
THE KATO-NAKAYAMA SPACE

AS A TRANSCENDENTAL ROOT STACK
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Abstract. We give a functorial description of the Kato-Nakayama space of a fine saturated
log analytic space, that is similar in spirit to the functorial description of root stacks. As a
consequence we get a global description of the comparison map constructed in [CSST] from the
Kato-Nakayama space to the (topological) infinite root stack.
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1. Introduction

Let X be a fine saturated log scheme, locally of finite type over C, or a log analytic space.
There have been a few constructions aimed at capturing the “log geometry” ofX in more familiar
forms. Two of those are the “Kato-Nakayama” space Xlog (a topological space, introduced in

[KN99]), and the “infinite root stack”
∞√
X (a pro-algebraic stack, introduced in [TVb]). As

mentioned in the introduction of [TVb], the latter is, morally, an “algebraic version” of the
former.

Building on this idea, in the paper [CSST] by Carchedi, Scherotzke, Sibilla and the first

author it is shown that there is a canonical morphism ΦX : Xlog →
∞√
Xtop from the Kato-

Nakayama space to the topological realization of the infinite root stack of X, that is moreover
a “profinite equivalence”. In that paper the morphism is constructed locally on X, in presence
of a Kato chart for the log structure, and then globalized by gluing [CSST, Section 4].

Two natural questions arise from this construction.

(1) Is there a global definition of the morphism ΦX? For example, one could hope to use a

“functor of points” point of view, describing the objects of the groupoid
∞√
Xtop, and then

producing an object of
∞√
Xtop(Xlog).

(2) Over Xlog there is a sheaf of rings Olog
X that makes the projection Xlog → X into a map of

ringed spaces, and over
∞√
Xtop there is a natural structure sheaf O∞. Does ΦX extend to

a morphism of ringed topological stacks?

In this paper we answer the first question, and give such a global construction of ΦX . Question
(2) is addressed in the recent preprint [Tal] by the first author, where a notion of “coherent
sheaf” on Xlog and the relationship with parabolic sheaves with real weights are discussed.

In order to answer question (1) we will give a functorial description of
∞√
Xtop, and produce

an object of the corresponding kind on the topological space Xlog. We will do so by giving a
“root stack” functorial definition of Xlog, that is closely related to the one given in [IKN05].

†Partially supported by research funds from the Scuola Normale Superiore.

1

This is a pre-copyedited, author-produced version of an article accepted for publication in International 
Mathematics Research Notices following peer review. The version of record  Int. Math. Res. Not. IMRN 
2018, no. 19, 6145–6176, is available online at: https://doi.org/10.1093/imrn/rnx079



From this it will be apparent that an object parametrized by the Kato-Nakayama space induces
compatible n-th roots for each positive integer n.

In some more detail: we use the point of view of [BV12], according to which a log structure
on X can be seen as a symmetric monoidal functor L : A→ [C/C×]X from a sheaf of monoids
to a stack of line bundles with global section on open subsets of X. Here the monoial structure
on [C/C×]X is given by tensor product of line bundles with a section, and the functor L is

compatible with this structure. Recall also that for n ∈ N, the root stack
n√
X parametrizes

liftings of the functor L along the n-th power map ∧n : [C/C×] → [C/C×], induced by z 7→ zn

on both the space C and the group C× (and corresponding to raising both the line bundle and
the global section to the n-th power).

The Kato-Nakayama space turns out to parametrize similar liftings, in which instead of
extracting n-th roots for a fixed n we are in some sense extracting a “logarithm”, i.e. we
are lifting the log structure along a sort of “exponential” H → [C/C×], where H is the stack
constructed as follows.

Let C be the topological monoid ({−∞} ∪ R) × R, where the operation is addition on both
factors, and we declare that −∞ + x = −∞ for every x ∈ {−∞} ∪ R. Using the exponential

{−∞} ∪ R
∼=−→ R≥0 in the first factor, the monoid C can also be seen as the “closed right half-

plane” H = R≥0×R ⊆ C, equipped with the operation (x, y)·(x′, y′) = (xx′, y+y′). The additive

group C+ of complex numbers acts on C by “translation”, i.e. as (a+ ib) · (x, y) = (a+x, b+y),
compatibly with the monoid structure. We have an exponential map C → C sending (x, y) to
ex+iy (which is 0 if x = −∞), that is exp-equivariant, for exp: C+ → C× the usual exponential.
The stack H alluded to above is the quotient H = [C/C+], that by the preceding observations
admits a map exp: H → [C/C×].

The following theorem, that gives a functorial description of the Kato-Nakayama space as a
sort of “transcendental root stack”, is our main result.

Theorem A (Theorem 3.2). Let X be a fine saturated log analytic space, with DF structure
L : A → [C/C×]X . Then the stack on topological spaces over Xtop that sends f : T → Xtop to
the groupoid of symmetric monoidal functors f−1A → HT lifting the functor f−1L : f−1A →
[C/C×]T is represented by the Kato-Nakayama space Xlog.

As a consequence, we obtain, in Section 3.4, a global description of the canonical morphism
ΦX : Xlog →

∞√
Xtop constructed in [CSST, Section 4]: for every n there is a factorization

H → [C/C×]
∧n−→ [C/C×]

of the map exp: H → [C/C×], given by the morphisms C → C sending (x, y) to e(x+iy)/n and

C+ → C× defined as z 7→ ez/n. Consequently, because of Theorem A, for every object of the
groupoid Xlog(T ) we obtain a compatible system of objects of the groupoids

n√
Xtop(T ), i.e. an

object of
∞√
Xtop over T . This describes the morphism ΦX in functorial terms.

In the last paragraph,
n√
Xtop denotes the underlying “topological stack” of the n-th root

stack of X. In order to obtain a functorial description of these stacks, we have to develop a bit
of theory for a kind of “complex-valued” log structures on topological spaces. It turns out, in
fact, that the topological stack

n√
Xtop coincides with the n-th root stack (in this theory of “log

topological spaces”) of the log topological space Xtop (Proposition 2.16).

Finally, in proving that the morphism Xlog →
∞√
Xtop that we obtain coincides with the one

of [CSST] (which we do in Proposition 4.6), we also point out, in Section 4, that the Kato-
Nakayama construction can be applied to log algebraic (or analytic) stacks, by mimicking the
construction of the analytification functor for stacks (recalled briefly in Section 2.3).

Outline. Section 2 contains the basics of log structures on analytic and topological spaces,
both in the language of Kato [Kat89] and in the alternative “Deligne–Faltings” language in-
troduced in [BV12]. We describe spaces and stacks of charts, and consider root stacks in this
general framework, proving in particular that the formation of root stacks is compatible with
the analytification and “underlying topological space” functors.
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In Section 3 we describe our functorial interpretation of the Kato-Nakayama space, that is
the translation in the Deligne-Faltings language of the one given in [IKN05, Section 1] (recalled
in this paper as Theorem 3.3). We describe the natural “charts” for Xlog that correspond to
this description, and we produce a globally defined morphism from the Kato-Nakayama space
to the topological infinite root stack.

To conclude, in Section 4 we prove that the Kato-Nakayama construction can be extended
to algebraic (and analytic) stacks, and we check that the morphism to the infinite root stack
produced in the previous section coincides with the one of [CSST].

Acknowledgments. We are happy to thank Kai Behrend for a key idea, and David Carchedi,
Nicolò Sibilla and Jonathan Wise for useful conversations. We are also grateful to the anonymous
referee for useful comments and suggestions.

Notations and conventions. We assume some familiarity with log geometry. For an intro-
duction, see for example [Kat89] or [CSST, Appendix]. We are mostly interested in fine and
saturated log structures.

By the results of [BV12], for schemes the “Kato language” is equivalent to the “Deligne-
Faltings” language.

All our monoids will be commutative. If P is a monoid and X is a monoid with some
additional structure (for example a topological space), we will denote by X(P ) the object
HomMon(P,X) with its naturally induced additional structure. For example we can take
X = R≥0 to be the topological monoid of non-negative real numbers with respect to multi-
plication, and then R≥0(P ) will denote the topological monoid Hom(P,R≥0). We will denote

by P̂ the diagonalizable group scheme SpecC[P gp] associated with the abelian group P gp. The
sheafification of the constant presheaf with sections P will be denoted by P .

For symmetric monoidal categories we adopt the language and conventions of [BV12] (see in
particular Section 2.4).

All our algebraic spaces will be locally separated. If X is a scheme (or algebraic space) over
C, we write Xét for the small étale site of X. If X is an analytic (resp. topological) space we
will denote by AX the small analytic (resp. classical) site of X. If X is a locally separated
algebraic space that is locally of finite type over C, we will denote by Xan its analytification
as an analytic space, and by Xtop the underlying topological space of Xan. Although Xtop and
Xan are the same topological space, we usually prefer to keep the two symbols distinct, so that
it will be clear whether we are in the analytic or topological world.

We will denote by OX the structure sheaf of either a scheme (or algebraic space) or of an
analytic space.

2. Log structures on analytic and topological spaces

In order to give a functorial interpretation of the topological infinite root stack
∞√
Xtop =

lim←−n
n√
Xtop (whose definition is recalled later) of a fine saturated log analytic space X, we need

to introduce a notion of log structures on a topological space. The analytic space X itself could
be of the form Yan for a fine saturated log algebraic space Y locally of finite type over C, so we
also take the intermediate step of discussing log structures on analytic spaces in the language
of [BV12].

The definitions and facts of this section can be formulated in the language of topoi with
a sheaf of monoids (in the style of [GM], that discusses log structures in the sense of Kato
on certain categories of “spaces”). A detailed treatment employing this language will appear
elsewhere.

The proofs in this section will be somewhat terse. The interested reader can look at the more
detailed treatment of [BV12], in the algebraic case.

In this section X will be either a complex analytic space, or a topological space. We will
denote by AX the classical site of X (i.e. the site whose objects are open subsets of X, maps are
inclusions and coverings are families of jointly surjective maps), and by OX the sheaf of rings of
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complex analytic functions in the analytic case, and of continuous complex-valued function in
the topological case. We will use the term “line bundle” to indicate holomorphic line bundles
and continuous complex line bundles, respectively.

Remark 2.1. Log structures in the analytic context have already been considered in the liter-
ature, see for example [IKN05], and our notion coincides with the usual one. Log structures in
a topological setting were considered, with a different spirit, in [Rog09]. We do not know what
kind of relations there are between Rognes’s definition and ours, if any.

2.1. Log and DF log structures. The definitions that follow are the immediate generalization
to our context of the ones of [Kat89] and [BV12].

Definition 2.2. A log structure on X is a sheaf of monoids M on AX together with a map of

sheaves of monoids α : M → OX that induces an isomorphism α|α−1(OX)× : α−1O×X
∼=−→ O×X .

It turns out that, as in the algebraic context, in presence of the mild assumption of quasi-
integrality, this definition of a log structure is equivalent to the following.

Note that the quotient stack DivX = [OX/O×X ] on the site AX has a symmetric monoidal
structure, induced by multiplication on OX . It is moreover easy to check that it parametrizes
pairs (L, s) of a holomorphic (or continuous complex) line bundle with a global section, in
analogy with the algebraic case, and the monoidal operation is identified with tensor product.

Later on, when we want to stress that we are considering things in the topological setting,
we will denote the sheaf of continuous complex-valued functions on the topological space T by
CT , and the stack DivT by [C/C×]T .

Definition 2.3. A DF structure on X is a sheaf of sharp monoids A on AX together with a
symmetric monoidal functor A→ DivX with trivial kernel.

In this definition and from now on “DF” stands for “Deligne–Faltings”, and “trivial kernel”
means that if a section a maps to an object that is isomorphic to (OX , 1) (the unit object of
DivX), then a = 0. This is a particular instance of a “Deligne-Faltings object” as defined in
[BV12, Section 2].

One can define a category of log structures and a category of DF structures. A morphism
will in both cases consist of a homomorphism of sheaves of monoids that is compatible with the
structure map to OX (DivX respectively, in the 2-categorical sense). Moreover, log structures
and DF structures can be pulled back along morphisms of analytic or topological spaces. We
refer the reader to [BV12, Section 3] for a detailed treatment, that also adapts to the present
case.

Recall that a log structure is quasi-integral if the action of O×X on M is free.

Proposition 2.4. Let X be an analytic (or topological) space. Then there is an equivalence of
categories between quasi-integral log structures and DF structures on X.

Proof. The proof is a straightforward adaptation of the one of [BV12, Theorem 3.6]. �

As in the algebraic case, the proof shows that in comparing these two structures, the sheaf
A is identified with the characteristic sheaf M = M/O×X .

Definition 2.5. A log analytic space (resp. log topological space) is an analytic space (resp.
topological space) X with a quasi-integral log structure α : M → OX (equivalently, with a DF
structure L : A→ DivX).

For the rest of the paper all Kato log structures will be quasi-integral, we will drop the “Kato”
and “DF”, and just talk about log structures, and we will switch freely between the two notions
and notations.

One defines morphisms of log analytic (or topological) spaces as in the algebraic case, by
requiring a morphism f : X → Y together with a map f−1MY → MX , which is compatible
with the morphisms to the structure sheaves. A morphism f : X → Y of log analytic (or
topological) spaces is strict if the map f−1MY →MX is an isomorphism.
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2.2. Charts. Let us discuss local models for log structures in our context. The arguments of
Sections 3.3 and 3.4 in [BV12] can be adapted without difficulties, but we will refrain from
giving a fully detailed treatment.

Let P be a finitely generated monoid. The analytic space (SpecC[P ])an admits a “tautolog-
ical” log structure, induced via sheafification by the map of monoids P → C[P ]. This coincides

with the “divisorial” log structure induced by the open embedding P̂an ⊆ (SpecC[P ])an, i.e.
the log structure obtained by considering the subsheaf M of OX of functions that are invertible

on P̂an (we are using the notation P̂ of [BV12] for the Cartier dual of P gp). The log struc-

ture is equivariant for the action of P̂an, and hence induces a log structure on the quotient

stack [(SpecC[P ])an/P̂an] (see Section 2.3 below for a brief reminder about analytic and topo-
logical stacks). In the topological setting, we can consider the underlying topological spaces

(SpecC[P ])top and P̂top, and the analogous quotient stack [(SpecC[P ])top/P̂top]. These objects
will also be equipped with tautological log structures.

Remark 2.6. Strictly speaking, we have not defined log structures on analytic or topological
stacks, but we trust that the reader interested in the subtlety will be able to fill the gap. For
example, they can be seen as systems of compatible log structures on analytic (or topological)
spaces mapping to the given stack, as in [SST, Definition 2.10].

In order to uniformize the notation, in this section we will generally denote by A(P ) the
analytic space (SpecC[P ])an (reps. the topological space (SpecC[P ])top), and by A(P ) the

quotient stack [(SpecC[P ])an/P̂an] (resp. [(SpecC[P ])top/P̂top]).
These log structures on the stack A(P ) have a more natural interpretation in terms of DF

structures. The following is the analogue of [BV12, Proposition 3.25].

Lemma 2.7. Let P be a fine sharp monoid, and X an analytic (or topological) space. Then
there is an equivalence between the category of maps X → A(P ) and the category of symmetric
monoidal functors P → DivX(X).

Here DivX(X) denotes the symmetric monoidal category of sections of the stack DivX on
the whole space X.

Proof. The case P = N is clear from the fact that [OX/O×X ](X) is the category of line bundles
with a section on X, and the same objects are parametrized by morphisms to [C/C×]. More
generally, since [Ck/(C×)k] ∼= [C/C×] × · · · × [C/C×] where the product has k factors, the
conclusion follows also for P = Nk.

Next we show how to associate a symmetric monoidal functor P → DivX(X) to a map

X → A(P ) = [(SpecC[P ])an/P̂an] (we will use the notation for the analytic case - the topological
case is analogous). Given p ∈ P , consider the submonoid j : 〈p〉 ⊆ P generated by p. Since P
is fine and sharp, 〈p〉 ∼= N. Consider the composite

X → [(SpecC[P ])an/P̂an]→ [C/C×]

where the second map is induced by the inclusion j. This corresponds to an object (Lp, sp) of
DivX(X).

Consider now two elements p, q ∈ P . The object (Lp+q, sp+q) is determined by the morphism

X → [(SpecC[P ])an/P̂an]→ [(SpecC[〈p+ q〉])an/〈̂p+ q〉an] ∼= [C/C×].

Now note that the map [(SpecC[P ])an/P̂an] → [(SpecC[〈p + q〉])an/〈̂p+ q〉an] is obtained from
the ones corresponding to p and q, by mapping to

[(SpecC[〈p, q〉])an/〈̂p, q〉an] ⊆ [(SpecC[〈p〉])an/〈̂p〉an]× [(SpecC[〈q〉])an/〈̂q〉an]

∼= [C/C×]× [C/C×]

(where 〈p, q〉 denotes the submonoid of P generated by p and q), and then further to the quotient

stack [(SpecC[〈p+ q〉])an/〈̂p+ q〉an] ∼= [C/C×], via ⊗ : [C/C×]× [C/C×]→ [C/C×].
5



Consequently, we obtain an isomorphism (Lp, sp) ⊗ (Lq, sq) ∼= (Lp+q, sp+q). This gives a
symmetric monoidal structure to the assignment p 7→ (Lp, sp), and we obtain a symmetric
monoidal functor P → DivX(X).

To go in the opposite direction, let us take a presentation f : Nr → P with a finite number of
relations si = ti, where si, ti ∈ Nr for i = 1, . . . , N (a finitely generated monoid is also finitely
presented - this is Rédei’s theorem [Réd14, Theorem 72]). In other words P is the coequalizer
NN ⇒ Nr → P in the category of commutative monoids.

The given functor P → DivX(X) induces a functor Nr → DivX(X) such that the two
composites NN → DivX(X) are isomorphic. The case P = Nk gives us a morphism X →
[Cr/(C×)r], with an isomorphism between the two composites X → [CN/(C×)N ].

Now we point out that the diagram

[(SpecC[P ])an/P̂an]→ [Cr/(C×)r] ⇒ [CN/(C×)N ]

is an equalizer in analytic stacks. This follows from the algebraic analogue of what we are
proving (which is Proposition 3.25 of [BV12]) and the fact that the analytification functor (on

algebraic stacks) preserves finite limits. This gives a morphism X → [(SpecC[P ])an/P̂an]. One
easily checks that the resulting functor is a quasi-inverse to the previous construction. �

The previous lemma gives the quotient stack A(P ) a universal DF structure (in both the
analytic and topological cases).

Definition 2.8. A Kato chart for X is a strict morphism X → A(P ). A DF chart for X is a
strict morphism X → A(P ).

A Kato chart gives a DF chart by composing with the projection A(P ) → A(P ) (which is
strict).

As in the algebraic case, one can check that a symmetric monoidal functor P → DivX(X),
induces by sheafification a DF structure AP → DivX . The sheaf AP is obtained from the
constant sheaf P on X by killing the local sections that become invertible in DivX , so the
map P → AP is a cokernel in the category of sheaves of monoids on AX . This is, in fact, the
definition of a chart in [BV12, Section 3.3].

Analogously, a Kato chart corresponds to a homomorphism of monoids P → OX(X) that in-
duces the given log structure M → OX by sheafifying to α : P → OX , and taking the associated
log structure P ⊕α−1O×X

O×X → OX .

Definition 2.9. A log analytic (or topological) space is coherent if it locally admits Kato charts
for finitely generated monoids.

We will assume that all our log structures are coherent, and add adjectives such as “fine” and
“saturated” with the usual meaning, i.e. that one can find charts with monoids P that have
the corresponding property. This will be equivalent to ask for the stalks of the characteristic
monoid M to have the corresponding property (see [BV12, Section 3.3] for details).

Remark 2.10. One can check that for fine saturated log structures (in a quite general setting),
locally admitting Kato charts is equivalent to locally admitting DF charts.

2.3. Analytic and topological stacks. Let us briefly pause to recall the notions of analytic
and topological stacks, and the extension of the analytification functor on schemes over C. We
refer the reader to [Noo05] for details, especially about the latter case.

As algebraic stacks over schemes on some base S are defined as categories fibered in groupoids
over (Sch/S) that satisfy a gluing condition and are presented by a groupoid R⇒ U with “nice”
structure maps (typically étale or smooth), analytic and topological stacks are defined in the
same way by switching schemes with the appropriate kind of object.

For analytic stacks we consider the site of analytic spaces with the classical topology, and
consider stacks that are presented by groupoids R ⇒ U where the structure maps are holo-
morphic submersions. We will use the term “Deligne–Mumford” to indicate stacks that can be
presented with a groupoid where the structure maps are étale.
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For the topological case, a topological stack will be a stack on the site of topological spaces
with the classical topology, and admitting a presentation by a groupoid R ⇒ U with structure
maps that are “locally cartesian maps with Euclidean fibers” - the analogue in this context of
smooth maps (see [Noo05]). We will say that a topological stack is “Deligne–Mumford” if it
can be presented by a groupoid with étale structure maps (i.e. local homeomorphisms).

There is an analytification functor that produces an analytic stack from an algebraic stack
(locally of finite type over C), and an “underlying topological stack” functor that produces a
topological stack from an analytic stack. They both extend the natural analytification functor
on schemes of finite type over C and “underlying topological space” functor on analytic spaces,
respectively.

Remark 2.11. Let us briefly sketch the construction of the analytification functor (the other
case is analogous), and refer the reader to [Noo05, Section 20] for more details. We will apply
the same process to the “Kato-Nakayama functor” in Section 4 in order to extend it to log
algebraic stacks, and give a slightly more detailed proof (see Theorem 4.1).

Given an algebraic stack X locally of finite type over C, we want to produce an analytic
stack (X )an. Let us choose a presenting groupoid R ⇒ U for X , and consider the induced
groupoid Ran ⇒ Uan. This is a groupoid in analytic spaces, whose structure maps are holomor-
phic submersions. Hence the quotient [Ran/Uan] is an analytic stack, that we take to be the
analytification (X )an. One can check that the construction does not depend on the presenting
groupoid (up to unique isomorphism), and that this extends to a functor from algebraic stacks
to analytic stacks.

A more conceptual proof can be given along the lines of [CSST, Theorem 3.1], by constructing
(X )an via the left Kan extension of (−)an along the Yoneda embedding. This gives for (X )an

the “explicit” formula
(X )an = lim−→

SpecR→X
(SpecR)an

where the colimit is a lax colimit in the 2-category of analytic stacks.

2.4. Root stacks. Let us briefly discuss root stacks ([BV12, Section 4]) in the two settings
analyzed in the previous sections.

Given a sheaf of fine saturated monoidsA onX and n ∈ N, consider the inclusion in : A→ 1
nA.

This can be also be seen as the map A→ A that multiplies sections by n.

Definition 2.12. Let X be a log analytic (or topological) space, and n ∈ N a positive natural
number.

The n-th root stack of X is defined by assigning to an analytic (or topological) space Y the

groupoid
n√
X(Y ) of triples (φ,N, a), where φ : Y → X is a morphism, N : φ−1 1

nA → DivY is

a symmetric monoidal functor with trivial kernel and a is a natural equivalence from φ−1L to
the composite N ◦ in. The arrows are the obvious ones.

One easily checks that the formation of root stacks is compatible with strict base change.
Note also that If n | m there is a natural projection

m√
X → n√

X, induced by the factorization
1
nA ⊆

1
mA of im : A→ 1

mA.

Definition 2.13. The infinite root stack
∞√
X of X is the inverse limit lim←−n

n√
X.

This object can be seen either as a pro-object, or as a stack over the category of analytic
(or topological) spaces, although in the analytic case it is better to see it as a pro-object (see
Remark 2.15).

As a stack,
∞√
X can also be seen as functorially parametrizing symmetric monoidal functors

AQ → DivX that extend the given L : A → DivX , where AQ is the union
⋃
n∈N

1
nA of all the

Kummer extensions of A. See [TVb, Section 3] for details.

Proposition 2.14. Let X be a fine saturated log analytic (or topological) space. Then for every

n the n-th root stack
n√
X is an analytic (or topological) Deligne–Mumford stack.
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Proof. The same proof given in [BV12, Section 4] applies. We briefly sketch it below.
We can assume that there is a global Kato chart X → A(P ). Because this map is strict, the

diagram
n√
X //

��

n
√
A(P )

��
X // A(P )

is cartesian, so it suffices to show that n
√
A(P ) is an analytic DM stack.

From the functorial definition and Lemma 2.7 it is clear that the root stack of the stack A(P )
is the stack A( 1

nP ), with the natural map A( 1
nP )→ A(P ). Note that since 1

nP
∼= P as monoids,

we actually have A( 1
nP ) ∼= A(P ) as stacks with a log structure, but the map mentioned above

is not the identity.
Moreover, the diagram

n
√
A(P ) //

��

A( 1
nP )

��
A(P ) // A(P )

is cartesian, and shows that, as in the algebraic case, we have an isomorphism

n
√
A(P ) =

[
A( 1

nP )/µn(P )
]
,

where µn(P ) is the Cartier dual (i.e. the group of characters) of the cokernel of P gp → 1
nP

gp. �

Note that this also gives a quotient stack presentation

n√
X ∼= [Xn/(µn(P ))an]

in presence of a Kato chart X → A(P ), where Xn = X ×A(P ) A( 1
nP ). The infinite root stack,

as in the algebraic case, is only pro-Deligne–Mumford.

Remark 2.15. There is a difference in the analytic case, regarding the infinite root stack
∞√
X,

that is worth a few words. In the analytic case, this stack has very few objects. This is due to
the fact that analytic spaces are by definition locally of finite type, and thus they cannot have
roots of every order of a non-zero non-constant holomorphic function.

Let us consider for example X = C, with coordinate z, as a log analytic space with the log
structure given by the origin, and its infinite root stack

∞√
X. If f : Y → C is a non-constant

map from an analytic space Y that hits the origin, then the pullback to Y of the function z is
a non-constant analytic function, and there cannot exist a sequence of analytic functions zn on
Y such that znn = f∗z for all n: the local ring OY,y in a point y ∈ Y that maps to the origin
is local Noetherian, and if there existed roots as above, then f∗z ∈ mn

y for every n, hence we
would have f∗z = 0, as

⋂
nm

n
y = {0}.

In this case
∞√
X is isomorphic to the disjoint union C×

⊔ ∞√
0, where the origin 0 ∈ C is given

the induced log structure. Because of this, in the analytic setting it is best to see the infinite
root stack as a pro-object instead than an actual stack.

2.5. Comparison of root stacks. Let us compare the different notions of log structures and
root stacks that we just defined, using the analytification and “underlying topological space”
functors.

If X is a fine saturated log algebraic space locally of finite type over C, then by applying the
analytification functor we obtain an analytic space Xan, and an induced analytic log structure.
This is obtained by pulling back via the natural morphism of ringed topoi φ : Xan → Xét, where
Xét is the small étale topos of X.

8



Concretely, given α : M → OX on Xét, we obtain a sheaf φ−1M on the analytic site of Xan,
and an induced symmetric monoidal functor φ−1α : φ−1M → OXan . This is not a log structure
because O×Xan

is bigger than φ−1O×X , but we can take the associated log structure

αan : Man = φ−1M ⊕(φ−1α)−1O×Xan
O×Xan

→ OXan

(note that the sheaf M does not change, i.e. Man = φ−1M). Hence we can analytify a fine
saturated log scheme locally of finite type to obtain a fine saturated log analytic space.

In the same way, starting from a fine saturated log analytic space and applying the “underly-
ing topological space” functor, we obtain a fine saturated log topological space. It is clear that
both of these operations preserve the existence of local charts, and the sheaf M . Consequently,
properties of the log struxcture such as being finitely generated, integral, saturated or coherent
are also preserved.

We prove now that the three versions of the root stack construction (algebraic, analytic and
topological) are compatible with the analytification and “underlying topological space” functors.

Proposition 2.16. Let X be a fine saturated log algebraic space locally of finite type over C
(resp. analytic space), and n ∈ N be a positive integer.

Then the analytic (resp. topological) stack
n√
Xan (resp.

n√
Xtop) associated with the n-th

root stack of X is canonically isomorphic to the n-th root stack
n√
Xan (resp. n

√
Xtop) of the

associated log analytic space (resp. log topological space) of X.

In short,
n√
Xan

∼= n√
Xan and

n√
Xtop

∼= n
√
Xtop. This will be used to describe functorially the

topological infinite root stack
∞√
Xtop = lim←−n

n√
Xtop of a log analytic space (or log algebraic

space) X.

Proof. The proof will be entirely analogous in the two cases, so we will carry it out only in the
analytic case.

The general construction of (X )an, if X is any stack over schemes, is as a left Kan extension
of (−)an along the Yoneda embedding, as recalled at the end of Remark 2.11. In other words
we have the formula

(X )an = lim−→
SpecR→X

(SpecR)an

where the colimit is a lax colimit in the 2-category of analytic stacks.
Now assume we are given a map f : SpecR→ n√

X, and let us explain how to produce a map
g : (SpecR)an → n√

Xan. By the functorial description of the stack
n√
X, the map f corresponds

to a morphism φ : SpecR→ X and a lifting of φ−1L : φ−1A→ DivR to N : φ−1 1
nA→ DivR, and

analogously for
n√
Xan and the map g on the analytic side. Hence, to obtain a map g as above

we need to produce a lifting Nan : φ−1 1
nAan → Div(SpecR)an of the functor φ−1Lan : φ−1Aan →

Div(SpecR)an .

Let a be a section of φ−1 1
nAan over some analytic open U ⊆ (SpecR)an. Then we can find

an étale V → SpecR with a section σ : U → Van that is a homeomorphism onto the image,
and a section b of φ−1 1

nA(V ) that corresponds to a. The section b gives N(b) = (Lb, sb), a
line bundle over V with a global section s. By analytifying, we get a complex line bundle
(Lb)an with a global holomorphic section (sb)an. By restricting to U , this defines the image
of a in Div(SpecR)an(U). This process extends in the obvious way to a symmetric monoidal

functor of monoidal stacks over the analytic site A(SpecR)an that lifts φ−1Lan, i.e. a morphism

(SpecR)an → n√
Xan.

From this procedure we obtain a morphism of analytic stacks

lim−→
SpecR→n√

X

(SpecR)an =
n√
Xan →

n
√
Xan

as follows. For every C-algebra R of finite type, every morphism SpecR → n√
X induces a

morphism (SpecR)an → n√
Xan as explained above. Moreover this assignment is compatible

9



with commuting triangles

SpecR //

��

n√
X

SpecR′

;;

and therefore, by the universal property of the colimit, we obtain the desired morphism
n√
Xan →

n√
Xan.
To check that this map is an isomorphism, we can do so locally on X, where there is a Kato

chart X → SpecC[P ] for a fine torsion-free monoid P . In that case we have a quotient stack

description of
n√
X as

n√
X = [Xn/µn(P )]

where Xn = X ×SpecC[P ] SpecC[ 1
nP ] and µn(P ) is the Cartier dual of the cokernel of P gp →

1
nP

gp, that acts on Xn by acting on the second factor. From the construction of (−)an via

presenting groupoids of [Noo05, Theorem 20.1], recalled in Remark 2.11, it follows that
n√
Xan =

[(Xn)an/µn(P )an].
From the analytic stack description of

n√
Xan as a quotient in the presence of a global chart

given in Section 2.4, we see that it coincides with the one just described. The map
n√
Xan →

n√
Xan in this local case is an isomorphism, and this concludes the proof. �

3. The Kato-Nakayama space as a “root stack”

Let X be a fine saturated log analytic space. In this section we give a functorial description
of the Kato-Nakayama space Xlog (see [KN99] or the Appendix of [CSST]) of X in the language
of DF structures, and that bears a close similarity to the description of root stacks. It presents
the Kato-Nakayama space as a sort of “transcendental” root stack.

As a byproduct of this alternative description we obtain a global construction of the canonical
morphism ΦX : Xlog → (

∞√
X)top of [CSST] (Section 3.4 and Proposition 4.6 below).

Let us start by briefly recalling how Xlog is constructed [KN99, Section 1]. Let us denote by

p† the log analytic space whose underlying space is SpecC, and the log structure is defined by
the monoid R≥0 × S1 and the map α : R≥0 × S1 → C = OSpecC given by (r, a) 7→ r · a. One

defines Xlog as the set of morphisms of log analytic spaces Hom(p†, X). Equivalently, elements
of Xlog are pairs (x, φ) consisting of a point x ∈ X and a homomorphism of groups φ : Mgp

x → S1

such that φ(f) = f(x)
|f(x)| for every f ∈ O×X,x ⊆M

gp
x .

If X = C(P ) = (SpecC[P ])an, then Xlog can be naturally identified with Hom(P,R≥0 × S1).
More generally, if X has a Kato chart X → C(P ), then Xlog can be identified with a closed
subset of the space X ×Hom(P gp, S1) (where Hom(P gp, S1) has its natural topology), and we
can equip it with the induced topology. This turns out to be independent of the particular Kato
chart that we choose, so we get a topology on the space Xlog for a general X.

The resulting map τ : Xlog → X that sends (x, φ) to x is continuous and proper. The fiber

τ−1(x) over a point x ∈ X can be identified with the space Hom(M
gp
x , S

1), which is non-
canonically isomorphic to a real torus (S1)r, where r is the rank of the (finitely generated)
free abelian group M

gp
x . If the log structure of X is determined by a normal crossings divisor

D ⊆ X, then the space Xlog coincides with the “real oriented blowup” of X along D.
The space Xlog should be thought of as an “underlying topological space” of the log analytic

space X, where the log structure is replaced by the non-trivial topology of the fibers of the map
τ : Xlog → X. For example, in [KN99, Theorem 0.2] it is proven that log étale and log de Rham
cohomology on X can be identified with “Betti” (or singular) cohomology on the space Xlog.

3.1. The case of a single divisor. Let us first look at a motivating example.
Assume that X is a smooth analytic space with a log structure given by a single smooth

divisor. In this case there is a global chart X → [C/C×] for the log structure, corresponding to
10



the map N → [C/C×](X) that sends 1 to (OX(D), 1D). Here we are considering C and C× as
analytic spaces.

The various root stacks of X can be obtained as fibered products in the following manner
(see Section 2.4): if ∧n : [C/C×] → [C/C×] is the map induced by “raising to the n-th power”
on both the space and the group, we have a cartesian diagram

n√
X //

��

[C/C×]

∧n
��

X // [C/C×].

The basic insight is that the Kato-Nakayama space can be obtained in a similar way as well.
The idea for what follows is due to Kai Behrend.

Let us consider the “extended complex plane”

C = ({−∞} × R) ∪ C = ({−∞} ∪ R)× R

with its operation given by addition (where −∞ + x = −∞ for every x ∈ {−∞} ∪ R), that
makes it a commutative topological monoid. There is an action of the group C+ of complex
numbers with addition (we use this notation to distinguish it from the analytic space C) on C
given by translation, i.e. (a+ ib) · (x, y) = (a+x, b+ y), and we will consider the quotient stack
[C/C+] as a topological stack.

The action of C+ on C has two orbits: points (x, y) with x ∈ R have trivial stabilizer and the
action is transitive among them, so they give a single open point of [C/C+]. The other orbit is
the line {−∞} × R, with stabilizer R+ ⊆ C+. So we can loosely write [C/C+] = ∗ ∪ BR+.

We have a morphism of stacks exp: [C/C+]→ [C/C×] given by the exponential exp: C+ →
C× at the level of groups, and by the exp-equivariant map C→ C that sends (x, y) to ex+iy (with
the convention that e−∞+iy = 0), at the level of spaces. This coincides with the universal cover
of C× if we restrict it to the complement of the line {−∞} × R, which in turn gets contracted
to the origin in C. Now note that [C/C×] also has two points, namely [C/C×] = ∗ ∪ BC×, and
the morphism [C/C+] → [C/C×] “maps” ∗ to ∗ and BR+ → BC×, via exp: R+ → C×. This
last homomorphism is injective with cokernel isomorphic to S1.

Because of this description, the morphism [C/C+]→ [C/C×] is an isomorphism over the open
point and an S1-bundle over the closed point. Since the map X → [C/C×] sends X \D to the
open point and D to the closed point, it is apparent that by pulling back we will find precisely
the Kato-Nakayama space (i.e. the real oriented blow up, in this case), so that there should be
(see Section 3.3 below for the proof) a cartesian diagram

Xlog
//

τ

��

[C/C+]

exp

��
X // [C/C×].

Moreover note that [C/C+]→ [C/C×] factors as [C/C+]→ [C/C×]
∧n−→ [C/C×] for every n by

sending (x, y) ∈ C to e(x+iy)/n ∈ C and using exp
( ·
n

)
: C+ → C× on the groups.

This will give a morphism Xlog →
n√
Xtop for every n (here we are using Proposition 2.16),

that all together will give a morphism Xlog → lim←−n(
n√
X)top =

∞√
Xtop of topological stacks, in

this special case.

3.2. The general case. Let us use the language of DF structures to generalize the above
construction.

The log structure of X is given by a morphism A→ DivX of symmetric monoidal stacks on
the analytic site AX . The n-th root stack

n√
X parametrizes liftings of the log structure to the

11



sheaf of formal fractions 1
nA, i.e. diagrams

A //

��

DivX

1
nA

<<

(over some analytic space over X) or, alternatively, liftings

A //

""

DivX

DivX

∧n

OO

where ∧n : DivX → DivX sends (L, s) into (L⊗n, s⊗n).
There is a description of the Kato-Nakayama space in this spirit, that uses the symmetric

monoidal stack [C/C+] introduced in the previous section (which turns out to “dominate” every
such root morphism ∧n, as we already explained above and will discuss in more detail in Section
3.4).

Definition 3.1. Let us consider the stack XC over the category of topological spaces over Xtop

that sends a space φ : T → Xtop to the groupoid of liftings

φ−1A //

$$

[C/C×]T

[C/C+]T

exp

OO

where φ−1A→ [C/C+]T is a symmetric monoidal functor. The arrows between the objects are
given by the obvious natural transformations.

Here the map φ−1A→ [C/C×]T is the pullback to T of the topological DF structure on Xtop

induced by the given analytic DF structure on X.
The stackXC parametrizes liftings of the C×-torsors (φ−1L)(a) to C+-torsors along exp: C+ →

C×, equipped with a C+-equivariant map to C that covers the given C×-equivariant map
(φ−1L)(a)→ C.

Theorem 3.2. Let X be a fine saturated log analytic space. The stack XC is represented
by the Kato-Nakayama space Xlog, i.e. there is a canonical isomorphism of topological stacks
XC
∼= Xlog over Xtop.

The starting point of the proof is the following functorial characterization of Xlog.

Theorem 3.3 ([IKN05, (1.2)]). Consider the functor Flog that sends a topological space φ : T →
Xtop to the set of morphisms of sheaves of abelian groups c : φ−1Mgp → S1

T such that c(φ−1f) =
f/|f | for f ∈ O×X , and that acts in the obvious way on the arrows.

Then Flog is represented by the Kato-Nakayama space Xlog.

Proof of Theorem 3.2. Let us describe concretely how the analytic log structure α : M → OX
on X induces a topological log structure on Xtop. We take the composite β : M → CXtop of
α and the natural map OX → CXtop (here we are denoting by CT the sheaf of continuous
complex-valued functions on the topological space T ), and then form the amalgamated sum
Mtop = M ⊕β−1(C×Xtop

) C
×
Xtop

. The induced map αtop : Mtop → CXtop gives the topological log

structure. Note that we have an isomorphism between the characteristic shaves M ∼= Mtop,
induced by M →Mtop.

We will rephrase the functorial interpretation of Theorem 3.3 in the language of DF structures.
First note that since S1 is a group, we have Hom(φ−1Mgp, S1

T ) = Hom(φ−1M,S1
T ) and this is

compatible with the condition on sections of O×X .
12



We claim that the set of homomorphisms{
c ∈ Hom(φ−1M,S1

T )
∣∣∣ c(φ−1f) =

f

|f |
for f ∈ O×X

}
is the same as the set of morphisms of sheaves of monoids d : φ−1M → (R≥0 × S1)T such that
d(φ−1f) = (|f |, f/|f |) for f ∈ O×X and the composite φ−1M → (R≥0 × S1)T → (R≥0)T is the
homomorphism sending a section m ∈ φ−1M to the continuous function |αtop(m)| with values
in R≥0 (where | · | denotes the usual euclidean absolute value on C).

Given such a d, we can compose with the second projection (R≥0 × S1)T → S1
T and obtain a

c ∈ Hom(φ−1M,S1
T ) satisfying the condition above. In the other direction, given c : φ−1M →

S1
T , one can define the corresponding d via d(m) = (|αtop(m)|, c(m)).
Now we claim that morphisms d : φ−1M → (R≥0 × S1)T as above correspond to symmetric

monoidal functors

d : φ−1M → [R≥0 × S1/C×]T

that lift the DF structure Ltop : φ−1M → [C/C×]T associated with αtop. Here the action of
C× ∼= R>0×S1 on R≥0×S1 is given by multiplication on the two factors and [R≥0×S1/C×]T →
[C/C×]T is induced by the C×-equivariant function R≥0 × S1 → C sending (r, a) to r · a ∈ C.

First observe that, by construction of the sheaf Mtop and the log structure αtop, there is a
bijection between maps d : φ−1M → (R≥0 × S1)T such that d(φ−1f) = (|f |, f/|f |) for every

f ∈ O×X and maps d̃ : φ−1Mtop → (R≥0 × S1)T such that d̃(f) = (|f |, f/|f |) for every f ∈ C×T .

Now note that the group C×T acts on both φ−1Mtop and (R≥0×S1)T , and moreover the action

on φ−1Mtop is free, with quotient φ−1M . By taking the stacky quotient of d̃ by this action we
get a symmetric monoidal functor

d : φ−1M → [R≥0 × S1/C×]T .

Observe also that the composite φ−1M
d−→ [R≥0 × S1/C×]T → [C/C×]T is naturally identified

with φ−1Ltop, where Ltop is the DF structure associated with αtop.

The inverse construction is obtained by taking the base change of such a d along the projection
(R≥0 × S1)T → [R≥0 × S1/C×]T , which is a C×T -torsor.

Finally we note that there is an isomorphism of symmetric monoidal stacks

[C/C+] ∼= [R≥0 × S1/C×],

where the action on the left is the same as in Section 3.1. The subgroup j : Z ⊆ C+ given
by k 7→ 2kπi acts without stabilizers on C, and the quotient is C/Z = R≥0 × S1 (the map

C→ R≥0 × S1 is (x, y) 7→ (ex, eiy)). Moreover the cokernel of j is C× (and the map is given by
the exponential), and therefore

[C/C+] ∼= [(C/Z)/(C+/Z)] ∼= [R≥0 × S1/C×]

as symmetric monoidal stacks.
This also gives an isomorphism of symmetric monoidal stacks [R≥0 × S1/C×]T ∼= [C/C+]T

over the site AT , which is compatible with the natural maps to [C/C×]T . This shows that the
functorial description of Theorem 3.3 coincides with the one of the stack XC that we introduced
above, and concludes the proof. �

Remark 3.4. With the same reasoning as in the proof, we also have

[R≥0 × S1/C×] ∼= [R≥0/R>0]

(by writing C× = R>0 × S1 and cancelling the S1 factor).
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3.3. Charts. In the spirit of the functorial interpretation of Theorem 3.2, we can obtain
“charts” for the Kato-Nakayama space Xlog out of charts for the log structure of X.

Specifically, when X has a DF chart X → [(SpecC[P ])an/P̂an] with P fine and torsion-free,
the cartesian diagram described in Section 3.1 can be replaced by the more general

(1) Xlog
//

��

[C(P )/C+(P )]

��
Xtop

// [C(P )/C×(P )]

where C(P ) = Hom(P,C) and C+(P ) = Hom(P,C+) have their natural topologies and monoid
or group structures. The vertical map is given by composition with the exponential maps C→ C
and C+ → C× that were discussed in Section 3.1, and for P = N the diagram reduces to the
one showing up at the end of the discussion.

Remark 3.5. For every finitely generated monoid P there is an isomorphism

[C(P )/C+(P )] ∼= [(R≥0 × S1)(P )/C×(P )]

induced by the projection C(P )→ (R≥0 × S1)(P ) and the exponential C+(P )→ C×(P ), as in
the proof of Theorem 3.2. In an analogous way we also have an isomorphism

[(R≥0 × S1)(P )/C×(P )] ∼= [R≥0(P )/R>0(P )] .

We can use any one of these models to describe charts for Xlog, and we will switch back and
forth without further mention.

Proposition 3.6. Let X be a fine saturated log analytic space equipped with a DF chart X →
[(SpecC[P ])an/P̂an], with P fine and torsion-free. Then there is a natural diagram (1) as above,
and it is cartesian.

Proof. The point is to show that [C(P )/C+(P )]→ [C(P )/C×(P )] is the stack of charts for the
objects parametrized by the Kato-Nakayama space, as in Theorem 3.2.

Given the isomorphisms
[C/C+] ∼= [R≥0 × S1/C×]

and
[C(P )/C+(P )] ∼= [(R≥0 × S1)(P )/C×(P )] ,

this claim follows from the following two facts.

• For a fine torsion-free monoid P and a topological space T , symmetric monoidal functors
P → [R≥0 × S1/C×](T ) correspond to morphisms T → [(R≥0 × S1)(P )/C×(P )] (the
analogue of Lemma 2.7 - see also [TVa, Proposition 3.10]).
• A symmetric monoidal functor P → [R≥0×S1/C×](T ) can be sheafified to a morphism

of symmetric monoidal stacks A→ [R≥0×S1/C×]T with trivial kernel (see Propositions
2.4 and 2.10 of [BV12]), compatibly with the sheafification of the induced functor P →
[R≥0 × S1/C×](T )→ [C/C×](T ).

We leave the details to the reader. �

These kinds of charts are related to the local models for Xlog given by the topological space
Hom(P,R≥0 × S1) (see [KN99, Section 1]) in the same way as DF charts are related to Kato
charts for log spaces.

In fact for every fine monoid P the natural diagram

(R≥0 × S1)(P ) //

��

[(R≥0 × S1)(P )/C×(P )]

��
C(P ) // [C(P )/C×(P )]

is cartesian.
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Note however that by using the presentation [C(P )/C+(P )] to compute the fibered product
above, we would “spontaneously” end up with the diagram

[C(P )/Z(P )] //

��

[C(P )/C+(P )]

��
C(P ) // [C(P )/C×(P )]

where the group Z(P ) = Hom(P,Z) is the kernel of the surjective map exp(P ) : C+(P ) →
C×(P ). Note that to be precise this should be denoted by 2πiZ(P ), and thought of as
Hom(P, 2πiZ), but we prefer to keep the notation lighter, and have the coefficient 2πi in the
inclusion Z→ C+, as k 7→ 2πik.

Note that of course there is an isomorphism (R≥0×S1)(P ) ∼= [C(P )/Z(P )], but this quotient

stack presentation gives some insight into the fact that the space C(P ), that is used by Ogus
in [Ogu03] in the form of H(P ) = Hom(P,H) = Hom(P,R≥0) × Hom(P,R) (see in particular
Section 3.1), is like an “atlas” for the Kato-Nakayama space in this language. This is further
explored in [Tal], in relation to a correspondence between certain sheaves of modules on Xlog

and parabolic sheaves with real weights.
We can see an analogy with root stacks by looking at the presentations

n√
X ∼= [Xn/µn(P )]

given by a Kato chart X → SpecC[P ]. Here the atlas is Xn = X ×SpecC[P ] SpecC[ 1
nP ], and the

group µn(P ), which is the kernel of C×(P )→ C×(P ) induced by z 7→ zn, is the analogue of the
group Z(P ) (kernel of the exponential) above.

Remark 3.7 (Differentiable structure). The space Xlog has more structure than just that of a

topological space, as may be apparent by staring at the charts we just described. The space C
has a smooth (even real analytic) structure (with a boundary), that is respected by the action
of C+.

In fact, as proven in [GM, Section 6.8], the Kato-Nakayama space is naturally a differentiable
space [Gil], and on top of that it carries a sort of “log structure” of its own. Precisely, it is has
a positive log differentiable structure [GM, Section 6.1], meaning a log structure on the space

Xlog equipped with the sheaf of monoids R≥0
Xlog

, where for a differentiable space Y the sheaf

R≥0
Y on Y is the sheaf of functions of differentiable spaces to R≥0.
In analogy with the other cases (i.e. of log structures on algebraic, analytic and topolog-

ical spaces), the stack of DF charts for this category of log structures would be the quotient
[R≥0(P )/R>0(P )] (see [TVa, Proposition 3.10] for a precise statement, in a more general setting),
and in fact the charts for Xlog described in this section are of this form. The resulting structure

on Xlog coincides with the one of [GM, Section 6.8], since the maps Xlog → [C(P )/C+(P )]
factor through the “Kato chart” given by Xlog → (R≥0 × S1)(P ) → R≥0(P ), in presence of a
Kato chart X → (SpecC[P ])an for X.

3.4. The map to the infinite root stack. Let us show how the functorial interpretation of
Theorem 3.2 gives a globally defined morphism of topological stacks Xlog →

n√
Xtop for every

n, and these assemble into a morphism of pro-topological stacks Xlog →
∞√
Xtop. We will check

later (see Proposition 4.6) that this morphism coincides with the one constructed in [CSST,
Proposition 4.1].

The point here is that the description of Xlog as a root stack allows us to canonically extract
n-th roots, as follows: for a topological space φ : T → Xtop let us define

Φn(T ) : Xlog(T )→ n√
Xtop(T )

by sending a morphism of symmetric monoidal categories φ−1A → [C/C+]T to the composite

with the map fn : [C/C+]T → [C/C×]T , induced by C → C that sends (x, y) to e(x+iy)/n and

C+ → C× that sends z to ez/n.
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This gives an object of
n√
Xtop. In fact we have a commutative diagram

[C/C+]T
fn //

exp &&

[C/C×]T

∧n
��

[C/C×]T

that shows that φ−1A→ [C/C+]T
fn−→ [C/C×]T lifts the functor φ−1L : φ−1A→ [C/C×]T along

the n-th power map ∧n : [C/C×]T → [C/C×]T . Here we are using the description of the functor

of points of
n√
Xtop given by Proposition 2.16.

The resulting morphisms are compatible with respect to the projections
m√
Xtop →

n√
Xtop

where n | m, and they give a morphism of pro-objects Xlog →
∞√
Xtop.

Remark 3.8. As in the previous discussions, we can exchange [C/C+] with [R≥0 × S1/C×].
Note however that the above maps cannot be defined as equivariant maps R≥0×S1 → C (there
is no section of the maps zn : S1 → S1 or C× → C×).

Remark 3.9 (Real roots). The point of the above construction is to make use of the morphism
φ 1

n
: [C/C+]→ [C/C+] induced by the maps C→ C acting as (x, y) 7→ (x/n, y/n) and C+ → C+

given by z 7→ z/n. This corresponds to extracting n-th roots, in that the diagram

[C/C+]

exp

��

[C/C+]

exp

��

φ 1
noo

[C/C×]
∧n // [C/C×]

commutes.
More generally one can consider φr : [C/C+] → [C/C+] for any r ∈ R>0, given in the same

way by the maps C → C, defined as (x, y) 7→ (rx, ry), and C+ → C+ given by z 7→ rz. Note
that φr is an isomorphism for every r, with inverse φ 1

r
.

Using these morphisms one can show that a lifting parametrized by the Kato-Nakayama space

φ−1A
L //

LC $$

[C/C×]T

[C/C+]T

OO

will induce a 2-commutative diagram

φ−1A

��

L // [C/C×]T

φ−1AR≥0

LR

99

(where AR≥0
is the subsheaf of monoids of Agp ⊗Z R generated by sections of the form a ⊗ r

with a ∈ A and r ∈ R≥0) that can be seen as a “real root” of the log structure, by setting

LR

(∑
i

ri · ai

)
= exp(φr1(LC(a1)))⊗ · · · ⊗ exp(φrk(LC(ak)).

where ri ∈ R≥0 and ai are sections of φ−1A.
It is not clear whether these two kinds of lifting can be identified completely, especially

without imposing any “continuity” conditions on the second type of diagrams.
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4. The Kato-Nakayama “space” of a log algebraic stack

In this final section we observe that the Kato-Nakayama construction applies also to log
algebraic stacks that are locally of finite type over the complex numbers (and to log analytic
stacks) and produces a topological stack, and we relate this to the “charts” for the Kato-

Nakayama space described in Section 3.3. We also check that the morphism Xlog →
∞√
Xtop

that was described in Section 3.4 coincides with the one of [CSST, Proposition 4.1].
Denote by Logst the 2-category of locally of finite type fine log algebraic stacks over C, and

by Topst the 2-category of topological stacks.

Theorem 4.1. There is a morphism of 2-categories (−)log : Logst → Topst that preserves
colimits, and extends the usual Kato-Nakayama functor on log algebraic spaces. This functor is
uniquely determined (in the 2-categorical sense) by these properties.

Remark 4.2. The preceding theorem is valid also if we replace the 2-category Logst by the
2-category of fine log analytic stacks. Let us note that the analytification LOGan of Olsson’s
stack LOG (see [Ols03]) is the stack that parametrizes fine log structures on analytic spaces,
that we denote temporarily by LOGC.

In fact, the discussion in [Ols03, Section 5] describes the stack LOG as the colimit in the
category of stacks of the diagram, indexed by finitely generated integral monoids, of the toric

stacks [SpecC[P ]/P̂ ], with the natural maps between them. Since the local toric models are
“the same”, that discussion applies also to the analytic stack LOGC that parametrizes fine log
structures on analytic spaces, which is then the colimit, indexed by the same category, of the

stacks [(SpecC[P ])an/P̂an].
Finally the analytification functor preserves colimits, and there is a natural isomorphism

[SpecC[P ]/P̂ ]an
∼= [(SpecC[P ])an/P̂an] for any fine monoid P , so we obtain an induced canonical

isomorphism LOGan
∼= LOGC.

The functor (−)log can be applied to the analytic stack LOGan to obtain a “universal” Kato-
Nakayama space, in the sense that for every fine log analytic space (or stack) X there is a
cartesian square of topological stacks

Xlog
//

��

LOGlog

��
Xtop

// LOGtop.

Remark 4.3. As it happens for the Kato-Nakayama space (see Remark 3.7), for every log
algebraic (or analytic) stack X the topological stack Xlog should have a structure of a “(pos-
itive log) differentiable stack” over the real numbers (the terminology is a bit awkward, since
“differentiable stack” already has a meaning in the smooth differentiable world).

Proof of Theorem 4.1. We mimic the proof in [Noo05, Section 20].
Assume that R ⇒ U is a presentation of a log algebraic stack X . Then both U and R have

induced log structures, and the structure maps of the groupoid presentation are strict. Since
the Kato-Nakayama functor preserves finite limits, we see that the resulting Rlog ⇒ Ulog is a
groupoid in topological spaces.

Since the structure maps of R⇒ U are smooth and strict, the structure maps of Rlog ⇒ Ulog

are “locally cartesian maps with euclidean fibers” in Noohi’s terminology (see [Noo05]). We
define Xlog to be the quotient stack [Ulog/Rlog]. We sketch an argument to justify that this
is independent of the groupoid presentation and extends to a functor, leaving most of the
2-categorical details to the reader.

Given another presenting groupoid R′ ⇒ U ′ of X , we can find a third one R
′′
⇒ U

′′
that

has a map to both of these, inducing isomorphisms between the associated stacks. We will
check that the induced morphisms [U

′′
log/R

′′
log] → [U

′
log/R

′
log] and [U

′′
log/R

′′
log] → [Ulog/Rlog] are

isomorphisms. In this way we get an isomorphism [U
′
log/R

′
log] → [Ulog/Rlog] that depends on

17



the choice of the third groupoid, but is unique up to a unique isomorphism. This defines the
functor on objects.

Let us check that a map of groupoids (R⇒ U)→ (R′ ⇒ U ′) in algebraic spaces that induces
an isomorphism of quotient stacks gives an isomorphism [Ulog/Rlog] ∼= [U ′log/R

′
log]. We use the

following fact (see [Sta16, Tag 046R]): a morphism of groupoids as above in an arbitrary site
induces an isomorphism between the quotient stacks if and only if

(i) the composite t ◦ π1 : R′ ×U ′ U → U ′ locally admits sections, and
(ii) the natural map R→ (U × U)×U ′×U ′ R′ is an isomorphism.

In our situation, since (R ⇒ U) → (R′ ⇒ U ′) induces an isomorphism on the quotient stacks,
we infer that (i) and (ii) hold. Using the fact that all maps are strict and by applying the
functor (−)log to all diagrams, we can conclude that (i) and (ii) also hold for the map of
groupoids (Rlog ⇒ Ulog)→ (R′log ⇒ U ′log) in topological spaces. Thus, the induced [Ulog/Rlog]→
[U ′log/R

′
log] is an isomorphism.

On 1-arrows, given a morphism f : X → Y we can find presenting groupoids of X and Y and
a map between those, that induces f . We use the above construction to obtain a morphism
flog : Xlog → Ylog, and this again turns out to be unique up to a unique isomorphism.

The effect on natural transformation is uniquely determined by the above. �

Note that by construction for any log algebraic (or analytic) stack X there is a projection
τ : Xlog → Xtop.

Remark 4.4. A more general statement could be proved along the lines of Theorem 3.1 (and
the discussion that follows) of [CSST], using more sophisticated machinery.

Example 4.5. The Kato-Nakayama space of [A1/Gm] is the topological stack [R≥0 × S1/C×],
for the usual action. More generally, for a fine saturated monoid P the Kato-Nakayama space

of the quotient [(SpecC[P ])an/P̂an] is the stack [(R≥0 × S1)(P )/C×(P )] that appears in the
discussion of Section 3.3.

Let us show that the morphism constructed in Section 3.4 coincides with the morphism ΦX

of [CSST, Section 4].

Proposition 4.6. The morphism Xlog →
∞√
Xtop of Section 3.4 coincides with the morphism

ΦX constructed in [CSST, Proposition 4.1].

Proof. First, in light of the construction of Theorem 4.1 we can reinterpret Proposition 4.4 of
[CSST] as follows: if X is a fine saturated log algebraic space locally of finite type over C (or
a fine saturated log analytic space), then for every positive integer n the canonical morphism

(
n√
X)log → Xlog is an isomorphism.
Indeed, it is proven there that, locally where X has a Kato chart, and thus the root stack

has a presentation
n√
X = [Xn/µn(P )], the map (Xn)log → Xlog is a µn(P )an-torsor. On the

other hand the stack (
n√
X)log is identified with the quotient stack [(Xn)log/µn(P )an] (note

µn(P )log = µn(P )an since the log structure is trivial), and hence turns out to be isomorphic to
Xlog via the natural map.

Note that since for every n there is a projection (
n√
X)log →

n√
Xtop, this produces a canonical

morphism Xlog
∼= (

n√
X)log →

n√
Xtop, that manifestly coincides with the Φn constructed in

[CSST, Section 4].
Now let us check that it also agrees with the natural transformation described in Section 3.4.

18



The point is the following commutative diagram:

(
n√
X)log

∼=

{{

��

// [C( 1
nP )/C+( 1

nP )]

��

φn(P )

∼=

vv
Xlog

��

//

##

[C(P )/C+(P )]

��

φ 1
n

(P )

EE

n√
Xtop

//

zz

[C( 1
nP )/C×( 1

nP )]

vv
Xtop

// [C(P )/C×(P )]

where the bottom, front and back side of the cube (and hence also the top) are cartesian, and
φn(P ), φ 1

n
(P ) are defined in the same way as the analogous maps of Remark 3.9.

The morphism Xlog →
n√
Xtop described in Section 3.4 is determined (using the functorial

interpretation of Xlog) by the composite

Xlog → [C(P )/C+(P )]
φ 1

n
(P )

−−−−→ [C( 1
nP )/C+( 1

nP )]→ [C( 1
nP )/C×( 1

nP )]

as the induced map

Xlog → Xtop ×[C(P )/C×(P )] [C( 1
nP )/C×( 1

nP )] =
n√
Xtop.

On the other hand, the morphism of [CSST, Proposition 4.1], as per the discussion at the
beginning of the proof, is determined by the composite

Xlog → (
n√
X)log →

n√
Xtop

where the first arrow is the inverse of the isomorphism in the diagram above.
This implies that the two maps Xlog →

n√
Xtop that we just described coincide (in the 2-

categorical sense). In fact, it is equivalent to check that the two maps (
n√
X)log →

n√
Xtop given

by the vertical arrow and by the composite (
n√
X)log → Xlog →

n√
Xtop coincide. The vertical

arrow is determined as the map (
n√
X)log → Xtop ×[C(P )/C×(P )] [C( 1

nP )/C×( 1
nP )] =

n√
Xtop

induced by the two maps

(2) (
n√
X)log → [C( 1

nP )/C+( 1
nP )]→ [C( 1

nP )/C×( 1
nP )]

and

(
n√
X)log → Xlog → Xtop

and the second one is determined likewise, by the two maps

(3) (
n√
X)log → Xlog → [C(P )/C+(P )]

φ 1
n

(P )

−−−−→ [C( 1
nP )/C+( 1

nP )]→ [C( 1
nP )/C×( 1

nP )]

and

(
n√
X)log → Xlog → Xtop.

The claim now follows from the fact that the two maps (
n√
X)log → [C( 1

nP )/C+( 1
nP )] in (2) and

(3) coincide, since the morphism φ 1
n

(P ) : [C(P )/C+(P )] → [C( 1
nP )/C+( 1

nP )] is the inverse of

φn(P ) : [C( 1
nP )/C+( 1

nP )]→ [C(P )/C+(P )]. �

Remark 4.7. To conclude, let us point out that if we equip every Kato-Nakayama space (or

stack) Xlog with its sheaf of rings Olog
X defined in [KN99], then the isomorphism Xlog

∼= (
n√
X)log

is not an isomorphism of ringed topological stacks. This is further explored in [Tal] (see Section
5.1 in particular), in relation to question (2) mentioned in the introduction.
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