Security metrics at work on the Things
in IoT systems *

Chiara BOdeil[0000_0002_0586_9333], Pierpaolo Deganol[000_0002_8070_4838],

Gian-Luigi Ferrari!(0000-0003—3545-5514 o4 Letterio
Galletta2 [0000—0003—0351—9169]

! Dipartimento di Informatica, Universita di Pisa, Pisa, Italy
{chiara.bodei,pierpaolo.degano,gian-luigi.ferrari}@unipi.it
2 IMT School for Advanced Studies, Lucca, Italy
letterio.galletta@imtlucca.it

Abstract. The Internet of Things (IoT) is deeply changing our society.
Daily we use smart devices that automatically collect, aggregate and
exchange data about our lives. These data are often pivotal when they are
used e.g. to train learning algorithms, to control cyber-physical systems,
and to guide administrators to take crucial decisions. As a consequence,
security attacks on devices can cause severe damages on IoT systems that
take care of essential services, such as delivering power, water, transport,
and so on. The difficulty of preventing intrusions or attacks is magnified
by the big amount of devices and components IoT systems are composed
of. Therefore, it is crucial to identify the most critical components in a
network of devices and to understand their level of vulnerability, so as to
detect where it is better to intervene for improving security. In this paper,
we start from the modelling language I0T-LySA and from the results of
Control Flow Analysis that statically predict the manipulation of data
and their possible trajectories. On this basis, we aim at deriving possible
graphs of how data move and which are their dependencies. These graphs
can be analysed, by exploiting some security metrics - among which those
introduced by Barrere, Hankin et al. - offering system administrators
different estimates of the security level of their systems.

1 Introduction

Security issues can jeopardise the growth of the Internet of Things (IoT). The risk
of intrusions or attacks is magnified by the big amount of devices and components
these systems are composed of. Things are less and less material, while the effects
of cyber attacks are far from being only virtual. The presence of actuators that
act on the physical world makes security particularly crucial. Nevertheless there
is some reluctance in adopting security countermeasures because they can impact

* Partially supported by Universita di Pisa PRA 2018 66 DECLWARE: Metodologie
dichiarative per la progettazione e il deployment di applicazioni and by MIUR project
PRIN 2017FTXR7S IT MATTERS (Methods and Tools for Trustworthy Smart
Systems).

2 C. Bodei and P.Degano and G.L. Ferrari and L. Galletta

on costs and performance. As a consequence, techniques able to evaluate where
it is more important to intervene for improving security can be useful for IoT
designers in choosing which security mechanisms to use.

We intend here to exploit the Security by Design development methodology,
introduced in [4/3/9] by taking inspiration from the work by Barrére, Hankin, et
al. [120], where the authors propose some security metrics for identifying critical
components in ICS (Industrial Control System) networks.

Our methodology is based on a kernel of a modelling language I0T-LySA
to describe the structure of an IoT system and its interactive capabilities. This
language is endowed with a suitable Control Flow Analysis (CFA) that approx-
imates the system by providing an abstract model of behaviour. These abstrac-
tions allow predicting how (abstract) data may flow inside the system. In [7] the
CFA also includes a data path analysis that supports tracking of the propagation
of data, by identifying their possible trajectories among the computing nodes.

In [I], the security level of a system is obtained as the minimum set of CPS
(Cyber-Physical System) components that an attacker must compromise in or-
der to impair the functionalities of the system. Moreover, each component is
associated to a score, i.e. a value that quantitatively represents the effort (in
terms of cost) required by an attacker to compromise it. Scores allow design-
ers to compute the set of components with the minimal cost for the attacker.
The metric relies on AND/OR graphs that represent the complex dependen-
cies among network components, and the problem consists in finding a minimal
weighted vertex cut in the graph.

Inspired by [1I20], we use a graph model of the CFA results, in particular, we
model the data dependency and the logical conditions on which the trigger of a
given actuator depends. More precisely, the obtained graph encodes the depen-
dencies of the condition on the raw data collected by sensors and on the logical
and aggregation functions applied to the sensor data in processing the decision
(a full formalisation of how to derive the graph from the analysis results is left
as a future work). For each sub-term of the abstract value, the analysis gives the
location where it is introduced and computed and its possible trajectories across
the network. By using this information, designers can investigate the security
of their system, by reasoning on which is the minimal set of data that can be
altered (by tampering the corresponding nodes) in order to affect the capacity of
the system to correctly trigger the actuators. In the presence of more choices, by
associating score to each node, it is possible to compare the different solutions
and establish which are the cheaper ones. The composition of data in the graph
can drive the reasoning in a fashion similar to that introduced in [I].

Structure of the paper. The paper is organised as follows. Our approach is intro-
duced in Section [2| with an illustrative example that serves as case study. We
briefly recall the process algebra I0T-LySA in Section [3] and the adopted CFA
in Section [4] Conclusions are in Section [} The Appendix completes the formal
treatment of the semantics and of the analysis.

Security metrics at work on the Things in IoT systems 3
2 DMotivating example

In this section we illustrate our methodology through a simple scenario concern-
ing the fire alarm and suppression system of an academic department building.

The scenario. Suppose that the building has three floors: (0) at the ground floor
there is the library; (1) at the first floor there is the office area; (2) at the second
floor there is the IT center and, inside it, the control room of the whole building.

In every room of each floor there are a smoke detector and a heat detector
together with a pump that may be activated in case of fire. We assume that
these sensors and the actuator are controlled by a smart device associated to the
room, called Room controller. For example, each of the k£ rooms of the Library
has its own controller Ry, (with ¢ € [1,k]). Furthermore, at each floor there is a
device working as Floor controller (e.g. at the ground floor there is the Library
controller L) that receives the data sensed in each room, elaborates them to
detect possible fires and sends them to the control room.

Also, each Floor controller is equipped with a sensor that checks the water
level of the suppression system at that floor.

The Control Room receives data from each floor and, in case of fire, raises
the alarm, by calling the Fire Station, and triggers the evacuation plan.

The I0T-LYSA model. The IoT-LySA model of the network N of our building
is in Table [1} It has a finite number of nodes running in parallel (the operator |
denotes the parallel composition of nodes). A node represents a smart device as
a Room controller, e.g. Ry, for the first room of the Library, a Floor controller,
e.g. L for the Library, and the Control Room CR. Furthermore, each node is
uniquely identified by a label £ and it consists of control processes (the software)
and, possibly, of sensors and actuators (the cyber-physical components).

In TOT-LySA communication is multi-party: each node sends information (in
the form of tuples of terms) to a set of nodes, provided that they are within the
same transmission range. Outputs and inputs must match to allow communi-
cation. In more detail, the output (£1,---, Ey)) > L represents that the tuple
FEq,---, E} is sent to the nodes with labels in L. The input is instead modelled as
(Er,---,Ej;zjq1,- -+ ,zx) and embeds pattern matching. In receiving an output
tuple Ef,--- , Ej, of the same size (arity), the communication succeeds provided
that the first j elements of the output match the corresponding first elements
of the input (i.e. By = EY,---,E; = E7), and then the variables occurring in
the input are bound to the corresponding terms in the output. In other words,
our primitive for input tests the components of the received message. Suppose
e.g. to have a process P waiting a message that P knows to include the value v,
together with a datum that is not known from P. The input pattern tuple would
be: (v;x). If P receives the matching tuple (v, d), the variable z is bound to v,
since the first component of the tuple matches with the corresponding value.
Finally, note that terms are uniquely annotated to support the Control Flow
Analysis (see the next sections).

4 C. Bodei and P.Degano and G.L. Ferrari and L. Galletta

The Network of Smart Devices

N =CR |L|O|IT|
Rra | ‘ RLk| Ro1 | | R0k| R ‘ | Ry
Room controllers of the Library with ¢ € [1, k]
Rri ={Lri: [Pri || Szt || Ste2 || Bri)
Pii = ph (0 = 1), (7 = 2),
(6, 225 21582) D {Lnivrary Y (Zonodity) -(Z ohodity 1 iLis GO).h
SLil = /Lh.(TlLi = SLi).T.h
SLiQ = /.Lh(TQLz = hLl)Th
ALi = p,h.(li[ﬂ;, {GO})Th

Floor controller of the Library
L =Alp:[Py| So| Bc]
P = ph.(wi® = 150).check™"" = wil >9% thy (checki™"" iy, Refill).

o frin) frLiz
(Lwriit wifs?).

checklkt = andﬁl(checkzich,orﬁl (wiEE 9201 thy gy wikE? >9012 th)).
(eheckii) b {£2,}.

(ks wiis' wiis').
checklEr = andﬁ"‘(checki‘:hL,orﬁ’“ (wWiEkY SILk1 thp gy wlEk2 >9062 thy o).
((checkTe) > {¢1, }.
(L, p' (check{}?, ..., checkTi)) o {€L ey b
SL th.(T.lL = SL).T.h
Ap = ph.(ic, {Refill}).T.h

Room controller and Floor controller of the Office area with i € [1, k]
Ro; =
@)

Room controller and Floor controller of the IT Center with i € [1,k]

Ry =...
IT

Control Room
CR =/{cr:[Por || Acr || Ber)

Por = ph.(Lyagih,)alarmy ' = (@i, > the).(alarmy ', 1or, ring) |
(O7xczgcokro).alarmoalo = (xcg’gfko >0 tho).(alarmo“*o , 1or, ring) ||
(I, xz,clﬁgkl).alarm;a” = (mizzclkl > thr).(alarm®*, 1cr, Ting).h

Acr = ph.(ler, {Ring}).7.h

Table 1. Fire Detection System: the controllers of Office area and IT Center are
omitted because similar to those of the Library.

Security metrics at work on the Things in IoT systems 5

We first examine the nodes Ry;, located in the rooms of the Library:
Rri ="Lri: [P || Sti1 || Stiz || Bri

where the label ¢1; uniquely identifies the node. The control process Pr; repre-
sents the logic of the device and manages the smoking sensor Sp;1, the heating
sensor Sp;1 and the suppression actuator Ay;. Whereas Bjy; represents those
node components we are not interested in here, such as the device store X'r;. All
these components run in parallel (this is the meaning of the parallel composition
operator || for components inside nodes).

Intuitively, each node Ry; collects the data from its sensors, transmits them
to the Library controller L, and waits for its decision. In I0T-LySA, sensors
communicate the sensed data to the control processes of the node by storing them
in their reserved location 1753 and 1743 of the shared store. The action 7 denotes
internal actions of the sensor we are not interested in modelling. The construct
wh. denotes the iterative behaviour of processes, of sensors and actuators, where
h is the iteration variable.

More in detail, the control process Pr;: (i) stores in the variables z7%i' and

zyk52 (where ;1 and ;2 are the variable annotations) the data collected by the

smoking and heating sensors, through the two assignments: z;%' := 175} and
zpki? == 13412 (i4) transmits the collected data to the Library controller L, with

the output ((z, 275", 27552) > {l Library }; (147) waits for the decision of the Library

"ehLi); (iv) forwards the decision to the suppression

controller on the input (z .5

actuator Ar;, with the command (zz;;ﬁh, iri, Go): if ZZh};EkL is true, the water
suppression (action Go) is activated.

In the Library controller L, the process Pp: (i) stores in the variables w{L
the data provided by the water level sensor; (i7) checks whether the water level
is above a given threshold th; and if Refill is necessary, gives the command
(checkL¥hz ip, Refill) to the actuator Ap; (ii4) waits for the data of each room

Ryp;, with the input (z,wfﬁl,wﬁ;), (iv) elaborates the water level and the

values received in a variable checkﬁi and provides a decision on the suppression
or not in the room Ry;; (v) sends to the Control Room Node C'R the aggregation
p of all the variables check{ﬁi previously collected.

Finally, the Control Room node CR: (i) collects the result of aggregation from
each floor and puts it in the variable xzz};ﬁkB (with B = L,0,1); (ii) according
to some threshold values, decide to activate an alarm call to the Fire Station.

Again By and Bgpg abstract other components we are not interested in,
among which, their stores X, and Y¢p.

Security analysis. Once having specified a system, a designer can use the CFA
to statically predict its behaviour. The CFA predicts the “shape” of the data
that nodes may exchange and elaborate across the network.

In particular, the CFA can predict, for each piece of data, from which sensors
that piece can be derived and which manipulations it may be subjected to.
Consider, e.g. the first sensor Sp;1 of the i-th Library Room controller (the second
sensor Sr;o is treated analogously). We abstractly represent data produced by

6 C. Bodei and P.Degano and G.L. Ferrari and L. Galletta

this sensor with the term 17%:', encoding both the identity of the sensor Sp;
and of the corresponding node L;. The term gr,1(17%:", thr11) denotes instead
a piece of data that is obtained by applying the logical function greater than
(abbreviated with ¢) to the data from the sensor 12%11 and the constant thri;.

Furthermore, the analysis approximates the trajectories across the network
of each piece of data. For instance, we can discover that the data 1?”7 collected
by the sensors Sr;; (with j € [1,2]]) may traverse the path Sri;,¢r:,¢r, %L
meaning that they are generated in the sensor Sp;;, go to the node ¢, and then
come back to £;. Similarly, data produced by the sensor Sy, in the node labelled
{1, are abstractly represented by the term 17 and may traverse the path Sg, ¢r.

Finally, the analysis can also predict on which data the trigger of an actuator
may depend on.

By using the CFA results, system designers can investigate the security and
robustness of their system through a “what if” reasoning.

For example, in our scenario assume that some nodes can be attacked and
that data passing through them tampered with. We would like to study how
this may impact on the capacity of the system to correctly trigger the actuators.
Consider the suppression system of the generic room controller Ry, of the Library
floor. The question we would like to answer is: which are the data that once
altered can affect the trigger of the command Go? We know that this command
is given when the value of the variable z.peck,, is true (the condition of the
trigger), thus, knowing how this value is computed and from which nodes its
components come is critical. The analysis predicts (see Section {| for details)
that a possible way to compute the relevant value is the following

and 7% (g (177 thr), or7% (gL (175 thrin), gri2o (1755, thrit)))-

This “abstract” term encodes the fact that the condition of the trigger depends
on the values of the sensors in the node Ry, and L (17*, 174" and 1744?), and on
a suitable combination of the results of their comparisons with the corresponding
thresholds (e.g. g1, andr;, orr;) carried out by the node L. This information can
be easily retrieved by looking at the labels on each sub-term, which indicate the
location where that term is introduced and computed. In a sense the “abstract”
term encodes the supply chain of the fire detection system.

As mentioned above, for each piece of data the analysis computes its possible
trajectories inside the system: the data collected by the sensors Sr;; (with j €
[1,2]]) may traverse the path Sr;;,%ri, {1, ¢r; and those produced by the sensor
Sp, in the node labelled ¢;, may traverse the path S, ¢y .

To simplify the reasoning on the analysis results, one can build a graph
representation as the one of Fig.[I}] The root represents the actuator whose acti-
vation we want to reason about; the node under the root is the trigger condition;
the other nodes represent the aggregation functions and the data sensors that
contribute to the evaluation of the relevant condition. Moreover, the nodes are
labelled so as to record in which node of the network the corresponding com-
putations occur. Intuitively, the actuation Go depends on the evaluation of the

abstract value: and(% (gr. (17", thr), or75 (9rii (1753 thiit), 9rie (1752, thri))),

Security metrics at work on the Things in IoT systems 7

@ Li

@-=

—

‘ andp;* (9o (17", the), orfy yul(11’;1'»thLil)-gm(li'iég-‘thul)))‘

L
}or‘i’;t(gLu(li';i‘ R thLil).gLiz(li'g?,thL,l))‘

-

@L & @L
T m gria(175%, thra)
8 L
i @s, | 0L @
[(SL, L))

12[;'32 @ SLiZ
[(Sri2, €Ls), (€rs, L), (€L, €L:)], [(€L, L), (L1, €L)]

1750 @S,
[(SLi1s€L), (€L, L), (€r, €r:)], (€L, €r:), (€rs, €L)]

Fig. 1. Composition data graph

that, in turn, depends on the evaluation of the logic conjunction of the results
of the two branches: gz, (15", thr) and or{% (gr:1 (1757, thri), gri2(1755, thri)).
The first depends on the evaluation of the function g;, applied to the data com-
ing from the sensor Sy, while the second depends from the logic disjunction of
the outputs of the two further branches gr;1 (175", thrii) and gria(1755, thri),
resulting from the application of the functions gr;1 and g2 to the data coming
from the sensors Sj;1 and Sp;2, respectively.

Using this graph one can study how an attacker can operate to force a specific
behaviour of the actuator, and which nodes are involved. E.g. in case of fire,
one can prevent activating of the fire suppression or, on the contrary, force it
in order to flood the rooms. Note that although similar in shape to Attack
Trees [23], our graphs have a different goal: while the first represents the steps
of an attack (the goal being the root node and different ways of achieving it as
leaf nodes), we represent in the nodes the components of a system to attack and
their dependencies.

For the sake of simplicity, hereafter we focus on the structure induced by
the AND and OR functions in the graph, and neglect the comparison func-
tions ¢r,9gri1,9ri2- Suppose the attacker wants to impair the trigger of Go.
This can be done by complementing the boolean value andj%(gr(17%,thz),
orE (grin (175", thrit), 9ri2(17552 , th1))). To turn the value true to false, it
suffices that the attacker forces just one AND branch to false. As a consequence,
an attacker can:

8 C. Bodei and P.Degano and G.L. Ferrari and L. Galletta

— tamper the sensors: the sensor Sy, in order to provide a false on the left
branch, or both the sensors Sy;; and Sy;2 in order to provide a false on the
true branch;

— attack a node: the node L in order to alter the aggregation of data coming
from its sensor and/or from the node L; or the node L; in order to directly
alter the activation.

Of course, the two kinds of attacks require different efforts for the attacker.
For instance it could be easier to tamper a sensor in a Library room, where the
access is less restricted than in other areas of the building. To estimate these
efforts a designer can provide a security score ¢ that measures for each sensor S
and for each node N the cost of attacking it. In particular, the designer can use
a technique similar to the one in [I] and understand which are the more critical
nodes and therefore where security countermeasures are more crucial.

3 Overview of [0oT-LySaA

We briefly present a version of IoT-LySa [4I3]9], a specification language re-
cently proposed for designing IoT systems. It is, in turn, an adaption of LySa [2],
a process calculus introduced to specify and analyse cryptographic protocols and
checking their security properties (see e.g. [14/13]).

The calculus ToT-LySa differs from other process algebraic approaches in-
troduced to model IoT systems, e.g. [TOJI7II8], because it provides a design
framework that includes a static semantics to support verification techniques
and tools for checking properties of IoT applications.

Syntax Systems in IoT-LySA are pools of nodes (things), each hosting a shared
store for internal communication, sensors and actuators, and a finite number of
control processes that detail how data are to be processed and exchanged. We
assume that each sensor (actuator) in a node with label ¢ is uniquely identified by
an index i € Zy (j € Jy, resp). A sensor is an active entity that reads data from
the physical environment at its own fixed rate, and deposits them in the local
store of the node. Actuators are instead passive: they just wait for a command
to become active and operate on the environment. Data are represented by
terms, which carry annotations a,d’,a;,... € A identifying their occurrences.
Annotations are used in the analysis and do not affect the dynamic semantics in
Table[}] We assume the existence of a finite set K of secret keys owned by nodes,
exchanged at deployment time in a secure way, as it is often the case [24]. The
encryption function {E1, - - - , F, }k, returns the result of encrypting values F; for
i € [1,7] under the shared key ko. We assume to have perfect cryptography. The
term f(Eq,--- , E,) is the application of function f to r arguments; we assume as
given a set of primitive functions, typically for aggregating or comparing values.
We assume the sets V, Z,, Jp, K be pairwise disjoint.
The syntax of systems of nodes and of its components is as follows.

Security metrics at work on the Things in IoT systems 9

N > N ::= systems of nodes B 3 B ::= node components
0 empty system Xy node store
¢:[B] single node (¢ € L) P process
Ny | N2 par. composition S sensor (label 7 € Z)
A actuator (label j € J¢)
B| B par. composition

N 3 N ::= systems of nodes

0 empty system
{:[B] single node (¢ € L, the set of labels)
N1 | N2 parallel composition of nodes
B 3> B ::= node components
) node store
P process
S sensor, with a unique identifier i € Z,
A actuator, with a unique identifier j € J¢
B| B parallel composition of node components

Each node ¢ : [B] is uniquely identified by a label £ € £ that may represent
further information on the node (e.g. node location). Sets of nodes are described
through the (associative and commutative) operator | for parallel composition.
The system 0 has no nodes. Inside a node ¢ : [B] there is a finite set of components
combined by means of the parallel operator ||. We impose that there is a single
store Xy : X UZy — V, where X,V are the sets of variables and of values
(integers, booleauns, ...), respectively.

The store is essentially an array whose indexes are variables and sensors
identifiers ¢ € Z, (no need of a-conversions). We assume that store accesses
are atomic, e.g. through CAS instructions [I5]. The other node components are
control processes P, and sensors S (less than #(Zy)), and actuators A (less than
#(Jr)) the actions of which are in Act. The syntax of processes is as follows.

P:=0 inactive process
(E1, - ,Ex)>L.P asynchronous multi-output L C £
(Bry - By xjq1, - ,xT)X, P input (with matching and tag)
decrypt £ as {E1, -+, Ej; Tj41, -+ ,Tr}y, in P decryption with key ko (with match.)
E?P:Q conditional statement
h iteration variable
uh. P tail iteration
z*:=FE.P assignment to x € X
(E,j,v).P output of action v to actuator j

on condition F

The prefix (E1,---,E.) > L represents a simple form of multi-party commu-
nication: the tuple obtained by evaluating Ff1,..., E, is asynchronously sent to
the nodes with labels in L that are “compatible” (according to, among other
attributes, a proximity-based notion). The input prefix (E1,---, Ej; &1, -+, &r)
receives a r-tuple, provided that its first j elements match the corresponding

10 C. Bodei and P.Degano and G.L. Ferrari and L. Galletta

.9

input ones, and then assigns the variables (after ;") to the received values. Oth-
erwise, the r-tuple is not accepted. A process repeats its behaviour, when defined
through the tail iteration construct ph.P (where h is the iteration variable).
The process decrypt E as {E1, -+, Ej; @41, , T}y, in P tries to decrypt the
result of the expression E with the shared key kg € K. Also in this case, if
the pattern matching succeeds, the process continues as P and the variables
Zj41,-..,%, are suitably assigned.

Sensors and actuators have the form:

S := sensors A 1= actuators
0 inactive sensor 0 inactive actuator
7.5 internal action T.A internal action
t1:=v.S storeofv eV (4,). A command for actuator j (I" C Act)
by the i'" sensor ~.A triggered action (v € Act)
h iteration var. h iteration var.
pwh.S tail iteration pwh.A tail iteration

A sensor can perform an internal action 7 or put the value v, gathered from
the environment, into its store location i. An actuator can perform an internal
action 7 or execute one of its actions -y, received from its controlling process.
Note that in the present version of IOT-LySA the process triggers the action
~ of the actuator, provided the related condition E is satisfied. This construct
emphasises that actuation is due to a decision based on the aggregation and
elaboration of collected data. Sensors and actuators can iterate. For simplicity,
here we neither provide an explicit operation to read data from the environment,
nor we describe the impact of actuator actions on the environment (see [9]).
Finally, the syntax of terms is as follows:

€ 3 F ::= annotated terms M > M ::= terms

M®* withae A v value (v € V)
i sensor location (i € Zy)
x

{F1, -+ ,E.}k, encryption with key ko € K
f(F1, - ,E,) function on data

The encryption function {E1, - -, Bk}, returns the result of encrypting values
E; for i € [1, k] under kg representing a shared key in K. The term f(F1,---, E,)
is the application of function f to n arguments; we assume given a set of primitive
functions, typically for aggregating or comparing values, be them computed or
representing data in the environment.

Operational Semantics The semantics is based on a standard structural congru-
ence and a two-level reduction relation — defined as the least relation on nodes
and its components, where we assume the standard denotational interpretation
[E] s for evaluating terms. As examples of semantic rules, we show the rules
(Ev-out) and (Multi-com) in Table [2| that drive asynchronous IoT-LySA multi-
communications, and the rules (A-coml) and (A-com2) used to communicate

Security metrics at work on the Things in IoT systems 11

(Ev-out)
/\::1 v, = [Ei] 5
2| (B, E:)>L.P||B = X | {v1,---,v-)>LO| P| B
(Multi-com))
ly € LN Comp(@l,ég) A /\5:1 vy = [[Ei]]EZ
G (i, v) L0 || Bi] | e s (B2 || (Bu,--- Byl 20r).Q || Bo —
Lz [(uis s oe) D L\ {€2}.0 || Ba] | €2 [Zo{vjgr/miq1, - sor/zr} || Q|| Bel
(A-com1) (A-com2)
v € I' N [E]x = true v € I' AN [E] s = false

(B, g,y PG TD-All B = Pllv Al B (B 5,7)- P (5 I)-Al B — PI(5I)-All B

Table 2. Communication semantic rules.

with actuators. The complete semantics is in Appendix, where however we omit
the rules handling errors, e.g. when a node fails receiving a message.

In the (Ev-out) rule, to send a message ((vy,...,v,)) obtained by evaluating
{(E1, ..., E.)), a node with label ¢ spawns a new process, running in parallel with
the continuation P; this new process offers the evaluated tuple to all the receivers
with labels in L. In the (Multi-com) rule, the message coming from ¢; is received
by a node labelled ¢, provided that: (i) ¢2 belongs to the set L of possible
receivers, (ii) the two nodes satisfy a compatibility predicate Comp (e.g. when
they are in the same transmission range), and (iii) that the first j values match
with the evaluations of the first j terms in the input. When this match succeeds
the variables after the semicolon “;” are assigned to corresponding values of the
received tuple. Moreover, the label £y is removed by the set of receivers L of the
tuple. The spawned process terminates when all the receivers have received the
message (L = 0).

In the rules (A-coml) and (A-com2) a process with prefix (E, j,v) commands
the j** actuator to perform the action =, if it is one of its actions and it the
condition F is true, according to the standard denotational intepretation [E]s.

4 Control Flow Analysis

Here we present a variant of the CFA of [7], following the same schema of the ones
in [4J8]. It approximates the abstract behaviour of a system of nodes and tracks
the trajectories of data. Intuitively, abstract values “symbolically” represent run-
time data so as to encode where they have been introduced and elaborated. Here
the analysis has a new component to track the conditions that may trigger ac-
tuators. Finally, we show how to use the CFA results to check which are the
possible trajectories of the data and which of these data affect actuations.

Abstract values Abstract values represent data from sensors and resulting from
aggregation functions and encryptions. Furthermore, for analysis reasons we also
record into abstract values the annotations of the expression where they are

12 C. Bodei and P.Degano and G.L. Ferrari and L. Galletta

generated. During the execution nodes may generate encrypted terms with an
arbitrarily nesting level, due to recursion. To deal with them, in the analysis we
also introduce the special abstract values (T,a) denoting terms with a depth
greater than a threshold d. In the analysis specification we maintain the depth
of abstract values smaller than d using the cut function |—]4. It is inductively
defined on the structure of the abstract value and cut it when the relevant depth
is reached. Formally, abstract values are defined as follows, where a € A.

V 3 b = abstract terms

(T,a) value denoting cut

(v, a) value for clear data
(f(v1,-++ ,0pn),a) value for aggregated data
({01, , Dn try, @) value for encrypted data

Abstract values are pairs where the first component is a value and the second
one records the annotation of the expression where the value was computed.
In particular, v abstracts the concrete value from sensors or computed by a
function in the concrete semantics; f(o1,-- ,9,) represents a value obtained
by applying the aggregation function f to 1, ,0n; {01, -+, 95}, abstracts
encrypted data.

To simplify the notation, hereafter we write abstract values (v,a) as v® and
indicate with |, the projection function on the it" component of the pair. We
naturally extend the projection to sets, i.e. V|, = {v,,|0 € V1, where V C V.

We denote with A the function that recursively extracts all the annotations
from an abstract value, e.g. A(f (v, v5?),a) = {a1,aq9,a}.

Definition 1. Give an abstract value © € V, we define the set of labels A (D)
inductively as follows.

— A(T,a) = A(v,a) = {a}
= A(f(01,-++ ,0n),a) = {a} UU;, A(%;)
- A({ﬁla T 7@71}1607 a) = {CL} U U?:l A(ﬁl)

CFA walidation and correctness Here, we define our CFA that approximates
system behaviours, e.g. communications and exchanged data, and in particu-
lar, micro-trajectories of data. As usual with the CFA, the analysis is specified
through a set of inference rules expressing when the analysis results are valid.
The analysis result is a tuple (X, k,0,T,«) (a pair (X,0) when analysing a

term), called estimate for N (for E), where X, k,0,T, and « are the following
abstract domains:

— the disjoint union 5= Urer Y, where each function X, : X UZ, — 2V
maps a given sensor in Zy or a given variable in X to a set of abstract values;

—asetk: L — L X Ule V' of the messages that may be received by the
node /; R

—aset ©: L —+ A — 2V of the information of the actual values computed
by each labelled term M“ in a given node ¢, at run time;

Security metrics at work on the Things in IoT systems 13

—aset T =A — (L x L) of possible micro-trajectories related to the abstract
values; R

—aseta: L — I' — 2V that connects the abstract values that can reach the
condition related to an action 7.

With respect to the previous analyses of IoT-LySA, such as the ones in [4[7], the
component « is new, and also the combined use of the above five components
is new and allows us to potentially integrate the present CFA with the previous
ones. For simplicity, we do not have here the component that tracks which output
tuples that may be accepted in input as in [7]. Note that the component « allows
us to determine the trajectories and the provenance of the values reaching the
annotated condition. Using such information, we can therefore reason on how
critical decisions may depend on them.

An available estimate has to be validated correct. This requires that it satis-
fies the judgements defined according to the syntax of nodes, node components
and terms, fully presented in Appendix (see Tables |§| and . They are defined
by a set of clauses. Here, we just show some examples.

The judgements for labelled terms have the form (X, 0) =, M. Intuitively,
they require ©(¢)(a) includes all the abstract values ¥ associated to M?, e.g. if
the term is a sensor identifier i*, ©(¢)(a) includes (7, a) and the micro-trajectory
(Si,¢) belongs to T'(a), if the term is a variable 2%, ©({)(a) includes the abstract
values bound to x collected in 2‘4. The judgements for nodes have the form
(X,k,0,T,a) = N. The rule for a single node ¢ : [B] requires that B is anal-
ysed with judgements (2’, k,0,T,a) =, B. As examples of clauses, we consider
the clauses for communication in Table 3| An estimate is valid for multi-output,

/\f:l (27@) ':1{ Miai /\ (27’{7@77170[) ':e P /\

Vor, -, or s Ny 0 € O0)(ai) =V € L: (€, (b1, ,0.)) € r(£)
(£,5,0,T,a) =, (M, M) > L. P

L (Z.6)F, M A
V(' (01, -+, 0r)) € K(£) : Comp(',£) =
(::j+1 Ui € Xo(zs) A
(€, (01, ,0:) € p(X) A Ya € A(6:).(,1) € T(a)
ANX, k,0,T,a) =, P)

(Z,k,0,T,a) |, (M- M;75 a3t oo 28r). P

(2,0) |, M*A
o)) C O A (2,5, 0, T 0) |7, P
(X,k,0,T,a) =, (M, 4,7). P

Table 3. Communication CFA rules.

if it is valid for the continuation of P and the set of messages communicated

14 C. Bodei and P.Degano and G.L. Ferrari and L. Galletta

by the node ¢ to each node ¢ in L, includes all the messages obtained by the
evaluation of the r-tuple (M7, ---, M2). More precisely, the rule (i) finds the
sets O(¢)(a;) for each term M, and (ii) for all tuples of values (¢1,---,0,) in
Of)(a1) x --- x O(£)(a,) it checks whether they belong to x(¢') for each ¢’ € L.
Symmetrically, the rule for input requires that the values inside messages that
can be sent to the node £, passing the pattern matching, are included in the esti-
mates of the variables x; 1, -+ ,z,. More in detail, the rule analyses each term
M7, and requires that for any message that the node with label ¢ can receive,
ie. (¢, (01, -+ ,0;,0541,...,0r)) in (¢), provided that the two nodes can com-
municate (i.e. Comp(¢',()), the abstract values 0;41,...,0, are included in the
estimates of 41, -+ ,%,. Furthermore, the micro-trajectory (¢,¢) is recorded
in the 7" component for each annotation related (via A) to the abstract value ¥;,
to record that the abstract value 9; coming from the node ¢ can reach the node
labelled ¢/, e.g. if 0; = (f((vi1,a41), (vi2, ai2)),a;), then the micro-trajectory is
recorded in T'(a;), T(a;1) and T(a;2).

The rule for actuator trigger predicts in the component « that a process at
node ¢ may trigger the action 7 for the actuator j, based on the abstract values
included in the analysis of the term M.

Ezample 1. To better understand how our analysis works, we apply it to the
following simple system of three nodes Ny | Ny | N3, where S; is a sensor of the
first node and P/ and B; (with ¢ = 1,2, 3) abstract other components we are not
interested in.

Ni=tl: [P St || Bl |
No=10z: [P | By |

N3 —53 [Ps || Bs]

P1 =% =].S << >>\>£2 Pl
Py = (b2 <<f (25)) > £5.P5

~

Every valid estimate (X, k,0, T, «) must include at least the following entries,
with d = 4.

e AELT) Efz) ol Siay™) 2 {7 (1)}
((S e S 2 UL, 70w > 1)
s1) 2 {(t1, £2)} 2) 2 {6,

Indeed, an estimate must satisfy the checks of the CFA rules. The validation
of the system requires the validation of each node, i.e. (X,k,0,T,a) = N; and
of the processes there included, ie. (¥,r,0,T,a) ., P, with i = 1,2,3. In
particular, the validation of the process Pl, iz = 1%, P{ holds because 1% €
O(41)(s1) and (S1,41) € T(s1), 1%t € Egl(21) and the continuation holds as
well. In particular, () > {¢2} holds because the checks required by CFA clause
for output succeed. We can indeed verify that (¥, 0) = , £ holds because 1°* €
5, (z91), according to the CFA clause for variables. Furthermore (£1, (1°1))) €

Security metrics at work on the Things in IoT systems 15
k(¢2). This suffices to validate the output, by assuming that the continuation P|
is validated as well. We have the following instantiation of the clause for output.

151 € 9(61)(51) A (51,61) S T(Sl)
(£,0) e 1%
1 € O(01)(s1) = (b1, {(1°1) € (L)
(£,5,0,T,0) b, (17) > {62} P|

A (£,5,0,T,a) E, P| A

Instead (£, k, 0, T, @) F., G 52).((f (%)™ > £3. P} holds because the checks for
the CFA clause for input succeed From (41, (1°1))) € k({2), we can indeed obtain
that 242(b2) D {1%1}, and that T(s;) D {(¢1,f2)}. The other entries can be
similarly validated as well.

The following theorem establishes the correctness of our CFA w.r.t. the dy-
namic semantics. The statement relies on the agreement relation t<t between the
concrete and the abstract stores. Its definition is immediate, since the analysis
only considers the second component of the extended store, i.e. the abstract one:
Xl 5y iff w € X UTy such that Yi(w) # L implies (X%(w)),, € Zo(w).

It is also possible to prove the existence of a (minimal) estimate, as in [4],
since estimates form a Moore family with a minimal element.

Theorem 1 (Subject reduction). If (£.k,0,T,a) =N and N — N’ and
YEiin N it is £ 0a 5y, then (2, 5,0, T, o) = N’ and VX3 in N' it is ' > 5.

The proofs follow the same schema of [4]. In particular, we use an instru-
mented denotational semantics for expressions, the values of which are pairs
(v, D), where v is a concrete value and ¢ is the corresponding abstract value. The
store (X% with an undefined L value) is accordingly extended. Our semantics
(see Table|5|in Appendix) just uses the projection on the first component.

Checking trajectories We now recall the notion of trajectories of data, in turn
composed by micro-trajectories representing a single hop in the communication.
It is a slight simplification of the notion presented in [7].

Definition 2. Given a set of labels L, we define a micro-trajectory p as a pair
(£,0') € (L x L). A trajectory 7 is a list of micro-trajectories [f1, ..., tn], such
that Vi, piv1 with p; = (43, €;) and piv1 = (lig1, ;1) € = liva.

A k-trajectory is a list of micro-trajectories |1, ..., ix] of length k.

In our analysis, one starts from a set of micro-trajectories and suitably com-
pose them to obtain longer trajectories, in turn composed. As expected, for
composing trajectories the head of the second must be equal to tail of the first.
Technically, we use a closure of a set of micro-trajectories, the inductive defini-
tion of which follows.

Definition 3. Given a set of micro-trajectories S € (Lx L), its closure Close(S)
is defined as

16 C. Bodei and P.Degano and G.L. Ferrari and L. Galletta

- V(0 € S. [(£€)] € Close(S);
VIL, (0,0)], [(¢',07), L") € S. [L, (6,¢), (¢, "), L"] € Close(S).

The set Close(S) contains trajectories of any size. To obtain only the set of
k-trajectories it suffices to the subset consisting only of those of length k.

Given a term E annotated by a, the over-approximation of its possible tra-
jectories is obtained by computing the trajectory closure of the set composed by
all the micro-trajectories (¢,¢') in T'(a).

Trajectories(E®) = Close(T(a))

Therefore, our analysis enables traceability of data. For every exchanged
message ((v1,...,v,)), the CFA keeps track of the possible composition of each
of its components and of the paths of each of its components v; and, in turn,
for each v; it keeps recursively track of the composition and of the paths of the
possible data used to compose it. As a corollary of Theorem [T} it follows that
K predicts all the possible inter-node communications, and that our analysis
records the micro-trajectory in the 7' component of each abstract value possibly
involved in the communication.

Ezample 2. Back to our previous example, note that from T'(s1) 2 {(¢1, £2)} and
T(s1) 2 {(¢2,¢3)}, we can obtain the trajectory [(¢1,¥2), (¢2,£3)], by applying
Close to T'(s1).

Ezample 3. Consider now our running example on the fire system network in
Section [2| Every valid estimate (X, k, ©,T, &) must include at least the entries
in Table EL assuming d = 4, and where we overload the symbols g1, 9ri1, 9ri2,
by meaning both the labels and the comparison functions to check whether the
argument are above the given thresholds (they are constants and their labels are
omitted for simplicity).

Since we are interested in understanding which data may affect the action go,
consider ay;(Go) that includes, according to the CFA results, the following ab-
stract value

and % (gr, (175, thr), or{% (gL (17531, thrit), grio (17552 thii))).

Furthermore, for each sub-term of the abstract value, by using the component
T of the analysis, we can retrieve the possible trajectories, in particular for the
sensor values with j = 1,2 (the subscribed numbers recall their length):

ijectom’es?)(lsLLi}j) = Close(T(srij)) 2 {[(Stij> ri), (Cri, €r), (Cr, Lrq)]}
Trajectories,(sg) = Close(T(s1)) 2 {[(SL,¢L)]}}

With an approach and a technique similar to those in [I], we aim at iden-
tifying the possible minimal sets of nodes that must be tampered in order to
alter the result of the value the actuation of Go depends on and at exploiting
the score metric to compare them in order to determine the ones with minimal
cost for the attacker.

Security metrics at work on the Things in IoT systems 17

Sep (057 2 {177}, O (i) 2 {1747}, Tlswig) 2 {(Swiss ri)},
k(fL,) 2 {(‘glw«andil{i(gL(liL?thL)a or?h (grin (V4" thrin), gra2 (13557 thrin))))) }
ari(Go) 2 O(lri)(reny,) 2 and7 (gr (137, thr), or7h (g (17531, thrin), grie (17537, thri))) }

S (e,) 2 {andgt (gr (135, the), orys (gra (1355 then), grio (15532, thra)))}
O(l1:)(reng,) 2 {and} 7 (g (177, the), or (gran (15" tha), gri2 (1355%, thri)))}
T(srij) 2 {(lr, €ri)},
Loy (wit) D {155}, O(Le)(fr) 2 {135}, T(sp) 2 {(St,Lr)}
S (check ;™) 2 {91 (135, th1)}, O(Cc)(for,) 2 g (13, the))
ar (Refill) 2 Q(KL)(fchL) 2 {gr (17, thr)}

fLi SLi sLi
T, (wa/f) 2 {15}, ©L)(frij) 2 {15}, T(seis) 2 {(fei, L)},
1 (check 1) D {andfE (g (e the), orfE (gra (1355, thia), grao (17532, thra)))
O(lL)(feny) 2 {and i (gr (177, the), or7%5* (gran (175", thri), gri2 (17357, thii)))}
w(lr) 2 {(le,, (1, 14 150}
TrajectoriesB(lng;J) = Close(T(srij)) 2 {[(Stij, Lri), (Cri, fr), (Lr,LLs)]}
Trajectories, (sr.) = Close(T(s1)) 2 {[(St,?L)]}}
T(fp) 2 {[(évaCR)]}
k(lor) 2 {(Le, (p? (and 7% (g (175, thr), or75 (g (1753, thiat), griz (17552, thrio))), ...,

and ;" (gL (17, the), or i (gren (1355 thik), grre (1175, thike))))))}

Table 4. Fire Detection System Analysis: some entries, where j = 1, 2.

In the case the attacker would like to tamper the sensors in order to force the
result to be false, as mentioned above, there are two possible minimal choices,
i.e. tampering:

— the sensor Sy, in order to alter the sensed data and force gL(liL,thL) to
provide a false on the left branch, or

— both the sensors Sp;1 and Sp;2 in order to provide a false on the right
branch.

To estimate the cost of the different strategies of attack, we assume that a table
of scores is known that associates a score ¢(S), ¢(£) to each sensor S and to
each node with label ¢, respectively. Suppose that the scores are:

#(S) =3 #(Spi1) =1 @(SLiz) =15

Under these hypotheses, for the attacker is more convenient to attack the
two sensors in the Room Controller than attacking the sensor of the Library
controller. The overall cost of the first option is indeed 2.5, while the cost of the
second one is 3.

From this kind of reasoning designers can guide their choices on how to
reduce the risk of impairing some critical actuations, e.g. by introducing some
redundancy in the sources of data, such as adding new hardware and software
components.

18 C. Bodei and P.Degano and G.L. Ferrari and L. Galletta

5 Conclusions

We started from the modelling language I0OT-LySA and from the results of its
CFA, and showed how administrators can exploit a graph, built from the anal-
ysis results, that represents the data dependencies and the data trajectories. In
particular, the graph encodes how the condition that drives a critical actuation
depends on the raw data collected by sensors and on the logical and aggrega-
tion functions applied to the sensor data. This information allows designers to
reason, along the lines of [I], on which data can be altered (by tampering the
corresponding nodes) to impact on the capacity of the system to correctly trig-
ger the actuators. Since each node is associated with a score that measures its
compromise cost, it is also possible to compare the different solutions and es-
tablish the cheapest. Other metrics such as the ones suggested still in [I] can be
exploited as well. Then, we discussed how this graph could be used as input to
compute different security metrics, e.g. those of [I], for estimating the cost of
attacks and devise suitable countermeasures.

Actually, the analysis is quite general and its results can be exploited as
a starting point for many other different investigations on the behaviour of a
given system. For example, the graph built from the analysis results can be
used: to check whether a system respects policies that rule information flows
among nodes, by allowing some flows and forbidding others; to carry out a taint
analysis for detecting whether critical decisions may depend on tainted data.
To this aim, we could integrate our present analysis with the one in [3] in the
first case and with the taint analysis of [8] in the second one. Answering to
these questions can help designers to detect the potential vulnerabilities related
to the presence of dangerous nodes, and can determine possible solutions and
mitigation strategies.

A similar Control Flow Analysis is presented in [10]: it is there used to over-
approximate the behaviour of KLAIM processes and to track how tuple data
can move in the network.

As a future work we plan to fully formalise how to derive the graph from
the analysis results. We would like also to compare our approach with that
of [19)], looking for possible synergies. Its authors also start from a hybrid process
calculus for modelling both CPSs and their potential attacks, and propose a
threat model that can be used to assess attack tolerance and to estimate the
impact of a successful attack.

Another line of future work is linking our approach to that used in [2122], for
ensuring a certain level of quality service of a system even when in the presence
of not completely reliable data. In the cited paper, the authors introduce the
Quality Calculus that allows defining and reasoning on software components
that have a sort of backup plan in case the ideal behaviour fails due to unreliable
communication or data.

Finally, since in many IoT system the behaviour of node depends on the
computational context they are immersed in, we plan to extend I0T-LySA with
constructs for representing contexts along the lines of [I1I12], and to study their
security along the lines of [5lf].

Security metrics at work on the Things in IoT systems 19

References

10.

11.

12.

13.

14.

15.

16.

17.

Barrére, M., Hankin, C., Nicolaou, N., Eliades, D.G., Parisini, T.: Identifying
security-critical cyber-physical components in industrial control systems. CoRR
abs/1905.04796 (2019), http://arxiv.org/abs/1905.04796

Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Static validation
of security protocols. Journal of Computer Security 13(3), 347-390 (2005)

Bodei, C., Degano, P., Ferrari, G.L., Galletta, L.: A step towards checking security
in IoT. In: Procs. of ICE 2016. EPTCS, vol. 223, pp. 128-142 (2016)

Bodei, C., Degano, P., Ferrari, G.L., Galletta, L.: Where do your IoT ingredients
come from? In: Procs. of Coordination 2016. LNCS, vol. 9686, pp. 35-50. Springer
(2016)

Bodei, C., Degano, P., Galletta, L., Salvatori, F.: Linguistic Mechanisms for
Context-aware Security. In: Ciobanu, G., Méry, D. (eds.) ICTAC 2014. LNCS,
vol. 8687. Springer (2014)

Bodei, C., Degano, P., Galletta, L., Salvatori, F.: Context-aware security: Linguistic
mechanisms and static analysis. Journal of Computer Security 24 (4), 427-477
(2016)

Bodei, C., Galletta, L.: Tracking data trajectories in IoT. In: Mori, P., Furnell, S.,
Camp, O. (eds.) Proceedings of the 5th International Conference on Information
Systems Security and Privacy (ICISSP2019)

Bodei, C., Galletta, L.: Tracking sensitive and untrustworthy data in IoT. In:
Procs.of the First Italian Conference on Cybersecurity (ITASEC 2017). pp. 38-52.
CEUR Vol-1816 (2017)

Bodei, C., Degano, P., Ferrari, G.L., Galletta, L.: Tracing where IoT data are
collected and aggregated. Logical Methods in Computer Science 13(3) (2017)
Bodei, C., Degano, P., Ferrari, G.L., Galletta, L.: Revealing the trajectories of
KLAIM tuples, statically. In: Models, Languages, and Tools for Concurrent and
Distributed Programming. Lecture Notes in Computer Science, vol. 11665. Springer
(2019)

Degano, P., Ferrari, G.L., Galletta, L.: A two-component language for COP. In:
Proceedings of 6th International Workshop on Context-Oriented Programming,
COPQECOOP 2014. pp. 6:1-6:7. ACM (2014)

Degano, P., Ferrari, G.L., Galletta, L.: A two-component language for adaptation:
Design, semantics, and program analysis. IEEE Trans. Software Eng. 42(6), 505—
529 (2016)

Gao, H., Bodei, C., Degano, P.: A formal analysis of complex type flaw attacks
on security protocols. In: Proc. of AMAST’08. pp. 167-183. LNCS 5140, Springer
(2008)

Gao, H., Bodei, C., Degano, P., Nielson, H.: A formal analysis for capturing replay
attacks in cryptographic protocols. In: Proc. of ASTAN’07. pp. 150-165. LNCS
4846, Springer (2007)

Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1)
(1991)

Lanese, 1., Bedogni, L., Felice, M.D.: Internet of Things: a process calculus ap-
proach. In: Procs of the 28th Annual ACM Symposium on Applied Computing,
SAC ’13. pp. 1339-1346. ACM (2013)

Lanotte, R., Merro, M.: A semantic theory of the Internet of Things. In: Procs. of
Coordination 2016. LNCS, vol. 9686, pp. 157-174. Springer (2016)

http://arxiv.org/abs/1905.04796

20 C. Bodei and P.Degano and G.L. Ferrari and L. Galletta

18. Lanotte, R., Merro, M.: A semantic theory of the Internet of Things. Inf. Comput.
259(1), 72-101 (2018)

19. Lanotte, R., Merro, M., Muradore, R., Vigano, L.: A formal approach to cyber-
physical attacks. In: 30th IEEE Computer Security Foundations Symposium. pp.
436-450. IEEE Computer Society (2017)

20. Nicolaou, N., Eliades, D.G., Panayiotou, C.G., Polycarpou, M.M.: Reducing vul-
nerability to cyber-physical attacks in water distribution networks. In: 2018 Inter-
national Workshop on Cyber-physical Systems for Smart Water Networks, CySWa-
ter@CPSWeek. pp. 16-19. IEEE Computer Society (2018)

21. Nielson, H.R., Nielson, F., Vigo, R.: A calculus for quality. In: Formal Aspects of
Component Software, 9th International Symposium, FACS 2012. Lecture Notes in
Computer Science, vol. 7684, pp. 188-204. Springer (2013)

22. Nielson, H.R., Nielson, F., Vigo, R.: A calculus of quality for robustness against
unreliable communication. J. Log. Algebr. Meth. Program. 84(5), 611-639 (2015)

23. Schneier, B.: Attack trees. Dr Dobb’s Journal 24, 12, 436-450 (1999)

24. Zillner, T.: ZigBee Exploited (2015), https://www.blackhat.com/docs/us-15/

materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.

pdf

Appendix

Operational Semantics of I0oT-LySaA

Our reduction semantics is based on the following Structural congruence = on
nodes and node components. It is standard except for rule (4) that equates a
multi-output with no receivers and the inactive process, and for the fact that
inactive components of a node are all coalesced.

(1) (M/=,],0) is a commutative monoid

(2) (B/=,]],0) is a commutative monoid

B) ph.X=X{puh.X/h} for X € {P,A,S}
(4) (B, -+ ,Er)):0.0=0

The two-level reduction relation — is defined as the least relation on nodes and
its components satisfying the set of inference rules in Tables [2] and [5] For the
sake of simplicity, we use one relation. We assume the standard denotational
interpretation [E]x for evaluating terms.

The first two semantic rules implement the (atomic) asynchronous update of
shared variables inside nodes, by using the standard notation X{—/—}. Accord-
ing to (S-store), the i*" sensor uploads the value v, gathered from the environ-
ment, into its store location i. According to (Asgm), a control process updates
the variable = with the value of E. The rules for conditional (Condl) and (Cond?2)
are as expected. The rule (Act) says that the actuator performs the action .
Similarly, for the rules (Int) for internal actions for representing activities we are
not interested in. The communication rules (Ev-out), (Multi-com), (A-coml)
and (A-com2) that drive asynchronous multi-communications and communica-
tion with actuators are discussed in Section [3| The rule (Decr) tries to decrypt
the result {vq,- - ,v,}; of the evaluation of E with the key ko, and matches it

https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf

Security metrics at work on the Things in IoT systems 21

(S-store) (Asgm) [E]s = v

Sl =05 Bo sty | s B 2N =EPIE S S/ Pl B

(Condl) (Cond2)
[E]s = true [E]= = false
Y|E?PL:P|B = X|P|B XY|EPA:PR|B > X|R|B
(Act) (Int)

7A — A 7.X = X
(Decr)

[[E]]ZJ = {1117 cee 7vr}k0 A /\5:1 Vi = [[Eﬂ]z
S || decrypt B as {By, -+, B ajfi', -2}y in Pl B = 2{vj1 /x40, vz} P B
(Ev-out)

Nizivi = [Ei]s
2| (B, Er)>p L. P||B — X| {v1, - ,or)>LO || P| B

(Node) (ParN) (ParB) (CongrY)
B — B Ny = Nj B — B Y/=Yi =Y =Y)
0 [B} — 0 [B/] N1|N2 — N{|N2 B1||BQ — BiHBQ Yl/ — YQI

Table 5. Reduction semantics (the upper part on node components, the lower one on
nodes), where X € {S, A} and Y € {N, B}, without the rules (Ev-out), (Multi-com),
(A-coml) and (A-com?2), discussed in Table

against the pattern {E7,---, E%; 241, -+, T}k, As for communication, when
this match succeeds the variables after the semicolon “;” are assigned to values
resulting from the decryption. The last rules propagate reductions across paral-
lel composition ((ParN) and (ParB)) and nodes (Node), while (CongrY) is the

standard reduction rule for congruence for nodes and node components.

Control Flow Analysis of IoT-LySA

Our CFA is specified in a logical form through a set of inference rules expressing
the validity of the analysis results, where the function |—]4 to cut all the terms
with a depth greater than a given threshold d, with the special abstract values

22 C. Bodei and P.Degano and G.L. Ferrari and L. Galletta

(i,a) € ©()(a) A (Si,) € T(a) (v,a) € O(f)(a) Si(x) C O(8)(a)
(2,0) [, i (2,0) =, v° (2,0) [, z°

A (2,0) |, M A

V’Oh..,’f}r : /\::1 Vi E@(ﬁ)(az) = (I.{@lv ..,@r}kojd,a) (S @(()(a)
(X,0) |, AM, . M},

Ny (2,0) =, Mi A
Vo, et Ny 0 € O(0)(ai) = (f(o,), a) € O(0)(a)
(2,0) =, f(M{, .., M27)°

Table 6. Analysis of labelled terms (X, 0) =, M*.

T?, is defined as follows.

[TPa=T"

(0P]a = o

L{ﬁlv 7ﬁT}ZOJ0 =TP

L{ﬁlﬁ T 7ﬁT}ZOJd = {Lﬁljdflv Tt _{)Tjdfl}zo
(O, 00) a = F([01) a1, [Br]a1)®

The result or estimate of our CFA is a tuple (E,K,@,T,Oé) (a pair (E,@)
when analysing a term) that satisfies the judgements defined by the axioms and
rules of Tables [0} [3] and [7]

__We do not comment the clauses discussed in Section M The judgement
(X,0) =, M*, defined by the rules in Table |§|, requires that ©(¢)(a) includes
all the abstract values ¥ associated to M. In the case of sensor identifiers,
i* and values v® must be included in ©(¢)(a). In the case of sensor identi-
fier also the micro-trajectory (S;,¢) must be included in T'(a). The rule for
analysing compound terms requires that the components are in turn analysed.
The penultimate rule deals with the application of an r-ary encryption. To do
that (i) it analyses each term M;", and (ii) for each r-tuple of values (01, - - , 0y)
in ©¢)(a1) x --- x O)(a,), it requires that the abstract structured value
{01, , 0, },, cut at depth d, belongs to ©(¢)(a). The special abstract value T¢
will end up in ©(¢)(a) if the depth of the term exceeds d. The last rule is for the
application of an r-ary function f. Also in this case, (i) it analyses each term
M7, and (ii) for all r-tuples of values (91, ,0,) in ©(¢)(a1) x --- x O)(a,),
it requires that the composed abstract value f(o1,---,9,)* belongs to O(f)(a).

The judgements for nodes with the form (2’ ,K,0,T,a) = N are defined by
the rules in Table[7] The rules for the inactive node and for parallel composition
are standard. The rule for a single node ¢ : [B] requires that its internal com-
ponents B are in turn analysed; in this case we the use rules with judgements
(X,k,0,T,a) =, B, where £ is the label of the enclosing node. The rule con-

Security metrics at work on the Things in IoT systems 23

necting actual stores X' with abstract ones b5 requires the locations of sensors
to contain the corresponding abstract values. The rule for sensors is trivial, be-
cause we are only interested in the users of their values. The rules for processes

(£,5,0,T,a) =, B (£,6,0,T,a) = N1 A (2, k5,0,T,a) = Na
(2,5,60,T,a) E0 (¥,5,6,T,a) = (: B (2,5,0,T,a) E N1 | N

Vie Zpit € 54(i)
(27 H7 97 T? a) ':[/, 2 (;‘:\‘7 H7Q7T7 a) ':1{ S (27 K,@7T7 a)):1{ A

(£.0) b M ANy (2,0) b, M A
Wor, o 0k, € 0(0)(@) = (Al 6 € Selws) A (£,5,6,T,0) =, P)

(g,m,@,T,a) =, decrypt M as {Mj?,--- 7M;"; mjafll, Ty by, in P

(£,0) =, M* A
VieOW(a) =ve X, (x) ANE,kO,T,a) k=, P
(E,K,@,T, a) =, 2% =M. P

(2,0) =, M A _ .
(Z,I‘C,@,T,Of) 'ZZ P1 A (E,I{,@,T,Ot) ':é P2 (2,&,9771,06)):Z Bl/\(E,F\?,@,T,Oé) ':l B2
(£,5,0,T,a) =, M*?P, : Py (£,k,0,T,a) =, Bi|| Bs

(E,Ii,@,T,CK)):Z P
(£,5,0,T,a) =, 0 (£,k,0,T,a) =, uh. P (£,5,0,T,a) =, h

Table 7. Analysis of nodes (f, k,0,T,a) =N, and of node components
(X,k,0,T,a) |=, B, without the rules introduced in Table

require to analyse the immediate sub-processes. The rule for decryption is sim-
ilar to the one for communication: it also requires that the keys coincide. The
rule for assignment requires that all the values ¢ in the estimate ©(¢)(a) for M*®
belong to 2[(z). The rules for the inactive process, for parallel composition, and
for iteration are standard (we assume that each iteration variable h is uniquely
bound to the body P).

	Security metrics at work on the Things in IoT systems

