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Abstract

This work attempts to characterise the dynamic properties of a non-
linear model in which a monopolist produces a fixed amount of an in-
termediate good. The firm employs this good in producing two vertically
differentiated final commodities, sold in two distinct markets. Consumers’
preferences are described by quasi-linear and quadratic utility functions
respectively yielding isoelastic and linear demand functions. In addition,
we assume that the monopolist adopts a gradient adjustment rule based
on profit variation to adjust its choice about the amount of intermediate
good to employ in the production of each final good. Two alternative
scenarios emerge: in the first, there exists coexistence of two markets; in
the second, the monopolist specialises on the production of a single final
good. The dynamics show that the elasticities of market demands play an
ambiguous role in affecting the stability of the equilibrium, whereas the
speed of adjustment unambiguously destabilises the system. Moreover,
the article investigates the role of the productive capacity and the gap in
marginal costs in defining the different scenarios. In particular, economic
dynamics may be chaotic and/or multiple attractors may appear.

Keywords: Monopoly Dynamics; Intermediate Good; Differentiated Final
Goods; Multiple Equilibria; Chaos.

1 Introduction

This article aims to characterise the dynamic properties of a nonlinear monopoly
model in which the firm produces a fixed amount of an intermediate good that
is then employed in the production of two vertically differentiated final com-
modities, placed on two heterogeneous markets. In order to emphasise this
heterogeneity, we consider two markets characterised by different inverse de-
mand functions deriving from different preferences.
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Regarding the supply side, a common assumption in the literature on mo-
nopolistic and oligopolistic markets is that firms, due to the high cost of get-
ting information, do not have complete knowledge regarding the consumers’
preferences. For this reason, firms make their decisions on the basis of heuris-
tics derived from market experiments, conjectures and local demand estimates.
Clower (1959) and Baumol and Quandt (1964) started to investigate this issue
by considering monopolistic markets where the firm has reduced rationality and
adopts simple rules to adjust the level of production. By following this research
line, Puu (1995) shows that such rules, in a monopolistic context, may gener-
ate nonlinear dynamics. In particular, the author assumes that the firm makes
its decisions using a rule based on profit differentials obtained by varying the
quantity produced.

Recently, other several works have investigated monopoly dynamics both
in discrete time and continuous time with delays settings. With regard to the
former set up, Naimzada and Ricchiuti (2008) reconsider the model proposed
in Puu (1995) and analyse the dynamic properties of a monopoly with a cu-
bic market demand without inflexion points, by taking into account a gradient
rule through which the firm adjusts its choice according to the profit variation.
Differently, Naimzada and Ricchiuti (2011) consider a monopolistic firm which
does not know the entire demand and estimates a subjective inverse demand
function, whose convexity/concavity may generate multiple steady states and
induce a transition from stability to complex dynamics. More recently, Cavalli
and Naimzada (2015) adopt the decisional mechanism proposed in Naimzada
and Ricchiuti (2008) to investigate the emergence of complex dynamics in a
monopoly model with an isoelastic demand.

In continuous time, Matsumoto and Szidarovszky (2012) provide a dynamic
monopoly model with delays in which information lags on profits, linear mar-
ket demand and non-constant speed of adjustment of the output are assumed.
Matsumoto and Szidarovszky (2014) study the dynamics of a monopoly model
with delays in which nonlinear demand and non-constant marginal costs are as-
sumed. In addition, Matsumoto et al. (2013) and Matsumoto and Szidarovszky
(2015) discuss two nonlinear monopoly models with linear demand in which the
firm adopts the gradient mechanism and delays are continuously distributed.
Finally, Gori et al. (2016) describe different long run dynamics in monopoly
models in which the introduction of delays is associated with different assump-
tions related to the bounded rationality of the monopolist.

While the above-mentioned literature focuses on the decision-making mech-
anisms through which the firm decides the amount of the unique final good, our
work takes a different context into consideration. In fact, we consider a mo-
nopolistic firm producing a fixed amount of an intermediate good that is then
employed as an input for the production of two differentiated final goods. From
an economic point of view, our model examines the dynamics of particular pro-
duction sectors characterised by merceological and geographical peculiarities.
First, our analysis focuses on sectors - such as agriculture or livestock farming -
where it is reasonable to assume that the amount of intermediate good (used as
an input for producing different final goods) is constant and at most affected by
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exogenous factors. In this regard, we can refer to the breeding of cows and goats
for the production of milk and its derivatives or the cultivation of seasonal fruit
for the production of jams and drinks. Second, we take into account specific
geographical contexts, such as small tourist destinations, for which one can rea-
sonably think that a small firm operates as a monopolist and differentiates its
final production between goods for tourists, and goods purchased by local con-
sumers.1 In such a geographical and market context, the two different market
demands for the differentiated final goods significantly affect the firm’s choices
concerning the allocation of the fixed amount of intermediate goods between
the two different production lines.

Therefore, by considering a monopolistic firm which adopts the gradient
adjustment rule to allocate the intermediate good, we study how (i) the hetero-
geneity in the demand side, (ii) the different costs incurred in the differentiation
of final products and (iii) the productive capacity may affect the behaviour of
the monopolist. Indeed, depending on the parameter configurations, we classify
scenarios in which the two final productions coexist and other scenarios in which
specialisation on a single production becomes preferable. In addition, we show
the emergence of periodic cycles and chaotic regimes.
The rest of the paper is organised as follows: Section 2 shows the main features
of the monopoly model and the definition of the piecewise map; Section 3 de-
scribes the properties of the map and the existence of steady states both in the
general case and in a simplified case; Section 4 refers to the results on the lo-
cal stability of equilibria; Section 5 shows several interesting global phenomena
generated by the model and Section 6 concludes.

2 The model

We consider a monopolistic firm producing, at every discrete time period t, a
fixed amount P ∈ (0,+∞) of an intermediate good. The firm employs the
intermediate good in producing two vertically differentiated final goods. In
particular, it allocates the share at of P , with at ∈ [0, 1], to the production of
good 1 and the remaining share (1− at) to the production of good 2. Then, we
have that the amounts of the two final goods are respectively

q1,t = atP, (1)

q2,t = (1− at)P. (2)

With regard to the demand side, we further assume that the two differenti-
ated goods are produced to match the preferences of two different categories of

1An economic evidence of this heterogeneity can be found in the consumption of cheese
on the island of Crete. In fact, in such island there is a strong heterogeneity between lo-
cal consumers, who buy nearly exclusively traditional Cretan cheeses (i.e., Graviera and
Myzithra), and tourists, who (also because of a lack of perfect information on the differ-
ent varieties of cheese produced in the different Greek islands) buy largely the most famous
Greek cheese, i.e. Feta, although this is not really a typical Cretan product (see the website
https://www.rethymno.gr for details).
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consumers, one that consumes only q1 (tourists) and the other that consumes
only q2 (local consumers). In particular, we consider tourists’ preferences de-

scribed by the utility function U(q1, y1) = ε
ε−1q

ε−1
ε

1 +y1 where ε > 0 (with ε 6= 1)
measures the demand elasticity in the market 1, whereas local consumers’ pref-
erences are described by V (q2, y2) = α q2− 1

2q
2
2 + y2 where α > 0 represents the

dimension of the market 2. We assume yi, i = 1, 2, as a numeraire (composite)
good for tourists and local consumers, respectively, whose price is normalised
to 1. Each type of agent maximises his utility function subject to the budget
constraint piqi + yi = Mi, i = 1, 2 where Mi > 0 is the exogenous nominal
income of the consumer. Solving these problems gives the following isoelastic
inverse demand function for tourists

p1(q1,t) = q
− 1
ε

1,t (3)

and the linear inverse demand function for local consumers

p2(q2,t) = α− q2,t. (4)

In economic terms, we can notice that tourists perceive q1 as an experiential
good rather than a consumption good (see Hall et al., 2004), and consequently,
for every price p1, someone is always willing to buy it (the demand q1(p1) is
always positive). Differently, local consumers choose q2 until its price becomes
too high. Indeed, for an enough large price p2, they replace q2 with others
consumption goods, identified by the numeraire y2.
In what follows, we assume that the dimension of the second market is enough
large, that is:

Assumption 1 α > P .

We can notice that since the quantity placed in each of the two markets can
vary in the interval [0, P ], the prices in the first and in the second market can

vary in the interval [P−
1
ε ,+∞) and [α− P, α], respectively.

By assuming constant positive marginal (and average) costs c1, c2 > 0 for
markets 1 and 2, respectively, the profit function Π of the monopolist (where
Π : [0, P ]2 −→ R) is defined by

Π(q1,t, q2,t) = p1(q1,t)q1,t + p2(q2,t)q2,t − c1q1,t − c2q2,t. (5)

Consequently, by substituting expressions (1)-(2)-(3)-(4) in (5), we can write
the profits as a function of the variable at

π(at) = P

[((
1

atP

) 1
ε

+ 2P + c2 − c1 − α
)
at − Pa2

t − (c2 + P − α)

]
, (6)

where π : [0, 1] → R. Hence, we get the marginal profit of the monopolistic
firm
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π′(at) = P

[
2(1− at)P − (α+ c1 − c2) +

(ε− 1)

ε

(
1

atP

) 1
ε
]
. (7)

As in Naimzada and Ricchiuti (2008) and Cavalli and Naimzada (2015),
we assume that the monopolist, due to its bounded knowledge of the markets,
adapt the production level of the two goods q1 and q2 according to a “rule of
thumb”. In particular, we consider a gradient-like adjustment mechanism, in
which the variation of the share a is proportional to the marginal profit, that is

at+1 = f(at) := at + kπ′(at), (8)

where k > 0 represents the speed of adjustment of the share a at time t+ 1
with respect to the marginal profit at time t. This means that the share of the
production factor P , used for one of the two productions, increases (respectively
decreases) when the corresponding marginal profit is positive (respectively neg-
ative).

From the expression of π′(at), it follows that f is defined in the range (0,+∞)
and assumes values in (−∞,+∞). Because an initial share 0 < a0 < 1 may
generate an unfeasible trajectory with at < 0 or at > 1, in order to avoid this oc-
currence we assume that the monopolistic decision process is actually described
by the following piecewise defined map H : [0, 1]→ [0, 1]

H : at+1 =


0 if f(at) ≤ 0

f(at) if f(at) ∈ (0, 1)

1 if f(at) ≥ 1.

(9)

We notice that if f(at) 6∈ (0, 1), the monopolist produces only one of the two
final goods at t+ 1.

3 Steady state analysis

Before analysing the existence of steady states and then their local stability, we
characterise the shape of the map.

3.1 The shape of the graph of f

By considering the behaviour of f at the boundaries of the interval (0, 1), the
following two Lemmas hold:

Lemma 1 Let f be defined in (8).
(i) If ε > 1, then lim

at→ 0+
f(at) = +∞;

(ii) if ε < 1, then lim
at→ 0+

f(at) = −∞.
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Proof. By calculating lim
at→ 0+

f(at), the results in (i) and (ii) are straightfor-

ward. �

Lemma 2 Let f be defined in (8) and P̃ :=

[
ε−1

ε(α+c1−c2)

]ε
.

(i) Assume that ε > 1 and α > c2 − c1. If P > P̃ , then f(1) < 1. Otherwise, if

P ≤ P̃ , then f(1) ≥ 1.

(ii) Assume ε < 1 and α < c2 − c1. If P < P̃ , then f(1) < 1. Otherwise, if

P ≥ P̃ , then f(1) ≥ 1.
(iii) Assume that ε > 1 and α < c2 − c1. Then, f(1) > 1.
(iv) Assume that ε < 1 and α > c2 − c1. Then, f(1) < 1.

Proof. (i) Let us consider

f(1) = 1 +
k

ε

(
(ε− 1)P

ε−1
ε − ε (α+ c1 − c2)P

)
. (10)

By solving the inequality f(1) < 1 in terms of P , the results follow. �

By considering the first derivative of f , we obtain the following result:

Proposition 1 Let
˜̃
k := ε2

(ε−1)P
ε−1
ε +2P 2ε2

and P :=
(

1−ε
2ε2

) ε
ε+1 .

The function f admits at most one critical point, whose coordinate is ã :=

P
ε−1
1+ε

(
(1−2P 2k)ε2

k(ε−1)

)− ε
1+ε

. It belongs to the interval (0, 1) if one of the following

conditions is satisfied:

(i) ε > 1 and k <
˜̃
k (in this case it is the global minimum of f);

or

(ii) ε < 1, P > P and k >
˜̃
k (in this case it is the global maximum of f).

Proof. Let us consider the first derivative of f :

f ′(at) = 1− 2P 2k − k (ε− 1)

ε2at
at
− 1
εP

ε−1
ε .

We have that ã solves f ′(at) = 0 if

{
ε > 1

k ≤ 1
2P 2

or{
ε < 1

k ≥ 1
2P 2

. The results follow by studying the inequalities 0 < ã < 1. �

Remark 1 We notice that in the cases in which the parametric configuration
does not satisfy the conditions in (i) or (ii) of Proposition 1, the function f is
monotone.
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By studying the sign of the second derivative of f , we state the following
Proposition:

Proposition 2 Let f be defined in (8).
(i) If ε > 1, then f is convex for every at ∈ (0, 1);
(ii) if ε < 1, then f is concave for every at ∈ (0, 1).

By means of Proposition 2, it follows that when ã ∈ (0, 1) (see Proposition
1), then ã is the global minimum for f on (0, 1) if ε > 1, while it is the global
maximum for f on (0, 1) if ε < 1.

3.2 Boundary stationary points

In the light of the study performed in the previous subsection, we are now able
to analyse the existence and stability of the boundary fixed points 0 and 1 for
the map H. In this regard, the following Propositions are stated:

Proposition 3 Let H be the map defined in (9). Then, 0 is a fixed point for
H if and only if ε < 1.

Proof. By means of the result in Lemma 1, in the case ε < 1 we have
lim

at→ 0+
f(at) = −∞ and then the first piece of H in (9) applies. Therefore,

0 is a fixed point for H. �

Proposition 4 Let H be the map defined in (9) and P̃ =

[
ε−1

ε(α+c1−c2)

]ε
. The

following cases arise:
(i) if ε > 1 and α > c2 − c1, then 1 is a fixed point for H if and only if P ≤ P̃ ;

(ii) if ε < 1 and α < c2− c1, then 1 is a fixed point for H if and only if P ≥ P̃ .

Proof. (i) By means of the result in Lemma 2, in the case ε > 1 and α > c2−c1
we have that f(1) ≥ 1 for P ≤ P̃ . Then, the third piece of H in (9) applies and
it follows that 1 is a fixed point for H. In a similar manner, we get the result
in (ii). �

We notice that when the fixed point 0 exists, the graph of the map H, in a
right neighbourhood of 0, is defined by a horizontal line and it follows that 0 is
locally superstable.2 The same result applies when the fixed point 1 exists and
P 6= P̃ . In this case, the map H, in a left neighbourhood of 1, is defined by a
horizontal line and it follows that 1 is locally superstable. Differently, if P = P̃ ,
1 is a fixed point but the map H, in a left neighbourhood of 1, is defined by f .
In the latter case, 1 can be a stable or unstable fixed point, depending on the
parametric configuration.

2A fixed point is said to be locally superstable if starting from a sufficiently close initial
condition, it is reached through only one iteration.
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3.3 Different stationary scenarios

By moving on the analysis of the existence of interior fixed points for H, we can
state the following Propositions:

Proposition 5 Let ε > 1, the following cases arise:

(I) Let k <
˜̃
k:

(a) if f(ã) > ã, then no interior fixed points exist;
(b) if f(ã) ≤ ã and f(1) ≤ 1, then there exists a unique interior fixed point;
(c) if f(ã) ≤ ã and f(1) > 1, then there exist two interior fixed points.

(II) Let k ≥ ˜̃k:
(a) if f(1) < 1, then there exists a unique interior fixed point;
(b) if f(1) ≥ 1, then no interior fixed points exist.

Proof. By means of the results in Lemma 1 and Proposition 2, lim
at→ 0+

f(at) =

+∞ and f is convex in the interval (0, 1). Let us now consider the following
exhaustive cases:

(I) for k <
˜̃
k, ã exists and belongs to the interval (0, 1). (I.a) The assumption

implies that the point (ã, f(ã)) lies above the main diagonal and then the result
follows; (I.b) the conditions imply that the points (ã, f(ã)) and (1, f(1)) lie
below or on the main diagonal. Then, the convexity of f on (0, 1) guarantees
the result; (I.c) in the same manner, because (1, f(1)) stays above the 45-degree
line and f(ã) ≤ ã we have that, due to its convexity, the graph of f crosses the
main diagonal twice on (0, 1) and then the result follows.

(II) For k ≥ ˜̃
k, ã does not exist and f is monotonically decreasing. (II.a)

Because f(1) < 1, the graph of f crosses the 45-degree line once and then the
result follows; (II.b) in the same manner, because f(1) ≥ 1 the graph of f does
not cross the main diagonal on (0, 1) and then the result follows. �

Proposition 6 Let ε < 1 and k̃ = 1
2P 2 , the following cases arise:

(I) Let P > P and k >
˜̃
k:

(a) if f(ã) ≥ ã and f(1) < 1, then two interior fixed points exist;
(b) if f(ã) > ã and f(1) ≥ 1, then there exists a unique interior fixed point;
(c) if f(ã) < ã, then zero or two interior fixed points exist.

(II) Let P < P and k > k̃ or let P > P and k ∈ (k̃,
˜̃
k):

(a) if f(ã) ≥ ã and f(1) ≤ 1, then no interior fixed points exist;
(b) if f(ã) ≥ ã and f(1) > 1, then there exists a unique interior fixed point;
(c) if f(ã) < ã and f(1) < 1, then zero or two interior fixed points exist;
(d) if f(ã) < ã and f(1) > 1, then there exists a unique interior fixed point;
(e) if f(ã) < ã and f(1) = 1, then zero or one interior fixed point exists.

(III) Otherwise:
(a) if f(1) > 1, then there exists a unique interior fixed point;
(b) if f(1) < 1, then zero or two interior fixed points exist;
(c) if f(1) = 1, then zero or one interior fixed points exists.
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Proof. By means of the results in Lemma 1 and Proposition 2, lim
at→ 0+

f(at) =

−∞ and f is concave in the interval (0, 1). Let us now consider the following
exhaustive cases:

(I) For P > P and k >
˜̃
k, ã exists and belongs to (0, 1). (I.a) The assumptions

imply that the point (ã, f(ã)) lies above or on the main diagonal while the point
(1, f(1)) stays below it. Then, the graph of f crosses the 45-degree line twice in
the interval (0, 1) and the result follows; (I.b) because f(ã) > ã and f(1) ≥ 1,
the graph of f crosses the main diagonal once and then a unique interior fixed
point exists; (I.c) because (ã, f(ã)) lies below the 45-degree line, the concavity
of f in (0, 1) guarantees that (i) the graph of f is defined by points which stay
all below the main diagonal or (ii) it crosses the 45-degree line twice. Then, the
result follows.

(II) For P < P and k > k̃ or P > P and k ∈ (k̃,
˜̃
k), ã exists and belongs

to the interval [1,+∞) and f is monotonically increasing in the interval (0, 1).
(II.a) Because f(ã) ≥ ã and f(1) ≤ 1, the graph of f does not cross the main
diagonal and the result follows; (II.b) because f(ã) ≥ ã and f(1) > 1, the graph
of f crosses the 45-degree line once in the interval (0, 1), and the result follows;
(II.c) the assumptions imply that the points (ã, f(ã)) and (1, f(1)) stay below
the main diagonal. Then, it follows that (i) the graph of f is defined on (0, 1)
by points which stay all below the main diagonal, or (ii) the graph of f crosses
the 45-degree line twice. Then, the result follows; (II.d) because f(ã) < ã and
f(1) > 1, the graph of f crosses the main diagonal once. Then, the result
follows; (II.e) because f(ã) < ã and f(1) = 1, the graph of f (i) lies below the
main diagonal for every at ∈ (0, 1) or (ii) crosses the latter once. Then, the
result follows.
(III) Otherwise, ã does not exist and f is monotonically increasing. (III.a)
Because f(1) > 1, the graph of f crosses the 45-degree line once on (0, 1) and
then the result follows; (III.b) because f(1) < 1, the graph of f (i) lies below
the main diagonal for every at ∈ (0, 1) or (ii) it crosses the latter twice. Then,
the result follows; (III.c) because f(1) = 1, the graph of f (i) lies below the
main diagonal for every at ∈ (0, 1) or (ii) crosses the latter once. Then, the
result follows. �

Remark 2 We notice that the inequalities introduced in the Propositions 5-6
(i.e., f(ã) ≷ ã and f(1) ≷ 1) can be defined in terms of α. Since the expressions
we obtain are rather cumbersome and not easy to read from an economic point
of view, we have preferred to furnish a description based on the graph of the
map H. Moreover, although not all the cases discussed in Propositions 5-6 will
be treated in what follows, they can be all generated by appropriate parametric
configurations.

In addition, the following result on the relationship between fixed points of
the map and stationary states for the firm’s profit can be stated (see Tuinstra,
2004; Bischi et al., 2007):
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Proposition 7 If a∗ is an interior steady state of the map H defined in (9),
then it is also an admissible solution of π′(at) = 0, and viceversa.

Proof. Let a∗ be an interior steady state of H. By means of simple calculations,
we get π′(a∗) = 0. Let us now assume that a is such that π′(a) = 0. It follows
that at+1 = at = a and therefore a is a steady state for f . �

4 Stability analysis

4.1 The simplified case

Because of the specification of the model, in general, it is not possible to obtain
stationary solutions in a closed form. One way to get explicit solutions is to
introduce the following technical assumption:

Assumption 2
c2 − c1 = α− 2P. (11)

Proposition 8 Let the Assumption 2 holds.

(i) If ε > 1 and P >
(
ε−1
2ε

) ε
ε+1 , then the map (9) admits a unique interior steady

state

a∗ =

(
1

P

)(
ε− 1

2ε

) ε
ε+1

, (12)

in which the profit function (5) achieves its global maximum;

(ii) if (a) ε > 1 and P ≤
(
ε−1
2ε

) ε
ε+1 or (b) ε ≤ 1, then no interior fixed points

exist.

Proof. The fixed point a∗ in (12) is obtained by solving f(a) = a. Since

π′′(at) = −
(

(ε− 1)P
ε−1
e

ε2a
ε+1
e

t

+ 2P 2

)
< 0, ∀ at ∈ (0,+∞)

then π is concave on (0, 1] and a∗ is the global maximum for π. �

In order to investigate the local stability of the interior steady state, we
consider the first derivative of f , evaluated at a∗:

f ′(a∗) =

[
1− 2kP 2

(
ε+ 1

ε

)]
. (13)

The following proposition holds:
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Proposition 9 Let k = ε
P 2(1+ε) and P >

(
ε−1
2ε

) ε
ε+1 . Under the Assumption 2

and ε > 1,
(i) if k ∈ (0, k), then a∗ is locally asymptotically stable;
(ii) if k > k, then a∗ is unstable.

Proof. The steady state is locally stable if −1 < f ′(a∗) < 1, where f ′(a∗) is
defined in (13). Since the inequality f ′(a∗) < 1 is always fulfilled, we have only
to analyse the inequality [

1− 2kP 2

(
ε+ 1

ε

)]
> −1,

which is satisfied for
k <

ε

P 2(1 + ε)
.

The results (i) and (ii) then follow. �

Remark 3 Proposition 9 allows to deduce that a∗ loses its stability for k = k =
ε

P 2(1+ε) through a flip bifurcation.

From an economic point of view, the result in Proposition 9 shows that, in
the long run, the coexistence between the two markets may be achieved only
for sufficiently low levels of the reactivity parameter k and starting from initial
values a0 sufficiently close to the interior equilibrium a∗.

In the case ε < 1, the results on the behaviour of f at the boundaries of the
interval (0, 1) and its concavity allow to state the following Proposition:

Proposition 10 Under Assumption 2, if ε < 1 then for every a0 ∈ [0, 1) the
trajectories converge to the boundary equilibrium 0.

Proof. First notice that the Assumption 2 verifies the hypotheses of Lemma 1
and Proposition 2. Hence, in the case ε < 1 the graph of f may not cross the
main diagonal or cross it twice. In the light of the result in Proposition 8, the
result follows and the map H admits only the boundary fixed point 0. �

The result in Proposition 10 shows that, under Assumption 2, if the elasticity
of demand for market 1 is sufficiently low (that is, ε < 1), in any case it is not
possible to achieve long term scenarios in which the two markets coexist and,
in particular, only the market 2 survives.

4.2 The general case

By moving back to the general specification of the map H, the local stability
analysis becomes more complicated. Nevertheless, it is possible to deduce some
results in analytical form. In particular, by considering the case ε < 1, we get
the following result:
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Proposition 11 Assume ε < 1, P < P and k > k̃. If the map admits two
interior fixed points a∗1 and a∗2 with a∗2 > a∗1, then a∗2 is locally asymptotically
stable while a∗1 is always unstable.

Proof. We are in the case (II.c) of Proposition 6, in which we have that
lim

at→ 0+
f(at) = −∞ and f is monotonically increasing in the interval (0, 1).

Because the graph of f crosses the main diagonal in a∗1 and a∗2, we have that a∗1
is intersected from below while a∗2 is intersected from above. Then, the result
follows. �

Figure 1: Parameter set: c1 = 0.01, c2 = 1.94, k = 0.08, P = 2.05, α = 3.2, ε = 0.6. In
red it is depicted a trajectory starting from the initial value a0 = 0.38 and converging
to the stable equilibrium a∗2, while the green horizontal segment defines the basin of
attraction of the superstable boundary equilibrium 0.

Figure 1 shows a numerical example of the result in Proposition 11. In par-
ticular, the graph allows to notice that the map admits two interior fixed points,
a∗1 and a∗2, and the boundary fixed point 0. By starting from every initial value
a0 < a∗1 (described by the green horizontal segment) all trajectories converge
to the superstable3 boundary fixed point 0, while by starting from an initial
value a0 > a∗1 the trajectory converges to the locally asymptotically stable a∗2
(see red lines). Hence, a∗1 is always unstable and divides the basins of attrac-
tion of the two stable equilibria. In economic terms, this example shows that
when ε < 1, different initial conditions on the allocation of the intermediate
good may lead the system in two really different final scenarios. Specifically,
when the trajectories converge to a∗2 we observe a final state in which the two
markets coexist; otherwise, when the trajectories go to 0 the firm chooses, in
the long run, to allocate all the intermediate good in producing the final good 2.

When the map admits a fixed point a∗, although it is not possible to calculate
it in closed form, we can still study how a∗ and its local stability properties may
change as parameters vary. In what follows, we focus on the role of marginal

3See Bischi et al. (2016) for details.
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costs, and in particular on their difference ∆ c = c2−c1. To this end, it is worth
considering the explicit dependence of f on ∆ c and we refer with f(a; ∆ c) the
function f defined in (8).

Then, we can now provide the following results:

Lemma 3 Let f be the function defined in (8) and a∗ be an interior fixed point
for H, given the value ∆ c∗, that is f(a∗; ∆ c∗) = a∗.
(a) If ∂f

∂a (a∗; ∆ c∗) 6= 1, then there exists a C1 function â = â(∆ c), defined in a
neighbourhood I∆ c∗ of ∆ c∗ such that â(∆ c∗) = a∗ and f(â(∆ c); ∆ c) = â(∆ c)
for all ∆ c ∈ I∆ c∗ .
(b) Consequently, the following cases arise:
(i) If ∂f

∂a (a∗; ∆ c∗) < 1, then d â
d ∆ c (∆ c∗) > 0;

(ii) if ∂f
∂a (a∗; ∆ c∗) > 1, then d â

d ∆ c (∆ c∗) < 0.

Proof.
Let us consider the function

F (a; ∆ c) = a− f(a; ∆ c).

Since F (a∗; ∆ c∗) = 0, the result (a) follows by the Implicit Function Theo-
rem.
Therefore, we obtain

d â

d ∆ c
(∆ c∗) = −

∂ F
∂∆ c (a

∗; ∆ c∗)
∂ F
∂ a (a∗; ∆ c∗)

=
Pk

1− ∂f
∂a (a∗; ∆ c∗)

. (14)

Being Pk > 0 for every P and k, the results (i) and (ii) in (b) are straight-
forward. �

Proposition 12 Let f and â(∆ c) be the functions defined in (8) and Lemma
3, respectively, and a∗ be an interior fixed point for the map H, given the value
∆ c∗. Then, the following cases arise:
(i) Let ε > 1:

(a) if ∂f
∂a (a∗; ∆ c∗) < 1, then d

d∆ c

[
∂f(â(∆ c);∆ c)

∂a

]
(â(∆ c); ∆ c) > 0;

(b) if ∂f
∂a (a∗; ∆ c∗) > 1, then d

d∆ c

[
∂f(â(∆ c);∆ c)

∂a

]
(â(∆ c); ∆ c) < 0.

(ii) Let ε < 1:

(c) if ∂f
∂a (a∗; ∆ c∗) < 1, then d

d∆ c

[
∂f(â(∆ c);∆ c)

∂a

]
(â(∆ c); ∆ c) < 0;

(d) if ∂f
∂a (a∗; ∆ c∗) > 1, then d

d∆ c

[
∂f(â(∆ c);∆ c)

∂a

]
(â(∆ c); ∆ c) > 0.

Proof. We compute via the Chain Rule that, in I∆ c∗ ,
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d

d∆ c

[
∂f(â(∆ c); ∆ c)

∂a

]
(â(∆ c); ∆ c) =

∂2f(â(∆ c); ∆ c)

∂a2
dâ(∆ c)

d∆ c
+
∂2f(â(∆ c); ∆ c)

∂∆ c ∂a
.

(15)

Since f is additively separable in a and ∆ c, we have that ∂2f(â(∆ c);∆ c)
∂∆ c ∂a = 0

for every ∆ c ∈ I∆ c∗ . By evaluating the RHS of (15) in ∆ c∗, the results follow
by means of Proposition 2 and Lemma 3. �

Considering the scenarios described in Propositions 5-6 and the results illus-
trated in Proposition 12, we can notice that in the case ε > 1, as ∆ c increases,
an unstable interior fixed point of H may become a locally asymptotically sta-
ble interior fixed point; instead, a stable interior fixed point of H, as long as
it exists, remains stable as ∆ c increases. Differently, if we consider the case
ε < 1, we can notice that as ∆ c increases, an unstable interior fixed point of H
remains unstable; instead, a stable interior fixed point may become unstable.

Figure 2 furnishes a graphical example of the phenomenon described above.
In particular, Panel (a) in Figure 2 shows that by starting from a parametric
configuration in which the interior fixed point is stable, an increase in ∆ c en-
larges the value of a∗s (which approaches the value 1) but not its stability. The
yellow curve in Panel (a) of Figure 2 suggests the emergence of a first global
phenomenon. Specifically, a significant distance in the marginal costs may in-
duce the monopolist to exit one of the two markets and therefore to specialise
only in a unique production. Differently, Panel (b) in Figure 2 shows a numer-
ical exercise in which, for ε < 1, the parametric configuration we observe the
existence of two interior fixed points, one unstable and the other, a∗s, stable.
Specifically, the different curves depicted in the graph reveal that an increase in
∆ c, on the one hand, reduces the amplitude of the basin of attraction for the
boundary fixed point 0 and on the other hand induces an increase in the value
assumed by the stable interior fixed point a∗s. Furthermore, we can notice that
an increase in ∆ c towards high values may lead to the loss of stability in a∗s
and, consequently, to the occurrence of (attracting) cycles.
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(a) (b)

Figure 2: (a) Parameter set: k = 0.38, P = 1.2, α = 3.8, ε = 2.8. Changes in the
map for the different values of ∆ c: ∆ cr = 0.975,∆ cb = 1.75,∆ cg = 2.75,∆ cy =
3.55. The curve depicted in yellow describes a scenario in which the graph of f
crosses the 45-degree line to the right of 1. Then, for every initial conditions the
system leads, in one iterate, to the exit of the monopolist from the market 2 (1 is
a superstable equilibrium); (b) Parameter set: P = 2.85, α = 3.2, k = 0.165, ε =
0.6,∆ cr = 0.329,∆ cb = 0.538,∆ cg = 0.591,∆ cy = 1.25. For ∆ c < ∆ cg, a∗ is stable
while for ∆ c > ∆ cg, a∗ is unstable.
In both figures, the superscripts in ∆ c refer to the different colours of the curves (that
is, r=red, b=black, g=green and y=yellow). The full (empty) dot identifies a stable
(unstable) fixed point.

With regard to the connections between the monopolist’s profit function and
the steady states of the system defined by the map in (9), the following result
holds:

Proposition 13 Let π be the profit function in (6), f the function defined in
(8) and a∗ a generic interior fixed point for H.
(i) If f ′(a∗) > 1, then a∗ is a local minimum for π;
(ii) if f ′(a∗) < 1, then a∗ is a local maximum for π.

Proof. By means of the definition of f in (8), we obtain

f ′(at) = 1 + k
d2 π(at)

d a2
t

. (16)

By evaluating such equation at a∗, we have

d2 π(a∗)

d a2
=
f ′(a∗)− 1

k
, (17)

and then, for f ′(a∗) > 1 the RHS of (17) is positive while, for f ′(a∗) < 1,
d2π(a∗)
da2 is negative. It follows that for f ′(a∗) > 1, the profit function is convex
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in a neighbourhood of a∗ whereas for f ′(a∗) < 1, the profit function is concave
in a neighbourhood of a∗. Therefore, the results in (i) and (ii) follow. �

(a) (b)

(c) (d)

Figure 3: (a) Parameter set: c1 = 0.01, c2 = 1.94, k = 0.08, P = 2.45, α = 3.2, ε =
0.6. The map H admits two interior fixed points, a∗1 ' 0.1732 (unstable) and a∗2 '
0.6832 (stable) and the boundary fixed point 0. In red it is depicted a trajectory
starting from a0 ' 0.38 and converging to a∗2 whereas the black arrows describe the
convergence to 0 of the trajectories starting from initial values less than a∗1. (b) The
graph of the profit function π(at) corresponding to the parameter set in Panel (a). (c)
Parameter set: c1 = 0.48, c2 = 1.34, k = 0.08, P = 1.8, α = 3.2, ε = 1.26. The map
H admits a unique interior fixed point, a∗ ' 0.4214, which is locally asymptotically
stable. In red it is depicted a trajectory starting from a0 ' 0.8 and converging to a∗.
(d) The graph of the profit function π(at) corresponding to the parameter set in Panel
(c).
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The results in Proposition 13 allow to deduce an important relationship
between the steady states of the map and the corresponding levels of the firm’s
profit: an unstable steady state minimises the profits of the monopolistic firm,
while a local asymptotically stable steady state corresponds to a local, but not
always global, maximum for the profit function.
Numerical evidences of the occurrence described above is provided in Figure 3.
In particular, Panel (a) and (b) show that, for ε < 1, a∗1 (unstable fixed point
for H) and a∗2 (stable fixed point for H) are local minimum and local maximum,
respectively, for the profit function π. Similarly, Panel (c) and (d) show that,
for ε > 1, the locally asymptotically stable fixed point for H is a local and global
maximum for the profit function.

5 Global Analysis

This section is devoted to investigating some economically relevant dynamic
phenomena, related to the results proposed in Proposition 5 and Proposition 6.
More specifically, we describe some scenarios in which the elasticity of demand
ε plays a key role and we consider separately the two cases ε > 1 and ε < 1,
having observed, in previous sections, that these two cases represent a reason
of widely different economic dynamics.

Figure 4 shows a numerical example in which, considering ε < 1, several
global phenomena occur as ε increases. In particular, the bifurcation diagram
in Panel (a) shows that for very low values of ε, the unique attractor of the
system is the boundary equilibrium 0. From an economic point of view, this
means that when the elasticity of the demand in the market 1 is really low, the
monopolist maximises its profits by specialising in the production of good 2.
At ε ' 0.3102, a switch to the coexistence of the two markets occurs until ε
reaches the value εflip ' 0.452, at which the interior attractor undergoes a flip
bifurcation that generates a stable 2-cycle. As ε further increases, a sequence
of period doubling bifurcations occurs, leading to the emergence of chaos for
ε ' 0.6063. When ε exceeds the value 0.6619, the chaotic regime closes and the
boundary equilibrium 0 goes back to being the global attractor of the map. For
ε ∈ (0.793, 0.86), we observe the existence of cycles, with periodicity depending
on ε, whose coordinates are (1, f(1), f2(1), ..., fn(1)) with fn+1(1) = 1 and
n > 1. Finally, for ε ∈ (0.86, 1), the system converges to a stable 2-cycle whose
coordinates are ac1 = 1 and ac2 ∈ (0, 1) (see Panel (d) for details). In addition,
the graph in Panel (a) allows to observe a phase of coexistence of attractors for
ε ∈ (0.31, 0.66) when two different initial conditions a1

0 = 0.4 and a2
0 = 0.99 are

considered. This phenomenon is described in further detail in Panel (b) where,
for ε = 0.648, two attractors coexist. In particular, we can notice that starting
from an initial value a1

0, the trajectory (depicted in red) falls into a chaotic
regime; differently, by starting from an initial value a2

0, the trajectory (depicted
in green) converges towards the equilibrium 0 and then the monopolist chooses
the specialisation on the market 2. Moreover, the unimodality of f induces
the birth of a non-connected basin of attraction for the boundary equilibrium 0
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(grey lines on the x-axis highlight the basin of attraction). In Panel (c) of Figure
4, we show one of the high order cycles obtained for a value of ε in the interval
(0.793, 0.86). Specifically, the graph illustrates the appearance of a stable 8-
cycle which involves the second and third piece of the map H. Finally, Panel
(d) displays the scenario in which the system converges to a stable 2-cycle where
a continuous switching between ac1 = 1 (that is, the specialisation on market 1)
and ac2 ' 0.06 (that is, the coexistence of the two markets) occurs.

(a) (b)

(c) (d)

Figure 4: Parameter set: c1 = 0.15, c2 = 1.389, k = 0.165, P = 2.85, α = 3.2. (a) The
bifurcation diagram with respect to ε in which it is also underlined a coexistence of
attractors, respectively depicted in red and black, for ε ∈ (0.31, 0.66); (b) coexistence
of a chaotic regime and the boundary equilibrium 0 for two different initial conditions
a10 = 0.4 (red lines) and a20 = 0.99 (green lines) when ε = 0.648; (c) Convergence
to a 8-cycle for ε = 0.83; (d) the final convergence to a stable 2-cycle for ε = 0.87.
The full dots in Panels (c) and (d) identify the stable 8-cycle and the stable 2-cycle,
respectively.
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With regard to the case ε > 1, Figure 5 illustrates an interesting scenario
in which, as ε increases, several dynamic phenomena appear. Specifically, the
bifurcation diagram in Panel (a) of Figure 5 shows that for ε ∈ (1, 2.5), the
firm, at every period, continuously switches between specialising on the market
1 and the market 2. Therefore, at every period, the firm chooses to allocate the
entire amount of intermediate good on only one of the two productions (see also
Panel (b) which shows a time series depicted for ε = 2.24). By increasing ε, first
the system converges to a stable 2-cycle whose coordinates are ac1 = 1 and ac2 ∈
(0, 1), then the map undergoes a sequence of period doubling bifurcations leading
to chaos. As ε continues to increase, a series of period-halving bifurcations
occurs until the value ε = 4.63, at which a new stable 2-cycle, whose coordinates
belong to the interval (0, 1), appears. As ε assumes higher values, then the map
undergoes a new sequence of period doubling bifurcations leading to chaos. The
graph in Panel (c) highlights the emergence of a chaotic regime when ε = 4.2 (we
assume the initial condition a0 = 0.32). Finally, Panel (d) depicts, for ε = 5.25,
the time series of at converging to a stable 2-cycle.
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(a) (b)

(c) (d)

Figure 5: Parameter set: c1 = 0.5, c2 = 1.8, k = 0.88, P = 0.66, α = 3.8. (a) The
bifurcation diagram with respect ε in the case ε > 1; (b) a trajectory converging to
a continuous switching between 0 and 1 for ε = 2.44 (a0 = 0.38); (c) chaotic regime
when ε = 4.2 (a0 = 0.32); (d) the time series of at converging to a stable 2-cycle,
whose coordinates are 0.011 and 0.498, for ε = 5.25.

In the case of ε > 1, by using an appropriate parametric configuration, we
may observe an interesting phenomenon of multistability. In this regard, Figure
6 shows a numerical exercise in which a stable 2-cycle (whose coordinates are
1 and its first order image acc) and a stable interior fixed point a∗ coexist. In
particular, the left panel in Figure 6 shows the attractors of the map as well as
the boundaries of the basins of attraction defined by the fixed points x1 and x2

of the second iterate f2 (depicted in black). The right panel in figure 6 displays
the time series related to the two attractors where the first trajectory (defined
by green points)4 starts inside the basin of attraction of the 2-cycle (acc, 1),

4For the sake of clarity, in the second trajectory (depicted in green) we have not traced
the segments that connect two successive points of the time series.
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while the second one (depicted in red) starts inside the basin of attraction of a∗.
From an economic point of view, the graph shows how both the elasticity of the
demand ε (which affects the shape of the map H) and the initial share a0 of the
intermediate good have a significant influence on the long run dynamics that the
monopolist faces. In fact, different initial values determine (i) the convergence
to an allocative stationary value within the interval (0, 1) and therefore the
survival of the two markets, or (ii) a cyclical behaviour of the firm. In the
latter case we observe, in alternate periods, the exit from the market 2 and the
specialisation on the market 1.

Figure 6: Parameter set: c1 = 0.5, c2 = 1.3, k = 0.83, P = 0.996, α = 2.65, ε =
5. Coexistence between a 2-cycle (involving the specialisation in the market 1) and
the interior fixed point a∗. The time series of the map for the two different initial
values a10 = 0.167 and a20 = 0.84, where a10 is outside and a20 belongs to the interval
(x1 = 0.167355, x2 = 0.955493), displays the two paths. Indeed, the red line shows
the convergence to the interior stable equilibrium while green points highlight the
convergence to the stable 2-cycle.

6 Conclusions

In this article, we have analysed the emergence of nonlinear dynamics in a
monopoly where (i) the firm produces a fixed amount of an intermediate good
and then (ii) it employs this intermediate good as an input in the production
of two vertically differentiated final goods. The monopolist adopts a gradient
mechanism to adjust the share of intermediate good to be allocated between the
two productions. Moreover, consumers of the two markets are heterogeneous.

It is interesting to notice that, in the literature on microeconomic dynamics,
this kind of allocation problem has not been analysed. As a matter of fact, the
majority of contributions has focused on characterising the production when
capacity constraints are not considered. Among the few exceptions, it is worth
mentioning Puu and Norin (2003), in which capacity constraints play an impor-
tant role in defining the market dynamics.
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The analysis of the dynamic properties of the model allows observing two
alternative scenarios: one implying the coexistence of the two markets and an-
other where there is specialisation on the production of a single final good. We
have observed that both the elasticity of market demand and marginal costs
play an ambiguous role on the stability of the long-term equilibrium. Moreover,
by investigating how the production level of intermediate good and the speed
of adjustment may affect the dynamic properties of the model, we have noticed
the emergence of cases in which dynamics may be chaotic and others in which
multiple attractors may appear. In this regard, we have proposed several numer-
ical simulations showing the main features of the model and peculiar dynamic
scenarios, as coexistence of attractors and cyclical dynamics. More specifically,
we have shown that coexistence between a boundary and a chaotic attractor
or between a cycle and an interior fixed point may emerge. Finally, numerical
examples highlight the existence of parametric configurations whereby the dy-
namics of the monopolist are trapped in a continuous switching between periods
in which it specialises in one production and others in which it specialises in the
other.

With regard to possible future research scenarios, we can notice that the
analysis of this model is based on assuming a rigidity in the quantity of inter-
mediate good that is produced, i.e. we assume that it is totally allocated among
the final productions considered. A natural extension of this work is then rep-
resented by considering the possibility that part of the intermediate good is
discarded and therefore not employed in the final productions (for example, in
order to increase the price of final goods). In addition, it will be interesting to
include the presence of stochastic terms in order to consider variations in the
amount of the intermediate good that are triggered by exogenous factors (for
example, natural phenomena).
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