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Abstract. We compute the class of the classifying stack of the special orthog-

onal group in the Grothendieck ring of stacks, and check that it is equal to the
multiplicative inverse of the class of the group.

1. Introduction

Let k be a field. The Grothendieck ring of varieties K0(Vark) was first defined by
Grothendieck in 1964 in a letter to Serre. Its main application so far is Kontsevich’s
theory of motivic integration: see for example [Loo00].

Variants of this, that contain classes for all algebraic stacks of finite type over k
with affine stabilizers, have been introduced by several authors: see [BD07], [Ekec],
[Joy07], [Toë05]. In the present paper we use the version due to Ekedahl, which
we denote by K0(Stackk); it has the merit of being universal, so it maps to all the
other versions.

By definition, every algebraic stack X of finite type over k with affine stabilizers
has a class {X } in K0(Stackk). In particular, given an affine group scheme of finite
type G over k, we obtain a class {BG} for the classifying stack BG in K0(Stackk).
The problem of computing {BG} is very interesting; it is morally related with the
problem of stable rationality of fields of invariants, although no direct implication is
known (see the discussion in [Ekeb, § 6]).

The case of a finite group is thoroughly discussed in [Ekeb]; in many cases
{BG} = 1, although there are examples of nilpotent finite groups for which this
fails.

The case when G is connected is also very interesting. Recall that if an algebraic
group is special if every G-torsor is Zariski-locally trivial; GLn, SLn and Spn are
all special. If P → S is a G-torsor and G is special, then we have {P} = {G}{S}
(this is immediate when S is a scheme, and it was shown by Ekedahl when S is an
algebraic stack). In particular, applying this to the universal torsor Spec k → BG
we get the formula {BG} = {G}−1 for special groups.

The cases of non-special connected groups G for which {BG} has been computed
include PGL2, PGL3 (by D. Bergh in [Ber16]) and SOn when n is odd (by A. Dhillon
and M. Young in [DY16]). In all these cases the equality {BG} = {G}−1 continues
to hold. This is quite surprising, in view of the fact that if G is a reductive non-special
group, there exists a G-torsor P → S such that {P} 6= {G}{S} [Ekea, Theorem 2.2].
It might be related with the fact that quotient spaces of representations of connected
algebraic groups tend to be stably rational; in fact, no examples are known in which
they are not rational (see [Böh] for a survey of the known results in this direction).
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Of course, since, as we say above, no direct implication is known to hold between
the two problems, this is pure speculation on our part.

Our lack of insight into why the formula {BG} = {G}−1 does hold is revealed
by the fact that when it has been proved, it has been by independently computing
the two sides.

In this paper we continue in this line of research, and we compute the class
{BSOn} for all n.

Theorem. Assume that the characteristic of k is different from 2. Let q be a
non-degenerate split quadratic form on an n-dimensional k-vector space. Then

{BSO(q)} = {SO(q)}−1 .

Once again, our result is obtained by explicitly computing {BSO(q)} (Theo-
rem 3.1), and then comparing what we get with the formula for {SO(q)} that one
obtains from [BD07].

Our approach is different from that of A. Dhillon and M. Young in [DY16], and
also gives an independent proof of their result. Instead of the stratification of the
space GLn/On of non-degenerate quadratic forms that they use, we exploit a simpler
stratification of the tautological representation of SOn already used in [MV05].

Acknowledgements. This paper has been inspired by conversations of the first
author with A. Dhillon and Z. Reichstein, whom we thank warmly. We also thank
M. Young for useful comments.

2. The Grothendieck ring of algebraic stacks

Recall that the Grothendieck ring of algebraic varieties is generated by classes {X}
of schemes of finite type over k, with the “scissor” relation {X} = {Y }+ {X r Y }
for any closed subscheme Y ⊆ X (see for example [Loo00]). The sum is given
by taking disjoint unions, the product by the cartesian product of schemes. The
Lefschetz motive L def

= {A1} is particularly important.
The localization ring K0(Vark)[L−1] has a natural filtration, whose mth piece

is generated by classes of the form {X}Ln, where n ∈ Z and X is a scheme with

dimX + n ≤ −m. The completion is denoted by K̂0(Vark).
A variant of this is due to Ekedahl ([Ekec]): one takes classes {X } of algebraic

stacks of finite type with affine stabilizers, subject to the scissor relations, and
the relation {V } = Lr{X } whenever V → X is a vector bundle of rank r (for
schemes, vector bundles are locally trivial in the Zariski topology, so this relation is
a consequence of the scissor relations, but this is definitely false for stacks). Edekahl
shows the remarkable fact that K0(Stackk) is the localization of K0(Vark) obtained
by inverting L and all elements of the form Ln − 1 for n ∈ N; as a consequence, the

natural map K0(Vark)→ K̂0(Vark) factors through K0(Stackk). (The fact that one

can define classes in K̂0(Vark) for algebraic stacks of finite type had been earlier
shown by K. Behrend and A. Dhillon in [BD07]).

Next we will prove some easy results that will be used in the rest of the paper.

Proposition 2.1. Let X an algebraic stack over k with affine stabilizers, A →
X an affine bundle of relative dimension d. Then we have {A } = Ld{X } in
K0(Stackk).
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Proof. The structure group of A is, by definition, the semidirect product GLd nAd,
which is a special group. If P →X is the principal GLd nAd-bundle associated
with A →X , then {P} = {GLd nAd}{X } = {GLd}Ld{X } ([Ekec, Proposition
1.4 i)]). On the other hand A is the quotient P/GLd, so P is a GLd-torsor over
A , hence {P} = {GLd}A , and the result follows. ♠

Proposition 2.2. Let G be an affine algebraic group over k acting linearly on a
d-dimensional vector space V , considered as a group scheme via addition. Then we
have

{B(Gn V )} = L−d{BG} .

Proof. The group G acts on V = Ad by definition, while V acts on itself by
translation. These two actions combine to give an action of G n V on V , which
factors through the group of affine transformations GL(V )nV . The action of GnV
on V is transitive, and the stabilizer of the origin is G, hence [V/(Gn V )] ' BG.
On the other hand we can consider [V/(Gn V )] as an affine bundle on B(Gn V ),
so the result follows from Proposition 2.1. ♠

3. The computation

Let k be a field of characteristic different from 2, and q be a non-degenerate qua-
dratic form on an n-dimensional k-vector space, O(q) the corresponding orthogonal
group over k, and SO(q) ⊆ O(q) the connected component of the identity.

Theorem 3.1. In K0(Stackk) we have the equality

{BO(q)} =


L−m

2+2m
m∏
i=1

(L2i − 1)−1 if n = 2m

L−m
2

m∏
i=1

(L2i − 1)−1 if n = 2m+ 1 .

Furthermore, if q is split, then

{BSO(q)} = {BO(q)}
if n is odd, while

{BSO(q)} = L−m
2+m(Lm − 1)−1

m−1∏
i=1

(L2i − 1)−1

if n = 2m.

The formulas for {BO(q)}, and {BSO(q)} when n is odd, are contained in
[DY16].

Proof. Let us assume right away that q is split and pick a basis for V ' kn that
puts q in the standard form

qn(x1, . . . , xn) = x1x2 + x3x4 · · ·+ x2m−1x2m

when n = 2m, and

qn(x1, . . . , xn) = x1x2 + x3x4 · · ·+ x2m−1x2m + x22m+1

when n = 2m+1. We will denote by On the algebraic group of linear transformations
preserving this quadratic form, by hn : V × V → k the corresponding symmetric
bilinear form, and by SOn the corresponding special orthogonal group.
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The arguments that follow will also compute {BO(q)} for any non-degenerate
quadratic form q, because if q and q′ are non-degenerate quadratic forms on V then
we have an equivalence of stacks BO(q) ' BO(q′) (see [MV05, Remark 4.2]).

Let us proceed by induction. We will include the case n = 0 in the formula for
{BOn}; we take O0 to be the trivial group, so that the formula holds in this case.

For n = 1 we have SO1 = {1}, while O1 = µ2, so that {BO1} = {BSO1} = 1,
and the theorem is verified in this case. So we can assume n ≥ 2.

We also have SO2 = Gm; in this case {BSO2} = (L− 1)−1, and Theorem 3.1 is
verified. In the rest of the proof we will exclude this case.

We will denote e1, . . . , en the standard basis of V . We will identify V with the
corresponding affine space Spec(Symk V

∨) over k, and denote by V 0 the complement
of the origin in V . We set C the closed subscheme of V 0 defined by the vanishing
of qn, and B

def
= V 0 r C.

The subschemes C, B and Q of V 0 are invariant by the natural action of On.
In order to compute {BOn} and {BSOn}, notice that if we denote by Gn either

On or SOn we have

Ln{BGn} = {[V/Gn]} = {[V 0/Gn]}+ {BGn}
so that

{BGn} = (Ln − 1)−1{[V 0/Gn]} .
On the other hand

{[V 0/Gn]} = {[C/Gn]}+ {[B/Gn]} .
The hypothesis that n ≥ 2 and Gn 6= SO2 ensures that the action of Gn on C is
transitive. Split V as 〈e1, e2〉 ⊕W , where W

def
= 〈e1, e2〉⊥; then O(W ) = On−2, and

a simple calculation shows that the stabilizer of e1 for the action of Gn on C is of
the form Gn−2 nW . The action of a vector v ∈W is defined as by leaving e1 fixed,
sending e2 to − 1

2qn(v)e1 + e2 + v, and x ∈W to x− hn(x, v)v (recall that hn is the
symmetric bilinear form associated with qn). Thus

[C/Gn] = B(Gn−2 nW ) .

From Proposition 2.2 we obtain

{[C/Gn]} = L−n+2{BGn−2} .
Let us compute {[B/Gn]}; here the action of Gn on B is not transitive, and we

need a more elaborate construction, taken from [MV05, Section 4].
Call Q the closed subscheme of V 0 defined by qn(x) = 1. We have a natural

double cover Gm ×Q→ B defined by (t, x) 7→ tx; there is also a free action of µ2

on Gm ×Q defined by α(t, x) = (αt, αx), and B = (Gm ×Q)/µ2.
If we let Gn act on Gm ×Q by acting on Q by the restriction of the action on V ,

and trivially on Gm, then the action of Gn commutes with the action of µ2 described
above, so we get an action of µ2×Gn, and we have [B/Gn] = [(Q×Gm)/(µ2×Gn)].
On the other hand we have

{[(Q×Gm)/(µ2 ×Gn)]} = {[(Q× A1)/(µ2 ×Gn)]} − {[Q/(µ2 ×Gn)]}
= (L− 1){[Q/(µ2 ×Gn)]} .

The action of Gn on Q is transitive; the stabilizer of a point p ∈ Q under the
action of On is isomorphic to On−1 (see the discussion in [MV05, Section 4]). Call
i : On−1 ⊆ On the embedding of the stabilizer of p; the stabilizer of p under the action
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of µ2 ×On is the image of µ2 ×On−1 under the embedding µ2 ×On−1 ⊆ µ2 ×On

defined by (α,M) 7→
(
α, αi(M)

)
. The stabilizer of p under the action of µ2×SOn is

the inverse image i−1(µ2×SOn). If n is even, then i−1(µ2×SOn) = µ2×SOn−1. If
n is odd, then i−1(µ2×SOn) is the set of pairs (α,M) ∈ µ2×On−1 with α = detM ;
this is clearly isomorphic to On−1 via the projection on the second factor. So we
have

[Q/(µ2 ×On)] = [B(µ2 ×On−1)] ,

and furthermore

[Q/(µ2 × SOn)] = [B(µ2 × SOn−1)]

if n is even, while

[Q/(µ2 × SOn)] = [BOn−1]

if n is odd.
So we obtain

{[B/On]} = (L− 1){BOn−1} ,
while

{[B/SOn]} = (L− 1){BSOn−1}
if n is even, and

{[B/SOn]} = (L− 1){BOn−1}
if n is odd.

Putting everything together, in the case of On we get

{BOn} = (Ln − 1)−1
(
(L− 1){BOn−1}+ L−n+2{BOn−2}

)
;

a simple calculation shows that the formulas for {BOn} given in the statement
verify this recursion (starting from the base values {BO0} = {BO1} = 1).

If n = 2m+ 1, then On = µ2 × SOn, hence

{BSOn} = {BOn} = L−m
2

m∏
i=1

(L2i − 1)−1 .

If n is even, then we obtain the relation

{BSOn} = (Ln − 1)−1
(
(L− 1){BSOn−1}+ L−n+2{BSOn−2}

)
.

By the formula for {BSOn} for n odd and a simple induction with the recurrence in
the last line and the starting case {BSO2} = (L− 1)−1, one can verify that indeed

{BSOn} = L−m
2+m(Lm − 1)−1

m−1∏
i=1

(L2i − 1)−1

where n = 2m.
This completes the proof of Theorem 3.1. ♠

Corollary 3.2. If q is a non-degenerate split quadratic form, then

{BSO(q)} = {SO(q)}−1 .

Proof. The formula for the class {G} ∈ K0(Stackk) of a split connected semisimple
group given in [BD07, Proposition 2.1] gives that if n = 2m+ 1, then

{SOn} = L2m2+m
m∏
i=1

(1− L−2i) ,
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while if n = 2m

{SOn} = L2m2−m(1− L−m)

m−1∏
i=1

(1− L−2i) .

Easy algebraic manipulations show that in both cases {BSOn} = {SOn}−1.

(Actually, in [BD07] the result is only claimed for the class {SOn} in K̂0(Vark),
but the proof shows that the formula does in fact hold in K0(Stackk).) ♠
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