi). By moving coefficients to the first factor, we
can assume that bi = 1 for every i.

Hence we are reduced to a section of the form
∑

i(ai ⊗ 1) ⊗ t−λ. By the explicit form of the

action of Z(P ), it is clear that this is invariant if and only if e2πigR(λi−λ) = 1 for every i and every
g ∈ Z(P ) (where ai ∈ Eλi), or equivalently if λi−λ is zero in Λgp

0 /P
gp for all i, i.e. λi ≡ λ mod P gp.

Finally, we claim that each term (ai⊗1)⊗ t−λ is equal to some (di⊗1)⊗ t−λ with di ∈ Eλ. Indeed,
since λi − λ ∈ P gp, by acting on ai via P gp we can obtain a section of Eλ. But by construction,

the action of P gp on Ψ̃(E) is the identity.

This gives an isomorphism Φ(Ψ(E))λ = τ̃
Z(P )
∗ (Ẽ⊗Õlog

Λ0

L̃Λ0
λ ) ∼= Eλ for every λ ∈ Λwt

0 . By how the

action of the section sλ of LΛ0
λ is defined on Ψ(E) it is also clear that the map Eλ ∼= Φ(Ψ(E))λ →

Φ(Ψ(E))λ′ ∼= Eλ′ coincides with the given one Eλ → Eλ′ for each λ ≤ λ′ in Λwt
0 . After easily

checking that these isomorphisms are compatible with restrictions to open subsets and functorial
in the parabolic sheaf E, we conclude that there is a functorial isomorphism of parabolic sheaves
Φ(Ψ(E)) ∼= E.

Conversely, let us start from a quasi-coherent sheaf F on Xlog, and show that there is a natural

isomorphism F ∼= Ψ(Φ(F )). For this we can pull everything back along π : X̃log → Xlog, and

check that π−1F ∼= Ψ̃(Φ(F )). Note that in fact there is a functorial morphism Ψ̃(Φ(F )) → π−1F ,
obtained from the natural maps

τ̃−1Φ(F )λ → π−1F

defined by sending a section f ⊗ t−λ of τ̃−1(τ̃
Z(P )
∗ (F ⊗Õlog

Λ0

L̃Λ0
λ )) to the section f of π−1F . By

further localizing on X we can assume that F is a filtered colimit of finitely presented sheaves, and
thus it suffices to prove that claim for F finitely presented.

Assume that F has a presentation⊕
j L

Λ0
λj

//
⊕

i L
Λ0
λi

// F // 0

with finitely many summands, that we can pull back to X̃log, obtaining a presentation⊕
j L̃

Λ0
λj

//
⊕

i L̃
Λ0
λi

// π−1F // 0.

Recall moreover that Ψ̃(Φ(F )) =
(⊕

λ∈Λgp
0

Φ(F )λ

)
⊗A Õlog

X , and Φ(F )λ = τ∗(F ⊗Olog
Λ0

LΛ0
λ ).
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From the exactness of the various functors we obtain a commutative diagram with exact rows

Ψ̃(Φ(
⊕

j L
Λ0
λj

))

��

// Ψ̃(Φ(
⊕

i L
Λ0
λi

))

��

// Ψ̃(Φ(F )) //

��

0

⊕
j L̃

Λ0
λj

//
⊕

i L̃
Λ0
λi

// π−1F // 0.

Finally, it is not hard to check that two leftmost vertical maps are isomorphisms: one is reduced
to checking the statement for a single sheaf  LΛ

λ , and in this case it is an explicit calculation similar
to the on in the proof of proposition 4.22. Hence also the rightmost map is an isomorphism, as we
wanted to prove.

Exactness and finite presentation:

It is clear from exactness of τ∗ (Proposition 4.18) that Φ respects exactness. Let us show that it
restricts to the subcategories of finitely presented sheaves on both sides.

Assume that F is a finitely presented sheaf of Olog
Λ -modules on Xlog, as in Definition 4.15. By

localizing on X we can assume that we have a presentation⊕
j L

Λ
λj

//
⊕

i L
Λ
λi

// F // 0

with finitely many summands, and that we have charts P →M(X) and Λ0 → Λ(X). By Proposition
4.23 all the pieces Φ(F )λ are finitely presented sheaves on X. Moreover, consider the sub-weight
system R ⊆ Λwt

0 given by the orbits for the P gp-action of the (finitely many) elements λi and λj
appearing in the presentation above. We claim that Φ(F ) is the induction of a parabolic sheaf with
weights in R.

Specifically, we claim that Φ(F ) is isomorphic to Ind
Λwt

0
R (G), where G is the sheaf Res

Λwt
0

R (Φ(F )).
To verify this, it is enough to prove that for every λ ∈ Λwt

0 the map

lim−→
R3 r≤λ

Φ(F )r → Φ(F )λ

is an isomorphism.
By applying the two functors to the presentation of F above (which stays exact), we see that

it is enough to check the statement for the sheaves
⊕

i L
Λ
λi

and
⊕

j L
Λ
λj

, for which it is an easy

computation.
Conversely, assume that E is a finitely presented parabolic sheaf on X, and let us show that Ψ(E)

is finitely presented on Xlog. As above, we can localize on X where there are charts P → M(X)
and Λ0 → Λ(X), and where E comes via induction from a finite sub-system R ⊆ Λwt

0 . We can also
assume that each of the (finitely many) sheaves Er with r ∈ Λ0 \ 〈P+〉 admits a presentation as

O⊕JrX

fr // O⊕IrX
// Er // 0

where Ir and Jr are finite sets. It is easy to check that the sheaf Ψ̃(E) on X̃log has a presentation
of the form ⊕

r(L̃
Λ
−r)
⊕Jr ⊕(fr)−r //

⊕
r(L̃

Λ
−r)
⊕Ir // Ψ̃(E) // 0

which shows that Ψ(E) is finitely presented. The map
⊕

r(L̃
Λ
−r)
⊕Ir → Ψ̃(E) is defined by sending

the generators of the factor (L̃Λ
−r)
⊕Ir to the images in τ̃−1Er of the generators of O⊕IrX via the map

in the presentation of Er (recall that Ψ̃(E) = (⊕λ∈Λgp
0
τ̃−1Eλ)⊗A Õlog

X ).
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This concludes the proof. �

Remark 5.4. One can check, using the construction of Φ, that for two M
gp

-saturated quasi-
coherent sheaves of monoids M ⊆ Λ ⊆ Λ′ ⊆MR, with induced weight systems W = Λwt and W ′ =

(Λ′)wt, the restriction ResW
′

W and induction IndW
′

W on parabolic sheaves correspond respectively to

equipping a sheaf of Olog
Λ′ -modules with the structure of Olog

Λ -module coming from the natural map

Olog
Λ → Olog

Λ′ , and to taking the tensor product −⊗Olog
Λ
Olog

Λ′ .

5.1. Comparison with root stacks. To conclude, we compare the equivalence of Theorem 5.1
to the ones between parabolic sheaves and sheaves on root stacks, of [5] and [23].

Let X be a fine saturated log scheme locally of finite type over C, and assume also that X is
proper. With this assumption, because of Proposition 3.22 we can compare the equivalence of
Theorem 5.1 (that involves analytic sheaves) with the ones of [5] and [23] (that are formulated for
parabolic sheaves on schemes).

For every n there is a canonical morphism of topological stacks φn : Xlog →
n√
Xtop, coming for

example from the fact that the projection πn :
n√
X → X induces an isomorphism (

n√
X)log

∼=−→ Xlog

(see the proof of [24, Proposition 4.6]). These are compatible for different indices, and induce a

morphism φ∞ : Xlog →
∞√
Xtop (see [6, Proposition 4.1] or [24, Section 3.4]).

By [5, Theorem 6.1] and [23, Theorem 7.3] we have compatible equivalences of abelian cate-

gories Φn : Qcoh(
n√
X)→ Par(X, 1

nM) and Φ∞ : Qcoh(
∞√
X)→ Par(X,Q). Strictly speaking, these

equivalences are formulated and proven for parabolic sheaves on schemes, but the same reasoning
should apply for complex analytic spaces. Alternatively, one can rely on GAGA results for proper
Deligne-Mumford stacks, for example as formulated, in a more general setting, in [22].

We will prove that these equivalences are compatible with the equivalence Φ of Theorem 5.1,
in the following sense. We have several structures on the root stacks that we can pull back via
the morphisms φn. The stack

n√
Xtop has a structure sheaf On, and a tautological DF structure

Ln : π−1
n

1
nM → Divn√X (if n = ∞, then 1

nM denotes MQ). These are all compatible with respect

to pullbacks along the projections
m√
X → n√

X. In the case of the infinite root stack, it is better to
think about O∞ as lim−→n

On, so that φ∗∞O∞ on the space Xlog is lim−→n
φ∗nOn.

Here when we write φ∗nF for a sheaf F of On-modules on
n√
Xtop, we mean the sheaf φ−1

n F⊗τ−1OX
Olog
X on Xlog.

Proposition 5.5. There is a sequence of compatible isomorphisms of sheaves of rings φ∗nOn ∼=
Olog

1
n
M

, where we are using the notation of (4.3) for the sheaf on the right hand side. Moreover, the

pullback DF structure φ∗nLn : φ−1
n (π−1

n
1
nM) → Div

(Xlog,Olog
1
nM

)
is canonically isomorphic to the DF

structure described in (4.3).

Proof. We can reduce to checking the claim on log schemes of the form X = SpecC[P ] for a toric
monoid P . Moreover, to prove the first assertion it is enough to prove that there are compatible
isomorphisms φ−1

n On ∼= O 1
n
M .
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As briefly explained in (2.3), we have a diagram

X̃log × Z(P ) //

����

C( 1
nP )× µn(P )

����
X̃log

φ̃n //

��

C( 1
nP )

��
Xlog

φn // n
√
C(P )

where φ̃n : X̃log = Hom(P,H) → C( 1
nP ) = Hom( 1

nP,C) is given by composing 1
nP
∼= P → H with

H→ H→ C, where the first map is (x, y) 7→ ( n
√
x, y/n) and the second map is (x, y) 7→ x · eiy. The

homomorphism Z(P ) = Hom(P,Z) → µn(P ) = Hom(P,Z/nZ) is also defined by composing with

Z→ Z/nZ, and φ̃n is equivariant with respect to this homomorphism.

Let us denote by Õn the pullback of On to C( 1
nP ), and by π̃n the projection C( 1

nP )→ n
√
C(P )→

X. We can reduce to showing that φ̃−1
n Õn ∼= Õ 1

n
M as Z(P )-equivariant sheaves. This is clear from

the fact that Õ 1
n
M is the quotient of τ̃−1OX ×C[P ] C[ 1

nP ] by the ideal I generated by local sections

of the form ta−1, where a ∈ 1
nP maps to zero in MR: we have a natural map τ̃−1OX×C[P ]C[ 1

nP ]→
φ̃−1
n Õn induced by τ̃−1OX = φ̃−1

n π̃−1
n OX → φ̃−1

n Õn and C[ 1
nP ] → Õn, which factors through the

quotient by the sheaf of ideals I. One can verify that the resulting map is an isomorphism, for
example by looking at the stalks.

The assertion about the DF structure is proved similarly. �

Remark 5.6. The preceding discussion explains [24, Remark 4.7]: if we consider for a log algebraic
stack X its Kato-Nakayama space Xlog as a ringed topological stack, equipped with the sheaf of

rings Olog
X , then the isomorphism (

n√
X)log

∼= Xlog is not an isomorphism of ringed topological

stacks, since the structure sheaf of (
n√
X)log is identified with the sheaf Olog

1
n
M

on Xlog.

Let us now check that the equivalence Φ of Theorem 5.1 is compatible with the analogous
equivalences on the root stacks.

Proposition 5.7. The following diagram of functors is 2-commutative.

Qcoh(
n√
X)

φ∗n //

Φn ((

Qcoh 1
n
M (Xlog)

Φvv
Par(X, 1

nM)

Moreover all the functors restrict to the subcategories of finitely presented sheaves, and the diagrams
for different n are compatible with respect to pushforward and pullback along projections between
root stacks, and induction and restriction between the categories of parabolic sheaves.

In particular, for every n the pullback functor φ∗n is an equivalence.

Proof. We can assume that X has a global Kato chart X → SpecC[P ]. Fix a quasi-coherent sheaf

F ∈ Qcoh(
n√
X). We have to check that Φ(φ∗nF ) and Φn are the same parabolic sheaf on X with

weights in 1
nP .
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For an element 1
na ∈

1
nP

gp, we have

Φn(F ) 1
n
a = (πn)∗(F ⊗On L 1

n
a) ,

where as above πn :
n√
X → X is the projection and L : 1

nP
gp → Pic(

n√
X) is the symmetric monoidal

functor corresponding to the universal DF structure on the root stack. On the other hand

Φ(φ∗nF ) 1
n
a = τ∗(φ

∗
nF ⊗Olog

1
nM

L
1
n
M

1
n
a

) ,

where L
1
n
M : 1

nP
gp → Pic(Xlog,Olog

1
n
M

) is the analogous symmetric monoidal functor on the ringed

space (Xlog,Olog
1
n
M

).

Now note that L
1
n
M

1
n
a
∼= φ∗nL 1

n
a, so that we have

Φ(φ∗nF ) 1
n
a = τ∗(φ

∗
n(F ⊗On L 1

n
a)).

Finally, since (Xlog,Olog
1
n
M

) = ((
n√
X)log,Olog

n√
X

)→ n√
X can be seen as the projection from the Kato-

Nakayama space of
n√
X and τ∗ = (πn)∗ ◦ (φn)∗, the analogue of Proposition 4.24 (whose proof we

leave to the reader) implies that (φn)∗ ◦ φ∗n ∼= id, and hence Φn(F ) 1
n
a
∼= Φ(φ∗nF ) 1

n
a.

The remaining assertions are routinely checked. �

Remark 5.8. Let us also briefly comment on the relationship between our setup and the sim-
ilar one of [8]. In Section 3 of that paper, the authors consider the Kummer-étale topos Xket,
which is equipped with a natural morphism Xket → Xan, and construct a morphism of topoi

τket : Xlog → Xket factoring τ : Xlog → Xan. They consider a sheaf of rings Oklog
X on Xlog, defined

as τ−1
ketO

ket
X ⊗τ−1OX O

log
X , where Oket

X is the structure sheaf of the Kummer-étale topos. In (3.2),

the authors give a description of Oklog
X that coincides with the one of Remark 4.12, seeing it as

being generated over OX by formal logarithms (which correspond to Olog
X ) and formal n-th roots

for every n (which correspond to Oket
X ), of sections of M .

The ringed topos (Xket,Oket
X ) is equivalent to the infinite root stack, in the following sense. The

natural functor that sends a Kummer-étale morphism U → X to the map between infinite root
stacks

∞√
U → ∞√

X induces a morphism of sites from an opportunely defined small étale site of
∞√
X to the Kummer-étale site of X, which gives a morphism of topoi ρ :

∞√
X → Xket (where we

identify the stack
∞√
X with its small étale topos), which is proved to be an equivalence in [23,

Theorem 6.21].

Finally, as mentioned above, there is a natural isomorphism Oklog
X
∼= Olog

MQ
, and, by Proposition

5.5, the last sheaf can also be seen as the pullback φ∗∞O∞ along φ∞ : Xlog →
∞√
X.
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