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Abstract. We define oldforms and newforms for Drinfeld cusp forms of level t and conjecture that
their direct sum is the whole space of cusp forms. Moreover we describe explicitly the matrix U
associated to the action of the Atkin operator Ut on cusp forms of level t and use it to compute
tables of slopes of eigenforms. Building on such data, we formulate conjectures on bounds for slopes,
on the diagonalizability of Ut and on various other issues. Via the explicit form of the matrix U we
are then able to verify our conjectures in various cases (mainly in small weights).

1. introduction

Let N,k ∈ Z⩾0 and denote by Sk(N) the C-vector space of cuspidal modular forms of level N and
weight k. Hecke operators Tn, n ⩾ 1, are defined on Sk(N) and when a prime p ∈ Z divides the level
N , Tp is also known as the Atkin, or Atkin-Lehner Up-operator.

A major topic in number theory is the construction of families of modular/cuspidal forms and
there are a number of related questions and conjectures about the slopes of such functions (e.g.
bounds and recurring patterns for slopes). We recall that the p-slope of an eigenform, i.e. of a
simultaneous eigenvector for all Hecke operators, is defined to be the p-adic valuation of its Up-
eigenvalue; in particular, an eigenform of p-slope zero is called p-ordinary.
The pioneer for the subject was Serre who, after developing the notion of a p-adic modular form, in
[29] presented the first p-adic analytic family of modular eigenforms: the family of p-adic Eisenstein
series.
A step further was then moved by Hida who provided a larger class of families of modular forms in
the paper [24] and also studied p-adic analytic families of Galois representation attached to ordinary
modular eigenforms in [23].
Finally, we have the work of Coleman on overconvergent modular forms [6]: by proving that over-
convergent modular forms of small slope (note that Coleman removed the restriction on ordinary
eigenforms used by Hida) are classical, he found plenty of p-adic families of classical modular forms.
In order to complete the picture, let us mention the article [19] by Gouvêa and Mazur. In this
paper, based on extensive numerical evidences, they asked some questions and stated a variety of
conjectures on slopes and on the existence of families of modular forms. In particular, they con-
jectured the generalization of Hida’s theory to modular eigenforms of finite slope. It was this work
that inspired Coleman and motivated his search for the overconvergent families. However, we must
mention that a counterexample to [19, Conjecture 1] was found by Buzzard and Calegari in [5].

The interest of researchers for Up eigenvalues is not limited to slopes and families only: many
related questions about diagonalizability of Up and about the structure of Sk(N) have been studied
through the years and are well known in the case of number fields but, to our knowledge, have no
counterpart yet in the function field setting. For example, regarding the diagonalizability of Hecke
operators, when p is a prime number not dividing N , the action of all Tp is semisimple on cusp
forms. This is no longer true for the action of Up on Sk(Np), which fails to be diagonalizable. Some
results on its semisimplicity are obtained in [7]. Moreover, the space of cusp forms of level N and
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weight k is direct sum of newforms and oldforms, which are mutually orthogonal with respect the
Petersson inner product. It has been proved (see [19]) that, for a fixed prime p, eigenvalues of old
eigenforms have p-slope less than or equal to k − 1; while new eigenforms all have slopes equal to
1− k

2 . Both results rely on Petersson inner product, a tool which is no longer avaliable for function
fields of characteristic p.

The present paper deals with the function field counterpart of (some of) the results mentioned
above. The theory of modular forms for function fields began with Drinfeld, indeed they were named
Drinfeld modular forms after him, but basic notions and definitions were actually introduced only
in the eighties by Goss and Gekeler (see, e.g. [11], [12], [17] and [18]).
For the sake of completeness we point out that Drinfeld modular forms are only half of the story.
In the realm of function fields there is another translation of classical modular forms: the so called
automorphic forms. They are functions on adelic groups with values in fields of characteristic zero,
but for the purpose of this paper we are only going to consider Drinfeld modular forms which have
values in a field of positive characteristic p.

Let K = Fq(t), where q is a power of a fixed prime p ∈ Z, and denote by A ∶= Fq[t] its ring of

integers (with respect to the prime at infinity 1
t ). Let K∞ be the completion of K at ∞ ∶= 1

t with
ring of integers A∞ and denote by C∞ the completion of an algebraic closure of K∞.
The finite dimensional C∞-vector space of Drinfeld modular forms (more details on the objects
mentioned in this introduction are in Section 2) of weight k ⩾ 0 and type m ∈ Z for a congruence
subgroup Γ < GL2(A) is denoted by Mk,m(Γ). The corresponding space of cusp forms is indicated

by S1
k,m(Γ). If Γ is the full GL2(A), in analogy with the classical case, we will refer to the related

space of Drinfeld forms as forms of level one.
In two recent papers [1] and [2], we studied an analogue of the classical Atkin Up-operator for a

prime (hence any prime) of degree 1, i.e. the operator Ut, acting on the spaces S1
k,m(Γ1(t)) and

S1
k,m(Γ0(t)). In particular, we found an explicit formula for the action of Ut on S1

k,m(Γ1(t)), and
here we shall use the matrix arising from that formula to deal with various issues like the structure of
cusp forms of level t, diagonalizability and slopes of Ut . We also started a computational search on
eigenvalues and t-slopes of Atkin operators, looking for regularities and patterns in the distribution
of t-slopes. The outcome of these computations are collected in tables that can be downloaded from
https://sites.google.com/site/mariavalentino84/publications. Building on such tables and various
other data, in the final section of [2] we formulated some conjectures on slopes (e.g. an analogue
of Gouvêa-Mazur conjecture, see [2, Conjecture 5.1]) and on related issues. The aim of the present
work is to explain these conjectures and their relations with structural issues of cusp forms spaces
and also to give proofs in some special cases.

The main issues treated here are the following.

(1) Injectivity of the Hecke operator. We believe that the Hecke operator Tt acting on the space

of cusp forms S1
k,m(GL2(A)) is injective for any weight k.

(2) Diagonalizability of Hecke operators. Inseparable eigenvalues occur both in level 1 and in
level t leading to non diagonalizable operators. Anyway we believe there is a more structural
motivation for this (i.e. the antidiagonal action of Ut on newforms, see Section 5.2), which
causes non diagonalizability in even characteristic only.

(3) Newforms and Oldforms. In [2], we defined two degeneracy maps δ1, δt ∶ S1
k,m(GL2(A)) →

S1
k,m(Γ0(t)) and two trace maps (the other way around) to describe the subspaces of

S1
k,m(Γ0(t)) composed by newforms and oldforms denoted, respectively, by S1,new

k,m (Γ0(t))
and S1,old

k,m (Γ0(t)). We believe these definition will provide a decomposition of S1
k,m(Γ0(t)) as

the direct sum of oldforms and newforms. Section 5 will provide evidence for the conjecture
and a computational criterion for it.



SLOPES OF DRINFELD CUSP FORMS 3

(4) Bounds on slopes. It is easy to find a lower bound for slopes (see Proposition 6.2), we believe

an upper bound is k
2 (such bound will have consequences also on the previous issues, see

Remark 5.3 for details). The current upper bound of Theorem 6.4 is unfortunately still quite
far from it.

The paper is organized as follows. In Section 2, we fix notations and recall the main results from
[2] that we are going to use throughout the paper. Moreover, we formulate the conjectures we shall
work on in the subsequent sections.

Conjectures 1.1 (Conjecture 2.6).

1. Ker(Tt) = 0;
2. Ut is diagonalizable when q is odd and, when q is even, it is diagonalizable if and only if

the dimension of S1,new
k,m (Γ0(t)) is 1;

3. S1
k,m(Γ0(t)) = S1,old

k,m (Γ0(t)) ⊕ S1,new
k,m (Γ0(t)).

In Section 3 we describe a matrix M associated to the action of Ut on S1
k,m(Γ0(t)). In Section

4 we translate all Conjectures 2.6 in linear algebra problems thanks to the previous calculation on
M . In Section 5 we use tool from Section 4 to prove several cases of the conjectures (in particular
for all weights k ⩽ 5(q − 1)) and to present an equivalent formulation of conjecture 3 above (see
Theorem 5.1). Finally, in Section 6 using a Newton Polygon argument we give upper and lower
bounds on slopes and on the dimension of the space of fixed slope (i.e. on the number of independent
eigenforms with a fixed slope), for which we find a result comparable with the one of K. Buzzard
in [4] for the characteristic 0 case.

2. Setting and notations

Let K be the global function field Fq(t), where q is a power of a fixed prime p ∈ Z, fix the prime
1
t at ∞ and denote by A ∶= Fq[t] its ring of integers (i.e., the ring of functions regular outside ∞).

Let K∞ be the completion of K at 1
t with ring of integers A∞ and denote by C∞ the completion of

an algebraic closure of K∞.
The Drinfeld upper half-plane is the set Ω ∶= P1(C∞) − P1(K∞) together with a structure of rigid
analytic space (see [10]).

2.1. The Bruhat-Tits tree. The Drinfeld upper half plane has a combinatorial counterpart, the
Bruhat-Tits tree T of GL2(K∞), which we shall describe briefly here. For more details the reader
is referred to [13], [14] and [30] (a short summary of the relevant information is also provided in [2,
Section 2.1]).
The tree T is a (q + 1)-regular tree on which GL2(K∞) acts transitively. Let us denote by Z(K∞)
the scalar matrices of GL2(K∞) and by I(K∞) the Iwahori subgroup, i.e.,

I(K∞) = {( a b
c d

) ∈ GL2(A∞) ∶ c ≡ 0 (mod ∞)} .

Then the sets X(T ) of vertices and Y (T ) of oriented edges of T are given by

X(T ) = GL2(K∞)/Z(K∞)GL2(A∞) and Y (T ) = GL2(K∞)/Z(K∞)I(K∞).
The canonical map from Y (T ) to X(T ) associates with each oriented edge e its origin o(e) (the
corresponding terminus will be denoted by t(e)). The edge e is e with reversed orientation.
Two infinite paths in T are considered equivalent if they differ at finitely many edges. An end is
an equivalence class of infinite paths. There is a GL2(K∞)-equivariant bijection between the ends
of T and P1(K∞). An end is called rational if it corresponds to an element in P1(K) under the
above bijection. Moreover, for any arithmetic subgroup Γ of GL2(A), the elements of Γ/P1(K) are
in bijection with the ends of Γ/T (see [3, Proposition 3.19] and [16, Lecture 7, Proposition 3.2]) and
they are called the cusps of Γ.
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Following Serre [30, pag 132], we call a vertex or an edge Γ-stable if its stabilizer in Γ is trivial and
Γ-unstable otherwise.

2.2. Drinfeld modular forms. The group GL2(K∞) acts on Ω via Möbius transformation

( a b
c d

)(z) = az + b
cz + d.

Let Γ be an arithmetic subgroup of GL2(A). It has finitely many cusps, represented by Γ/P1(K).
For γ = ( a bc d ) ∈ GL2(K∞), k,m ∈ Z and ϕ ∶ Ω→ C∞, we define

(1) (ϕ ∣k,mγ)(z) ∶= ϕ(γz)(detγ)m(cz + d)−k.

Definition 2.1. A rigid analytic function ϕ ∶ Ω → C∞ is called a Drinfeld modular function of
weight k and type m for Γ if

(2) (ϕ ∣k,mγ)(z) = ϕ(z) ∀γ ∈ Γ.

A Drinfeld modular function ϕ of weight k ⩾ 0 and type m for Γ is called a Drinfeld modular form
if ϕ is holomorphic at all cusps.
A Drinfeld modular form ϕ is called a cusp form if it vanishes at all cusps to the order at least 1.
The space of Drinfeld modular forms of weight k and type m for Γ will be denoted by Mk,m(Γ). The

subspace of cuspidal modular forms is denoted by S1
k,m(Γ).

The above definition coincides with [3, Definition 5.1], other authors require the function to be
meromorphic (in the sense of rigid analysis, see for example [8, Definition 1.4]) and would call our
functions weakly modular.

Weight and type are not independent of each other: if k /≡ 2m (mod o(Γ)), where o(Γ) is the
number of scalar matrices in Γ, then Mk,m(Γ) = 0. Moreover, if all elements of Γ have determinant
1, then equation (1) shows that the type does not play any role. If this is the case, for fixed k all
Mk,m(Γ) are isomorphic (the same holds for S1

k,m(Γ) and we will simply denote them by Mk(Γ)
(resp. S1

k(Γ)).
All Mk,m(Γ) and S1

k,m(Γ) are finite dimensional C∞-vector spaces. For details on the dimension of

these spaces see [11].
Since Mk,m(Γ) ⋅Mk′,m′(Γ) ⊂Mk+k′,m+m′(Γ) we have that

M(Γ) = ⊕
k,m

Mk,m(Γ) and M0(Γ) =⊕
k

Mk,0(Γ)

are graded C∞-algebras.
Moreover, let

g ∈Mq−1,0(GL2(A)), ∆ ∈ S1
q2−1,0(GL2(A)) and h ∈Mq+1,1(GL2(A))

be as in [12, Sections 5 and 6], then

(3) M0(GL2(A)) = C∞[g,∆] and M(GL2(A)) = C∞[g, h] .

2.3. Harmonic cocycles. For k > 0 and m ∈ Z, let V (k,m) be the (k−1)-dimensional vector space
over C∞ with basis {XjY k−2−j ∶ 0 ⩽ j ⩽ k − 2}. The action of γ = ( a bc d ) ∈ GL2(K∞) on V (k,m) is
given by

γ(XjY k−2−j) = det(γ)m−1(dX − bY )j(−cX + aY )k−2−j for 0 ⩽ j ⩽ k − 2.

For every ω ∈ Hom(V (k,m),C∞) we have an induced action of GL2(K∞)
(γω)(XjY k−2−j) = det(γ)1−mω((aX + bY )j(cX + dY )k−2−j) for 0 ⩽ j ⩽ k − 2.

Definition 2.2. A harmonic cocycle of weight k and type m for Γ is a function c from the set of
directed edges of T to Hom(V (k,m),C∞) satisfying:
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1. (harmonicity) for all vertices v of T , ∑
t(e)=v

c(e) = 0, where e runs over all edges in T with

terminal vertex v;
2. (antisymmetry) for all edges e of T , c(e) = −c(e);
3. (Γ-equivariancy) for all edges e and elements γ ∈ Γ, c(γe) = γ(c(e)).

The space of harmonic cocycles of weight k and type m for Γ will be denoted by Chark,m(Γ).

2.3.1. Cusp forms and harmonic cocycles. In [31], Teitelbaum constructed the so-called “residue
map” which allows us to interpret cusp forms as harmonic cocycles. Indeed, it is proved in [31,
Theorem 16] that this map is actually an isomorphism S1

k,m(Γ) ≃ Chark,m(Γ).
For more details the reader is referred to the original paper of Teitelbaum [31] or to. [3, Section
5.2], where the author gives full details in a more modern language. We remark that the two papers
have different normalizations (as mentioned in [3, Remark 5.8]): here we adopt Teitelbaum’s one
but, working as in [3, Section 5.2] where computations for the residue map are detailed right after
[3, Definition 5.9], we obtain [3, equation (17)] which carries the action of the Hecke operators on
harmonic cocycles (see next section).

2.4. Hecke operators. We shall focus on the congruence groups Γ ∶= Γ0(t), Γ1(t) defined as

Γ0(t) = {( a b
c d

) ∈ GL2(A) ∶ c ≡ 0 (mod t)}

and

Γ1(t) = {( a b
c d

) ∈ GL2(A) ∶ a ≡ d ≡ 1 and c ≡ 0 (mod t)} .

If ϕ ∈Mk,m(GL2(A)) the Hecke operator is defined in the following way

Tt(ϕ)(z) ∶= tk−m(ϕ ∣k,m ( t 0
0 1

))(z) + tk−m ∑
b∈Fq

(ϕ ∣k,m ( 1 b
0 t

))(z)

= tkϕ(tz) + ∑
b∈Fq

ϕ(z + b
t

) .

While, if ϕ ∈Mk,m(Γ), Γ = Γ1(t), Γ0(t), we have the analogue of the Atkin-Lehner operator

Ut(ϕ)(z) ∶= tk−m ∑
b∈Fq

(ϕ ∣k,m ( 1 b
0 t

))(z) = ∑
b∈Fq

ϕ(z + b
t

) .

2.5. Action of Ut on Γ1(t)-invariant cusp forms. In order to describe the action of Ut on
S1
k(Γ1(t)) it is convenient to exploit the harmonic cocycles description of them.

The residue map allows us to define a Hecke action on harmonic cocycles in the following way:

Ut(c(e)) = tk−m ∑
b∈Fq

( 1 b
0 t

)
−1

c(( 1 b
0 t

) e)

(for details see formula (17) in [3, Section 5.2], recalling Section 2.3.1).
By [3, Proposition 5.4] and [15, Corollary 5.7] we have that

dimC∞ S
1
k(Γ1(t)) = k − 1 .

Moreover, as a consequence of [31, Lemma 20], cocycles in Chark,m(Γ1(t)) are determined by their

values on a stable edge ē = ( 0 1
1 0 ) of a fundamental domain for Γ1(t)/T (the computations for

fundamental domains are carried out in [15], a short description of the Γ1(t) case is in [2, Section
4]). Therefore, for any j ∈ {0,1, . . . , k − 2}, let cj(e) be defined by

cj(e)(XiY k−2−i) = { 1 if i = j
0 otherwise

.
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The set B1k(Γ1(t)) ∶= {cj(e), 0 ⩽ j ⩽ k − 2} is a basis for S1
k(Γ1(t)). By [2, Section 4.2] we have

Ut(cj(e)) = −(−t)j+1(
k − 2 − j

j
)cj(e) − tj+1∑

h≠0
[(k − 2 − j − h(q − 1)

−h(q − 1) )(4)

+(−1)j+1(k − 2 − j − h(q − 1)
j

)]cj+h(q−1)(e)

(where it is understood that cj+h(q−1)(e) ≡ 0 whenever j + h(q − 1) < 0 or j + h(q − 1) > k − 2).
From formula (4) one immediately notes that the cj can be divided into classes modulo q−1 and

every such class is stable under the action of Ut. For any 0 ⩽ j ⩽ q − 2, we shall denote by Cj the
class of cj(e), i.e, Cj = {c`(e) ∶ ` ≡ j (mod q − 1)}: the cardinality of Cj is the largest integer n
such that j + (n − 1)(q − 1) ⩽ k − 2 (note that it is possible to have ∣Cj ∣ = 0, exactly when j > k − 2).

2.6. Newforms and oldforms. We recall here our definitions of newforms and oldforms, and the
main properties/formulas for various maps between spaces of cusp forms (all details are in the paper
[2]).

2.6.1. Oldforms. Consider the injective map (see [2, Proposition 3.1])

δ ∶ S1
k,m(GL2(A)) × S1

k,m(GL2(A)) Ð→ S1
k,m(Γ0(t))

δ(ϕ,ψ) ∶= δ1ϕ + δtψ
where

δ1, δt ∶ S1
k,m(GL2(A)) → S1

k,m(Γ0(t))
δ1(ϕ) ∶= ϕ

δt(ϕ) ∶= (ϕ ∣k,m ( t 0
0 1

))(z) , i.e., (δt(ϕ))(z) = tmϕ(tz).

Definition 2.3. Oldforms of level t are elements of S1,old
k,m (Γ0(t)) ∶= Im(δ).

Let ϕ ∈ S1
k,m(GL2(A)). We have that (see [2, Section 3.2]):

(5) δ1(Ttϕ) = tk−mδt(ϕ) +Ut(δ1(ϕ))

(6) Ut(δt(ϕ)) = 0

2.6.2. Newforms. Let

γt ∶= ( 0 −1
t 0

)

be the Fricke involution. To shorten notations we shall often use ϕFr to denote (ϕ ∣k,mγt).

It is easy to see that (ϕFr)Fr = t2m−kϕ. Moreover, noting that ( 0 −1
1 0

) ∈ GL2(A) and that

( 0 −1
1 0

)( t 0
0 1

) = γt, one readily observes that ϕFr = δt(ϕ) for any ϕ ∈ S1
k,m(GL2(A)) (this

final relation makes no sense for forms in S1
k,m(Γ0(t)) on which δt is not defined, we also remark

that ϕFr ≠ (ϕ ∣k,m ( t 0
0 1

)) in general).

To define the trace maps we use the following system of representatives for GL2(A) modulo Γ0(t):

R ∶= {Id2,(
0 −1
1 b

) b ∈ Fq} .



SLOPES OF DRINFELD CUSP FORMS 7

Definition 2.4. For any cuspidal form ϕ of level t define the trace

Tr(ϕ) ∶= ∑
γ∈R

(ϕ ∣k,mγ)

and the twisted trace

Tr′(ϕ) ∶= Tr(ϕFr) = ∑
γ∈R

(ϕ ∣k,mγtγ).

Both Tr and Tr′ are maps from S1
k,m(Γ0(t)) to S1

k,m(Γ0(1)) (see [32, Definition 3.5]).

Let ϕ ∈ S1
k,m(Γ0(t)). We have that (see [2, Section 3.3]):

(7) Tr(ϕ) = ϕ + t−mUt(ϕFr),

(8) Tr′(ϕ) = ϕFr + tm−kUt(ϕ).

Moreover, for any ϕ ∈ S1
k,m(GL2(A)) (see [2, Section 3.4]), one has

(9) Tr(δ1(ϕ)) = ϕ and Tr(δt(ϕ)) = tm−kTtϕ.

Let ϕ ∈ S1
k,m(GL2(A)) be a Tt-eigenform of eigenvalue λ ≠ 0. Then δ(ϕ,− tk−mλ ϕ) ∈ S1

k,m(Γ0(t))
is a Ut-eigenform of eigenvalue λ. One can actually prove that {Eigenvalues of Ut∣Im(δ)} =
{Eigenvalues of Tt} ∪ {0} (see [2, Proposition 3.6], the 0 comes from Ker(Ut) = Im(δt) ), so we

have information on “old eigenvalues”. Moreover one can check that δ(ϕ,− tk−mλ ϕ) ∈ Ker(Tr) for
any ϕ as above, hence the kernel of the trace is not enough to distinguish newforms (as it was in
the classical case, see e.g. [19, Section 4]).

Definition 2.5. Newforms of level t are elements in S1,new
k,m (Γ0(t)) ∶=Ker(Tr) ∩Ker(Tr′).

Let ϕ a newform of level t which is also an Ut eigenform of eigenvalue λ. Then by (7) and (8)
we have that ϕ = −t−mUt(ϕFr) e ϕFr = −tm−kUt(ϕ). Hence

λ2ϕ = U2
t (ϕ) = tkϕ.

Then, newforms can only have eigenvalues ±t k2 and slope k
2 .

2.7. Conjectures. Numerical data (see also [2, Section 5]) and comparison with the classical case
led us to the following conjectures

Conjectures 2.6.

1. Ker(Tt) = 0;
2. Ut is diagonalizable when q is odd and, when q is even, it is diagonalizable if and only if

the dimension of S1,new
k,m (Γ0(t)) is 1;

3. S1
k,m(Γ0(t)) = S1,old

k,m (Γ0(t)) ⊕ S1,new
k,m (Γ0(t)) = Im(δ) ⊕ (Ker(Tr) ∩Ker(Tr′)).

A few words on Conjecture 2: we already have examples of non diagonalizability in even char-
acteristic provided in [1] and [2, Section 5] and they all seem to depend on the fact that the action
of Ut on newforms has the tendency to being antidiagonal (for more examples see Section 5.2).

Such matrices (with only one eigenvalue, namely t
k
2 as mentioned before) are never diagonalizable

in even characteristic (unless, of course, they have dimension 1), hence our conjecture. More-
over it is easy to see that, if Tt is diagonalizable on S1

k,m(GL2(A)), then Ut is diagonalizable on

Im(δ) = S1,old
k,m (Γ0(t)) if and only if Tt is injective. Therefore our Conjecture 1 can be seen an a

first step towards (or, thanks to Conjecture 3, as a consequence of) Conjecture 2.
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Remark 2.7. In the characteristic zero case Maeda’s Conjecture [25] predicts that in level N = 1
for a prime p ∈ Z the polynomial

Pk,p(X) ∶= ∏
f

(X − ap(f))

where f = ∑n an(f)qn ∈ Sk(SL2(Z)) runs over all normalized eigenforms (i.e. such that a1(f) = 1)
of a chosen basis, is irreducible over Q. Moreover, Maeda conjectured that the Galois group of
Pk,p(X) is the full symmetric group Sd where d = dimC Sk(SL2(Z)).
It is clear from our tables that Maeda’s conjecture has to be reformulated in even characteristic
when there are inseparable eigenvalues. Besides, even in odd characteristic eigenvalues are mostly
in Fq[t], as one can see by the above mentioned tables, and this proves that an analogue of Maeda’s
conjecture is false in our setting.

3. The blocks associated to S1
k,m(Γ0(t))

A set of representatives for Γ0(t)/Γ1(t) is provided by the (q−1)2 matricesR0
1 = {( a 0

0 d
) ∶ a, d ∈ F∗q},

hence a cocycle cj comes from S1
k,m(Γ0(t)) if and only if it is R0

1-invariant. Direct computation
leads to

( a 0
0 d

)
−1

cj ((
a 0
0 d

) e)(X`Y k−2−`) = am−1−`dm−k+`+1cj(e)(X`Y k−2−`).

Therefore

( a 0
0 d

) ⋅ cj = am−1−jdm−k+j+1cj ∀j

and this is R0
1-invariant if and only if

am−1−jdm−k+j+1 = 1 ∀a, d ∈ F∗q .

This yields

j ≡m − 1 ≡ k −m − 1 (mod q − 1), i.e. k ≡ 2j + 2 (mod q − 1)

(and k ≡ 2m (mod q − 1) as natural to get a nonzero space of cuspidal forms for Γ0(t)). If q is
even this provides a unique class Cj , if q is odd then we have two solutions: j (assumed to be the

smallest nonnegative one) and j + q−1
2 . Note that in any case k has the form 2j + 2+ (n− 1)(q − 1) =

2(j + q−1
2 ) + 2 + (n − 2)(q − 1) for some integer n and the classes corresponding to S1

k,m(Γ0(t)) are

determined by the type m (as predictable since m plays a role in S1
k,m(Γ0(t)) but not in S1

k(Γ1(t)),
because all matrices in Γ1(t) have determinant 1). If q is even then the unique class has dimension
n, while for odd q we have

∣Cj ∣ = n and ∣Cj+ q−1
2
∣ = n − 1.

Remark 3.1. This could be seen as an easy alternative to the Riemann-Roch argument usually used
to compute the dimension of such spaces, see for example [8, Section 4].

3.1. Matrices associated to Cj. Since we will focus on the block(s) coming from level Γ0(t) only
(unless stated otherwise), when we speak about the block Cj of dimension n we always imply that
j and n are such that k = 2j + 2+ (n− 1)(q − 1) (formulas for Cj+ q−1

2
are the same, just substitute j

with j + q−1
2 and take into account the different parity of the dimension n − 1).
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Using formula (4) one finds that the general entries of the matrix associated to the action of Ut on
S1
k,j+1(Γ1(t)) are:

(10) ma,b(j, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−tj+1+(b−1)(q−1) [(k − 2 − j − (a − 1)(q − 1)
(b − a)(q − 1) )

+(−1)j+1+(b−1)(q−1)(k − 2 − j − (a − 1)(q − 1)
j + (b − 1)(q − 1) )] if a ≠ b

−(−t)j+1+(a−1)(q−1)(k − 2 − j − (a − 1)(q − 1)
j + (a − 1)(q − 1) ) if a = b

(for future reference note that for any q one has (−1)(`−1)(q−1) = 1 for any `). Remember that
0 ⩽ j ⩽ q − 2 and so the type is 0 when j = q − 2.

We denote by M the coefficient matrix (i.e., the one without the powers of t) associated to the
action of Ut on Cj .

Specializing formula (10) at our particular value of k, we see that the general entries of M are

(11) ma,b =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−[(j + (n − a)(q − 1)
j + (n − b)(q − 1)) + (−1)j+1(j + (n − a)(q − 1)

j + (b − 1)(q − 1))] if a ≠ b

(−1)j(j + (n − a)(q − 1)
j + (a − 1)(q − 1)) if a = b

.

It is easy to check that M satisfies some symmetry relations. We write down those for even n, the
other case is similar. In particular

S1. symmetry between columns: ma,n+1−b = (−1)j+1ma,b for any a ≠ b, n + 1 − b, i.e., outside
diagonal and antidiagonal (because of this we shall simply check the first n

2 columns from
now on);

S2. symmetry between diagonal and antidiagonal: ma,n+1−a = (−1)j+1(ma,a − 1) for any a ≠
n + 1 − a;

S3. antidiagonal, n
2 + 1 ⩽ a ⩽ n:

ma,n+1−a = −[(j + (n − a)(q − 1)
j + (a − 1)(q − 1)) + (−1)j+1(j + (n − a)(q − 1)

j + (n − a)(q − 1))] = (−1)j

(because in our range n − a < a − 1). This yields

(−1)j = (−1)j+1(ma,a − 1), i.e. ma,a = 0

in the range in which S2 and S3 hold.
S4. below antidiagonal, n

2 + 1 ⩽ a ⩽ n − 1:

−[(j + (n − a)(q − 1)
j + (n − b)(q − 1)) + (−1)j+1(j + (n − a)(q − 1)

j + (b − 1)(q − 1))] = 0

(because in our range n − a < n − b and n − a < b − 1);

Putting all these information together we can see that for any even n the matrix M has the
following shape

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

m1,1 m1,2 ⋯ m1,n2
(−1)j+1m1,n2

⋯ (−1)j+1m1,2 (−1)j+1(m1,1 − 1)
m2,1 m2,2 ⋯ m2,n2

(−1)j+1m2,n2
⋯ (−1)j+1(m2,2 − 1) (−1)j+1m2,1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
mn

2 ,1 mn
2 ,2 ⋯ mn

2 ,n2
(−1)j+1(mn

2 ,n2
− 1) ⋯ (−1)j+1mn

2 ,2 (−1)j+1mn
2 ,1

mn
2 +1,1

mn
2 +1,2

⋯ (−1)j 0 ⋯ (−1)j+1mn
2 +1,2

(−1)j+1mn
2 +1,1

⋮ ⋮ . .
. ⋮ ⋮ ⋱ ⋮ ⋮

mn−1,1 (−1)j ⋯ 0 0 ⋯ 0 (−1)j+1mn−1,1

(−1)j 0 ⋯ 0 0 ⋯ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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while, for odd n, one simply needs to modify the indices a bit and add the central n+1
2 -th column

(m1,n+1
2
,⋯,mn−1

2
,n+1

2
, (−1)j ,0,⋯,0).

4. Matrices and Conjectures

We are now going to translate our previous formulas and conjectures in a matrix version which
hopefully will make our tasks easier (at least in small dimensions). We need the matrices associated
to all the operators involved in our computations so we fix notations for them once and for all and
we shall see that everything can be written (basically) in terms of 3 matrices.

4.1. Atkin Operator. By the previous section it is easy to see that the matrix associated to Ut

acting on Cj is

(12) U =MD =M
⎛
⎜
⎝

ts1 ⋯ 0
⋱

0 ⋯ tsn

⎞
⎟
⎠

where for 1 ⩽ i ⩽ n we set si = j + 1 + (i − 1)(q − 1).

4.2. Fricke involution. We compute the Fricke action on cocycles.

cFri (e)(X`Y k−2−`) = ( 0 −1
t 0

)
−1

ci ((
0 −1
t 0

)( 0 1
1 0

))(X`Y k−2−`)

= ( 0 1
t

−1 0
)ci ((

1 0
0 t

)( −1 0
0 1

))(X`Y k−2−`)

= (−1)k−`−1tm−`−1ci(e)(Xk−2−`Y `)
so that

(13) cFri = (−1)i+1ti+1+m−kck−2−i
(note that ci and ck−2−i correspond to “symmetric” columns in the block associated with Cj).
Therefore, the b-th column of the Fricke acting on the block Cj comes from

cFrj+(b−1)(q−1) = t
m−k((−t)j+1+(b−1)(q−1)cj+(n−b)(q−1)) .

Observe that (−1)j+1+(b−1)(q−1) = (−1)j+1; so the matrix associated this action is

(14) tm−kF = tm−k

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 (−t)sn
0 0 ⋯ (−t)sn−1 0

⋮ ⋮ . .
.

0 ⋮
0 (−t)s2 0 ⋯ ⋮

(−t)s1 0 ⋯ ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

Note that, since k is even when q is odd and si + sn−i+1 = k for any i, we have F 2 = tkI (where I
is the identity matrix). We remark that, letting A be the antidiagonal matrix

A =
⎛
⎜⎜
⎝

0 . . . (−1)j+1

. .
.

(−1)j+1 . . . 0

⎞
⎟⎟
⎠
,

one has AF = D. As an example of the translations of our previous formulas in matrix form one
can easily check that

(tm−kF )2 = t2m−2kF 2 = t2m−2k(−t)kI = t2m−kI.
This corresponds to (ϕFr)Fr = t2m−kϕ.
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4.3. Trace maps. By equation (7) we have that the trace action on cocycles is

Tr(ci) = ci + t−mUt(cFri ),

i.e. in terms of matrices

(15) T ∶= I + t−mMD(tm−kF ) = I + t−kMAF 2 = I +MA.

By equation (8) (or composing (15) with the Fricke matrix tm−kF ) it is easy to see that the
matrix for the twisted trace on Cj is

(16) T ′ = tm−k(F +MD).

Since Tr(δ1(ϕ)) = ϕ we have T = T 2 and ψ ∈ Im(δ1) ⇐⇒ Tr(ψ) = ψ, which yields

(17) I +MA = (I +MA)2 = I + 2MA +MAMA and Im(δ1) =Ker(MA).

The first relation readily implies

MA(I +MA) = 0 and (I +MA)MA = 0,

i.e. Im(T ) =Ker(MA) = Im(δ1) (which is obvious) and, since A is invertible,

Im(M) ⊆Ker(T ).

In particular this leads to Im(Ut) ⊆Ker(Tr).
Finally there is an obvious relation between Ker(Tr) and Ker(Tr′) which, in terms of matrices,

reads as Ker(T ′) = F (Ker(T )) (indeed ϕ ∈Ker(Tr′) ⇐⇒ ϕFr ∈Ker(Tr) ) and we recall that, by
[2, Theorem 3.9], Ker(Ut) = Im(δt), i.e. Ker(MD) = Im(δt). Therefore oldforms are

S1,old
k,m (Γ0(t)) ∶=Ker(MA) ⊕Ker(MD)

(direct sum because δ is injective) and newforms are

S1,new
k,m (Γ0(t)) ∶=Ker(T ) ∩ F (Ker(T )) =Ker(I +MA) ∩ F (Ker(I +MA)).

4.4. Conjectures II. By (9) we have ϕ ∈Ker(Tt) ⇐⇒ Tr(δt(ϕ)) = 0 and we recall that on forms
in S1

k,m(GL2(A)) δt acts as the Fricke map. Therefore ϕ ∈Ker(Tt) yields an element in

Ker(MA) ∩Ker(T ′) =Ker(MA) ∩Ker(F +MD) =Ker(MA) ∩ F (Ker(I +MA)).

Our previous Conjectures 2.6, can be now rewritten as

Conjectures 4.1.

1. Ker(MA) ∩Ker(F +MD) =Ker(MA) ∩ F (Ker(I +MA)) = 0;
2. MD is diagonalizable if q is odd and, when q is even, it is diagonalizable if and only if

dimC∞ S
1,new
k,m (Γ0(t)) ⩽ 1;

3. S1
k,m(Γ0(t)) = S1,old

k,m (Γ0(t))⊕S1,new
k,m (Γ0(t)) = (Ker(MA)⊕Ker(MD))⊕(Ker(T )∩FKer(T )).

As a starting point we can easily observe that Ker(MA) ∩Ker(T ) =Ker(MD) ∩Ker(T ′) = 0.

5. Main theorems and special cases

We shall provide a criterion for the conjecture on newforms and oldforms and then use the explicit
formula for the matrices to verify all conjectures for various values of j, n and q. In particular a
few special cases will provide a proof for the conjectures for cusp forms of weight k ⩽ 5q − 5, but,
with the criterion of Theorem 5.1, it should be quite easy to go much further.
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5.1. Sum of oldforms and newforms. To prove Conjecture 3 we need

(Ker(MA) ⊕Ker(MD)) ∩ (Ker(I +MA) ∩ F (Ker(I +MA))) = 0

S1
k,m(Γ0(t)) = (Ker(MA) ⊕Ker(MD)) + (Ker(I +MA) ∩ F (Ker(I +MA))) .

We provide a necessary and sufficient condition for these to hold.

Theorem 5.1. We have

S1
k,m(Γ0(t)) = S1,old

k,m (Γ0(t)) ⊕ S1,new
k,m (Γ0(t)) ⇐⇒ I − t−k(TF )2 is invertible.

Proof. Assume I − t−k(TF )2 is invertible. We begin by showing that the intersection between old
and newforms is trivial. Let η = δ(ϕ,ψ) be old and new, then (recall ϕ,ψ ∈ S1

k,m(GL2(A)) yields
Tϕ = ϕ and Tψ = ψ, with a little abuse of notations we denote with the same symbol the modular
forms and their associated coordinate vector)

● η = ϕ + tm−kFψ;
● Tη = Tϕ + tm−kTFψ = ϕ + tm−kTFψ = 0Ô⇒ ϕ = −tm−kTFψ;
● T ′η = tm−k(TFη) = tm−k(TFϕ + tm−kTF 2ψ) = 0 implies

0 = tm−k(TF (−tm−kTFψ) + tmTψ) = t2m−k(−t−k(TF )2ψ + ψ) = t2m−k(−t−k(TF )2 + I)ψ.
By hypothesis this leads to ψ = 0, hence ϕ = 0 and finally η = 0 as well.
For the sum, given Ψ ∈ S1

k,m(Γ0(t)) it is enough to find ϕ,ψ ∈ S1
k,m(GL2(A)) such that Ψ − δ(ϕ,ψ)

is new, i.e.
Tr(Ψ − δ(ϕ,ψ)) = Tr(Ψ) − ϕ − Tr(δt(ψ)) = Tr(Ψ) − ϕ − Tr(ψFr) = 0

and
Tr′(Ψ − δ(ϕ,ψ)) = Tr′(Ψ) − Tr′(ϕ) − Tr′(ψFr) = Tr′(Ψ) − Tr′(ϕ) − t2m−kψ = 0.

In terms of matrices these read as

{ TΨ − ϕ − tm−kTFψ = 0
TFΨ − TFϕ − tmψ = 0

.

Assuming that I − t−k(TF )2 is invertible, we solve for ϕ and ψ getting

{ ϕ = TΨ − tm−kTFψ
ψ = t−m(TFΨ − TF (TΨ − tm−kTFψ)) = t−mTF (Ψ − TΨ) + t−k(TF )2ψ

{ ψ = (I − t−k(TF )2)−1t−mTF (Ψ − TΨ)
ϕ = TΨ − tm−kTFt−m(TFΨ − TFϕ) = TΨ − t−k(TF )2Ψ + t−k(TF )2ϕ

(18) { ψ = (I − t−k(TF )2)−1t−mTF (Ψ − TΨ)
ϕ = (I − t−k(TF )2)−1(TΨ − t−k(TF )2Ψ) .

Viceversa let η ≠ 0 be in the kernel of I − t−k(TF )2, so that TFTFη = tkη, and apply T (recalling
T 2 = T ) to get TFTFη = T 2FTFη = tkTη. This shows Tη = η so η is old (and belongs toKer(MA) ).
Note that MDη ≠ 0, otherwise 0 ≠ η ∈Ker(MA) ∩Ker(MD): a contradiction to the injectivity of
δ. Equations (5) and (6) imply that MDη (i.e. Ut(η) ) is old as well. Finally

tkη = (TF )2η = TF (MD + F )η
= TF (MDη) + TFFη = TF (MDη) + tkTη
= TF (MDη) + tkη.

Therefore TF (MDη) = 0 and we already noticed in Section 4.3 that TM = 0, i.e. T (MDη) = 0 as

well. Hence MDη ∈Ker(T ) ∩Ker(TF ) = S1,new
k,m (Γ0(t)),

0 ≠MDη ∈ S1,old
k,m (Γ0(t)) ∩ S1,new

k,m (Γ0(t))
and we cannot have a direct sum between them. �
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One can easily check that the formulas (18) are compatible with the possibility that Ψ is old, i.e.
if Ψ = δ1(η), then TΨ = Ψ so in equation (18) ψ = 0 and ϕ = (I − t−k(TF )2)−1(I − t−k(TF )2)η = η.
A similar computation for Ψ = δt(η) = ηFr = tm−kFη, leads to (recall Tη = η and F 2 = tkI)

ψ = (I − t−k(TF )2)−1t−mTF (tm−kFη − T (tm−kFη)) = (I − t−k(TF )2)−1(I − t−k(TF )2)η = η
and

ϕ = (I − t−k(TF )2)−1(T (tm−kFη) − t−k(TF )2(tm−kFη)) = (I − t−k(TF )2)−1tm−kTF (η − Tη) = 0.

Remark 5.2. The condition on the invertibility of the matrix I−t−k(TF )2 is computationally really
easy to check. We did it using the software Mathematica ([33]). In particular, we checked more
than 1200 blocks for q = 2,3,22,5,7,23,32,11 and 0 ⩽ j ⩽ q − 2 and n ⩽ 31.

Remark 5.3. In the proof of Theorem 5.1 we saw that an element in Ker(I − t−k(TF )2) has to be
old. Let ϕ ∈ S1

k,m(GL2(A)), then

δ1Tt(ϕ) = tk−mδt(ϕ) +Ut(δ1(ϕ)) = (F +MD)ϕ = TFϕ .

Moreover, observe that I − t−k(TF )2 = (I − t−k/2TF )(I + t−k/2TF ), so that ϕ ∈ Ker(I − t−k(TF )2)
leads to

TFϕ = −tk/2ϕ or TF ((I + t−k/2TF )ϕ) = tk/2(I + t−k/2TF )ϕ.
Therefore, S1

k,m(Γ0(t)) is direct sum of oldforms and newforms if and only if there does not exist

η ∈ S1
k,m(GL2(A)) eigenform of eigenvalue ±tk/2 for Tt.

Our computations (see tables at https://sites.google.com/site/mariavalentino84/publications) al-
ways provided slopes at level one that are strictly less than k/2. Therefore, proving that k/2 is
un upper bound for slopes of Tt would immediately prove also the conjecture on S1

k,m(Γ0(t)) being
direct sum of new and old forms.

5.2. Antidiagonal blocks and newforms. Most of the computations of this section and of the
following one will rely on the well known

Lemma 5.4. (Lucas’ Theorem) Let n,m ∈ N with m ⩽ n and write their p-adic expansions as
n = n0 + n1p + ⋅ ⋅ ⋅ + ndpd, m =m0 +m1p + ⋅ ⋅ ⋅ +mdp

d. Then

(n
m

) ≡ (n0
m0

)(n1
m1

) . . .(nd
md

) (mod p).

Proof. See [9] or [20]. �

With notations as in [8], consider the modular form g ∈ Mq−1,0(GL2(A)) and the cusp form
h ∈ Mq+1,1(GL2(A)) which generate M(GL2(A)), i.e., such that ⊕k,mMk,m(GL2(A)) ≃ C∞[g, h]
(see [8, Proposition 4.6.1]), where the polynomial ring is intended doubly graded by weight and
type. When n ⩽ j + 1 (and still k = 2j + 2 + (n − 1)(q − 1)), using [8, Proposition 4.3] one finds that
the space Mk,m(GL2(A)) is zero unless k = q(q − 1) and m = 0 (i.e., j = q − 2) when it is generated
by the (non-cuspidal) form gq. Moreover, when n = j + 2 we have

dimC∞Mk,m(GL2(A)) = { 1 if j < q − 2 (generated by hj+1)
2 if j = q − 2 (generated by {hq−1, gq+1}) .

Hence for n ⩽ j + 1 we do not have oldforms and Conjecture 1 is trivial. For Conjecture 3 we have
to prove that all forms in S1

k,m(Γ0(t)) are new (obviously they cannot arise in any way from forms

of lower level but we have to check that they are new according to our Definition 2.5).

Theorem 5.5. Let n ∈ N and 0 ⩽ j ⩽ q − 2. Then, for all n ⩽ j + 1, the matrix M = M(j, n, q) is
antidiagonal (since now j, n and q may vary we often put this 3 parameter explicitly in the notation
for the matrix M).
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Proof. Thanks to the symmetries of the matrices M(j, n, q), we simply need to check the general
b-th column for 1 ⩽ b ⩽ n

2 (or ⩽ n+1
2 according to the parity of n) and above the antidiagonal (i.e.

for b < n + 1 − a).
Let us start with the elements on the diagonal. We rewrite them as

ma,a = (−1)j((n − a)q + j + a − n(a − 1)q + j − a + 1
) .

Our hypotheses on j and n yield 0 ⩽ j + a − n, j − a + 1 < q = pr, hence, in order to use Lemma 5.4,
we can write the p-adic expansion of the terms in the binomial coefficient as

(n − a)q + j + a − n = α0 + α1p + ⋅ ⋅ ⋅ + αr−1pr−1 + (n − a)pr;
(a − 1)q + j − a + 1 = δ0 + δ1p + ⋅ ⋅ ⋅ + δr−1pr−1 + (a − 1)pr.

If there exists i such that αi < δi, then (αi
δi
) = 0 and ma,a is zero. Otherwise, if for any i one has

αi ⩾ δi, then j + a − n ⩾ j + 1 − a, i.e. a − 1 ⩾ n − a. Again we get ma,a = 0 unless a = n+1
2 where we

have already seen that mn+1
2
,n+1

2
= (−1)j .

The other ma,b are

ma,b = −[((n − a)q + j + a − n(n − b)q + j + b − n) + (−1)j+1((n − a)q + j + a − n(b − 1)q + j − b + 1
)] .

As before, j+a−n, j−b+1, j+b−n < q and all of them are non-negative. Thus, the p-adic expansions
of the terms involved in the coefficients are

(n − a)q + j + a − n = α0 + α1p + ⋅ ⋅ ⋅ + αr−1pr−1 + (n − a)pr;
(b − 1)q + j − b + 1 = β0 + β1p + ⋅ ⋅ ⋅ + βr−1pr−1 + (b − 1)pr;
(n − b)q + j + b − n = γ0 + γ1p + ⋅ ⋅ ⋅ + γr−1pr−1 + (n − b)pr.

By Lemma 5.4 we have that

● if there exists i such that αi < γi, then the first binomial coefficient is zero;
● if there exists i such that αi < βi, then the second binomial coefficient is zero.

Otherwise, if for any i one has αi ⩾ γi, then j + a − n ⩾ j + b − n and n − b ⩾ n − a. This implies that
the first binomial coefficient is zero (observe that the equality a = b cannot happen here, the entry
ma,a has already been treated).
For the second coefficient assume that for any i one has αi ⩾ βi, then j + a − n ⩾ j − b + 1, i.e.,
b ⩾ n + 1 − a, a contradiction to our assumption of being above the antidiagonal. �

Corollary 5.6. Let n ∈ N and 0 ⩽ j ⩽ q − 2. Then, for all 2 ⩽ n ⩽ j + 1, the matrix associated with
Ut, i.e. MD ∶=M(j, n, q, t), is diagonalizable if and only if q is odd.

Example 5.7. The following matrices show that the bound in Theorem 5.5 is sharp, i.e. the
appearance of oldforms causes a non-antidiagonal action. For q = 8, j = 3,6 we have

M(3,5,8) =

⎛
⎜⎜⎜⎜⎜
⎝

1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

⎞
⎟⎟⎟⎟⎟
⎠

and M(6,8,8) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Theorem 5.8. If n ⩽ j + 1 all Conjectures 4.1 hold.
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Proof. We already mentioned that Conjectures 1 and 2 hold (trivially or by Corollary 5.6). By
Theorem 5.5 we know that M =M(j, n, q) is antidiagonal. In particular

M =
⎛
⎜⎜
⎝

0 ⋯ (−1)j

. .
.

(−1)j ⋯ 0

⎞
⎟⎟
⎠

Hence MA = −I and MD = −F , i.e. T = I +MA and T ′ = F +MD are both the null matrix and
S1
k,m(Γ0(t)) = S1,new

k,m (Γ0(t)) (note that, by Theorem 5.1, this provides another proof of the fact that

S1,old
k,m (Γ0(t)) = 0). �

It seems relevant to notice that all the eigenforms involved in an antidiagonal block are newforms
(i.e. this holds even if the whole matrix is not antidiagonal). Indeed the existence of an antidiagonal
block yields equations like

Ut(cj+(h−1)(q−1)) = (−1)jtj+1+(h−1)(q−1)ck−2−j−(h−1)(q−1)
(for the cocycles involved in the block) and we recall equation (13)

cFri = (−1)i+1ti+1+m−kck−2−i.
Substituting in equations (7) one gets

Tr(cj+(h−1)(q−1)) = cj+(h−1)(q−1) + t−mUt(cFrj+(h−1)(q−1))

= cj+(h−1)(q−1) + (−1)j+1+(h−1)(q−1)tj+1+(h−1)(q−1)+m−k−mUt(cj+(n−h)(q−1))
= cj+(h−1)(q−1) + (−1)j+1tj+1+(h−1)(q−1)−k(−1)jtj+1+(n−h)(q−1)cj+(h−1)(q−1) = 0

(where the last equality follows also from k = 2j + 2 + (n − 1)(q − 1) ). The computations to show
Tr′(cj+(h−1)(q−1)) = 0 are similar (substituting in (8)).

5.3. Three more cases: j = 0, n = j + 2 and n ⩽ 4. We briefly describe a few more cases in which
our Theorem 5.1 and the particular form of the matrices lead to a proof of all the conjectures.

Theorem 5.9. Let n ∈ N with n ⩾ 2 and j = 0. Then, for all n ⩽ q + 2, the matrix M(0, n, q) has
the following entries

(1) ma,1 = 1 for 1 ⩽ a ⩽ n;

(2) ma,b = 0 for 1 ⩽ a ⩽ n − 2, 2 ⩽ b ⩽ n
2 (or n+1

2 depending on the parity of n) and b < n + 1 − a,

i.e.,

M(0, n, q) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 ⋯ ⋯ 0 0
1 0 ⋯ 0 1 −1
⋮ ⋮ ⋰ 0 ⋮
⋮ 0 ⋰ ⋮ ⋮
1 1 0 ⋯ 0 −1
1 0 ⋯ ⋯ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

Proof. We need just to apply repeatedly Lemma 5.4 as done in the proof of Proposition 5.5. �

Example 5.10. As before we can show that the bound on n is the best possible: indeed

M(0,6,3) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
1 1 0 0 0 −1
1 0 0 1 0 −1
1 0 1 0 0 −1
1 1 0 0 0 −1
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Corollary 5.11. With hypotheses as in Theorem 5.9 we have that all Conjectures 4.1 hold.
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Proof. We have

T =
⎛
⎜⎜⎜
⎝

1 0 ⋯ 0 −1
⋮ ⋮ ⋮ ⋮
1 0 ⋯ 0 −1
0 0 ⋯ 0 0

⎞
⎟⎟⎟
⎠

and TF =
⎛
⎜⎜⎜
⎝

ts1 0 ⋯ 0 −tsn
⋮ ⋮ ⋮ ⋮
ts1 0 ⋯ 0 −tsn
0 0 ⋯ 0 0

⎞
⎟⎟⎟
⎠
.

So it is easy to see that I − t−k(TF )2 = (I − t− k2TF )(I + t− k2TF ) is invertible. For completeness we
mention that oldforms are spanned by

⟨c0 +⋯ + c(n−2)(q−1), tn−2cq−1 + tn−3c2(q−1) +⋯ + tc(n−2)(q−1) + c(n−1)(q−1)⟩,
while newforms are generated by

⟨cq−1,⋯,c(n−2)(q−1)⟩ .
For the injectivity of Tt, direct computation show

Ker(MA) =< c0 + cq−1 +⋯ + c(n−2)(q−1) >
and

Ker(F +MD) =< t(n−1)(q−1)c0 + c(n−1)(q−1),cq−1,⋯,c(n−2)(q−1) > ,
so their intersection is trivial.
Finally, diagonalizability (or non diagonalizability) follows from the central antidiagonal block and
the calculation of the characteristic polynomial (note that k ⩾ 3 in our range here)

det(M(0, n, q)D −XI) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(X2 − tX)(X2 − tk)n2 −1 if n is even

(X2 − tX)(X2 − tk)n−32 (−X + t k2 ) if n is odd

. �

Theorem 5.12. If n = j + 2 with 0 ⩽ j ⩽ q − 2 the matrix M(j, j + 2, q) has the following shape:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 m1,2 ⋯ ⋯ (−1)j+1m1,2 0
0 0 ⋯ 0 (−1)j ⋮
⋮ ⋮ ⋰ 0 ⋮
⋮ 0 ⋰ ⋮ ⋮
0 (−1)j 0 ⋯ 0 ⋮

(−1)j 0 ⋯ ⋯ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Proof. Apply again Lemma 5.4 as already done in the proofs of Theorems 5.9 and 5.5. �

Corollary 5.13. With hypotheses as in Theorem 5.12 we have that all Conjectures 4.1 hold.

Proof. Using

T =
⎛
⎜⎜⎜
⎝

1 m1,2 ⋯ (−1)j+1m1,2 (−1)j+1
0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮
0 ⋯ ⋯ ⋯ 0

⎞
⎟⎟⎟
⎠

and TF =
⎛
⎜⎜⎜
⎝

ts1 m1,2t
s2 ⋯ m1,2t

sn−1 tsn

0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0 0

⎞
⎟⎟⎟
⎠

computations are as in the previous corollary (and even easier). Oldforms are generated by

Ker(MA) = ⟨cj⟩ and Ker(MD) = ⟨cj+(n−1)(q−1)⟩
and newforms are spanned by ⟨cj+(q−1),⋯,cj+(n−2)(q−1)⟩, no matter the values of the m1,b. The
characteristic polynomial is

det(M(j, j + 2, q)D −XI) = (X2 − tj+1X) ⋅
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(X2 − tk)n−22 if n is even

(X2 − tk)n−32 (−X + (−1)jt k2 ) if n is odd

,

and diagonalizability is straightforward (even without an antidiagonal block). �
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In low dimension (i.e. for small k) the previous theorems prove the conjectures for n ⩽ 3 and we
only need one more matrix to check them for n ⩽ 4 (i.e. for k ⩽ 2(q − 2) + 2 + 3(q − 1) = 5q − 5). We
provide this final example for completeness; since we only have to consider the cases n ⩾ j + 3, it
should be easy to go on with explicit computations for small n.

Theorem 5.14. If n ⩽ 4 all Conjectures 4.1 are true.

Proof. As mentioned above we only need to check n = 4 for j = 1: we have that k = 3q + 1

M =
⎛
⎜⎜⎜
⎝

2 −2 −2 1
1 −1 −2 1
0 −1 0 0
−1 0 0 0

⎞
⎟⎟⎟
⎠
, and TF =

⎛
⎜⎜⎜
⎝

2t2 −2tq+1 −2t2q 2t3q−1
t2 −tq+1 −t2q t3q−1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
.

The matrix I − t−k(TF )2 = (I − t− k2TF )(I + t− k2TF ) is invertible and the characteristic polynomial
for MD is P (X) = X(X + tq+1 − 2t2)(X2 − t3q+1) so all Conjectures hold. In particular newforms
are generated by

⟨(t2q − tq+1)c1 + (t2q − t2)cq + (t2 − tq+1)c2q−1, (tq+1 − t3q−1)c1 + (t2 − t3q−1)cq + (t2 − tq+1)c3q−2⟩
and oldforms by

⟨2c1 + cq, t
q−1c2q−1 + 2c3q−2⟩. �

6. Bounds on slopes

Since we know that all newforms have slope k/2 and we believe that S1
k,m(Γ0(t)) is the direct

sum of oldforms and newforms, we only need to bound slopes of oldforms. We do this by looking at
the Newton polygon of the characteristic polynomial for Ut, obtaining a sharp lower bound for the
slopes and upper bounds for both slopes and their multiplicities (i.e. the dimension of the space
generated by all eigenforms of a given slope). We recall that our data indicate that k/2 is a sharp
upper bound (and Remark 5.3 strengthens this belief), unfortunately the actual bound of Theorem
6.4 is still quite far from it (while the bound for multiplicities obtained in Theorem 6.5 is optimal
and analogue to the one of [4] for the characteristic zero case).

Thanks to [2, Theorem 3.9] we have that

r ∶= dimC∞ S
1
k,m(GL2(A)) = dimC∞Ker(Ut) .

Therefore, the characteristic polynomial of Ut on Cj looks like

PUt(X) =Xn + `1Xn−1 +⋯ + `n−rXn−(n−r)

with `n−r ≠ 0. Looking at the form of our matrix MD (in particular the fact that the i-th column
is divisible exactly by tsi), we have that

`i = ∑
1⩽ι1,...,ιi⩽n
ι1<ι2<⋯<ιi

`ι1,⋯,ιit
sι1+⋯+sιi

for suitable `ι1,⋯,ιi ∈ Fq and `0 = 1. Let Qi = (i, vt(`i)) for i = 0,⋯, n− r be the points of the Newton
polygon associated to p(x). Of course, if `i = 0 we skip the corresponding Qi. We are looking for
bounds on vt(`i), hence on slopes and their multiplicity by [26, Ch IV, Lemma 4] 1 which here reads
as

Lemma 6.1. Let α ∈ Q. We say that α is a slope of multiplicity d(α, k) for Ut if there are exactly
d(α, k) roots of PUt(X) having t-adic valuation α. If the Newton polygon of the polynomial PUt(X)
has a segment of slope α and projected length d(α, k) (i.e. the length of the projection of the segment
on the x axis), then α is a slope of multiplicity d(α, k) for Ut.

1There is quite a difference between our notations and the one in [26, Ch IV, Lemma 4], but we could not find a
more suitable reference and, in our opinion, our computations are clearer with our notations.
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In order to do this, first observe that since the si = j + 1 + (i − 1)(q − 1) are all distinct, the sums
sι1 +⋯ + sιi are all distinct too. Moreover, the si are increasing. Then we have:

vt(`i) ⩾ min{sι1 +⋯ + sιi} = s1 +⋯ + si(19)

=
i−1
∑
h=0

(j + 1 + h(q − 1)) = i(j + 1) + i(i − 1)
2

(q − 1)

and

vt(`i) ⩽ max{sι1 +⋯ + sιi} = sn + sn−1 +⋯ + sn−i+1(20)

=
n−1
∑
h=n−i

(j + 1 + h(q − 1)) = i(j + 1) + (in − i(i + 1)
2

)(q − 1).

Using the above bounds we can plot the points

Pi = (i, i(j + 1) + i(i − 1)
2

(q − 1))

Ri = (i, i(j + 1) + (in − i(i + 1)
2

)(q − 1))

and the Newton Polygon of PUt(X) lies on or above the Pi’s. Looking at the segment joining
P0 = (0,0) and P1 = (1, j + 1) we immediately have

Proposition 6.2. The smallest possible slope for Ut is j + 1, moreover its multiplicity is

d(j + 1, k) ⩽ 1 .

Remark 6.3. The above result was already known for cusp forms with A-expansion: see [28, Theo-
rem 2.6]. Moreover if one considers the action of Ut on the whole S1

k(Γ1(t)) one finds d(j+1, k) = 1
as mentioned in [22, Lemma 2.4] (which uses a different normalization so that our j + 1 becomes
0). This also shows that our eigenforms of slope 1 should play the role of classical “ordinary” forms
(or of a renormalization of them): for a completely different and more geometric approach see also
[27].

Using the bounds in formulas (19) and (20) we can prove also the following.

Theorem 6.4. If α is a slope for Ut of multiplicity d(α, k) ∶= d ⩾ 1, then

α ⩽ j + 1 + [(n − r)n − 1](q − 1) .
Proof. Let α be a slope with multiplicity d ⩾ 1. Then, there exists an i such that the segment
connecting Qi and Qi+d has slope α. Note that in particular: i ⩾ 0, i + d ⩽ n − r and 1 ⩽ d ⩽ n − r.
By hypothesis αd = vt(`i+d) − vt(`i), thus

min{vt(`i+d)} −max{vt(`i)} ⩽ αd ⩽ max{vt(`i+d)} −min{vt(`i)} .
By the right inequality we find:

αd ⩽ (i + d)(j + 1) + [(i + d)n − (i + d)(i + d + 1)
2

] (q − 1) − i(j + 1) − i(i − 1)
2

(q − 1)

= d(j + 1) + [(i + d)n − 2i2 + 2id + d2 + d
2

] (q − 1)

= d(j + 1) + [(i + d)(n − i) − d(d + 1)
2

] (q − 1) .

Dividing by d and using the above bounds, we get

α ⩽ j + 1 + [(i + d)(n − i)
d

− d + 1

2
] (q − 1)
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⩽ j + 1 + [(n − r)n − 1](q − 1) . �

After estimating the slope we can estimate the multiplicity as well.

Theorem 6.5. Let α ∈ Q, then

d(α, k) ⩽ 2(α − j − 1

q − 1
) + 1

Proof. First we observe that the convexity of the Newton Polygon ensures that the slopes are
increasingly ordered. So, to obtain the maximal value for d(α, k) we draw the line from Q0 = (0,0)
of slope α and find its intersection with the plot of the points Pi, i.e. we find the maximal index
i such that the line is still above the point Pi. That i represents an upper bound for d(α, k) by
Lemma 6.1. We have

αi ⩾ i(j + 1) + i(i − 1)
2

(q − 1) .
Then

i + 1

2
⩽ α − j − 1

q − 1
Ô⇒ i ⩽ 2(α − j − 1

q − 1
) + 1

and the claim follows. �

Remark 6.6. For α ⩽ j + 1 we obtain the result already indicated by Proposition 6.2.

6.1. Further conjectures. Looking at our data, in [2, Section 5] we conjectured

Conjecture 6.7. If k1, k2 ∈ Z are both > 2α and k1 ≡ k2 (mod (q − 1)qn−1) for some n ⩾ α, then
d(k1, α) = d(k2, α).

In [22, Theorem 2.10] the author, using properties of the matrix for Ut (which he defines glissando
matrix) proves

Theorem 6.8 (Hattori). Let k and n be integers satisfying k ⩾ 2 and n ⩾ 0. Let α be a non-negative
rational number satisfying α ⩽ n and α < k − 1. Then we have d(k + pn, α) = d(k,α).

A closer look at the data for Tt acting on S1
k,m(GL2(A)) (i.e. focusing on “old” slopes) hints at

the following refinement of Conjecture 6.7.

Conjecture 6.9. Let the type m be fixed. For any weight k, let `(k) ∈ N be the smallest integer

such that q`(k) + 2 ⩾ k. Then at weight k′ ∶= k + (q − 1)q`(k) (in level 1) we find:

1. the old slopes at weight k with exactly the same multiplicity, i.e. for any old slope α in
weight k we have d(α, k′) = d(α, k);

2. the slope k
2 with d(k′, k2) = dimC∞ S

1,new
k,m (Γ0(t)) (note that in weight k′ the slope k

2 is old and

our previous results/conjectures predict that it is not present among the old slopes at weight
k).

In general the slopes predicted by Conjecture 6.9 do not describe all slopes at weight k′, nevertheless
the conjecture gives support to the existence of families of cusp forms and predicts where to look
for them.

Example 6.10. At the web page https://sites.google.com/site/mariavalentino84/publications look
at the file “Slopes Tt q2.pdf” for slopes for Tt acting on Mk(GL2(A)) when q = 2. Since we are
interested in cusp forms only, just ignore the largest slope in each weight because that one is related
to the only form in the basis which is not cuspidal.
Let k0 = 5. Then `(5) = 2 and at weight k1 = k0 + 22 = 9 we find slopes 5/2,5/2,1. It is easy to see

(e.g. from the file “CharPoly Ut Gamma1.pdf”), that dimC∞ S
1,new
5 (Γ0(t)) = 2.

Iterating, `(k1) = 3 and at weight k2 = k1 + 23 = 17 we find slopes 9/2,9/2,5/2,5/2,1; we also have

that dimC∞ S
1,new
9 (Γ0(t)) = 2. Moving on note that `(k2) = 4, so we find:

k3 = 33 with slopes {17/2,17/2,17/2,17/2,17/2,17/2,9/2,9/2,5/2,5/2,1} and `(k3) = 5;
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k4 = 65 with slopes {33/2,33/2,33/2,33/2,33/2,33/2,33/2,33/2,33/2,33/2,17/2,17/2,17/2,17/2,17/2,
17/2,9/2,9/2,5/2,5/2,1} and `(k4) = 6;

k5 = 129 with slopes {65/2,65/2,65/2,65/2,65/2,65/2,65/2,65/2,65/2,65/2,65/2,65/2,65/2,65/2,65/2,
65/2,65/2,65/2,65/2,65/2,65/2,65/2,33/2,33/2,33/2,33/2,33/2,33/2,33/2,33/2,33/2,33/2,
17/2,17/2,17/2,17/2,17/2,17/2,9/2,9/2,5/2,5/2,1}.

Finally we observe that dimC∞ S
1,new
17 (Γ0(t)) = 6, dimC∞ S

1,new
33 (Γ0(t)) = 10, dimC∞ S

1,new
65 (Γ0(t)) =

22.
Similar examples can be obtained starting from a different k0, or cosidering different q (odd or even)
and looking at the other tables.
For more data one can also see Hattori’s Tables [21].

Remark 6.11. The exponent `(k) in Conjecture 6.9 seems to be optimal. Indeed, in the same
setting of the previous example, consider k0 = 11 for which we find slopes {5,3,1}. Then, `(k0) = 4

and at weight k1 = 11 + 2`(k0) = 27 we find slopes {13,11,11/2,11/2,11/2,11/2,5,3,1}. At weight

19 = 11 + 2`(k0)−1 we find slopes {9,11/2,11/2,5,3,1}, but 11/2 does not show up with the pre-

dicted multiplicity, indeed dimC∞ S
1,new
11 (Γ0(t)) = 4. Another example: with m = 0 and q = 3 (file

“Slopes Tt q3 type0.pdf”) take k0 = 8 with `(k0) = 2; we have the slope 4 with multiplicity 1 at

weight k1 = k0 + 2 ⋅ 3`(k0) = 26, while the slope 4 does not appear in weight k0 + 2 ⋅ 3`(k0)−1 = 14. Then
the slope k1

2 = 13 appears with multiplicity 6 at weight 80 = k1 + 2 ⋅ 3`(k1) and is not present at weight

44 (it appears at weights 38 = 26 + 22 ⋅ 3 and 62 = 26 + 22 ⋅ 32 but with the “wrong” multiplicity 2).
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