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We analyze the structure of the surface states and Fermi arcs of Weyl semimetals as a function of the boundary
conditions parametrizing the Hamiltonian self-adjoint extensions of a minimal model with two Weyl points.
These boundary conditions determine both the pseudospin polarization of the system on the surface and the
shape of the associated Fermi arcs. We analytically derive the expectation values of the density profile of the
surface current, we evaluate the anomalous Hall conductivity as a function of temperature and chemical potential,
and we discuss the surface current correlation functions and their contribution to the thermal noise. Based on
a lattice variant of the model, we numerically study the surface states at zero temperature and we show that
their polarization and, consequently, their transport properties, can be varied by suitable Zeeman terms localized
on the surface. We also provide an estimate of the bulk conductance of the system based on the Landauer-
Büttiker approach. Finally, we analyze the surface anomalous thermal Hall conductivity and we show that the
boundary properties lead to a correction of the expected universal thermal Hall conductivity, thus violating the
Wiedemann-Franz law.
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I. INTRODUCTION

Weyl semimetals are the focus of intense theoretical (see,
for example, the reviews [1–5]) and experimental [6–12] stud-
ies. They are the prototypical example of three-dimensional
systems that, despite being gapless in the bulk, display topo-
logically protected properties [13,14]. These properties stem
from the chiral behavior of the Weyl band-touching points
characterizing these materials, and they include peculiar trans-
port phenomena such as the chiral magnetic effect [15] and the
anomalous Hall response [14,16], which are different mani-
festations of the quantum chiral anomaly that these systems
display [11,12,15,17–21].

One of the most striking effects of the chirality of the
Weyl points is the presence of gapless chiral states that are
localized on the surfaces of Weyl semimetals and are protected
against disorder. These chiral surface states appear along
surfaces orthogonal to the separation of the Weyl points in
momentum space, and they are responsible for an anomalous
Hall conductivity proportional to the distance of the projection
of the Weyl points on the surface Brillouin zone [14,16].

Several experiments exploited ARPES techniques to detect
these surface states [10] (see also [2,3] and references therein)
and the corresponding Fermi arcs [13,14]; the shape and
spin texture of the Fermi arcs, in particular, are nonuniversal
features that strongly depend on the surface properties of the
investigated materials. Despite being nonuniversal, however,
the surface features play a fundamental role in defining some
of the transport properties of Weyl semimetals: Ref. [22], for

instance, shows that the boundary characteristics are crucial
in evaluating the surface contribution to the current induced
by the chiral magnetic effect in an alternating magnetic field
[23–25].

In this work, we present an analytical description of the
surface states, currents, and anomalous Hall conductivity
of a minimal model of a Weyl semimetal. Our results are
based on the study of the self-adjoint extensions of the bulk
Hamiltonian to the surface [26–29], which determine the
set of physical boundary conditions describing the interface
between the Weyl semimetal and the vacuum. We consider
only the ballistic regime, thus neglecting any disorder or
interparticle scattering. This implies that our analysis neglects
the dissipation effects from the surface to the bulk states (see,
for example, Refs. [30,31] for an analysis of these effects on
the surface transport), and additional disorder effects on the
Fermi arcs [32].

Our results provide an analytical description of the surface
transport beyond linear response theory. In particular, we
derive the profiles of the current density and conductivity as a
function of the distance from the surface and we analytically
evaluate the anomalous Hall conductance as a function of
chemical potential, temperature, and boundary conditions of
the system. We calculate the thermal noise due to the surface
states and we derive the anomalous Hall thermal conductivity
of the system, finding that the Wiedemann-Franz law is ful-
filled by the surface states only in the zero-temperature limit.

We also verify numerically that it is possible to vary
the boundary condition through suitable surface Zeeman
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interactions and, consequently, to change the value of the
anomalous Hall conductivity of the system at nonvanishing
chemical potentials. Overall, these results provide useful tools
to interpret the surface transport properties of samples of
Weyl semimetals in the ballistic regime at finite temperature
and nonzero chemical potential, and to suitably estimate the
effects of their boundary conditions.

This paper is structured in the following way: In Sec. II
we introduce a low-energy description for a Weyl semimetal
with two band-touching point; in particular, we emphasize the
role of its boundary conditions and we construct a suitable
quantum field theory for its study. In Sec. III its surface
properties are studied and we present our main results about
the anomalous Hall conductivity. Section IV provides an
analytical estimate of the bulk conductance of the system.
In Sec. V we compare the zero-temperature results with the
numerical study of its corresponding lattice model. Section VI
is devoted to additional properties of the system at finite
temperature, focusing in particular on the surface thermal
noise and anomalous thermal Hall conductivity. Finally we
present our conclusions in Sec. VII.

II. THE MODEL AND ITS BOUNDARY CONDITIONS

A. The Hamiltonian and its spectral properties

The Weyl points in a topological semimetal appear always
in pairs with opposite chirality [33]. For this reason, a minimal
model describing a realistic Weyl semimetal must include two
band-touching points and break time-reversal invariance, as
in the case of layered intermetallic materials with a trigonal
crystal structure [34]. Our starting point is therefore a toy
model of fermions with a suitable pseudospin-1/2 degree of
freedom that can represent orbital, sublattice, or spin degrees
of freedom. The fermions move on a cubic lattice with a
dynamics dictated by the Hamiltonian Hlat = ∑

p c†
pHlat (p)cp,

where c and c† are two-component spinors and:

Hlat (p) = ṽ(cos p0 − cos px )σx + v(2 − cos py − cos pz )σx

+ v sin pyσy + v sin pzσz. (2.1)

In this equation, the Pauli matrices σi act on the pseudospin,
and hereafter we adopt units such that the lattice spacing is
unity.

This minimal model [16,35,36] displays two Weyl points
in (±p0, 0, 0) at zero energy, and we choose ṽ = v/ sin p0 in
order to obtain an isotropic energy dispersion around both.
For ṽ cos p0 �= 0, the Hamiltonian (2.1) corresponds to a stack
of two-dimensional topological insulators laying on the yz
planes and coupled by the tunneling term along the x̂ direc-
tion. In particular, in the two-dimensional yz limit described
by cos px = 0, we obtain a topological insulator with chiral
gapless edge modes for ṽ cos p0 < 0. When introducing the
coupling in the x̂ direction, these gapless modes evolve into
Fermi arcs localized on the surfaces xy and xz.

The Hamiltonian (2.1) is invariant under space-inversion
symmetry,

Hlat (−p) = U Hlat (p)U −1, with U = σx, (2.2)

in such a way that the two Weyl points appear at the same
energy. Concerning its boundaries, we neglect band-bending

potentials at the surface; as a result, the Fermi arcs in this
system do not display a spiraling dispersion, differently from
the setups analyzed in Ref. [37] (see also Ref. [38] for the
effect of trapping potentials).

To analytically study the behavior of the surface states, for
small values of p0, we approximate the low-energy behavior
of (2.1) with the Hamiltonian

H (p) = v

2p0

(
p2

x − p2
0

)
σx + vpyσy + vpzσz, (2.3)

leading to the differential operator

H (−i∇) = − v

2p0

(
∂2

x + p2
0

)
σx − vi∂yσy − vi∂zσz. (2.4)

Let us assume that the Weyl semimetal is located in the
half-space R3

+ with z > 0. Then (2.4) defines a symmetric
operator on a suitable set D(R3

+) of smooth functions, which
is dense in the set of square integrable functions on R3

+. The
general theory (see, e.g., Ref. [39]) of such operators implies
in our case that H (−i∇) has self-adjoint extensions, which
involve one real parameter. The nature of this parameter can
be deduced from the condition

〈ψH (−i∇)|ϕ〉 − 〈ψ |H (−i∇)ϕ〉 = 0, (2.5)

imposed for each pair of wave functions ψ and ϕ in the
domain D(R3

+). The previous relation is equivalent to the
surface condition

ϕ†(r)σzψ (r) |z=0 = 0, (2.6)

where † stands for Hermitian conjugation. Analogously to the
2D case of graphene [40,41], Eq. (2.6) corresponds to the
physical requirement of vanishing of the probability current
flowing across the surface z = 0. It is satisfied by the (maxi-
mal) set of wave functions with an arbitrary and translation-
ally invariant polarization of the pseudospin parallel to the
surface in all its points, namely

(σx cos γ + σy sin γ )ψ (r)|z=0 = ψ (r)|z=0. (2.7)

The angle 0 � γ < 2π parametrizes all the self-adjoint exten-
sions Hγ of the Hamiltonian (2.3) and specifies the pseudospin
polarization in the plane xy of all the wave functions on
the surface z = 0. In the physical context the parameter γ

is expected to depend in general on the electric/magnetic
properties of the Weyl material and the termination of its
lattice that defines the surface, as experimentally verified in
Refs. [42,43].

Once γ ∈ [0, 2π ) is fixed, the spectral properties of Hγ are
uniquely determined and concisely described in Appendix A.
Summarizing, the eigenfunctions

{ζ±
s (r, p), ζ±

b (r, p)} (2.8)

are of two different types, called in what follows surface and
bulk states. The surface eigenstates ζ±

s (r, p), given by (A1),
depend only on the two momenta p = (px, py) parallel to the
z plane and decay exponentially along the z axis. The bulk
eigenstates ζ±

b (r, p), given by (A2) and (A3), depend instead
on all three momenta p = (px, py, pz ) and oscillate along the
z axis. The associated eigenvalues

{εs(p), ±εb(p)} (2.9)
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FIG. 1. The Fermi arc in the xy surface is depicted for several
values of γ and μ = 0. The momenta are in units of p0.

are expressed in terms of the combinations

g(px ) = p2
x − p2

0

2p0
, p̃z(p) = py cos γ − g(px ) sin γ . (2.10)

In particular, the surface states ζ±
s (r, p) correspond to the

domains in momentum space with positive and negative en-
ergies εs(p), respectively. These surface eigenvalues of the
Hamiltonian are defined by:

εs(p) = v[g(px ) cos γ + py sin γ ], p̃z(p) > 0. (2.11)

The bulk energies result instead:

εb(p) = v

√
g(px )2 + p2

y + p2
z , pz�0. (2.12)

The eigenvectors (2.8) form a complete orthogonal basis,
which together with (2.11) and (2.12) defines uniquely [39]
the self-adjoint extension Hγ .

The γ dependence of the energy spectrum is a first indica-
tion that the physics of our system depends on the boundary
conditions. It is instructive to consider in this respect the
zero-energy eigenstates. There are four bulk states with this
property, corresponding to the spin-degenerate states at the
momenta (px = ±p0, py = 0, pz = 0). In addition, there is
the family of surface states with vanishing energy

py = −g(px ) cot γ , p̃z(p) > 0, (2.13)

associated with the dispersion relation (2.11). The set of
all these zero-energy eigenstates form the open Fermi arc
on the surface Brillouin zone. In fact, equation (2.11) de-
fines the shape of the arc which depends explicitly on the
angle γ , which gives its orientation at the limiting points
(px = ±p0, py = 0, pz = 0) (measured from the upper ver-
tical direction clockwise and counterclockwise respectively,
see Fig. 1). In particular, for px = p0, the Fermi arc is always
oriented orthogonally to the pseudospin polarization given by
the boundary conditions (2.7). In the range 0 < γ < π , the
length LFA(γ ) of the Fermi arcs following from (2.13) is

LFA(γ ) = p0

{
1

sin γ
+ (tan γ ) log

[
1 + cos γ

sin γ

]}
. (2.14)

We find (2.14) instructive because it relates the angle γ ,
which has an abstract mathematical origin, with the length

of the Fermi arc LFA and with p0, which are experimentally
measurable quantities in ARPES measurements [8,10,42,43].

The value γ = π/2 describes a straight Fermi arc connect-
ing the projections of the Weyl points. In fact, at this point
the function (2.14) reaches its minimum LFA(π/2) = 2p0. For
γ = 0 and γ = π the orientation of the Fermi arc becomes
orthogonal to the line connecting the Weyl points: in this
case and, more in general, for π � γ � 2π , our choice of
the function g returns indeed two distinct and unbounded
Fermi arcs. In tight-binding models of real materials, the
two branches are always connected with each other, but our
second-order approximation of the lattice Hamiltonian (2.1)
describes only their behavior in proximity of the Weyl point
projections and fails in depicting the global behavior of the
Fermi arc across the Brillouin zone. The regime π � γ � 2π

may indeed correspond to systems and surfaces in which a
Fermi arc connects Weyl points in adjacent Brillouin zones
(see, for example, the recent experimental results in Ref. [43]).

The above approach is very general and applies to other
Hamiltonians in spaces with boundary as well. We stress
in this respect that once the Hamiltonian H is fixed, there
is no further freedom for choosing neither the boundary
condition nor the number of parameters, describing its self-
adjoint extensions. In fact, the boundary condition is uniquely
determined by requiring the Hermiticity (2.5) of H , whereas
the number of parameters is fixed by the indices n± associ-
ated to H (see, e.g., Ref. [39] for details). If n− = n+ ≡ n
according to the Von Neumann theorem [39] H admits n2-
parameter family self-adjoint extensions. According to (2.7)
a single angle γ determines all self-adjoint extensions of the
Hamiltonian (2.4), which implies that in our case n = 1. This
is related to our choice of a minimal two-component model
Hamiltonian for the description of the Weyl semimetal. We
observe, however, that in the literature Dirac Hamiltonians in-
volving four-component spinors are often adopted to describe
this kind of system (see, for example, Refs. [29,44] and the
analogous case for graphene [41]). In that case the self-adjoint
extensions depend on a larger set of parameters. For the sake
of simplicity we base our analysis on the model in Eq. (2.3),
which allows us to capture all the main physical features of
the surface transport of Weyl semimetals, without resorting to
larger spinors.

Summarizing, the Hamiltonian Hγ on the half space R3
+

has quite remarkable spectral properties, which represent the
core of the quantum field description developed below. In
particular, the main physical properties of the surface states
can be derived from the Hamiltonian (2.3) for boundary
conditions with 0 < γ < π . In the remainder of the paper, this
regime will be assumed.

B. Quantum field approach

The strategy is well known and aims at the construction of
a quantum field


(t, r) = 
s(t, r) + 
b(t, r), (2.15)

where 
s and 
b collect the bulk and surface contributions.
The fundamental requirements are that the time evolution of

 is generated by Hγ and that 
 satisfies the canonical equal-
time anticommutation relations. In order to write the solution
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in explicit form we adopt for later convenience a Dirac type
formulation and introduce the following notation: We label by
as and a†

s the annihilation and creation operators for surface
quasiparticles with εs > 0, and by bs and b†

s the annihilation
and creation operators for surface quasiholes, such that:

as(p) = cs(p)�[εs(p)], (2.16)

bs(−p) = c†
s (p)�[−εs(p)], (2.17)

where the operators cs(p) are annihilation operators of the
electrons on the surface and � is the Heaviside step function.
Analogously, we set in the bulk

ab(p) = cb(p)�[εb(p)], (2.18)

bb(−p) = c†
b(p)�[−εb(p)], (2.19)

where cb(p) are the annihilation operators of the electrons in
the bulk. With these conventions 
s and 
b take the form


s(t, r) =
∫

d2 p

(2π )2
[as(p)ζ (+)

s (r, p)e−it |εs (p)|

+ b†
s (−p)ζ (−)

s (r, p)eit |εs (p)|], (2.20)


b(t, r) =
∫

d3 p

(2π )3
[ab(p)ζ (+)

b (r, p)e−it |εb(p)|

+ b†
b(−p)ζ (−)

b (r, p)eit |εb(p)|], (2.21)

in terms of the complete system (2.8) of eigenfunctions of Hγ

and the creation and annihilation operators [(2.16)–(2.19)],
satisfying the canonical anticommutation relations. We ob-
serve that the surface and the bulk components [(2.20),(2.21)]
obey separately the equation of motion. This is not the case
for the equal-time canonical anticommutation relations, which
follow from the completeness of the energy eigenstates and
hold therefore only for the total field (2.15).

At this point, the choice of representations of the oscillator
algebras, generated by (2.20) and (2.21), is the only freedom
we are left with. Since our goal is to study the Weyl semimet-
als at finite temperature and density, we will adopt below
the Gibbs representation [45], keeping in general different
(inverse) temperatures and chemical potentials {βs, μs} and
{βb, μb}. In terms of the Fermi distribution

f (ε; β,μ) = �(ε)

1 + eβ(ε−μ)
, β = 1/kBT, (2.22)

the nonvanishing two-point functions are:

〈a†
s (p)as(q)〉 = f (εs(p), βs, μs )(2π )2δ(p − q), (2.23)

〈b†
s (−p)bs(−q)〉 = f (−εs(p), βs,−μs )(2π )2δ(p − q).

(2.24)

For the bulk excitations one has instead

〈a†
b(p)ab(q)〉 = f (εb(p), βb, μb)(2π )3δ(p − q), (2.25)

〈b†
b(−p)bb(−q)〉 = f (−εb(p), βb,−μb)(2π )3δ(p − q).

(2.26)

We observe that there is no interference between surface and
bulk oscillators and that all higher point correlation functions
can be expressed in terms of (2.23)–(2.26).

At this stage we can construct and investigate the basic
physical observables of the system. Let us consider for in-
stance the particle density operator

: 
†
 : (t, r) = : 
†
s 
s : (t, r)+ : 


†
b
b : (t, r)

+ : 
†
s 
b : (t, r)+ : 


†
b
s : (t, r), (2.27)

where : · · · : stands for the normal ordering with respect to
the creation and annihilation operators (2.16)–(2.19). Since
the surface and the bulk operators have vanishing mixed two-
point functions, one finds

〈: 
†
 : (t, r)〉 = 〈: 
†
s 
s : (t, r)〉 + 〈: 


†
b
b : (t, r)〉,

(2.28)
which implies that at the level of mean values there is no
interplay between surface and bulk degrees of freedom. This
is a general feature, which allows us to treat separately the
mean values of the surface and bulk currents as well. Let us
stress finally that the above quantum field theory setting works
directly in the thermodynamic limit of our system.

III. SURFACE CURRENTS AND HALL CONDUCTIVITY

A. Mean value of the surface current

The anomalous Hall conductivity of Weyl semimetals is
determined by their Fermi arcs. In the minimal model (2.1),
a simple decomposition of the 3D Hamiltonian (2.3) into a
two-dimensional set of systems parameterized by px shows
that the number of surface states defining the Fermi arc is
proportional to the distance 2p0 between the projections of
the Weyl points in the surface Brillouin zone. In particular,
each 2D system defined by Hpx (py, pz ) constitutes a Chern
insulator with chiral gapless edge modes for −p0 < px < p0,
and this implies that the contribution to the anomalous Hall
conductivity of the surface states in the ballistic regime at
zero temperature and half filling is given by σH = e2 p0/πh
[14,16]. This value of the anomalous Hall conductivity is
universal and does not depend on the boundary conditions
of the system. Other physical quantities, as, for example, the
behavior of σH at finite chemical potential, depend instead on
the boundary condition (2.7). In the following, we analytically
study the physics of the surface modes focusing on several
characteristics which are determined by the value 0 < γ < π

of the surface polarization.
To investigate the transport properties of the system gen-

erated by the surface states we consider the surface current
j(t, r), satisfying the continuity equation

∂t ns(t, r) = −∇j(t, r), ns(t, r) = : 
†
s 
s : (t, r). (3.1)

Using the equations of motion, one finds for j(t, r):

jx(t, r) = iv

2p0
: [(∂x


†
s )σx
s − 
†

s σx(∂x
s)] : (t, r), (3.2)

jy(t, r) = v : 
†
s σy
s : (t, r), (3.3)

jz(t, r) = v : 
†
s σz
s : (t, r). (3.4)
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Now, adopting the two-point functions (2.23,2.24) and the
explicit form (A1) of the surface eigenfunctions one obtains

〈ns(t, r)〉 = 2
∫

d2 p

(2π )2
�[ p̃z(p)] p̃z(p)e−2 p̃z (p)z

×{ f (εs(p); βs, μs ) − f (−εs(p); βs,−μs )}, (3.5)

〈 jx(t, r)〉 = 〈 jz(t, r)〉 = 0, (3.6)

〈 jy(t, r)〉 = 2v sin γ

∫
d2 p

(2π )2
�[ p̃z(p)] p̃z(p)e−2 p̃z (p)z

{ f (εs(p); βs, μs ) − f (−εs(p); βs,−μs )}, (3.7)

with p̃z(p) given by (2.10). As expected, the mean val-
ues (3.5)–(3.7) are time independent (invariance under time
translations) and (x, y) independent (invariance under space
translations in the (x, y) plane). Moreover, they manifestly
satisfy the continuity equation (3.1) and the relation

〈 jy(t, r)〉 = v sin γ 〈ns(t, r)〉. (3.8)

Equations (3.5)–(3.7) provide the distribution of the den-
sity of the electrons and the current generated by the surface
states as a function of the distance z from the boundary. We
point out that the particle density in Eq. (3.5) is a different
quantity compared to the density of the surface states, which,
instead, can be easily derived from Eq. (2.11) (see Sec. V).
The surface current is dissipationless in our model, since we
neglect scattering effects from surface to bulk states, and it
is responsible for the anomalous quantum Hall conductivity.
Its dependence from x and y is trivial due to the translational
invariance in these directions. The surface current along the
x̂ direction has a vanishing expectation value due to the
contributions of states with positive and negative px canceling
each other.

B. The anomalous Hall conductivity

In the ballistic regime, the surface currents are dissipa-
tionless; this implies that, in a typical two-terminal transport
measurement with two external leads attached to a Weyl
semimetal scatterer, the surface states can be considered in
equilibrium with the leads they originate from. This is analo-
gous to the standard quantum Hall devices in two dimensions
and it allows us to consider the distribution of the surface
states at a fixed chemical potential. The Hall conductivity can
thus be obtained from the derivative of the expectation value
of the current with respect to the chemical potential inherited
by the source lead.

In order to investigate the anomalous Hall conduc-
tivity it is instructive to consider the px components
ĵy(px, z, μs) of the surface current density such that
jy(z, μs) = ∫

d px ĵy(px, z, μs). In particular, we can define the
local contribution of each surface state labeled by px to the
total differential conductivity σH :

σ̂ (px, z, μs) = e2∂μs〈 ĵy(px, z, μs)〉, (3.9)

such that:

σH (μs) =
∫

dz
∫

d px σ̂ (px, z, μs). (3.10)

The momentum integrals in Eqs. (3.7) and (3.9) cannot be
expressed in simple closed form in the general case. However,
we can invert the order of the integrations, and determine
σH (μs) by integrating first the space coordinate z, and then
the momenta. This allows for a general expression of the Hall
conductivity as a function of the chemical potential μs, the
inverse temperature β, and the boundary polarization γ :

σH (β, p0, μs, γ )

= − e2

2π2h̄

√
p0π | cos(γ )|

2vβs
Li 1

2

[
−e

β(2μs cos(γ )+vp0 )
2| cos(γ )|

]
, (3.11)

where we reintroduced the Planck constant h̄ for clarity. Here
Li1/2 is a polylogarithm function [46].

In the zero-temperature limit, βs → ∞, the anomalous
Hall conductance (3.11) becomes:

σH (T = 0, p0, μs, γ ) = e2

√
p0[p0 + 2(μs/v) cos(γ )]

2π2h̄
.

(3.12)
This expression is proportional to the density of surface states;
it depends in general on the specific choice of the function
g(px ) and, in our case, it is valid for vp0 + 2μs cos(γ ) >

0. For values of μs outside this regime at Ts = 0, the dif-
ferential anomalous Hall conductivity vanishes because the
surface states are either completely empty (for cos γ > 0)
or completely filled (for cos γ < 0); the dispersion relation
(2.11) has indeed a minimum or a maximum for cos γ ≷ 0,
respectively, due to the constraint p̃z(p) > 0. Equation (3.12)
provides the known result σH = e2 p0/πh for μs → 0 and
arbitrary boundary conditions 0 < γ < π , such that this value
is universal (in the ballistic regime). Furthermore, we observe
that for γ = π/2, the conductivity σH is independent of μs;
for 0 < γ < π/2, it increases with μs, whereas it decreases
for π/2 < γ < π [see Fig. 2(a)]. This shows the importance
of the boundary conditions in the determination of the nonuni-
versal corrections to the anomalous Hall conductivity.

For finite temperature the system acquires a nonzero sur-
face conductance also for values of the chemical potential
such that vp0 + 2μs cos(γ ) � 0 [see Fig. 2(b)]. The tempera-
ture dependence of the Hall conductivity (3.11) is nontrivial.
For μs = 0, the conductivity is a function of the rescaled
temperature kBTs| cos γ |/v and the parameter p0. In partic-
ular, σH is nonmonotonic in Ts (see Fig. 3): by increasing
Ts from zero, the conductivity decreases from the universal
value e2 p0/πh to a minimum which depends on p0. Then it
increases again and, asymptotically, it grows proportionally
to

√
p0kBTs| cos γ |/v. This behavior reflects the particular

density of states of the surface modes which is determined by
the dispersion (2.11) combined with the constraint p̃z(p) > 0.

C. The case of straight Fermi arc γ = π/2

For the particular case of straight Fermi arcs, γ = π/2,
the anomalous Hall conductivity acquires its universal value
σH = e2 p0/πh and it is independent of both Ts and μs, as it
can be verified by the limit of Eq. (3.11) [see, for instance,
Fig. 2(b)]. Besides the total Hall conductivity, the definition
of the current density (3.7) allows us also to define the current
as a function of the distance z from the surface, thus the
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FIG. 2. Anomalous Hall conductivity σH as a function of the
chemical potential μs/v and the boundary polarization γ for p0 =
π/6. (a) Zero temperature case defined by Eq. (3.12); for μs = 0
or γ = π/2, σH assumes the universal value e2 p0/πh = (1/6)e2/h.
(b) Conductivity at temperature kBTs/v = π/3 calculated from
Eq. (3.11); for γ = π/2, σH assumes the universal value e2 p0/πh =
(1/6)e2/h also at finite temperature.

local contribution (3.9) to the Hall conductivity. To analyze
the local transport properties of the system we begin by
investigating the case of a straight Fermi arc, γ = π/2, for
which εs depends on py only. For this boundary condition
〈 jy(z)〉 becomes independent of the chemical potential and
temperature:

〈 jy(z)〉 = μs

4π2z2

√
p0z[(1 + 2p0z) D+(

√
p0z) − √

p0z];

(3.13)
hereafter the function D+ labels the Dawson integral:

D+(ξ ) = e−ξ 2
∫ ξ

0
eη2

dη. (3.14)

0.0 0.2 0.4 0.6 0.8
0.15

0.16

0.17

0.18

0.19

1/6

sk

FIG. 3. Anomalous Hall conductivity σH for a system with p0 =
π/6 and μs = 0, calculated with Eq. (3.11) as a function of the
parameter | cos γ |kBTs/v. For T = 0 or γ = π/2, the universal Hall
conductivity e2 p0/πh = (1/6)e2/h is retrieved. The behavior of σH

is, in general, nonmonotonic in T .

The current (3.13) at γ = π/2 is consistent with the fol-
lowing local conductivity of the surface state labeled by px:

σ̂ (px, z) = e2

h

(
p2

0 − p2
x

)
e−z(p2

0−p2
x )/p0

2π p0
, (3.15)

independent of μ. We plot σ̂ (px, z) for γ = π/2 in Fig. 4; its
decay length in the bulk is given by g(px )−1: As expected, the
states of the Fermi arc with px approaching the Weyl point
projections at px = ±p0 progressively penetrate deeper in the
bulk and their contribution to the conductivity is weaker for
z = 0 but decays slower with the distance. For px in the center
of the Fermi arc, instead, the surface states are more localized
and their contribution is stronger for z = 0.

FIG. 4. Density of the anomalous Hall conductance in Eq. (3.15)
for γ = π/2 and p0 = π/5 as a function of the distance z from the
surface and the momentum px along the Fermi arc.
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D. The zero-temperature limit

For generic values of the boundary condition parameter,
the integrals in Eqs. (3.5) and (3.7) cannot be written in simple
closed forms. The results simplify in the zero-temperature
limit, that allows us to clearly evaluate the role of the boundary
conditions and the chemical potential. For T → 0 we can
substitute the Fermi function (2.22) with:

f (ε; β,μ)
T →0−→ �[ε]�[μ − ε]. (3.16)

Concerning the operators ns and jy in Eqs. (3.5) and (3.7),
in the limit μs → 0, the difference of the Ts → 0 limits of
the Fermi distributions in the integral is meant to return
the contribution of the zero-energy Fermi arc states. From
Eq. (3.8) we observe that the angle γ fixes the direction of the
surface current density in our model, which gets inverted for
π < γ < 2π . This inversion can be obtained in the physical
systems only for Fermi arcs that connect the two projections
of the Weyl points by winding across the Brillouin zone: Our
approximation of the lattice Hamiltonian (2.1), however, is
accurate only for momenta relatively close to the Weyl points
(and small values of p0); therefore, Eq. (2.3) does not describe
correctly the physics of the whole surface Brillouin zone,
resulting in unbounded Fermi arcs for π < γ < 2π .

The momentum integral in Eq. (3.5) determines the decay
of the total density of the surface states in the bulk; in particu-
lar, for large values of z we may approximate the density with
the asymptotic expansion:

〈ns(r)〉 ≈
√

p0(p0 + 2(μs/v) cos γ ) − p0

4π2z2 cos γ
. (3.17)

This relation is defined only for p0 + 2(μs/v) cos γ > 0. For
values of μs outside this range of validity, the surface states
are either completely filled (for cos γ < 0) or completely
empty (for cos γ > 0) and 〈ns〉 ≈ −p0/(4π2z2 cos γ ). The
relation (3.17) implies that the expectation value of the density
and current density of the surface state decays as z−2 in the
bulk. As emphasized by several works [30,31], this may yield
in turn relevant scattering processes between surface and bulk
states. The limit z → 0, instead, provides an estimate of the
surface density exactly at the boundary and it is given by:

〈ns(z = 0)〉 =
√

p0(p0 + 2(μs/v) cos γ )5/2 − p3
0

15π2 cos γ sin2 γ
. (3.18)

After defining σ̂ (px, z, μs) from Eq. (3.9), the integral in
the px momenta in Eq. (3.10) returns:

σH (z, μs) =
∫

d pxσ̂ (px ) = e2

h

√
p0z sin(γ )

2πz2

×{[1 + 2 p̃0z] D+(
√

p̃0z) − √
p̃0z}, (3.19)

where

p̃0 = p0 + 2(μs/v) cos(γ )

sin(γ )
. (3.20)

The conductance density (3.19) is represented in Fig. 5 as
a function of the boundary condition parameter γ and the
distance from the surface z. It decays asymptotically as:

σH (z, μs) ≈ e2

h

sin γ

2πz2

√
p0

p0 + 2(μs/v) cos(γ )
. (3.21)

FIG. 5. Density of the anomalous Hall conductance in Eq. (3.19)
for μs = 0 and p0 = π/5 as a function of the distance z from the
surface and the boundary condition parameter γ .

All the previous results are based on the specific model
(2.3) which is characterized by a single pair of Weyl cones
and can be considered a good approximation for experimen-
tal systems with two Weyl cones only [34]. In the case of
materials with more Weyl points, however, we expect that
each Fermi arc will provide a contribution to the anomalous
Hall conductance given by the previous equations (3.19)–
(3.15). The additivity of these contributions can be verified
in the limit of small p0, in which several pairs of Weyl
points are sufficiently distant from each other in momentum
space.

IV. BULK CONDUCTANCE

The total conductance of a Weyl semimetal is given by
the sum of its surface and bulk contribution. In the previous
section, we evaluated the contribution of the conductivity due
to the surface modes. The bulk conductance, instead, can be
estimated through the Landauer approach by considering a
Weyl semimetal connected to two external leads and evalu-
ating the transmission amplitude associated to each of their
modes. This approach has been applied in Ref. [47] for the
case of a pair of overlapping Weyl cones at the phase transition
between topological and normal insulators and further detail
can be found in Ref. [48] for the two-dimensional case of
graphene.

Here we apply the same approach to approximate the con-
ductance of the three-dimensional Weyl semimetal described
by the Hamiltonian (2.3). To this purpose, we consider a
system divided into three regions in the ŷ directions, with
width W in the x̂ and ẑ directions. In order to estimate the
bulk conductance, we consider periodic boundary conditions
in the x̂ and ẑ directions, such that the momenta px and pz

are quantized in units of 2π/W . The regions at y < 0 and
y > L constitute two infinite leads, and we describe them with
the Hamiltonian (2.3) and a chemical potential μlead → ∞,
in such a way that the two leads are effectively in a metallic
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phase with a large density of states. The central region 0 �
y � L, instead, is characterized by μ = 0 and models a Weyl
semimetal with chemical potential lying at the level of the two
Weyl points.

We impose the continuity of the wave function at the
interfaces y = 0 and y = L such that, for each value of px and
pz we obtain the transmission probability (see Appendix B for
more detail):

T (px, pz ) = 1

cosh2
[
L
√

g(px )2 + p2
z

] , (4.1)

which generalizes in a straightforward way the result in Ref. [47] for an arbitrary g(px ). For our specific choice of g(px ) and
periodic boundary conditions along the x̂ and ẑ directions, the bulk conductance at vanishing chemical potential results:

Gb = e2

h

∑
px,pz

T (px, pz ) = e2

h

∑
nx,nz

cosh−2

[
2πL

√
π2

p2
0

( nx

W
+ p0

2π

)2( nx

W
− p0

2π

)2
+ n2

z

W 2

]
; (4.2)

where we adopted the notation px,z = 2πnx,z/W . We observe
that, in general, Gb is not scale invariant due to the parameter
p0, and it does not depend only on L/W . To evaluate the gen-
eral behavior of the conductance Gb it is useful to distinguish
two regimes: a fine-tuned regime in which p0 is an integer
multiple of 2π/W , and a standard regime in which p0 is not a
multiple of 2π/W .

The fine-tuned regime is special because the Weyl points
lie exactly on one of the momenta of the Brillouin zone,
therefore there are two bulk zero-energy modes that contribute
with a quantum of conductance to the bulk transport, indepen-
dently on L, and the conductance decreases asymptotically to
2e2/h for L/W → ∞. This case is analogous to the result of
Ref. [47] for periodic boundary conditions, and the conduc-
tance of the Dirac semimetal in Ref. [47] is recovered in the
limit of large p0L, where the contribution of the bulk modes to
Gb is compatible with having two well-separated Weyl cones.

The most realistic scenario is the one with p0 �= n02π/W
(n0 ∈ N). Differently from the fine-tuned regime, the system
has a vanishing conductance in the limit L/W → ∞ for
p0L � 1. In order to estimate the conductance in this case,
we may consider the behavior of the transmission probability
in proximity of the two Weyl points, where T is maximized.
Let us consider the case nx ≈ 2π p0W . The maximum value
of T can be approximated by observing that:

min
nx

[( nx

W
+ p0

2π

)2( nx

W
− p0

2π

)2
]
�

( p0

π

)2 1

W 2

such that Tmax ≈ cosh−2 (2πL/W ). By considering the decay
of T with nx and nz away from the Weyl points, we conclude
that the system has a vanishing conductance for L/W → ∞.

Let us finally address the limit of close Weyl points that
describes a system approaching a phase transition in which
the topological semimetal phase may be gapped. We model
this regime by considering p0W � 1 and we consider a wire
geometry, thus L � W . In this situation we can estimate
the behavior of the conductance in the following limits: for
p0L � 2, the conductance goes to Gb → e2/h because of the
contribution of the term nx = nz = 0; for p0L → ∞, instead,
the conductance vanishes.

For a system with surfaces at z = 1 and z = W , we as-
sume that the surface at z = W displays an opposite polar-
ization with respect to the one in z = 1 (as suggested by our

numerical results based on the model (2.1), see also Ref. [49]).
In this case:

(σx cos γ + σy sin γ )ψ (r)|z=W = −ψ (r)|z=W . (4.3)

By considering the Hamiltonian (2.3), this implies that the
values of pz must be taken as:

pz =
(

nz + 1

2

)
π

W − 1
, with nz � 0, (4.4)

analogously with the two-dimensional case of graphene [48].
This quantization of the momenta must be considered in
calculating the bulk conductance Gb and the Weyl semimetal
acquires a total conductance of the form:

G ≈ Gb + σHW = Gb + e2 p0W/h. (4.5)

We conclude that the total conductance indirectly depends on
the boundary conditions via the quantization of the momenta
orthogonal to the surfaces: The bulk term in G is indeed
nonuniversal and depends, in general, on the choice of g(px )
and the boundary conditions, whereas the surface term repre-
sents the universal anomalous Hall conductance for vanishing
chemical potential and temperature. We finally observe that,
for more general boundary conditions with independent po-
larizations γ and γ ′ on the surfaces at z = 1 and z = W , the
determination of the correct set of momenta pz gives rise, in
general, to nonanalytical solutions.

Equation (4.1) describes the transmission probability in the
system (2.3) with two Weyl points; we observe, however, that
it can be extended also to materials characterized by well-
separated dipoles of Weyl points, a common experimental
situation [2,3]. Indeed, the transmission coefficient T (px, pz )
decays exponentially with the distance in momentum space
from the pair of Weyl points, hence the value of Gb is dom-
inated by the states in proximity of the Weyl pair. Therefore
we expect that in a material with small p0 and pairs of Weyl
points sufficiently far from each other, the contribution of
each pair to the bulk conductance will approximately add to
each other. In this case, the resulting conductance Gb can be
approximated with the sum over all the Weyl dipoles of the
value (4.2) of a single Weyl pair.
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V. NUMERICAL COMPARISONS

In this section we verify numerically the analytical results
of the previous sections. For this task, we use the Kwant
code [50] to simulate the following Hamiltonian of spin-1/2
fermions on the cubic lattice, corresponding to Eq. (2.1):

Hlat = − ṽ

2

∑
r

(c†
r+x̂σxcr + H.c.) + b

∑
r

c†
rσxcr

−μ
∑

r

c†
rcr + v

2

∑
r

(c†
r+ŷ[iσy − σx]cr + H.c.)

+ v

2

∑
r

(c†
r+ẑ[iσz − σx]cr + H.c.), (5.1)

with b = v(2 + cot p0). In the following, we will focus on
finite size systems where the Weyl semimetal constitutes a
“scattering region” with size Wx × L × Wz (in units of the
lattice spacing a ≡ 1), and we will adopt different boundary
conditions.

The results of the previous sections rely on the value of
the surface polarization γ defined in Eq. (2.7). Therefore, as
a first step, we measure the value γ (p0) for several values
of p0 ∈ [0, π

2 ]. To this purpose we consider open boundary
conditions along the ẑ direction and periodic boundaries along
x̂ and ŷ directions, in order to have only surfaces orthogonal
to ẑ. In particular, we analyze systems with dimensions L and
W ≡ Wx = Wz up to 150 and we estimate the parameter γ by
evaluating the surface polarization:

γ = arctan
〈c†

r0
σycr0〉

〈c†
r0σxcr0〉

; (5.2)

here the expectation value is taken over the single-particle
eigenstate of (5.1) corresponding to the lowest-energy eigen-
state with positive energy. We verified that this state corre-
sponds to a linear superposition of states localized on the two
surfaces at z � 1 and z � Wz and it belongs to the (hybridized)
Fermi arcs for the system with this geometry. In particular, we
considered the site at r0 = (W

2 , L
2 , 1) on the surface at z = 1.

We verified that the polarization γ does not depend on the x
and y coordinates when considering periodic boundary condi-
tions in these directions and we checked that its dependence
on y is very weak also for open boundary conditions.

The relation (5.2) is easily obtained from the explicit form
of the states localized on the surface at z = 0 in the continuum
model of the previous sections [see Eqs. (2.7) and (A1)].
In the entire range p0 ∈ [0, π

2 ], we notably find only small
deviations around the value γ = π/2, of the order of 10−2.
This suggests that, in the thermodynamic limit, the lattice
model (5.1) is indeed defined by the boundary polarization
γ = π/2. Therefore, to be able to vary the parameter γ

and study its effect on the surface states, we introduce the
following additional surface terms to the Hamiltonian:

Hs = B
∑
x,y

[c†
x,y,1σycx,y,1 − c†

x,y,Wz
σycx,y,Wz ]. (5.3)

These surface interactions correspond to opposite Zeeman-
like terms for the pseudospin of the system aligned along the
ŷ direction and localized on the two surfaces at z = 1 and
z = Wz. We adopted only Zeeman fields in the ŷ directions

because we verified that, for analogous values of the coupling
constants, the Zeeman terms along x̂ cause a much weaker
effect on the surface eigenstates.

The engineering of such a surface term in physical sys-
tems strongly depends on the material properties. When the
pseudospin is related to the occupation of specific orbitals
within a unit cell, then, depending on the lattice termination,
suitable weak voltage gates on the surface may favor or
disfavor these occupations, thus giving rise to such effective
Zeeman-like terms for the pseudospin on the surface. Effec-
tive surface Hamiltonians of the kind (5.3) can be obtained
by the detailed analysis of the electrostatic properties of the
interfaces between Weyl semimetals and other materials (or
gates) which has been addressed in several works (see, for
instance, Ref. [51]). Moreover, in the case of Weyl semimetals
breaking time-reversal symmetry, it is also possible that the
pseudospin is associated to the physical spin of the electrons;
in such a situation, ferromagnets in contact with the surface
may constitute useful tools for the engineering of such a
surface Hamiltonian.

Our approach is dictated also by a more mathematical
reason: We observe that any lattice Hamiltonian with a finite
number of degrees of freedom, such as Hlat , is self-adjoint
without the necessity of specifying any extension through
boundary conditions. Thus, we introduce the surface Hamil-
tonian Hs to compensate for the lack of this freedom in
parametrizing the boundary conditions and we verify in the
following that, indeed, the surface terms (5.3) modify the
physical system in such a way that the analytical low-energy
description presented in the previous sections provides an
accurate approximation for the behavior of the system. In par-
ticular, we verify that, also for B �= 0, the surface polarization
is linked to the shape of the Fermi arcs and the density of
surface states as a function of the energy, thus to σH .

The properties of the surface states for B = 0.2v are illus-
trated in Fig. 6. These results correspond to periodic boundary
conditions along x̂ and ŷ and are obtained by diagonalizing
the Hamiltonian in the subspaces defined by the conserved
momenta px and py. To select the surface states, we considered
a threshold A1/4 corresponding to the squared amplitude of
the wave functions in the interval z ∈ [0,Wz/4]. The results
in Fig. 6 correspond to all the states fulfilling A1/4 > 0.4,
thus sufficiently localized close to z = 1. This threshold is
however arbitrary and, in the comparison with the analytical
low-energy model, the states we selected from the numerical
simulation are only a subset of the corresponding surface
states fulfilling the constraint p̃z > 0. Hence we expect some
deviation of the numerical results from the analytical predic-
tions for values of p̃z close to zero, thus close to the Weyl
point projections and, more in general, close to the edges
of the region where the analytical model predicts the ex-
istence of surface states, which are depicted as black lines
on the surface Brillouin zone in all the panels of Fig. 6.
Figure 6(a) illustrates the probability A1/4 for the eigenstates
of the lattice model: In general, the amplitude A1/4 decreases
by approaching the predicted boundaries (black lines) and the
Weyl point projections (green dots); small irregularities can
be observed for py = 0 due to the hybridization of the surface
states in opposite surfaces. For increasing values of |py|, thus
of |εs|, the domain of the selected numerical surface states
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FIG. 6. Properties of the surface states for a surface Zeeman term (5.3) with amplitude B = 0.2v for p0 = π/6. The numerical data are
obtained for a system of size 300 × 300 × 90 from the lattice model in Eq. (5.1) with periodic boundary conditions along x̂ and ŷ. In all panels
the black lines delimit the domain of the surface states based on the constraint p̃z > 0 [see Eq. (2.10)] for γ = 1.906, the red lines depict the
shape of the Fermi arc in Eq. (2.13) for the same value of γ , and the green dots correspond to the projection of the two Weyl points on the
surface Brillouin zone. (a) Squared amplitude A1/4 of the wave functions of the surface states evaluated for z � 20; only states with A1/4 > 0.4
and |εs| < 0.5v have been considered. (b) Surface polarization of a subset of the surface states with A1/4 > 0.4. γ varies weakly in the surface
Brillouin zone with values typically in the range (1.85,1.97) and average γ = 1.906 (see inset). (c) Energy of the surface states evaluated from
Eq. (2.11). (d) Energy of the surface states calculated numerically; the analytical description in (c) matches well the numerical results in (d) for
energies close to 0.

is smaller than the analytical prediction; this is mostly due
to the differences for energies comparable with vp0 between
the low-energy analytical model and the lattice model. The
discrepancies in the domains is also partially due to the con-
straint A1/4 > 0.4 which implies an underestimation of the
surface states domain in the numerical data.

Figure 6(b) displays the polarization (5.2) of the surface
eigenstates. The value of γ weakly varies as a function of
the conserved momenta, and for B = 0.2v, its average is γ ≈
1.906. We adopted this value in the analytical determination of
the surface state domain and of the shape of the Fermi arc. The
Fermi arc derived by the analytical prediction (2.13) matches
very well the numerical results and, in general, for energies
close to zero, the agreement between analytical and numerical
models is very good, as shown by the comparison of the panels
(c) and (d).

Figure 7 displays the values of the surface parameter γ as
a function of the boundary field B. We compare two different

ways of obtaining the estimate of γ : (i) we consider the
average of the expectation value of the polarization (5.2) for
the surface states, selected based on the constraint A1/4 > 0.4
for the energy interval εs ∈ [−0.5v, 0.5v]; (ii) we consider the
value of γ obtained from a fit of the density of surface states.

Concerning the approach (ii), the number of surface states
for an energy interval dεs is derived from Eqs. (2.11) and
(2.10) and it results in:

N (εs) =
(

WxLy

2π2v sin γ

√
p2

0 + 2p0
εs

v
cos γ

)
dεs. (5.4)

It is mentioned in Sec. III that this quantity differs from the
particle number on the surfaces defined via Eq. (3.5).

We use Eq. (5.4) to perform a one-parameter fit of the
numerical data concerning the number of states with A1/4 >

0.4 of a system with dimension 300 × 300 × 90 for the energy
range εs ∈ [−0.3v, 0.3v] with intervals dεs = 0.02v. Two
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FIG. 7. Values of γ determined by the surface polarization (blue
points) and the surface density of states (yellow points) as a func-
tion of the boundary term (5.3). The error bars correspond to the
standard deviation and to the standard error in the fitted parameter,
respectively.

examples of the fit result and density of surface states are
shown in Fig. 8 for B = 0.3v,−0.05v. This method is po-
tentially affected by a larger systematic error because of
the lattice and finite size effects that determine considerable
oscillations of the density for the surface states and cause a
deviation from the analytical model for εs approaching vp0.

The numerical results above are obtained for an isolated
system with periodic boundary conditions in the x̂ and ŷ
direction. In the following we focus on the transport properties
of the Weyls semimetal in contact with two external leads.

In particular, to probe the surface conductivity, we include
two semi-infinite semimetallic leads in the system, and we
connect them to the Weyl scattering region on the facets at y =
1 and y = Ly, thus reproducing the geometry of the previous
section. These leads are described by the same Hamiltonian

- 0.3 - 0.2 - 0.1 0.0 0.1 0.2 0.3
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40
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60

N

FIG. 8. Number of surface states n(εs ) [see Eq. (5.4)] with
A1/4 > 0.4 for a lattice system of dimension 300 × 300 × 90 and
surface Zeeman fields B = 0.3v (blue circles) and B = −0.05v

(brown squares). The numerical data correspond to energy intervals
with dεs = 0.02v. The curves illustrate the result of fits with γ as the
only fitting parameter.
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FIG. 9. Surface conductivity (in units of e2/h) of a system with
L = 30, and p0 = π/6, as a function of W . The numerical calculation
is performed at energy μbulk = 10−3v and μlead = 0, with periodic
boundary conditions along ẑ and Weyl semimetallic leads. For large
system sizes, the Hall conductance approaches the expected universal
value (1/6)e2/h. Inset: quantized Hall conductance GH .

5.1 and they are approximately characterized by the same
chemical potential of the scattering region.

This configuration is required to probe directly the conduc-
tivity of the scatterer, avoiding nonuniversal effects from the
leads and the interfaces between leads and scattering region:
such an aspect is especially important for the dynamics of
surface states. In more detail, to probe the low-energy physics
around the Weyl nodes, we set the chemical potential of
the leads μlead = 0, and in the scattering region μbulk at a
slightly larger value (typically μbulk/v ≈ 10−3 − 10−2). To
simplify our numerical calculations, we maintained periodic
boundary conditions in the x̂ direction, thus diagonalizing the
system in different Hilbert space sectors labeled by px, and we
considered system sizes with Wx = Wz ≡ W .

The resulting conductance of the system corresponds, in
the thermodynamical limit, to the anomalous Hall conduc-
tance GH = W σH . This is a direct consequence of our choice
of the leads, with the same Hamiltonian and vanishing chem-
ical potential as the scatterer: The bulk density of states
vanishes also in the leads, and the only contribution to the
total conductance is given by the surface states. Under these
conditions, even for small values of Ly and W , we observe
a clear quantization of GH in units of e2/h (see the inset of
Fig. 9), analogously with the behavior of Weyl semimetal
nanowires [52]. Such quantization corresponds to the number
of states in the Fermi arc at energy equal to μ ≈ 0; for the
data of Fig. 9, GH assumes odd values of the conductance
quantum. For the systems considered in the present section,
the total number of states in the Fermi arc for μ ≈ 0 and 0 <

γ < π results: N (tot)
s = [2p0/( 2π

Wx
)] = [p0Wx/π ], [] denoting

the integer part. This value leads to the universal anomalous
Hall conductance in Eq. (4.5).

For sufficiently large W , thus with negligible hybridization
of the surface states on the opposite surfaces, we find that
the Hall conductivity σH = GH/W tends to 1/6 = p0/π , the
universal value predicted in Eq. (3.12) at μ = 0 (see Fig. 9).
We observe, however, that σH presents some discontinuities as
a function of the width of the system, due to finite size effects.
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FIG. 10. Bulk conductance in Eq. (3.19) for W = 30, μbulk =
10−3, and p0 = π/6, as a function of L and in logarithmic scale.
The yellow dots are the results obtained from Eq. (4.2), whereas the
blue dots denote the numerical results for a scatterer described by the
lattice Hamiltonian (5.1) with metallic leads and periodic boundary
conditions along x̂ and ẑ. For large L, the analytical results typically
underestimate the numerical data by a factor ∼3.

For the largest system size we probed, W = 140, we obtained
σH (W = 140) ≈ 0.164e2/h.

We conclude by analyzing the transport properties of the
bulk. To this purpose we consider systems with periodic
boundary conditions in the x̂ and ẑ directions. By maintaining
vanishing chemical potentials in both the leads and the scat-
terer, we calculated the bulk conductance Gb for p0 = π/6,
in both the fine-tuned and standard regimes (the fine-tuned
regime is given by W = 12n with n ∈ N, such that p0W is a
multiple of 2π ). For example, we consider W = 24 and W =
25. In the fine-tuned regime, already for Ly = 10 and W = 24,
we measure Gb = 2e2/h, up to an error of 10−13. This verifies
the existence of the two expected zero-energy nonevanescent
bulk states, which correspond to the Weyl band-touching
points and match the continuum model description. However,
differently from the previous section and the calculation in
Eqs. (4.1) and (4.2), our choice of vanishing chemical poten-
tial in the leads implies a vanishing of their density of states,
such that there is no other contribution to the transport in this
regime apart from these two zero-energy bulk states.

A comparison with Eqs. (4.1) and (4.2) can be performed,
instead, by adopting metallic leads, which may be simply
modeled by a cubic lattice Hamiltonian of fermions with
spin-independent nearest-neighbor hopping terms; in this case
a high density of states occurs in the leads, similarly to the
Landauer-Buttiker approach of Eq. (4.2) (where the limit
μlead → ∞ is adopted).

The analytical estimate of the bulk conductance in Eq. (4.2)
is compared with the numerical result with metallic leads in
Fig. 10 for W = 30, μ = 10−3, and p0 = π/6, as a function
of L. The yellow dots represent the results from Eq. (4.2),
while the blue dots denote the numerical data. The analytical
results underestimate the numerical conductance typically by
a factor ∼3, thus it provides only an estimate of the order of
magnitude of the bulk conductance. This discrepancy is due
to the different kinds of leads considered; Weyl semimetallic
leads for the analytical estimate and metallic leads for the nu-

merical results and to additional interface effects that can stem
from different boundary conditions at the interface between
the wave functions of the leads and the scatterer than the ones
considered in Appendix B.

VI. THE EFFECTS OF TEMPERATURE

A. Thermal noise

The field theoretical approach described in Sec. III can be
used to obtain an estimate of the current and conductivity
behavior also as a function of temperature. We saw that, for
γ = π/2, the surface current 〈 jy〉 does not depend on T and μ,
whereas the average value of the currents along x and z always
vanishes, as dictated by the symmetries of the system. In the
ballistic regime, the chiral surface modes can be considered
in thermal equilibrium with the leads they originate from;
therefore, for the geometry considered in the previous section,
we can introduce surface chemical potential μs and inverse
temperature βs equal to the parameters of the lead at y < 0 for
sin γ > 0 (again 0 < γ < π ). In the case sin γ < 0, which
is in general not well defined in our continuum model, the
surface current changes direction and μs and βs would instead
be derived from the lead at y > L.

From the definition of the current operator, we can derive
the spectral density of the surface current noise at frequency ν:

Syy(ν, r1, r2) =
∫ ∞

−∞
dt e−iνt [〈 jy(t, r1) jy(0, r2)〉

− 〈 jy(t, r1)〉〈 jy(0, r2)〉]. (6.1)

For γ = π/2, the calculation can be explicitly done. In the
limit ν → 0, for x1 = x2 and z ≡ z1 = z2, we obtain:

Syy = p0

4π3z3βs(1 + e−βsμs )

× [(1 + 2p0z) D+(
√

p0z)) − √
p0z ]2, (6.2)

which does not depend on y1 and y2 and decays asymptotically
as z−4. The shot noise vanishes,

lim
β→∞

Syy = 0, (6.3)

consistently with the chiral nature of the surface states. The
pure thermal limit gives instead:

lim
μs→0

Syy = p0

8π3z3βs
[(1 + 2p0z) D+(

√
p0z)) − √

p0z]2,

(6.4)
which respects the Johnson-Nyquist law.

Equation (6.2) is the two-point correlation function of
the surface current density only. A complete calculation
of the noise spectrum, however, must take into account also
the bulk-bulk and bulk-surface correlations at different points.

B. Bulk currents

The expectation value (3.7) accounts exclusively
for the surface current; the total current density is
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given by

Jx(t, r) = iv

2p0
: [(∂x


†)σx
 − 
†σx(∂x
)] : (t, r), (6.5)

Jy(t, r) = v : 
†σy
 : (t, r), (6.6)

Jz(t, r) = v : 
†σz
 : (t, r), (6.7)

and includes both surface and bulk contributions. Employing
the two-point functions (2.23–2.26) and the explicit form
(A1),(A2) of the surface and bulk eigenfunctions one obtains
the following mean values:

〈Jx(t, r)〉 = 〈Jz(t, r)〉 = 0, (6.8)

〈Jy(t, r)〉 = v sin(γ )
∫

d2 p

(2π )2
�[ p̃z(p)]2 p̃z(p)e−2 p̃z (p)z

×
{

1

1 + eβs[εs (p)−μs]
− 1

1 + eβb[εs (p)−μb]

}
. (6.9)

The surface state contribution gives the first term in the curly
brackets. The original contribution of the bulk states (A2)
involves an integration over d3 p. Using the Cauchy integral
formula and the pole structure of the scattering matrices
(A4),(A5), one can perform the pz integral, which leads to the
second term. In this operation one uses the fact that restricting
pz in εb(p) to the poles of (A4),(A5) one gets precisely εs(p).
For this reason the surface energy εs enters both the bulk and
surface contributions.

In general, the assumption of having different temperatures
and chemical potentials for the surface and bulk states is
justified in the ballistic regime: Our model neglects scattering
terms and interactions between bulk and surface states. Such
terms naturally appear in a physical system due to disorder
[30] or electron-phonon coupling [31] and determine a relax-
ation time τ beyond which bulk and surface states equilibrate.
However, if τ � L/(v sin γ ), we may assume that a quasi-
particle does not equilibrate during the transport between the
two leads in the geometry discussed in the previous section.
In this situation, as a first approximation, it is legitimate to
choose different bulk and surface Fermi distributions.

If instead we consider the system with βs = βb and μs =
μb, from (6.9) one immediately infers that the mean value of
total current 〈J(t, r)〉 vanishes everywhere. In this case we are
dealing in fact with the thermodynamic limit of a system at
equilibrium. This result may not hold in finite systems: By
including two parallel surfaces in our model with a finite sep-
aration, thus two different scattering matrices, the expectation
value of the local current density at equilibrium may in general
be different from zero and depend on position, consistently
with previous numerical results displaying persistent currents
in small Weyl semimetals [36,53].

Also concerning the spectral density of the noise, at equi-
librium, the correlations between bulk operators provide a
contribution identical to the surface states, thus doubling the
result (6.4). Additionally, one should consider also correla-
tions between surface and bulk currents whose computation
go beyond the scope of this work.

C. Thermal Hall conductivity

Heat currents are typically more difficult to measure than
electric currents. In experimental systems the heat transport is
determined not only by the electrons, but also by the phonons
propagating in the material. When we restrict our attention
to the heat transport along the Weyl semimetal surfaces, the
electronic contribution to the heat current typically scales with
T 2, due to the chiral dispersion of the Fermi arcs, whereas
the phonons are free of propagating in any direction, leading
to a typical Stefan-Boltzmann behavior proportional to T 4

(or T 5 for more refined models [54]). Therefore, analogously
to the heat transport in quantum Hall setups, the electronic
contribution dominates for low temperatures; we conclude
that the calculation of the electronic heat conductivity of
our model provides an approximate description of the heat
transport for low temperatures.

Similarly to the charge transport [55], Weyl semimetals
display an anomalous Hall effect also for the heat transport
[18,56]. Former analysis based on the bulk properties of Weyl
semimetals suggests the existence of a universal value of
the thermal Hall conductivity, κH = p0πk2

BTs/3h at vanishing
chemical potential; such a value fulfills the Wiedemann-Franz
law and is consistent with the energy transport of the chiral
states on the surface [57,58]. In the following we analyze the
energy transport on the surface of our model and we show
that, in general, the boundary conditions yield nonuniversal
corrections of the thermal transport, determining, in turn, a
violation of the Wiedemann-Franz law.

Based on the total field 
 and the surface field 
s, the total
and surface energy currents of our system, in the ŷ direction
orthogonal to the Weyl point separation, are defined by:

Jy(t, r) = iv

2
: [
†σy∂t
 − ∂t


†σy
] : (t, r), (6.10)

jy(t, r) = iv

2
: [
†

s σy∂t
s − ∂t

†
s σy
s] : (t, r). (6.11)

The electric and energy currents (3.3),(6.6),(6.10),(6.11) gen-
erate [59] the bulk and surface heat currents,

Qy(t, r) = Jy(t, r) − μs jy(t, r) − μb [Jy(t, r) − jy(t, r)],
(6.12)

qy(t, r) = jy(t, r) − μs jy(t, r). (6.13)

Analogously to the case of the electric transport, one can
extract the thermal Hall conductance κH from the surface heat
current (6.13) as a function of the surface temperature Ts. We
obtain:

κH (μ, Ts ) = ∂Ts

∫
d px

∫ ∞

0
dz〈q̂y(px, z, μ)〉Ts

= v sin γ

kBT 2
s

∫
d2 p

(2π )2

�( p̃z )[εs(p) − μs]2

4 cosh2
[

εs (p)−μs

2kBTs

] . (6.14)

In the case γ = π/2 of a straight Fermi arc, the Fermi arc
dispersion depends only on py and the previous expression
simplifies. In particular, in the limit of vanishing chemical
potential, we recover the predicted universal result [18]:

κH (Ts, μ = 0, γ = π/2) = πk2
BTs

3h
p0. (6.15)
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This result is consistent with the Wiedeman-Franz law, ex-
pected for noninteracting fermions in the absence of bound-
aries. For γ = π/2, indeed the density of surface states is
constant, thus causing no corrections to the universal value
(6.15) as a function of temperature or chemical potential. We
verify the Wiedeman-Franz law by comparing the heat and
electric currents. The two current densities are proportional to
each other and, in particular, we get:

〈Jy(z)〉 =
√

p0z[(1 + 2p0z) D+(
√

p0z) − √
p0z]

4π2z2
[μs − μb],

(6.16)

〈Qy(z)〉 =
√

p0z[(1 + 2p0z) D+(
√

p0z) − √
p0z]

24π2z2

×
[(

π2

β2
s

+ 2μ2
s

)
−

(
π2

β2
b

+ 2μ2
b

)]
, (6.17)

corresponding to a Lorentz number:

L ≡ κH

TsσH
= π2k2

B

3e2
, for γ = π

2
, (6.18)

for both bulk and surface states.
It is instructive to analyze the heat current (6.17): its

dependence from surface and bulk temperature is given by
T 2

s − T 2
b . In a more realistic description we may consider

a temperature that varies smoothly from the surface to the
bulk, such that T 2

s − T 2
b → −T ∂zT/2. Such substitution de-

termines indeed a Hall heat current orthogonal to the gradient
of the temperature.

In the general case γ �= π/2, the Lorentz ratio L of the
Hall transport has a nontrivial dependence from the boundary
polarization γ (see Fig. 13) and the behavior of the anomalous
thermal Hall conductivity can be estimated numerically from
the integral in Eq. (6.14). At μs = 0 we numerically observe
that the Lorentz ratio is a nontrivial function of the parameter
kBTs| cos γ |/v (see Fig. 11). In the limit Ts cos γ → 0, the
universal ratio (6.18) is recovered, but, in the case γ �= π/2,
the Wiedemann-Franz law is in general violated for Ts > 0
due to the boundary conditions and the behavior of the density
of surface states.

For μs �= 0, κH depends separately on Ts and γ and the
Lorentz ratio displays a rich behavior (see Figs. 13 and 14).
From Eqs. (3.11) and (6.14) it is possible to derive that the
Lorentz ratio depends solely on the parameter:

α ≡ vβs

[
p0

2| cos γ | + Sign(π/2 − γ )
μs

v

]
. (6.19)

For cos γ > 0, α = 0 when the chemical potential coincides
with the minimum of the energy band of the surface states; for
cos γ < 0 and α = 0, μ lies on the surface energy maximum
instead. The values α > 0 thus correspond to the chemical
potential lying within the energy band of the surface states;
whereas for α < 0, the chemical potential lies outside.

From the integral in Eq. (6.14) we derive:

L(α) = k2
B

4e2

[
4α2 − 12α

Li 3
2
(−eα )

Li 1
2
(−eα )

+ 15
Li 5

2
(−eα )

Li 1
2
(−eα )

]
,

(6.20)
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FIG. 11. Lorentz ratio L, normalized by the parameter π 2k2
B/3e2,

calculated for μs = 0 and p0 = π/6 by a numerical estimation of
Eq. (6.14). The curve has been obtained by estimating κH for several
values of the temperature (represented by the point colors) and the
boundary angle γ and plotting them as a function of the parameter
| cos γ |kBTs/v, consistently with Eqs. (6.19) and (6.20) for μs = 0.
The Lorentz ratio at μs = 0 depends nontrivially on the temperature
for γ �= π/2, and the Wiedemann-Franz law L = π2k2

B/3e2 is recov-
ered in the limit cos γ → 0.

where Li labels polylogarithm functions [46]. In Fig. 12 we
illustrate the general behavior of L as a function of α. The
sign of the square bracket in (6.19) is particularly impor-
tant because it determines the low-temperature behavior of
the Lorentz ratio. In the limit α → +∞, the Lorentz ratio
converges to the standard value (6.18) and the Wiedemann-
Franz low is fulfilled for Ts → 0; for α > 0, indeed, the curve
in Fig. 12 reproduces the same results as Fig. 11. On the
contrary, for negative values of α, the Lorentz ratio increases
and diverges as k2

Bα2/e2 for α → −∞. For negative values of
(6.19), the surface states acquire indeed an insulating behavior
in the low-temperature limit, since the chemical potential lies
outside their energy band. The value at α = 0, instead, cor-
responds to the high-temperature limit for both the regimes.
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FIG. 12. Normalized Lorentz ratio 3e2L/π 2k2
B, derived from

Eq. (6.20), as a function of the parameter α defined in Eq. (6.19).
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FIG. 13. Lorentz ratio L as a function of the boundary polariza-
tion γ . The Lorentz ratio is normalized by the parameter π2k2

B/3e2

and is calculated from Eq. (6.20) for values of α in Eq. (6.19)
determined by μs/v = 0.5, p0 = π/6 and several values of the
temperature. The blue curve at temperature kBTs/v = 0.01 shows
that, for large values of γ (and positive chemical potential), the
Wiedemann-Franz law is violated and the Lorentz ratio diverges. The
crossing point of all the curves corresponds to α = 0 in Eq. (6.19).

From Eq. (6.20) we derive L(0) ≈ 1.634, which defines the
high-temperature limit for all the values of γ �= π/2 and all
the values of μs, compatibly with the regime of validity of the
low-energy Hamiltonian (2.3). In this high-temperature limit,
the Wiedemann-Franz law for the anomalous Hall conductiv-
ity is always violated for γ �= π/2, despite the noninteracting
nature of our model.

The dependence of the Lorentz ratio from the parameter
α is reflected in the behaviors depicted in Figs. 13 and 14
when considering the thermal transport as a function of the
boundary conditions and the chemical potential, respectively.
In Fig. 13 we consider the behavior of L for μs > 0 as a
function of γ for several values of the temperature: We im-
mediately observe that there is a point, for γ > π/2, in which
all the curves cross and the Lorentz ratio is independent of the
temperature. This point coincides with α = 0 in Eq. (6.19),
thus for the chemical potential lying on the extremum of the
surface energy band. For all the values of gamma on the left
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FIG. 14. Lorentz ratio L as a function of the chemical potential
μs/v. The Lorentz ratio is normalized by the parameter π2k2

B/3e2

and is calculated from Eqs. (6.19) and (6.20) for γ = π/3, p0 =
π/6 and several values of the temperature. For 0 < γ < π/2, the
Wiedemann-Franz law is violated in the low-temperature regime for
chemical potentials sufficiently negative, as exemplified by the curve
at kBTs/v = 0.01.

of this crossing point, we observe a nonmonotonic behavior
of L with the temperature, similar to the case of μs = 0
(Fig. 11). These values of γ span the range α > 0 in Fig. 12
and, in this regime, the Wiedemann-Franz law is recovered
for T → 0. The values of γ larger than the crossing point,
instead, span the regime α < 0 due to μs > 0. For decreasing
temperature and for each value of γ in this range, the Lorentz
ratio diverges.

A corresponding behavior is obtained also as a function of
μs. Figure 14 illustrates the Lorentz ratio as a function of μs/v

for different values of the temperature at γ = π/3. There is a
crossing point in which L does not depend on the temperature.
This is the value of μs such that α = 0 in Eq. (6.19). On the
left of this point the Lorentz ratio increases by lowering the
temperature. On the right of the crossing point, instead, α > 0
and we recover the Wiedemann-Franz limit for Ts → 0.

VII. CONCLUSIONS

In this work we analyzed in detail the surface transport
properties of a toy model of Weyl semimetal with two band-
touching points, thus breaking time-reversal symmetry, which
can be adopted, for example, to describe layered intermetallic
materials with magnetically induced Weyl points [34]. Ad-
ditionally, we expect that our results can be easily extended
to account for multiple pairs of Weyl points, for materials in
which such pairs are well isolated in the Brillouin zone.

Our analysis stems from the self-adjoint extensions of the
bulk Weyl Hamiltonian and allows us to focus on the nonuni-
versal properties of the transport that depend on the boundary
conditions. In particular, the set of boundary conditions we
considered is defined by a single angle γ that determines both
the pseudospin polarization at the surface of the system and
the shape of the Fermi arcs.

From experimental data [42,43] and ab initio simulations
[60] of Weyl semimetals, it is known that the lattice termi-
nation of the system (related to the pseudospin polarization)
strongly affects the properties of the Fermi arcs. In full
generality, the boundary spin polarization may depend on the
conserved momenta of the system, thus it can rotate along
the Fermi arcs in the surface Brillouin zone [60]. Our model
considers instead a simpler case with a constant pseudospin
polarization γ independent of the momenta, as obtained by
the self-adjoint Hamiltonian extensions with local boundary
conditions. The polarization γ we consider is not necessarily
equivalent to the physical spin of the system, thus our model
is compatible with former results. Despite its simplicity, our
work demonstrates that it is possible to consistently include
the boundary conditions in a field theoretical determination of
the surface transport properties.

We studied in detail the Fermi arcs of the system and their
contribution to the anomalous Hall conductivity by calculat-
ing the corresponding current density, which typically decays
with the square of the distance from the surface.

We derived a general formula for the anomalous Hall
conductivity as a function of temperature, chemical potential,
and boundary parameter for both the electric and thermal
transport. This allowed us to verify that, in general, the
Wiedemann-Franz law for the anomalous Hall transport is
fulfilled only in the very limit T → 0, whereas the Lorentz
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ratio presents a nontrivial behavior as a function of chemical
potential and boundary conditions for finite temperatures.

We additionally estimated the bulk conductance of our
two-Weyl-point model based on a Landauer-Büttiker ap-
proach, and we verified with numerical calculations our pre-
dictions at zero temperature based on a suitable lattice model.
In particular, we show that, also in lattice systems, it is possi-
ble to vary the boundary conditions through the introduction
of suitable surface Zeeman interactions. Also in this case, the
boundary polarization, the shape of the Fermi arcs and the
density of surface states are linked to the same parameter γ .
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APPENDIX A: THE EIGENVECTORS OF THE
SELF-ADJOINT EXTENSIONS Hγ

We describe here the explicit form of the Hγ eigenvectors
and summarize their basic properties. The surface eigenstates
are given by

ζ±
s (r, p) = �[±εs(p)]�[ p̃z(p)]

√
2 p̃z(p)

× e−zp̃z (p)+i(xpx+ypy )w(γ ),

w(γ ) = 1√
2

(
e−iγ /2

eiγ /2

)
, (A1)

where εs(p) and p̃z(p) are defined by (2.11) and (2.10). The
exponential decay along the z axis is worth mentioning.

For the bulk eigenstates one has

ζ±
b (r, p) = �[pz][e

iprru±(pr ) + S±(p)eipru±(p)],
(A2)

pr = (px, py,−pz ),

u+(p) = n(p)

(
vpz + εb(p)

v[ipy + g(px )]

)
,

u−(p) = n(p)

(
v[ipy − g(px )]
vpz − εb(p)

)
, (A3)

n(p) = v√
εb(p)[εb(p) + vpz]

,

where εb(p) is defined by (2.12) and

S+(p) =
[
εb(p) + vpz

εb(p) − vpz

]1/2

× vpz − εb(p) + v[g(px ) + ipy]e−iγ

vpz + εb(p) − v[g(px ) + ipy]e−iγ
, (A4)

S−(p) =
[
εb(p) + vpz

εb(p) − vpz

]1/2
vpz − εb(p) − v[g(px ) − ipy]eiγ

vpz + εb(p) + v[g(px ) − ipy]eiγ
.

(A5)

The factors (A4),(A5) satisfy

|S±(p)| = 1 (A6)

and have a simple physical interpretation: They represent
the scattering matrices for particles and antiparticles with
incoming momenta pr, which are reflected from the boundary
z = 0 and have final momenta p.

The fundamental property of the surface and bulk states is
that they form a complete system∑

σ=±

[∫
d3 p

(2π )3
ζ σ

b (r, p)†
β ζ σ

b (r′, p)α

+
∫

d2 p

(2π )2
ζ σ

s (r, p)†
β ζ σ

s (r′, p)α

]

= δαβ δ3(r − r′), z, z′ > 0, (A7)

which is the main ingredient for constructing the canonical
quantum field 
 defined by (2.15), (2.20), and (2.21). For
proving (A7) one can proceed as follows. One starts by con-
sidering the three-dimensional integral in the square brackets,
which gives the right hand side plus a rest. The latter can
be reduced to a two-dimensional integral by integrating over
pz, using the Cauchy integral formula, z > 0 and the analytic
properties of the scattering matrices S±(p) in the complex pz

plane. At this point the rest precisely cancels the second term
in the square brackets. This computation is very instructive
because it shows that the surface states are generated by the
bound states (poles in the upper half complex pz plane) of the
scattering matrices (A4), (A5).

APPENDIX B: ESTIMATION OF THE BULK
CONDUCTANCE

For the evaluation of Eq. (4.1) we consider wave functions
at E = 0 of the kind:

ψS (y < 0) = 1√
2

(
i
1

)
ei(pxx+pyy+pzz)

+ r√
2

(−i
1

)
ei(pxx−pyy+pzz) (B1)

ψ (0 < y < L) = α+

(
i p̃y − g

pz

)
ei(pxx+p̃yy+pzz)

+α−

(−i p̃y − g
pz

)
ei(pxx−p̃yy+pzz) (B2)

ψD(y > L) = t√
2

(
i
1

)
ei(pxx+py (y−L)+pzz). (B3)

Here, S and D label the source and drain external leads; r
and t are the reflection and transmission amplitudes, such
that |t |2 + |r|2 = 1, and they depend on pz and g(px ). The
spinors in the leads are polarized along the ŷ axis, consistently
with the approximation μlead → ∞ and |py| � |px|, |pz|. The
chemical potential in the central region is μ = 0 and

p̃y = i
√

h2 + p2
z , (B4)

due to the vanishing energy. To estimate the transmission
probability T = |t |2 we impose the specific boundary condi-
tions:

ψS (x, y = 0−, z) = ψ (x, y = 0+, z), (B5)

ψ (x, y = L−, z) = ψD(x, y = L+, z); (B6)
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we obtain:

|r|2 = tanh2
(
L
√

g(px )2 + p2
z

)
, (B7)

from which we derive Eq. (4.1). A more rigorous estimate
of the transmission coefficient should take into account more
general boundary conditions at y = 0 and y = L, which, also
in this case, could be classified through the self-adjoint exten-
sions of the full Hamiltonian of the system.
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