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Abstract. The paper deals with a traffic network with random demands in which some of
the roads need maintenance jobs. Due to budget constraints, a central authority has to choose
which of them are to be maintained in order to decrease as much as possible the average total
travel time spent by all the users, assuming that the network flows are distributed according to
the Wardrop equilibrium principle. This optimal road maintenance problem is modeled as an
integer nonlinear program, where the objective function evaluation is based on the solution of
a stochastic variational inequality. We propose a regularization and approximation procedure
for its computation and prove its convergence. Finally, the results of preliminary numerical
experiments on some test networks are reported.
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1 Introduction

In this paper we deal with the problem of optimizing road maintenance investments. Indeed,
in a traffic network some of the roads usually need improvement jobs but, due to the limited
amount of money available, some decision makers have to find out the optimal allocation of
resources, i.e., they have to choose the roads to be maintained in such a way that the resulting
impact on the traffic in the network is the best according so some criteria, or performance
indices. To provide a useful performance index, we assume that the flows in the network
are distributed according to Wardrop equilibrium, which implies that travelers choose their
road so as to minimize their journey time, and all the roads actually used to connect a given
origin to a given destination share the same travel time. Moreover, to be closer to concrete
applications, we also assume that the traffic demand can be randomly perturbed according
to a given probability distribution. Accordingly, the quantities of interest in our analysis
are the mean values with respect to the given probability distribution, related to Wardrop
equilibrium. The performance index that we choose is the mean value of the total travel time
spent by all the users in the network, which can be directly connected to the pollution released
by all the vehicles and can be also thought of as a social cost, because it actually represents
the total time subtracted to work or to personal leisure. In the literature, the terms travel
time and travel cost are considered on an equal footing, although a general cost may include
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aspects different from the pure travel time. A performance index only based on a weighted
sum of topological parameters of a rail network has been recently put forward in [20]. To
model congestion in the network, we make use of the link-cost functions in the form given by
the Bureau of Public Roads (BPR) [3], which explicitly contain the capacity ui of each road
represented by a link ai in the network. In this model, the maintenance of link ai improves
its capacity from ui to γiui, where γi > 1 is called the enhancement ratio of link ai. The
case where γi = γ for all the roads was considered in [14] in a deterministic framework. For
each set of links that can be maintained, under the budget constraint, we update the mean
total travel time mentioned above and compute its relative variation. The decision makers
can then assess the impact of each intervention, with respect to the investment required, and
select a small number of eligible alternatives for the final choice.

The paper is organized as follows. In Section 2, we brief the reader on the concept of
Wardrop equilibrium and on the variational inequality formulation of the traffic equilibrium
problem. We also analyze the relationship between the link and the path formulations, with
respect to the monotonicity properties of the cost operator. Section 3 provides the reader
with the essential background on variational inequalities in probability spaces and gives a
stochastic variational inequality formulation of the traffic equilibrium problem with random
perturbations of the data. In Section 4, we define our performance index, i.e., the mean value
of the total cost, and give an approximation procedure for its computation together with its
convergence proof. Later, the optimal road maintenance investment problem is modeled as
an integer nonlinear optimization program. Finally, Section 5 is devoted to some numerical
experiments showing the approximated solutions of the optimization model together with
the impact of different probability distributions of the traffic demand on the approximated
average total cost. The paper ends with an appendix, where we describe the approximation
procedure for our stochastic variational inequality, in order to enable the interested reader to
implement the model.

2 Traffic Network Equilibrium and Efficiency Measure

For a comprehensive treatment of the mathematical aspects of the traffic network equilibrium
problem, we refer the reader to the book [17]. In this section, we focus on the basic definitions
and on the variational inequality formulation of a user equilibrium flow (see, e.g. [4, 21]).
Throughout the paper, a>b denotes the scalar product between vectors a and b, while M>

denotes the transpose of a matrix M . A traffic network consists of a triple G = (N,A,W ),
where N = {N1, . . . , Np} is the set of nodes, A = {a1, . . . , an} ⊆ N × N is the set of arcs
(or links) connecting pairs of nodes and W = {W1, . . . ,Wm} ⊆ N × N is the set of the
origin-destination (O-D) pairs. The flow on the link ai is denoted by fi and the link flows are
grouped into a vector f = (f1, . . . , fn). A path (or route) is defined as a set of consecutive
links and we suppose that each O-D pair Wj is connected by rj paths, whose set is denoted by
Pj . All the paths of the network are grouped into a vector (R1, . . . , Rk). The structure of the
paths can be described by using the link-path incidence matrix ∆ = (δir), with i = 1, . . . , n
and r = 1, . . . , k, where δir = 1 if ai ∈ Rr and 0 otherwise. The flow on path Rr is denoted
by Fr. All the path flows are grouped into the network path flow vector (F1, . . . , Fk). The
flow fi on the link ai is equal to the sum of the flows on the paths containing ai, so that
f = ∆F . The unit cost of traveling through link ai is a non-negative real function ci(f) of
the flows on the network, so that c(f) = (c1(f), . . . , cn(f)) denotes the link cost vector of the
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network. The meaning of the cost is usually that of travel time and, in the simplest case,
the generic component ci only depends on fi. In our model, we use the BPR form of the
link cost function which explicitly takes into account the link capacities. More precisely, the
travel cost for link ai is given by

ci(fi) = t0i

[
1 + k

(
fi
ui

)β]
, (1)

where t0i is the free flow travel time on link ai, ui describes the capacity of link ai, while k and
β are positive parameters. Analogously, C(F ) = (C1(F ), . . . , Ck(F )) is the path cost vector,
where the cost Cr(F ) of path Rr is the sum of the costs on the links which build that path,
i.e.

Cr(F ) =
n∑
i=1

δirci(f),

or in compact form C(F ) = ∆>c(∆F ). For each pair Wj , there is a given traffic demand
Dj > 0, so that D = (D1, . . . , Dm) is the demand vector of the network. Feasible path flows
are non-negative flows such that the traffic demands are satisfied, i.e., they belong to the set

K = {F ∈ Rk : F ≥ 0 and ΦF = D}, (2)

where Φ is the pair-path incidence matrix, whose entries are

ϕjr =

{
1, if the path Rr connects the pair Wj ,

0, elsewhere,

with j = 1, . . . ,m and r = 1, . . . , k. The notion of a user traffic equilibrium is given by the
following definition.

Definition 2.1. A network flow H ∈ K is a Wardrop equilibrium if, for each O-D pair Wj

and for each pair of paths Rr, Rs which connect Wj, the following implication holds:

Cr(H) > Cs(H) =⇒ Hr = 0;

that is, if traveling along the path Rr takes more time than traveling along Rs, then the flow
along Rr vanishes.

It follows from the previous definition that the travel cost of the paths which connect
a given O-D pair is the same (and minimum) for all paths with positive flow. Hence, H
is a Wardrop equilibrium if for each O-D pair Wj there exists a scalar λj (representing the
equilibrium cost shared by all the used paths connecting Wj) such that

Cr(H)

{
= λj , if Hr > 0,

≥ λj , if Hr = 0.

The variational inequality formulation of the Wardrop equilibrium is given by the following
result (see, e.g., [17]).

Theorem 2.1. A network flow H ∈ K is a Wardrop equilibrium iff it solves the variational
inequality

C(H)>(F −H) ≥ 0, ∀ F ∈ K. (3)
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Notice that the variational inequality (3) can be rewritten by decomposing the scalar
product according to the various O-D pairs as follows:

m∑
j=1

∑
r∈Pj

Cr(H) (Fr −Hr) ≥ 0, ∀ F ∈ K.

For the subsequent development, the monotonicity properties of the cost operators will be
exploited.

Definition 2.2. A map T : Rn → Rn is said monotone if

( (T (x)− T (y) )>(x− y) ≥ 0, ∀ x, y ∈ Rn,

and strictly monotone if the equality holds only for x = y; T is said strongly monotone if
there exists α > 0 such that

( (T (x)− T (y) )>(x− y) ≥ α‖x− y‖2, ∀ x, y ∈ Rn.

The strict monotonicity assumption of the link-cost functions is commonly used because it
models the congestion effect. However, this does not necessarily imply the strict monotonicity
of the path-cost functions, this needs an extra condition as the following lemma shows.

Lemma 2.2.

a) If c is monotone, then C is monotone.

b) If c is strictly monotone and ∆ has full column rank, then C is strictly monotone.

c) If c is strongly monotone and ∆ has full column rank, then C is strongly monotone.

Proof.

a) If F 1, F 2 ∈ K, then

[F 1 − F 2]>[C(F 1)− C(F 2)] = [F 1 − F 2]>∆>[c(∆F 1)− c(∆F 2)]

= [∆F 1 −∆F 2]>[c(∆F 1)− c(∆F 2)]

≥ 0.

b) If F 1 6= F 2, then ∆F 1 6= ∆F 2 since ∆ has full column rank, hence

[F 1 − F 2]>[C(F 1)− C(F 2)] = [F 1 − F 2]>∆>[c(∆F 1)− c(∆F 2)]

= [∆F 1 −∆F 2]>[c(∆F 1)− c(∆F 2)]

> 0.

c) If F 1, F 2 ∈ K, then there exists α > 0 such that

[F 1 − F 2]>[C(F 1)− C(F 2)] = [F 1 − F 2]>∆>[c(∆F 1)− (∆F 2)]

= [∆F 1 −∆F 2]>[c(∆F 1)− c(∆F 2)]

≥ α‖∆F 1 −∆F 2‖2

= α(F 1 − F 2)>∆>∆(F 1 − F 2)

≥ αλmin(∆T∆)‖F 1 − F 2‖2,

where λmin(∆>∆), which denotes the minimum eigenvalue of ∆>∆, is positive since ∆
has full column rank.
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A useful network efficiency index is the total travel time (or total cost), when a Wardrop
equilibrium H is reached:

TC =

m∑
j=1

∑
r∈Pj

Cr(H)Hr =

m∑
j=1

λjDj . (4)

It has to be noted that an enhancement of capacity of a link can result in an increase of the
total cost as a consequence of the well known Braess paradox [2].

In our model, we wish to include the possibility that the traffic demand can be affected by
a random perturbation. As a result, we model the traffic equilibrium problem as a stochastic
variational inequality. Thus, the total cost at equilibrium becomes a random variable as well,
whose expectation is then defined as the efficiency index of our network. In the next section,
we brief the reader on the basic facts on the variational inequality theory in probability spaces
(for more details on this topic see, e.g., [7, 8, 9, 10]).

3 An Outline of Stochastic Variational Inequalities and their
application to the Traffic Equilibrium Problem

Let (Ω,A, P ) be a probability space, A,B : Rk → Rk two given mappings, and b, c ∈ Rk two
given vectors in Rk. Moreover, let R and S be two real-valued random variables defined on
Ω, D a random vector in Rm, and G ∈ Rm×k a given matrix. For ω ∈ Ω, we define a random
set M(ω) := {x ∈ Rk : Gx ≤ D(ω)}. Consider the following stochastic variational inequality:
for almost every ω ∈ Ω, find x̂ := x̂(ω) ∈M(ω) such that

(S(ω)A(x̂) +B(x̂) )>(z − x̂) ≥ (R(ω) c+ b )>(z − x̂), ∀ z ∈M(ω). (5)

To facilitate the foregoing discussion, we set T (ω, x) := S(ω)A(x) + B(x). We assume that
A,B and S are such that the map T : Ω × Rk 7→ Rk is a Carathéodory function. We also
assume that T (ω, ·) is monotone for every ω ∈ Ω. Since we are only interested in solutions
with finite first- and second-order moments, our approach is to consider an integral variational
inequality instead of the parametric variational inequality (5).

Thus, for a fixed p ≥ 2, consider the Banach space Lp(Ω, P,Rk) of random vectors V from
Ω to Rk such that the expectation (p-moment) is given by EP (‖V ‖p) =

∫
Ω ‖V (ω)‖pdP (ω) <

∞. For subsequent developments, we need the following growth condition

‖T (ω, z)‖ ≤ α(ω) + β(ω)‖z‖p−1, ∀ z ∈ Rk, (6)

where α ∈ Lq(Ω, P ) and β ∈ L∞(Ω, P ). Due to the above growth condition, the Nemytskii
operator T̂ associated to T , acts from Lp(Ω, P,Rk) to Lq(Ω, P,Rk), where p−1 + q−1 = 1, and
is defined by T̂ (V )(ω) := T (ω, V (ω)), for any ω ∈ Ω. Assuming D ∈ Lpm(Ω) := Lp(Ω, P,Rm),
we introduce the following nonempty, closed and convex subset of Lpk(Ω)

MP := {V ∈ Lpk(Ω) : GV (ω) ≤ D(ω), P − a.s.}.

Let S(ω) ∈ L∞, 0 < s < S(ω) < s, and R(ω) ∈ Lq. Equipped with these notations, we
consider the following Lp formulation of (5). Find Û ∈MP such that for every V ∈MP , we
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have ∫
Ω

(S(ω)A[Û(ω)] +B[Û(ω))]>(V (ω)− Û(ω)) dP (ω)

≥
∫

Ω
(b+R(ω) c)>(V (ω)− Û(ω))dP (ω).

(7)

A general theorem for the solvability of (7) is given at the end of the Appendix.
To get rid of the abstract sample space Ω, we consider the joint distribution P of the

random vector (R,S,D) and work with the special probability space (Rd,B(Rd),P), where
d := 2 +m and B is the Borel σ-algebra on Rd . For simplicity, we assume that R, S, and D
are independent random vectors. We set

r = R(ω), s = S(ω), t = D(ω), y = (r, s, t).

For each y ∈ Rd, we define the set M(y) := {x ∈ Rk : Gx ≤ t}. Consider the space
Lp(Rd,P,Rk) and introduce the closed and convex setMP := {v ∈ Lp(Rd,P,Rk) : Gv(r, s, t) ≤
t, P − a.s.}. Without any loss of generality, we assume that R ∈ Lq(Ω, P ) and D ∈
Lp(Ω, P,Rm) are non-negative. Moreover, we assume that the support (i.e., the set of possible
outcomes) of S ∈ L∞(Ω, P ) is the interval [s, s[⊂ (0,∞). With these ingredients, we consider
the variational inequality problem of finding û ∈MP such that for every v ∈MP we have∫ ∞

0

∫ s

s

∫
Rm
+

(sA[û(y)] +B[û(y)])>(v(y)− û(y)) dP(y)

≥
∫ ∞

0

∫ s

s

∫
Rm
+

(b+ r c)>(v(y)− û(y)) dP(y).

(8)

For the reader’s convenience, we provide some details on the numerical approximation of
the solution û in the Appendix. Here, we only mention that the set MP can be approximated
by a sequence {Mn

P } of finite dimensional sets, and the functions r and s can be approximated
by the sequences {ρn} and {σn} of step functions, with ρn → ρ in Lp and σn → σ in L∞,
respectively, where ρ(r, s, t) = r and σ(r, s, t) = s. When the solution of (8) is unique, we
can compute a sequence of step functions ûn which converges strongly to û, under suitable
hypotheses, by solving, for n ∈ N, the following discretized variational inequality: find ûn :=
ûn(y) ∈Mn

P such that, for every vn ∈Mn
P , we have∫ ∞

0

∫ s

s

∫
Rm
+

(σn(y)A[ûn(y)] +B[ûn(y)])>(vn(y)− ûn(y)) dP(y)

≥
∫ ∞

0

∫ s

s

∫
Rm
+

(b+ ρn(y) c)>(vn(y)− ûn(y)) dP(y).

(9)

In absence of strict monotonicity, the solution of (7) and (8) can be not unique and the
previous approximation procedure must be coupled with a regularization scheme as follows.
We choose a sequence {εn} of regularization parameters and choose the regularization map
to be the duality map J : Lp(Rd,P,Rk) → Lq(Rd,P,Rk). We assume that εn > 0 for every
n ∈ N and that εn ↓ 0 as n→∞.
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We can then consider the following regularized stochastic variational inequality: for n ∈ N,
find wn = wεnn (y) ∈Mn

P such that, for every vn ∈Mn
P , we have∫ ∞

0

∫ s

s

∫
Rm
+

(
σn(y)A[wn(y)] +B[wn(y)] + εnJ(wn(y))

)>
(vn(y)− wn(y)) dP(y)

≥
∫ ∞

0

∫ s

s

∫
Rm
+

(b+ ρn(y) c)>(vn(y)− wn(y)) dP(y).

(10)

As usual, the solution wn will be referred to as the regularized solution. Weak and strong con-
vergence of wn to the minimal-norm solution of (8) can be proved under suitable hypotheses
(see the Appendix).

In traffic network equilibrium problems, the demand and the cost are often modeled as
random variables (see, e.g., [1, 5, 7]). Thus, let Ω be a sample space and P be a probability
measure on Ω, and consider the following feasible set which takes into consideration random
fluctuations of the demand:

K(ω) = {F ∈ Rk : F ≥ 0, ΦF = D(ω)}, ω ∈ Ω.

Moreover, let C : Ω × Rk 7→ Rk be the random cost function. We can thus introduce ω as
a random parameter in (3) and consider the problem of finding a vector H(ω) ∈ K(ω) such
that, P − a.s:

C(ω,H(ω))>(F −H(ω)) ≥ 0, ∀ F ∈ K(ω). (11)

Definition 3.1. A random vector H ∈ K(ω) is a random Wardrop equilibrium if for P -
almost every ω ∈ Ω, for each O-D pair Wj and for each pair of paths Rr, Rs which connect
Wj, we get

Cr(ω, (H(ω)) > Cs(ω, (H(ω))) =⇒ Hr(ω) = 0.

Consider then the set

KP = {F ∈ Lp(Ω, P,Rk) : Fr(ω) ≥ 0, P.− a.s.,∀ r = 1, . . . , k, ΦF (ω) = D(ω), P.− a.s.},

which is is convex, closed and bounded, hence weakly compact. Furthermore, assume that
the cost function C satisfies the growth condition: ‖C(ω, z)‖ ≤ α(ω) + β(ω)‖z‖p−1, for any
z ∈ Rk, P. − a.s., for some α ∈ Lq(Ω, P ), β ∈ L∞(Ω, P ), p−1 + q−1 = 1. The Carathéodory
function C gives rise to a Nemytskii map Ĉ : Lp(Ω, P,Rk) →: Lq(Ω, P,Rk) defined through
the usual position Ĉ(F )(ω) = C(ω, F ((ω)), and, with abuse of a notation, instead of Ĉ, the
same symbol C is often used for both the Carathéodory function and the Nemytskii map that
it induces. We thus consider the following integral variational inequality: find H ∈ KP such
that ∫

Ω
C(ω,H(ω) )>(F −H(ω) )dP (ω) ≥ 0, ∀ F ∈ KP . (12)

A solution of (12) satisfies the random Wardrop conditions in the sense shown by the following
lemma (see [11] for the proof).

Lemma 3.1. If H ∈ KP is a solution of (12), then H is a random Wardrop equilibrium.
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As a consequence of the previous lemma, we get that there exists a vector function λ ∈
Lp(Ω, P,Rm) such that

Cr(ω,H(ω)) = λj(ω) (13)

for all paths Rr which connect wj , with Hr(ω) > 0, P -almost surely. We assume that the
operator is the sum of a purely deterministic term and of a random term where randomness
act as a modulation:

C(ω,H(ω)) = S(ω)A[H(ω)] +B[H(ω)]− b−R(ω)c,

where S ∈ L∞(Ω, P ), R ∈ Lq(Ω), A,B : Lp(Ω, P,Rk)→ Lq(Ω, P,Rk), b, c ∈ Rk. The integral
variational inequality now reads: find H ∈ KP such that, for all F ∈ KP , we have∫

Ω
(S(ω)(A[H(ω)])> + (B[H(ω)])> )(F −H(ω))dP (ω)

≥
∫

Ω
( b> +R(ω)c>)(F −H(ω))dP (ω).

(14)

4 Average Total Cost at Equilibrium and Optimal Road Main-
tenance Investment

We are now ready to define the mean values of two important quantities: the (unit) cost at
equilibrium and the total cost at equilibrium. Then, the latter will be used to formulate the
optimal road maintenance investment problem as an integer nonlinear optimization program.

4.1 Average Unit and Total Costs at Equilibrium

Let the traffic demand between the origin and destination be a random function D : Ω→ Rm
and Ĉ : Lp(Ω, P,Rk) → Lq(Ω, P,Rk) be the cost operator. As usual, we denote by P the
probability measure on Ω, while EP is the expectation (or mean value) with respect to the
probability P . We assume that D ∈ Lp(Ω, P,Rm). We consider the following definitions:

1. The average cost at equilibrium is defined as

EP [λ] =

∫
Ω
λ(ω)dP (ω), (15)

where λ = λ(ω) = (λ1(ω), . . . , λm(ω) ) is defined as in (13).

Remark 4.1. Let us note that the integral in (15) is different from zero under the nat-
ural assumption that in each path Rr there is a link where the cost is bounded from below
by a positive number (uniformly in ω ∈ Ω). This hypothesis is fulfilled in real networks
because the cost is positive for positive flows, but also the cost at zero flow (called the
free flow time) is positive, because it represents the travel time without congestion.

2. The average total cost at equilibrium is defined as

EP [TC] =

∫
Ω

m∑
j=1

∑
r∈Pj

Cr[ω,H(ω)]Hr(ω)dP (ω) =

∫
Ω

m∑
j=1

λj(ω)Dj(ω)dP (ω), (16)
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it is finite (because of Hölder inequality) and different from zero for the same reason as
above and because the demands are assumed strictly positive.

As explained in Section 3, the random vector t = D(ω) and the two random variables r = R(ω)
and s = S(ω) generate a probability P in the image space R2+m of (r, s, t) from the probability
P on the abstract sample space Ω. Hence, we can express the earlier defined quantities in terms
of the image space variables, thus obtaining functions which can be approximated through
a discretization procedure. The integration now runs over the image space variables, but to
keep notation simple we just write

∫
instead of

∫∞
0

∫ s
s

∫
Rm
+

. The transformed expressions read

as follows:

EP[λ] =

∫
λ(r, s, t)dP(r, s, t), (17)

EP[TC] =

∫ m∑
j=1

∑
l∈Pj

Cl[r, s,H(r, s, t)]Hl(r, s, t)dP(r, s, t) =

∫ m∑
j=1

λj(r, s, t) tj dP(r, s, t).

(18)
Let us recall that the solution H = H(r, s, t) of the stochastic variational inequality which

describes the network equilibrium can be approximated using the procedure explained in the
Appendix by a sequence {Hn}n of step functions such that Hn −→ H in Lp, as n → ∞.
In the theorem that follows, we give converging approximations for the mean values defined
previously.

Theorem 4.1. Let, for all n ∈ N, Cn[ρn, σn, H
n(r, s, t)] = σnA[Hn(r, s, t)]+B[H(r, s, t)]−b−

ρnc and let λn(r, s, t) = (λn1 (r, s, t), . . . , λnm(r, s, t)), where λnj (r, s, t) = Cnl [ρn, σn, H
n(r, s, t)]

for all paths Rl which connect wj, for which Hn
l (r, s, t) > 0, P-a.s.. Let ρ(r, s, t) = r, σ(r, s, t) =

s and ρn → ρ strongly in Lq and σn → σ strongly in L∞, as n → ∞. Let Hn → H strongly
in Lp. We then have:

1. The sequence

{EP[λn]}n =

{∫
λn(r, s, t)dP(r, s, t)

}
n

converges to EP[λ], as n→∞.

2. The sequence

{EP[TC n]}n =


∫ m∑

j=1

∑
l∈Pj

Cl(ρn, σn, H
n(r, s, t))Hn

l (r, s, t)dP(r, s, t)


n

converges to EP[TC], as n→∞.

Proof.

1. Since Hn → H strongly in Lp, it follows that A[Hn] → A[H] and B[Hn] → B[H],

strongly in Lq = L
p

p−1 because of the continuity of the Nemytskii operators A and B.
Moreover, ρn → ρ strongly in Lq and σn → σ strongly in L∞. As a consequence,

σnA[Hn] +B[Hn]− b− ρnc → σA[H] +B[H]− b− ρc

strongly in Lq, and also strongly in L1 because P is a probability measure. Hence,
for each i = 1, . . . , k, we get Cni [ρn, σn, H

n] → Ci[r, s,H] strongly in L1 and, by the
definitions of λ and λn, the thesis is proved.
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2. From the previous proof we got that, for each i = 1, . . . , k, Cni [ρn, σn, H
n]→ Ci[r, s,H]

strongly in Lq, as n→∞. This, together with Hn → H in Lp, yields to

Ci(ρn, σn, H
n(r, s, t))Hn

i (r, s, t)→ Ci(r, s,H(r, s, t))Hn
i (r, s, t)

strongly in L1 and the second claimed is proved.

�

The following corollary is a straightforward consequence of the previous theorem, together
with Remark 4.1 and the fact that the traffic demand is assumed strictly positive (P a.s.).

Corollary 4.2. Let C ′ be another cost operator in the random traffic problem (but with the
same functional form as C). We then have that

{EP[TC n]}n − {EP[TC ′ n]}n
{EP[TC n]}n

→ {EP[TC]− {EP[TC ′]}}
{EP[TC]}

, as n→∞. (19)

4.2 The optimal road maintenance investment model

We can now formalize the optimal road maintenance investment problem. Let us suppose
that a public authority has allocated an amount of money I for road maintenance. The
improvement process involves a subset of links {ai : i ∈ L}, where L ⊂ {1, . . . , n}, and Ii
is the investment required to enhance the capacity of link ai by a given ratio γi > 1. Since
the available budget does not allow to maintain all roads, the central authority aims to find
the optimal subset of links to be maintained in order to improve as much as possible the
average total cost at equilibrium (18) with respect to the current situation of the network,
while satisfying the budget constraint.

This optimal investment problem can be formulated as an integer nonlinear optimization
program as follows. We introduce for any i ∈ L a binary variable xi, which is equal to 1 if
the investment is actually carried out on link ai, and 0 otherwise. Thus, a vector x = (xi)i∈L
is feasible if the budget constraint

∑
i∈L Iixi ≤ I is satisfied. Given a feasible vector x, the

capacity of each link ai becomes equal to

ui(x) := γi ui xi + (1− xi)ui,

i.e., ui(x) = γiui > ui when xi = 1 and ui(x) = ui when xi = 0. The objective function to
be maximized is the relative variation of the average total cost with respect to the current
situation of the network, defined as

f(x) = 100 · EP[TC]− EP[TC](x)

EP[TC]
, (20)

where EP[TC] is the average total cost at equilibrium (18) before the maintenance job, while
EP[TC](x) is the average total cost at equilibrium corresponding to the improved network.
Therefore, the resulting optimization model is as follows:

max f(x)

s.t.
∑
i∈L

Iixi ≤ I

xi ∈ {0, 1} i ∈ L.

(21)
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We remark that the computation of the nonlinear function f at a given x requires to find a ran-
dom Wardrop equilibrium for both the original and the improved network. Thus, model (21)
can be considered as a stochastic nonlinear knapsack problem. Several authors considered in
the literature different stochastic versions of the knapsack problem (see, e.g., [6, 13, 19]).

5 Numerical Experiments

In this section, we consider the random Wardrop equilibrium problem and the related optimal
road maintenance investment problem on two medium-size networks, assuming that the traf-
fic demands are affected by random perturbations, while the arc cost functions are supposed
to be exactly known. Hence, the average total cost at equilibrium (18) depends only on the
random vector t = D(ω). The numerical computation of random Wardrop equilibria has
been performed by implementing in Matlab 2018a the discretization procedure described in
Section 4, and possibly the regularization procedure shown in Section 3, combined with the
algorithm designed in [15] for deterministic Wardrop equilibria. The nonlinear knapsack prob-
lem (21) has been solved by a complete enumeration algorithm, i.e., evaluating the objective
function at all the feasible solutions.

Example 5.1. We consider the grid network shown in Fig. 1 consisting of 36 nodes and 60
links. The link cost functions are of the BPR form (1) with k = 0.15 and β = 4 for all410 J Optim Theory Appl (2007) 133: 401–411

Fig. 2 Topology of the network
of Example 5.2

and Ii contains the indexes of the arcs ending in the starting node of the arc i. The O-D
pairs are 1–12, 7–18, 13–24, 19–30, 25–36, each connected by 6 paths. The demand
vector is (150,200,100,200,100). We remark that the strict monotonicity in the link
variables does not imply the strict monotonicity in the path variables, but our network
has been designed in order to preserve it. For each O-D pair, the paths are made up
of six horizontal arcs and a vertical arc; they are ordered so that the first path is the
one ending with the vertical arc, and the last path is the one starting with the vertical
arc. It is noteworthy that, even if the number of variables involved is only 30, the
number of possible systems is about 109. The equilibrium solution has 6 vanishing
flows (F5,F6,F13,F20,F25,F26). By implementing the algorithm of [1], we got the
solution after solving about 5 ·105 systems. Our strategy results in a drastic reduction
of the computational effort. In particular, by following the horizontal search, we reach
the solution after solving 36 systems, while the vertical search yields to the solution
after solving only 7 systems.

We also tested our algorithm on other networks of similar size, and, although we
cannot a priori estimate the reduction of the computational effort, our numerical tests
have shown that this reduction is huge. Furthermore, we point out that our selection
rules do not lead to a unique search strategy and that the study of an optimal strategy
as well as the extension of the method to not strictly monotone operators are left for
future research.

Acknowledgements We thank Prof. A. Maugeri for his careful reading of the manuscript and the As-
sociate Editor for his valuable suggestions. The first author thanks A. Causa and A. Caruso for useful
discussions on the geometrical aspect of the problem.
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Figure 1: Grid network of Example 5.1.

the links, while t0i = 1 and ui = 100 for any i = 1, . . . , 30, and t0i = 5 and ui = 200 for
any i = 31, . . . , 60. We consider five O-D pairs: (1,12), (7,18), (13,24), (19,30), (25,36). We
assume that the traffic demand for the first two O-D pairs is Dj = d′j + δ′, with j = 1, 2,
where d′ = (150, 200) and δ′ is a random variable which varies in the interval [−100, 100]
with either uniform distribution or truncated normal with mean 0 and standard deviation
50. Moreover, the traffic demand for the last three O-D pairs is Dj = d′′j + δ′′, for j = 3, 4, 5,
where d′′ = (100, 200, 100) and δ′′ is a random variable which varies in the interval [−50, 50]
with either uniform distribution or truncated normal with mean 0 and standard deviation

11



25. The four different combinations of probability densities of δ′ and δ′′ are denoted by U-U,
U-N, N-U and N-N; for instance, U-N means that δ′ has a uniform distribution, while δ′′ has
a truncated normal distribution, and so on.

Notice that each O-D pair is connected by 6 paths and any arc ai, with i = 31, . . . , 60, be-
longs to a unique path, thus the link-path incidence matrix ∆ has full column rank. Lemma 2.2
guarantees that the path cost operator is strongly monotone, hence there exists a unique ran-
dom Wardrop equilibrium and the regularization procedure is not needed for this instance.

Both intervals [−100, 100] and [−50, 50] have been partitioned into Nd subintervals in
the approximation procedure. Table 1 shows the convergence of the approximated average
total costs for different values of Nd by using the four different combinations of probability
densities.

Approximated avg total costs
Nd U-U U-N N-U N-N

10 9777.273 9673.016 9524.207 9428.736
20 9784.510 9680.161 9530.686 9435.027
50 9786.537 9682.170 9532.516 9436.810
100 9786.827 9682.457 9532.778 9437.065

Table 1: The impact of different probability densities on the approximated average total cost
of Example 5.1.

We now consider the optimal investment problem in road maintenance. We assume that
the available budget I = 30 ke, while the subset L of links to be maintained together with
the values of γi and Ii are shown in Table 2.

L 12 16 20 23 25 29 31 53

γi 1.4 1.8 1.3 1.5 1.7 1.4 1.1 1.5
Ii 6 12 4 6 10 5 2 6

Table 2: Link capacities and investments for Example 5.1.

Table 3 reports the ten best feasible solutions with the approximated value of the objective
function f and the corresponding investment I(x) =

∑
i∈L Iixi. The approximated values

of f(x) have been computed by partitioning the intervals [−100, 100] and [−50, 50] into 50
subintervals and assuming that random variables δ′ and δ′′ are uniformly distributed.

Example 5.2. We consider the Sioux-Falls network shown in Fig. 2 consisting of 24 nodes
and 76 links. The link cost functions are of the BPR form (1) with k = 0.15 and β = 1 for all
the links, while the parameters t0i and ui are given in [16]. We assume that the traffic demand
for the 528 O-D pairs is Dj = dj + δ if dj ≥ 7 and Dj = dj otherwise, where the deterministic
demand d is given in [16] and δ is a random variable which varies in the interval [−5, 5] with

12



x f(x) I(x)

(1,0,0,0,1,1,1,1) 5.306 29
(0,0,0,1,1,1,1,1) 5.300 29
(1,0,1,1,0,1,1,1) 5.279 29
(1,0,0,1,1,1,1,0) 5.128 29
(1,0,0,1,1,0,1,1) 5.073 30
(1,0,1,1,0,1,0,1) 4.945 27
(1,0,1,0,1,1,1,0) 4.904 27
(1,0,0,0,1,1,0,1) 4.900 27
(0,0,1,1,1,1,1,0) 4.898 27
(0,0,0,1,1,1,0,1) 4.894 27

Table 3: The ten best feasible solutions of the optimal road maintenance investment problem
for Example 5.1.
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Figure 2: Sioux-Falls network of Example 5.2.
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either uniform distribution (U) or truncated normal with mean 0 and standard deviation 0.5
(N).

Notice that in this case the link-path incidence matrix ∆ has not full column rank and
the path cost operator is monotone but not strongly monotone. Hence, the discretization
procedure must be coupled with the regularization scheme described in Section 3.

The interval [−5, 5] has been partitioned into Nd subintervals in the approximation pro-
cedure and the regularization parameter ε has been chosen equal to 1/(Nd)2. Table 4 shows
the convergence of the approximated average total costs for different values of Nd and ε for
any of the two probability densities.

Approximated avg total costs
Nd ε U N

10 1.0e-02 1560.71 1536.89
20 2.5e-03 1206.28 1189.09
50 4.0e-04 1103.39 1088.72
100 1.0e-04 1088.46 1074.24
200 2.5e-05 1084.72 1070.59
500 4.0e-06 1083.67 1069.57
1000 1.0e-06 1083.52 1069.43

Table 4: The impact of different probability densities on the approximated average total cost
of Example 5.2.

We now consider the optimal investment problem in road maintenance. We assume that
the available budget I = 40 ke and L = {25, 26, 28, 43, 45, 46, 56, 57, 60, 67} is the subset
of links to be maintained. We consider two different scenarios: a low quality maintenance
scenario, with an average enhancement ratio close to 1.3, and a high quality maintenance one
with a ratio close to 1.55. The values of γi and Ii of the two scenarios are shown in Table 5.

Links Scenario 1 Scenario 2

γi Ii γi Ii

25 1.2 5 1.4 6
26 1.5 6 1.8 7
28 1.1 10 1.3 12
43 1.3 5 1.5 6
45 1.4 4 1.7 5
46 1.2 8 1.4 10
56 1.1 6 1.3 7
57 1.5 2 1.8 2.5
60 1.4 3 1.7 3.5
67 1.3 2 1.5 2.5

Table 5: Link capacities and investments for Example 5.2.
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Table 6 reports the ten best feasible solutions for the two scenarios. The approximated
values of f(x) have been computed by partitioning the interval [−5, 5] into 50 subintervals
and assuming that the regularization parameter is ε = 1/2500 and the random variable δ is
uniformly distributed.

Let us note that the value of the ten best solutions in the first scenario varies between
around 2.5% and 2.7%, while that in second scenario between around 3.6% and 3.8%. Thus,
an improvement in the quality of maintenance leads to a greater reduction in the average
total cost.

Scenario 1 Scenario 2

x f(x) I(x) x f(x) I(x)

(0,1,1,1,1,1,0,1,1,1) 2.75 40 (0,1,1,1,1,0,0,1,1,1) 3.82 38
(1,1,0,1,1,1,0,1,1,1) 2.74 35 (1,1,0,1,1,0,1,1,1,1) 3.81 40
(1,1,1,1,1,0,0,1,1,1) 2.65 37 (0,1,0,1,1,1,0,1,1,1) 3.78 36
(0,1,0,1,1,1,1,1,1,1) 2.62 36 (1,1,0,1,1,1,0,1,0,1) 3.78 39
(1,1,0,1,1,1,1,1,0,1) 2.57 38 (1,1,1,1,0,0,0,1,1,1) 3.77 40
(1,1,0,1,0,1,1,1,1,1) 2.55 37 (1,1,0,1,0,1,0,1,1,1) 3.74 38
(0,1,0,1,1,1,0,1,1,1) 2.54 30 (1,1,0,1,1,1,0,0,1,1) 3.67 40
(0,1,1,1,1,0,1,1,1,1) 2.53 38 (0,1,0,1,1,1,1,1,0,1) 3.64 40
(1,1,0,1,1,0,1,1,1,1) 2.52 33 (0,1,0,1,0,1,1,1,1,1) 3.61 38
(1,0,1,1,1,1,0,1,1,1) 2.52 39 (0,1,1,1,0,1,0,1,0,1) 3.60 40

Table 6: The ten best feasible solutions of the optimal road maintenance investment problem
in the two scenarios of Example 5.2.
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A Appendix

In this section, we provide some details for the numerical approximation of the solution û
of (8). First, we need a discretization of the space X := Lp(Rd,P,Rk). We introduce a
sequence {πn}n of partitions of the support

Υ := [0,∞[×[s, s[×Rm+
of the probability measure P induced by the random elements R,S, and D. For this, we set

πn = (πRn , π
S
n , π

D
n ),

where

πRn := (r0
n, . . . , r

NR
n

n ), πSn := (s0
n, . . . , s

NS
n

n ), πDi
n := (t0n,i, . . . , t

N
Di
n

n,i )

0 = r0
n < r1

n < . . . rN
R
n

n = n, s = s0
n < s1

n < . . . sN
S
n

n = s,

0 = t0n,i < t1n,i < . . . tN
Di
n

n,i = n (i = 1, . . . ,m)

|πRn | := max{rjn − rj−1
n : j = 1, . . . , NR

n } → 0 (n→∞)

|πSn | := max{skn − sk−1
n : k = 1, . . . , NS

n } → 0 (n→∞)

|πDi
n | := max{thin,i − t

hi−1
n,i : hi = 1, . . . , NDi

n } → 0 (i = 1, . . . ,m; n→∞) .

These partitions give rise to an exhausting sequence {Υn} of subsets of Υ, where each Υn is
given by the finite disjoint union of the intervals:

Injkh := [rj−1
n , rjn[×[sk−1

n , skn[×Inh ,

where we use the multi-index h = (h1, · · · , hm) and

Inh :=

m∏
i=1

[thi−1
n,i , thin,i[.

For each n ∈ N, we consider the space of the Rl-valued step functions (l ∈ N) on Υn, extended
by 0 outside of Υn:

X l
n :=

vn : vn(r, s, t) =
∑
j

∑
k

∑
h

vnjkh1Injkh(r, s, t), vnjkh ∈ Rl
 ,

where 1I denotes the {0, 1}-valued characteristic function of a subset I.
To approximate an arbitrary function w ∈ Lp(Rd,P,R), we employ the mean value trun-

cation operator µn0 associated to the partition πn given by

µn0w :=

NR
n∑

j=1

NS
n∑

k=1

∑
h

(µnjkhw) 1Injkh , (22)
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where

µnjkhw :=


1

P(Ijkh)

∫
Injkh

w(y) dP(y), if P(Injkh) > 0,

0, otherwise.

Analogously, for a Lp vector function v = (v1, . . . , vl), we define

µn0v := (µn0v1, . . . , µ
n
0vl),

for which one can prove that µn0v converges to v, in Lp(Rd,P,Rl). To construct approximations
for

MP =
{
v ∈ Lp(Rd,P,Rk) : Gv(r, s, t) ≤ t , P− a.s.

}
,

we introduce the orthogonal projector q : (r, s, t) ∈ Rd 7→ t ∈ Rm and define for each
elementary cell Injkh,

qnjkh = (µnjkhq) ∈ Rm, (µn0q) =
∑
jkh

qnjkh 1Injkh ∈ X
m
n .

This leads to the following sequence of convex and closed sets of the polyhedral type:

Mn
P := {v ∈ Xk

n : Gvnjkh ≤ qnjkh , ∀j, k, h}.

Since our objective is to approximate the random variables R and S, we introduce

ρn =

NR
n∑

j=1

rj−1
n 1

[rj−1
n ,rjn[

∈ Xn and σn =

NS
n∑

k=1

sk−1
n 1[sk−1

n ,skn[ ∈ Xn.

Notice that

σn(r, s, t)→ σ(r, s, t) = s in L∞(Rd,P) and ρn(r, s, t)→ ρ(r, s, t) = r in Lp(Rd,P).

Combining the above ingredients, for n ∈ N, we consider the following discretized variational
inequality: Find ûn := ûn(y) ∈Mn

P such that for every vn ∈Mn
P , we have∫ ∞

0

∫ s

s

∫
Rd

[σn(y)A(ûn)+B(ûn)]>[vn− ûn] dP(y) ≥
∫ ∞

0

∫ s

s

∫
Rd

[b+ρn(y) c]>[vn− ûn] dP(y) .

(23)
We also assume that the probability measures PR, PS , and PDi have the probability

densities ϕR, ϕS , and ϕDi , i = 1, . . . ,m, respectively. Therefore, for i = 1, . . . ,m, we have

dPR(r) = ϕR(r) dr, dPS(s) = ϕS(s) ds, dPDi(ti) = ϕDi(ti) dti.

It turns out that (23) can be split in a finite number of finite dimensional variational
inequalities: For every n ∈ N, and for every j, k, h, find ûnjkh ∈Mn

jkh such that

[T̃nk (ûnjkh)]>[vnjkh − ûnjkh] ≥ [c̃nj ]>[vnjkh − ûnjkh], ∀ vnjkh ∈Mn
jkh, (24)
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where

Mn
jkh := {vnjkh ∈ Rk : Gvnjkh ≤ qnjkh}, T̃nk := sk−1

n A+B, c̃nj := b+ rj−1
n c.

Clearly, we have

ûn =
∑
j

∑
k

∑
h

ûnjkh 1Injkh ∈ X
k
n.

We recall the following convergence result (see [9]).

Theorem A.1. Assume that T (ω, ·) is strongly monotone, uniformly with respect to ω ∈ Ω,
that is

(T (ω, x)− T (ω, y))>(x− y) ≥ α‖x− y‖2 ∀ x, y, a.e. ω ∈ Ω,

where α > 0 and that the growth condition (6) holds. Then the sequence {ûn}, where ûn is
the unique solution of (23), converges strongly in Lp(Rd,P,Rk) to the unique solution û of
(8).

In absence of strict monotonicity, the solution of (8) is not unique and we resort to a
regularization technique as follows (see [10] for the details and proofs). We will regularize the
above discrete variational inequality and show that its continuous analogue is recovered by
the limiting process. For this, we choose a sequence {εn} of regularization parameters and
choose the regularization map to be the duality map J : Lp(Rd,P,Rk) → Lq(Rd,P,Rk). We
assume that εn > 0 for every n ∈ N and that εn ↓ 0 as n → ∞. We consider the following
regularized stochastic variational inequality: For n ∈ N, find wn = wεnn (y) ∈ Mn

P such that
for every vn ∈Mn

P , we have∫ ∞
0

∫ s

s

∫
Rm
+

[σn(y)A(wn(y)) +B(wn(y)) + εnJ(wn(y))]>(vn(y)− wn(y)) dP(y)

≥
∫ ∞

0

∫ s

s

∫
Rm
+

[b+ ρn(y) c]>(vn(y)− wn(y)) dP(y).

(25)

As usual, the solution wn will be referred to as the regularized solution.
The following theorems highlight some of the features of the regularized solutions.

Theorem A.2. The following statements hold.

1. For every n ∈ N, the regularized stochastic variational inequality (10) has the unique
solution wn.

2. Any weak limit of the sequence {wn} of the regularized solutions is a solution of (8).

3. The sequence of the regularized solutions {wn} is bounded provided that the following
coercivity condition holds: There exists a bounded sequence {δn} with δn ∈ Mn

P such
that∫∞

0

∫ s
s

∫
Rm
+

[σn(y)A(un(y)) +B(un(y))]>(un(y)− δn(y)) dP(y)

‖un‖
→ ∞ as ‖un‖ → ∞.

(26)

To obtain strong convergence we need to use the concept of fast Mosco convergence, as
given by the following definition.
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Definition A.1. Let X be a normed space, let {Kn} be a sequence of closed and convex
subsets of X and let K ⊂ X be closed and convex. Let εn be a a sequence of positive real
numbers such that εn → 0. The sequence {Kn} is said to converge to K in the fast Mosco
sense, related to εn, if

1. For each x ∈ K, ∃{xn} ∈ Kn such that ε−1
n ‖xn − x‖ → 0;

2. For {xm} ⊂ X, if {xm} weakly converges to x ∈ K, then ∃{zm} ∈ K such that ε−1
m (zm−

xm) weakly converges to 0.

Theorem A.3. Assume that Mn
P converges to MP in the fast Mosco sense related to εn.

Moreover assume that ε−1
n ‖σn−σ‖ → 0, and ε−1

n ‖ρn−ρ‖ → 0 as n→∞. Then the sequence
of regularized solutions {wn} converges strongly to the minimal-norm solution of stochastic
variational inequality (8) provided that wn is bounded.

We conclude this section by recalling the following general result that ensures the solv-
ability of an infinite dimensional variational inequality like (7) or (8) (see [12] for a recent
survey on existence results for variational inequalities).

Theorem A.4. Let E be a reflexive Banach space and let E∗ denote its topological dual space.
We denote the duality pairing between E and E∗ by 〈·, ·〉E,E∗. Let K be a nonempty, closed,
and convex subset of E, and A : K −→ E∗ be monotone and continuous on finite dimensional
subspaces of K. Consider the variational inequality problem of finding u ∈ K such that

〈Au, v − u〉E,E∗ ≥ 0, ∀ v ∈ K.

Then, a necessary and sufficient condition for the above problem to be solvable is the existence
of δ > 0 such that at least a solution of the variational inequality:

find uδ ∈ Kδ such that 〈Auδ, v − uδ〉E,E∗ ≥ 0, ∀ v ∈ Kδ

satisfies ‖uδ‖ < δ, where Kδ = {v ∈ K : ‖v‖ ≤ δ}.
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