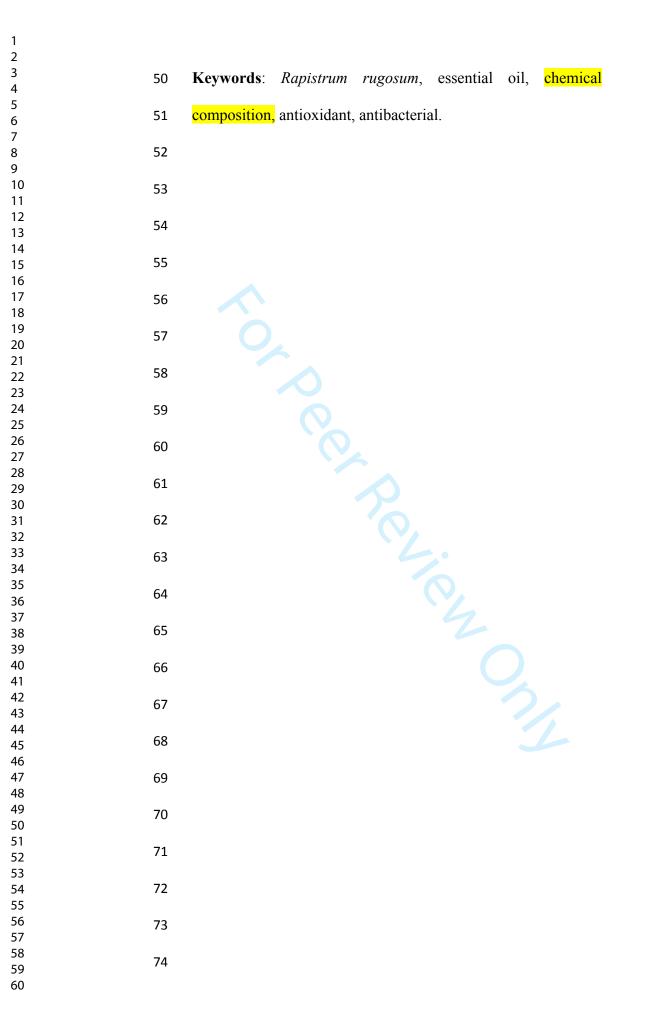


Study of Chemical composition, antibacterial and antioxidant activities of Rapistrum rugosum L. essential oils from flowers, leaves, and stems

Journal:	Journal of Essential Oil Bearing Plants
Manuscript ID	TEOP-2019-0208.R1
Manuscript Type:	Original Article
Keywords:	essential oil, Rapistrum rugosum, antioxidant, antibacterial

1	Study of Chemical composition, antibacterial and
2	antioxidant activities <mark>of <i>Rapistrum rugosum</i> L.</mark>
3	essential oils from flowers, leaves, and stems
4	
5	Amel Omri Hichri ¹ , Fayçal Hichri ^{2,3} *, Maha Mastouri ⁴ ,
6	Ameni Brahmia ² , Guido Flamini ⁵ , Boulbaba Selmi ¹
7	
8	¹ Laboratoire des maladies transmissibles et des substances
9	biologiquement actives, Faculté de Pharmacie, 5000 Monastir,
10	Tunisie
11	² Department of chemistry, College of Science for Girls in
12	Abha, King Khalid University, P.O. Box 960, Abha, Kingdom
13	of Saudi Arabia.
14	³ Laboratoire de Chimie hétérocyclique, Produits Naturels et
15	Réactivité. Equipe: Chimie Médicinale et Produits Naturels.
16	Faculté des Sciences de Monastir, Université de Monastir 5019,
17	Monastir, Tunisie.
18	⁴ Laboratoire de Microbiologie C H U Fattouma BOURGUIBA,
19	5000 Monastir, Tunisia
20	⁵ Dipartimento di Farmacia, Via Bonanno 33, 56126 Pisa, Italy
21	(Phone: +216-73500279/280; fax: +216-73500278; e-mail:
22	hichrifaycel@gmail.com)
23	
24	


С	
2	
3	
4	
5	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	
6	
7	
8	
0	
9	
10	
11	
10	
12	
13	
14	
15	
15	
16	
17	
10	
10	
19	
20	
21	
21	
22	
23	
24	
27	
25	
26	
27	
28	
29	
30	
21	
31	
32	
33	
24	
34	
35	
36	
50	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

25	Abstract: The chemical composition of the essential oils of
26	three organs (flowers, leaves and stems) from Rapistrum
27	rugosum (L.) All., was studied and screened for their possible
28	antibacterial and antioxidant properties. According to the GC
29	and GC/ MS analysis, 28 (represent 92.5% of the total oil
30	composition), 23 (93.9%), and 38 compounds (94.3%) were
31	identified from flowers, leaves and stems, respectively. The
32	major compound in the leaves essential oil was found to be
33	pentadecanal (55.3%) followed by hexahydrofarnesylacetone
34	(8.4%) and tetradecanoic acid (5.7%).
35	While hexahydrofarnesylacetone (17.2%) followed by 1-

While hexahydrofarnesylacetone (17.2%) followed by 1pentadecanol (8.3%), tetradecanoic acid (5.9%), (*E*)- β damascenone (5.7%) were the major compounds of the flowers oil. Tetradecanoic acid (13.1%), hexahydrofarnesylacetone (10.1%), dodecanoic acid (10.0%), isobornyl acetate (7.6%), 5methylthiopentyl isothiocyanate (6.7%) and (*E*)- β -ionone (6.2%) were the main constituents for the leaves oil.

The flowers essential oil exhibited the higher activity in each 42 antioxidant system (ABTS, DPPH and β -Carotene–linoleic acid 43 methods) with an important value for DPPH assay (PI = 69.8844 \pm 0.02%). Furthermore, the isolated oils were tested against 45 five Gram-positive and Gram-negative bacteria. It was found 46 that the oil of all organs exhibited interesting antibacterial 47 activities against Gram-positive bacteria, comparable to those 48 of Gentamicin, which was used as positive control. 49

75 Introduction

Plants and herbal extracts have found important position in modern medicine cabinet, due to their content in natural medicinal chemicals. Their secondary metabolites represent a large reservoir of structural moieties which work together exhibiting a wide range of biological activities¹. Efforts have been made in many regions of the world to identify plants having medicinal properties effective against various modern diseases. Many plants have been used for different purposes, such as food, drugs and perfumery².

Essential oils and extracts obtained from many plants have recently gained popularity and scientific interest. They have been screened for their potential uses as alternative remedies for the treatment of many infections and preservation of foods from the toxic effects of oxidants³⁻⁵. The crucifer family or Brassicaceae is an economically important family for its many food and oilseed crops, as well as for containing many important ornamental plants and noxious weeds⁶. Moreover, the consumption of cruciferous vegetables has been associated with a reduced risk of cancer of the lung, stomach, breast, prostate, pancreas, colon and rectum, which has been attributed to its isothiocyanate contents^{7,8}. Tunisia, located in the Mediterranean area, has a large number of medicinal and aromatic species. More than 500 species out of 2103 (approximately 25% of the total flora) are considered for therapeutic use⁹. Rapistrum rugosum (L.) All. (R. rugosum), belonging to the *Brassicaceae* (cruciferous) family locally named as

101	"lebsen", is a wild plant common to Libya, Algeria, Tunisia
102	and Mediterranean regions ¹⁰ . The cruciferous plant family
103	contains 338 genera and 3350 species that are distributed
104	worldwide ¹¹ . A previous study has shown that Rapistrum
105	rugosum extracts contains active constituents which possess
106	antioxidant, anti-acetylcholinesterase and cytotoxic
107	activities ^{12,13} . To the best of our knowledge, the antioxidant and
108	antibacterial activities of essential oil of R. rugosum L.
109	(Brassicaceae) have not been studied hitherto. Therefore, the
110	aim of this study is to determine the chemical composition of
111	the essential oil from <i>R. rugosum</i> L. and evaluate their <i>in vitro</i>
112	antioxidant and antibacterial properties.
113	
113 114	Materials and methods
	Materials and methods Plant material
114	
114 115	Plant material
114 115 116	Plant material The aerial parts of <i>R. rugosum</i> L. (8 Kg), were collected at
114 115 116 117	Plant material The aerial parts of <i>R. rugosum</i> L. (8 Kg), were collected at the flowering stage in February 2012 in the area of Kasserin, in
114 115 116 117 118	Plant material The aerial parts of <i>R. rugosum</i> L. (8 Kg), were collected at the flowering stage in February 2012 in the area of Kasserin, in Midwest of Tunisia (35°16'N latitude, 8°83'E longitude,
114 115 116 117 118 119	Plant material The aerial parts of <i>R. rugosum</i> L. (8 Kg), were collected at the flowering stage in February 2012 in the area of Kasserin, in Midwest of Tunisia (35°16'N latitude, 8°83'E longitude, altitude 656 m above sea, average T° = 8.4°C, average rain fall
114 115 116 117 118 119 120	Plant material The aerial parts of <i>R. rugosum</i> L. (8 Kg), were collected at the flowering stage in February 2012 in the area of Kasserin, in Midwest of Tunisia (35°16′N latitude, 8°83′E longitude, altitude 656 m above sea, average T° = 8.4°C, average rain fall = 13.6 mm; February 2012). A voucher specimen (Rr-110) was
114 115 116 117 118 119 120 121	Plant material The aerial parts of <i>R. rugosum</i> L. (8 Kg), were collected at the flowering stage in February 2012 in the area of Kasserin, in Midwest of Tunisia (35°16'N latitude, 8°83'E longitude, altitude 656 m above sea, average T° = 8.4°C, average rain fall = 13.6 mm; February 2012). A voucher specimen (Rr-110) was deposited in the Medicinal Chemistry and Natural Products
114 115 116 117 118 119 120 121 122	Plant material The aerial parts of <i>R. rugosum</i> L. (8 Kg), were collected at the flowering stage in February 2012 in the area of Kasserin, in Midwest of Tunisia (35°16'N latitude, 8°83'E longitude, altitude 656 m above sea, average T° = 8.4°C, average rain fall = 13.6 mm; February 2012). A voucher specimen (Rr-110) was deposited in the Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products
 114 115 116 117 118 119 120 121 122 123 	Plant material The aerial parts of <i>R. rugosum</i> L. (8 Kg), were collected at the flowering stage in February 2012 in the area of Kasserin, in Midwest of Tunisia (35°16'N latitude, 8°83'E longitude, altitude 656 m above sea, average T° = 8.4°C, average rain fall = 13.6 mm; February 2012). A voucher specimen (Rr-110) was deposited in the Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity at the Faculty of Science of Monastir, Tunisia.

126	compounds. The species was identified by Dr. Fethia
127	HARZALLAH-SKHIRI, High Institute of Biotechnology of
128	Monastir, Tunisia.
129	
130	Isolation of the essential oil
131	Fresh aerial parts (leaves, stems and flowers) of <i>R. rugosum</i>
132	L. (300 g + 1.5 liters of distilled water) were placed in a
133	Clevenger hydrodistillation for 4 hours. Each essential oil was
134	collected by decantation by addition of hexane, evaporation,
135	dried over Na ₂ SO ₄ , weighed and stored in sealed glass vials at
136	4-5°C until analysis.
137	
138	Chemical analysis of essential oils
139	Analytical GC
140	The GC/FID analysis of the oils was carried out on a
141	HP 5890-series II equipped with flame ionization detectors
142	(FID), attached to HP-5 (30m x 0.25 mm ID, 0.52 µm film
143	thickness) fused silica capillary column. Carrier gas (hydrogen)
144	flow rate was 1.2 mL/min, temperature oven was programmed
145	from 50°C (1 min) to 280°C at 5°C/min (1 min), injector and
146	detector temperatures were 250°C and 280°C, respectively, the
147	volume injected was 0.1 μ L of a 1% solution of hexane. The
148	identification of the components was performed by comparison
149	of their retention times with those of pure authentic samples
150	and by means of their Linear Retention Indices (L.R.I) relative

1 2		
2 3	. – .	
4	151	to the series of <i>n</i> -hydrocarbons. The percentage by mass of the
5		
6	152	various chemical constituents of the R. rugosum L. oil is given
7		
8	153	on the relative surface area of the peaks (GC-FID).
9		
10	154	
11		
12	155	Analytical <mark>GC/ MS</mark>
13 14		•
14	156	The same analytical conditions as those mentioned for
16	150	The same analytical conditions as mose mentioned for
17	157	GC/FID were employed for GC/MS analysis, along with a HP-
18	137	OC/11D were employed for OC/1013 analysis, along with a 111-
19	450	5 contillant column (20 m y 0.25 mm) conting this mass 0.25
20	158	5 capillary column (30 m x 0.25 mm; coating thickness 0.25
21		
22	159	μm), equipped with a Varian CP-3800 gas-chromatograph and
23		
24	160	Varian Saturn 2000 ion trap mass detector. The injector and
25		
26	161	transfer line temperatures were 220 and 240°C, respectively,
27		
28 29	162	oven temperature programmed was linearly programmed from
30		
31	163	60°C to 240°C at 3°C/min, helium was used as carrier gas at
32	100	
33	164	rate of 1 mL/ min, the injection was 0.2 µL (10% hexane
34	104	rate of f fills finn, the injection was 0.2 µL (1076 nexane
35	105	solution), split ratio was 1:30. Identification of the constituents
36	165	solution), split ratio was 1.50. Identification of the constituents
37	4.00	
38	166	was based on comparison of the retention times with those of
39		
40	167	authentic samples, comparing their linear retention indices
41 42		
42	168	relative to the series of <i>n</i> -hydrocarbons, and on computer
44		
45	169	matching against commercial (NIST 98 and ADAMS) and
46		
47	170	home-made library mass spectra built up from pure substances
48		
49	171	and components of known essential oils and MS literature
50		
51	172	data ¹⁴⁻²⁹ . Moreover, the molecular weights of all the identified
52	1/2	
53 54	173	substances were confirmed by GC/ CIMS, using MeOH as CI
54 55	1/2	substances were commined by OC/ CIMB, using MCOH as CI
56	174	ionizing gas.
57	174	ionizing gas.
58		
59	175	
60		

176 Antibacterial activity

177 Microorganisms

Five bacteria make part of two Gram positive
(*Staphylococcus aureus* ATCC 25923 and *Enterococcus faecalis* ATCC 29212), with three Gram negative bacteria
(*Escherichia coli* ATCC 25922, *Acinetobacter sp* and *Pseudomonas aeruginosa* ATCC 27853) were used.

184 Determination of Minimum Inhibitory Concentration 185 (MIC) and Minimum Bactericidal Concentration (MBC)

The MIC values for the antibacterial screening were determined with the broth dilution method (microdilution using 96-well microplates) following the procedure described by Cintia, et.al, 2007³⁰. All samples were prepared at a concentration of 10 mg/mL by dissolution of the oils in 10% DMSO. The final concentrations of the plant samples tested ranged from 10 to 0.015 mg/mL. The MIC of each sample was defined as the lowest concentration of oil that inhibited either the bacterial growth, after incubation at 37°C for 18 to 24 h. The MBC was determined by subculture on blood agar at 37°C for 18 to 24 h. Gentamicin was used as positive control against the bacterial strains. All measurements were performed in triplicate.

200 Antioxidant activity

202

203

204

Scavenging effect on DPPH

The hydrogen atoms or electrons donation ability of the

corresponding samples were measured from the bleaching of

57 58 59

	••••••••••••••••••••••••••••••••••••••
205	purple colored methanol solution of DPPH ³¹ . The effect of
206	essential oils on DPPH radical was estimated according to
207	Hatano, et.al, 1988 ³² . 0.5 mL of each sample, with a
208	concentration of 1 mg/mL and BHT (Butylated
209	hydroxytoluene) was mixed with the same volume of DPP
210	methanolic solution. The mixture was shaken vigorously and
211	allowed standing for 30 min in darkness Inhibition of free
212	radical DPPH in percent (I%) was calculated in the following
213	way:
214	$I\% = 100 \text{ x } (A_{\text{Control}} - A_{\text{Sample}})/A_{\text{Control}}$
215	And at a temperature of 25°C; the absorbance of the resulting
216	solution was measured at 520 nm with a UV
217	spectrophotometer. All measurements were performed in
218	triplicate. A mixture of 0.5 mL of DPPH solution and 0.5 mL of
219	methanol was taken as a control.
220	Where, $A_{Control}$ is the absorbance of the control reaction
221	(containing all reagents except the test compound), and A_{Sample}
222	is the absorbance of the tested sample.
223	

224 β-Carotene-linoleic acid method

1 2	
3	
4	
5	
6	
7 8	
9	
10	
11	
12	
13 14	
15	
16	
17	
18	
19 20	
21	
22	
23	
24	
25 26	
27	
28	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	
30 31	
32	
33	
34 35 36 37	
35	
30	
38	
39	
40	
41	
42 43	
44	
45	
46	
47 48	
40 49	
50	
51	
52	
53 54	
55	
56	
57	
58 50	
59 60	
00	

225	In this assay antioxidant capacity is determined by
226	measuring the inhibition of the volatile organic compounds and
227	the conjugated diene hydroperoxides arising from linoleic acid
228	oxidation ³³ . β -Carotene bleaching inhibition of <i>R. rugosum</i> L.
229	essential oils according to the method of Ikram, et.al,2009 ³⁴ .
230	Briefly, 2 mL of β -carotene solution (1.5 mg β -carotene/2.5 mL
231	chloroform) were added to 20 μL of linoleic acid and 200 μL of
232	Tween-20. The chloroform was removed at 40°C under vacuum
233	using a rotary evaporator. Immediately, 50 mL of distilled
234	water were added to the dried mixture to form a β -carotene-
235	linoleic acid emulsion. In order to determine the β -carotene
236	bleaching activity of the essential oil, 5 mL of emulsion were
237	added to 500 μ L of essential oils in concentration of 1 mg/mL.
238	The mixtures were incubated in a water bath at 50°C for 60 min
239	and the absorption of the reaction mixtures was read at 470 nm.
240	All measurements were performed in triplicate.
241	The antioxidant activity (AA) of the essential oils was
242	calculated by using the following equation:
243	AA% = (β -carotene content after 2h assay / initial β -carotene
244	content)*100.
245	
246	ABTS radical scavenging activity assay

246 ABTS radical scavenging activity assay

Antiradical activity was done by using the ABTS⁺ free radical decolorization assay developed by Re, et.al., 1999, with some modifications. Briefly, the preformed radical monocation

ź	250	of ABTS was generated by reacting ABTS solution (7 mM)
2	251	with 2.45 mM $K_2S_2O_8$. The mixture was allowed to stand for
2	252	15 hours in the dark at room temperature ³⁵ . The solution was
2	253	diluted with methanol to obtain the absorbance of 0.7 \pm 0.2
2	254	units at 734 nm. Samples were separately dissolved in methanol
2	255	to yield the concentration of 1mg/mL. In order to measure the
2	256	antioxidant activity of samples and BHT, 10 μ L of each one at
2	257	various concentrations was added to 990 μ L of diluted ABTS ⁺⁺ .
2	258	The absorbance was measured spectrophotometrically at 734
2	259	nm after 20 min. All measurements were performed in
2	260	triplicate. The percentage decrease of absorbance at 734 nm
2	261	was calculated for each point and the antioxidant capacity of
2	262	the test samples was expressed as percent inhibition (%). The
2	263	percentage scavenging of ABTS was calculated by the
2	264	following formula:
2	265	Scavenging activity (%) = $[(A_o - A_x)]/A_o \times 100$
2	266	A_x and A_o were the absorbance at 734 nm of samples with and
2	267	without essential oil, respectively.
2	268	
2	269	Results and discussion
2	270	Chemical composition of the essential oils
2	271	Three samples were analysed by GC and GC-MS. The
2	272	yields (w/w) of the different oil samples of R. rugosum,
2	273	reported in Table 1, ranged from 0.0061% to 0.23%, with the

highest yield for the flowers oil (0.23%) and the lowest yield

275 for the leaves oil (0.0061%).

 A quantitative and qualitative variation between the oils from
flowers, leaves and stems was apparent. 53 components were
identified in flowers, leaves and stems representing 92.5%,
93.9% and 94.3% of the total essential oil, respectively.

The Non-terpene derivatives such as aldehydes, ketones, esters and acids were dominant in all essential oils (33.6-69.6%) followed by sulfur and/or nitrogen compounds, apocarotenoids and oxygenated sesquiterpenes.

Comparing the three essential oils, in the flowers oil, apocarotenoids formed 28.7% followed by sulfur and nitrogen compounds (16.8%), oxygenated sesquiterpenes (8.3%) and oxygenated monoterpenes (3.5%), while in the leaves, apocarotenoids formed 15.1% followed by oxygenated sesquiterpenes (7.2%), the amounts of the sulfur and nitrogen compounds and oxygenated monoterpenes were 0.5%. On the other hand, in the stems, apocarotenoids formed 22.1% followed by sulfur and nitrogen compounds (12.2%), oxygenated monoterpenes (10.5%)and oxygenated sesquiterpenes (7.2%).

295 28 Compounds were identified in flowers essential oil 296 representing 92.5% of the total oil composition. The major 297 component was hexahydrofarnesylacetone (17.2%) followed by 298 1-pentadecanol (8.3%), tetradecanoic acid (5.9%), (E)- β -

URL: https://mc.manuscriptcentral.com/teop E-mail: jeobp@yahoo.co.in

1 2	
3 4	
5 6 7 8	
7 8	
9 10	
11 12	
13 14	
15 16	
17 18	
19 20	
21 22	
23	
24 25 26	
27 28	
29 30	
31 32	
33 34	
35 36	
37 38	
39 40	
41 42	
43 44	
45 46	
47 48	
49 50	
51 52	
53 54	
55 56	
57 58	
59 60	

299	damascenone (5.7%), dimethyl tetrasulfide (4.5%), α -acorenol
300	(3.7%), pentadecanal (3.6%), berteroin (3.6%) and (E)- β -
301	ionone (3.5%). On the other hand, the representative
302	compounds on the flowers found relatively low percentages
303	were dodecanoic acid (2.7%), dimethyl trisulfide (2.6%),
304	erucin (2.5%), <i>trans</i> -3,5-dimethyl-1,2,4-trithiolane (2.1%),
305	1,10-di-epi-cubenol (1.8%), eugenol (1.6%), 1,2,3-trithiane
306	(1.5%), 10-epi-g-eudesmol (1.5%), methyl carvacrol (1.4%)
307	and α -cadinol (1.3%).
308	23 Compounds were identified in leaves essential oils
309	representing 93.9% of the total oil composition. The major
310	compound in the leaves was pentadecanal (55.3%) followed by
311	hexahydrofarnesylacetone (8.4%), tetradecanoic acid (5.7%),
312	dodecanoic acid (3.9%), (E)-β-ionone (2.6%), β-cyclocitral
312 313	dodecanoic acid (3.9%), (E)- β -ionone (2.6%), β -cyclocitral (2.2%), 1-tetradecanol (2.1%), and some other compounds
313	(2.2%), 1-tetradecanol (2.1%), and some other compounds
313 314	(2.2%), 1-tetradecanol (2.1%), and some other compounds were present only in minor amounts such as 1,10-di- <i>epi</i> -
313 314 315	(2.2%), 1-tetradecanol (2.1%), and some other compounds were present only in minor amounts such as 1,10-di- <i>epi</i> -cubenol (1.5%), 10- <i>epi</i> -g-eudesmol (1.5%), α-cadinol (1.4%)
313 314 315 316	(2.2%), 1-tetradecanol (2.1%), and some other compounds were present only in minor amounts such as 1,10-di- <i>epi</i> - cubenol (1.5%), 10- <i>epi</i> -g-eudesmol (1.5%), α -cadinol (1.4%) and (Z)-jasmone (1.4%).
 313 314 315 316 317 	 (2.2%), 1-tetradecanol (2.1%), and some other compounds were present only in minor amounts such as 1,10-di-<i>epi</i>-cubenol (1.5%), 10-<i>epi</i>-g-eudesmol (1.5%), α-cadinol (1.4%) and (Z)-jasmone (1.4%). In stems essential oil, 38 components representing 94.3% of the
 313 314 315 316 317 318 	(2.2%), 1-tetradecanol (2.1%), and some other compounds were present only in minor amounts such as 1,10-di- <i>epi</i> - cubenol (1.5%), 10- <i>epi</i> -g-eudesmol (1.5%), α -cadinol (1.4%) and (Z)-jasmone (1.4%). In stems essential oil, 38 components representing 94.3% of the total oil composition were revealed by this analysis. This oil
 313 314 315 316 317 318 319 	(2.2%), 1-tetradecanol (2.1%), and some other compounds were present only in minor amounts such as 1,10-di- <i>epi</i> - cubenol (1.5%), 10- <i>epi</i> -g-eudesmol (1.5%), α -cadinol (1.4%) and (Z)-jasmone (1.4%). In stems essential oil, 38 components representing 94.3% of the total oil composition were revealed by this analysis. This oil was dominated by tetradecanoic acid (13.1%),
 313 314 315 316 317 318 319 320 	(2.2%), 1-tetradecanol (2.1%), and some other compounds were present only in minor amounts such as 1,10-di- <i>epi</i> - cubenol (1.5%), 10- <i>epi</i> -g-eudesmol (1.5%), α -cadinol (1.4%) and (Z)-jasmone (1.4%). In stems essential oil, 38 components representing 94.3% of the total oil composition were revealed by this analysis. This oil was dominated by tetradecanoic acid (13.1%), hexahydrofarnesylacetone (10.1%), dodecanoic acid (10.0%),

2	
3 4	
5 6	
6 7	
8	
8 9 10	
11	
12 13	
14	
15 16	
11 12 13 14 15 16 17	
18 19	
20 21 22	
21 22	
23	
24 25	
23 24 25 26 27	
27 28	
20	
30 31	
30 31 32 33	
33 34	
35	
35 36 37	
38	
39 40	
41 42	
43	
44 45	
46	
47 48	
49	
50 51	
52	
53 54	
55	
56 57	
58 59	
59 60	

324	such as nonanal (4.3%), decanoic acid (3.5%), berteroin
325	(3.4%), (E)-geranylacetone (2.2%), β -cyclocitral (2.0%),
326	caryophyllene oxide (2.0%), and some other compounds were
327	detected in minor amounts such as camphor (1.8%) and 1,10-
328	di- <i>epi</i> -cubenol (1.7%).
329	Four compounds that occur in the three oils of leaves,
330	stems, and flowers of <i>R</i> . rugosum plant which are (<i>E</i>)- β -ionone,
331	dodecanoic acid, tetradecanoic acid and
332	hexahydrofarnesylacetone with significant percentages.
333	
334	Determination of Minimum Inhibitory Concentration
335	(MIC) and Minimum Bactericidal Concentration (MBC)

The *in vitro* antimicrobial activity of the essential oils from 336 R. rugosum against five bacteria species, selected as 337 representative of the classes of Gram (+) and Gram (-). The 338 antimicrobial activity of the essential oils against the 339 microorganisms employed was qualitatively and quantitatively 340 assessed by the MIC and MBC values. MIC and MBC results 341 (Table 2) indicate that the *R. rugosum* oils had different levels 342 343 of activity against the microorganisms. We found that the activity of the essential oils depends on their concentrations and 344 the strain of tested bacteria. The inhibitory properties of the oils 345 346 were observed within a range of concentrations from 2.5 to 10 mg/mL. In liquid medium the essential oils were active against 347 all the bacteria. 348

349	MIC and MBC values indicate that the essential oils of R .
350	rugosum were efficient against all tested bacteria with MIC and
351	MBC value (2.5 mg/mL and 5 mg/mL, respectively) against
352	Gram-positive bacteria and MIC value were 10 mg/ml against
353	Gram-negative bacteria.
354	Antimicrobial activity of essential oil is preservative one of the
355	most examined features, important for both food preservation
356	and control of human and animal diseases of microbial origin.
357	These observations may be attributed to the nature of
358	biologically active components. Indeed, various chemical
359	compounds have direct activity against many species of
360	bacteria such as terpenes and a variety of aliphatic hydrocarbon
361	(alcohols, aldehydes and ketones). Therefore, a rank of activity
362	has been proposed as follows phenols > aldehydes > ketones >
363	alcohols > esters > hydrocarbons ³⁶ . However, essential oils
364	consisting of numerous components and other major and/or
365	minor compounds) possibly producing a synergistic effect
366	between other components may affect antibacterial activity ^{37,38} .
367	The antimicrobial activity of the essential oils of <i>R. rugosum</i>
368	from flowers and stems against the tested microorganisms
369	could be attributed to the presence of percentages of nitrogen
370	compounds and isothiocyanate appreciated for their
371	antibacterial potentials ³⁹ . It has been demonstrated that the
372	volatile samples containing glucosinolate degradationd
373	products were evaluated for antimicrobial activity using the

disc diffusion method with calculated minimum inhibitory concentrations (MIC) and expressed a wide range of growth inhibition activity against both Gram-positive and Gram-negative bacteria and fungi. The minimum inhibitory concentrations varied between 0.008 and 0.115 mg/mL⁴⁰. On the other hand the major components of the stem essential oil such as fatty acids, hexahydrofarnesylacetone and ionones are reported to have moderate antimicrobial activities^{41,42}.

Antioxidant activity

DPPH radical-scavenging activity

Essential oils of R. rugosum were subjected to screening for their possible DPPH radical-scavenging activities (Table 3). The effect of antioxidant on DPPH radical-scavenging was thought to be due to their hydrogen donating ability of some constituent of the tested essential oils. When a solution of DPPH is mixed with that of a substance, it can generate a hydrogen atom. This results in the reduced form of DPPH (non-radical) with the loss of the violet color. DPPH scavenging activity is usually presented by PI value. R. rugosum essential oils were able to effectively reduce the stable free radical DPPH with an PI values ranging from 69.88% to 49.72%, compared with the standard BHT (PI = 94.7%) (Table 3). For comparative purposes the flowers essential oil showed

1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16 17		
17 18		
18		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31 22		
32 33		
33 34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46 47		
47 48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		

stronger DPPH radical-scavenging activity (69.88 %) than that
of stems and leaves (62.56 % and 49.72 %, respectively).

400

401 β-Carotene bleaching method

In this assay, antioxidant capacity was determined by 402 403 measuring the inhibition of the volatile organic compounds and 404 the conjugated diene hydroperoxides arising from linoleic acid oxidation. Hence, the free radical linoleic acid attacks the 405 406 highly unsaturated β -carotene, and the presence of different antioxidants can hinder the extent of β -carotene bleaching by 407 neutralizing the linoleate free radical and other free radicals 408 409 formed in the system. Table 3 shows the antioxidant activity of the essential oils and BHT as measured by the bleaching of the 410 β -carotene-linoleate system. The results showed that the 411 essential oils of R. rugosum exhibited moderate antioxidant 412 activity (AA = 39.52 %) compared to that of BHT (AA = 413 $92\pm0.04\%$). By comparing the antioxidant activity measured by 414 the three different methods and the relationships between the 415 chemical composition and antioxidant activity, it is seen that R. 416 417 rugosum essential oil possesses a moderate capacity to prevent lipid peroxidation, which can be ascribed to the low content of 418 sulfur and/or nitrogen and phenolic components in the three 419 oils⁴³. 420

421

422 Radical cation ABTS^{+•} scavenging activity

The ABTS method gives a measure of the antioxidant activity of essential oils by determining the reduction of the radical cation as the percentage of inhibition (PI) of absorbance at 734 nm. Re et al. reported that the decolorization of the ABTS⁺⁺ cation reflects the capacity of an antioxidant to donate electrons or hydrogen atoms in order to inactivate this radical species³⁵.

Table 3 shows the antioxidant activity of all essential oils of *R*. rugosum. An average PI of ABTS⁺⁺ in the presence of the flowers essential oil was observed showing their moderate scavenging ability (PI = $42.18 \pm 0.092\%$). The antioxidant activity of stems and leaves essential oils (PI = $26.87 \pm 0.188\%$ and PI = 24.87 ± 0.188 , respectively) is less important compared to that of BHT (PI = $95.2 \pm 0.6\%$). In general, the antioxidative effectiveness of essential oil depends on the content of phenolic compounds and the reaction activity of the phenol towards the chain-carrying peroxyl radicals and on the stability of the phenoxyl radical formed in the reaction⁴⁴.

In additions this observation is certainly associated with the low content of phenolic, isothyocyanate and nitrogen constituents in the three investigated oils⁴⁵. Moreover, it is known that the synergistic or antagonistic effect of a compound present in minor percentage in a mixture has to be considered as well⁴⁶.

448	Conclusion
449	Essential oil of different parts of (stems, leaves and
450	flowers) <i>R. rugosum</i> plant were extracted, analyzed,
451	investigated and identified for their activities, such as
452	antimicrobial and antioxidant. The results of the present study
453	indicate that the non-terpene derivatives such as aldehydes,
454	ketones, esters and acids were dominant in all essential oils
455	(33.6-69.6%) followed by sulfur and/or nitrogen compounds,
456	apocarotenoids and oxygenated sesquiterpenes. R. rugosum
457	essential oils showed moderate free radical scavenging activity
458	but displayed high antibacterial activity against gram-positive
459	bacteria.
460	
461	Acknowledgements
462	The authors extend their appreciation to the Deanship of
463	Scientific Research at King Khalid University for funding this
464	work.
465	Funding
466	King Khalid University (40/237)
467	
468	
469	
470	
471	
472	
473	

474	References
., .	iterer eneces

475	1.	Khoobchandani, M., Ojeswi, B. K., Ganesh, N.,
476		Srivastava, M. M., Gabbanini, S., Mater, R., Iori, R.,
477		Valgimigli, L. (2010). Antimicrobial properties and
478		analytical profile of traditional Eruca sativa seed oil:
479		Comparison with various aerial and root plant extracts.
480		Food Chem. 120: 217-22.
481	2.	Heath, H.B. (1981). Source Book of Flavours,
482		Westport: Avi, pp.890.
483	3.	Deans, S. G., Ritchie, G. (1987). Antibacterial
484		Properties of Plant Essential oils. Int J Food Microbiol.
485		5: 165-180.
486	4.	Baratta, M. T., Dorman, H. J. D., Deans, S. G.,
487		Figueiredo, A. C., Barroso, J. G., Ruberto, G. (1998).
488		Antimicrobial and antioxidant properties of some
489		commercial essential oils. Flavour Frag. J. 13: 235-244.
490	5.	Barlow, S. M., Toxicological aspects of antioxidants
491		used as food additives. (1990). In B. J. F. Hudson
492		(Ed.), Food Antioxidants, London, UK: Elsevier.
493	6.	Vaughn, S. F., Borhow, M. A. (2005). Glucosinolates
494		hydrolysis products from various plant sources: pH
495		effects, isolation, and purification. Ind Crops Prod. 21:
496		193-202.

497	7. Heber, D. (2004). Vegetables, fruits and phytoestrogens
498	in the prevention of diseases. J. Postgrad. Med. 50: 145-
499	149.
500	8. Higdon, J. V., Delage, B., Williams, D. E.,
501	Dashwood, R. H. (2007). Cruciferous vegetables and
502	human cancer risk: epidemiologic evidence and
503	mechanistic basis. Pharmacol Res. 55: 224-236.
504	9. Le Floc'h E. (1983). Contribution to an ethnobotanical
505	study of the Tunisian flora. Tunisia: Tunisian Scientific
506	Publications; Franch.
507	10. Alapetite, P. G. (1981). Flora of Tunisia. Angiosperms-
508	Dicotyledons Gamopetalous. Tunisia: Tunisian
509	Scientific Publications, Franch.
510	11. Mitchell-Olds, T., Al-Shehbaz, I. A., Koch, M. A.,
511	Sharbel, T. F. (2005). Genotypic and phenotypic
512	variation in higher plants. Plant Divers Evol. 8: 119-
513	137.
514	12. Omri, H. A., Besbes, H. M., Ben Jannet, H., Lamari, A.,
515	Aouni, M., Selmi, B. (2013). Antioxidant and anti-
516	acetylcholinesterase activities of extracts from Rapistrum
517	<i>rugosum</i> in Tunisia. Asian Pac J Trop Dis. 3: 367-374.
518	13. Mohamed T. A., Ahmed F. G., Perveen S., (2012).
519	Cytotoxic Flavonoid Glycosides from Rapistrum
520	rugosum L Iran J Pharm Res. 11: 839-844.

521	14. Stenhagen, E., Abrahamsson, S., McLafferty, F.W.
522	(1974). Registry of mass spectral data. John Wiley &
523	Sons Editions, New York, 3136 pp.
524	15. Massada, Y. (1976). Analysis of essential oils by gas
525	chromatography and mass spectrometry. John Wiley &
526	Sons Editions, New York, 334 pp.
527	16. Jennings, W. Shibamoto, T. (1980). Qualitative
528	analysis of flavor and fragrance volatiles by glass
529	capillary chromatography, Academic Press Edition,
530	New York, 467 pp.
531	17. Swigar, A.A. Silverstein, R.M. (1981).
532	Monoterpenes. Milwaukee: Aldrich Chemical
533	Company, USA, 130 pp.
534	18. Shi, J., Liu, X., Li, Z., Zheng, Y. Zhang, Q., Liu, X.
535	(2015). Laboratory Evaluation of Acute Toxicity of the
536	Essential Oil of Allium tuberosum Leaves and Its Selected
537	Major Constituents Against Apolygus lucorum (Hemiptera:
538	Miridae). J. Insect Sci.15: 117-121.
539	19. Motooka, R., Usami, A., Nakahashi, H., Koutari, S.,
540	Nakaya, S., Shimizu, R., Tsuji, K., Marumoto, S.,
541	Miyazawa, M. (2015). Characteristic Odor Components of
542	Essential Oilsfrom Eurya japonica. J Oleo Sci. 64: 577-
543	584.
544	20. Kuljanabhagavad, T., Sriubolmas, N., Ruangrungsi,
545	N. (2010). Chemical Composition and Antimicrobial

546	Activity of the Essential Oil from Heracleum Siamicum.
547	J Health Res. 24: 55-60.
548	21. Muhaidat, R., Al-Qudah, M. A., Samir, O., Jacob, J.
549	H., Hussein, E., Al-Tarawneh, I. N., Bsoul, E. Abu
550	Orabi, S. T. (2015). Phytochemical investigation and in
551	vitro antibacterial activity of essential oils from Cleome
552	droserifolia (Forssk.) Delile and C. trinervia Fresen.
553	(Cleomaceae). S Afr J Bot. 99: 21-28.
554	22. Nakaya, S., Usami, A., Yorimoto, T., Miyazawa, M.
555	(2015). Characteristic Chemical Components and Aroma-
556	active Compounds of the Essential Oils from Ranunculus
557	<i>nipponicus</i> var. submersus used in Japanese Traditional
558	Food. J Oleo Sci. 64: 595-601.
559	23. Baydar, H., Erbaş, S., Kazaz, S. (2016). Variations in
560	floral characteristics and scent composition and the
561	breeding potential in seed-derived oil-bearing roses
562	(Rosa damascena Mill.). Turk J Agric For. 40: 560-
563	<mark>569.</mark>
564	24. Satyal, P., Pappas, R. S. (2016). First Reporting on
565	the Chemistry and Biological Activity of a Novel
566	Boswellia chemotype: The Methoxy Alkane
567	Frankincense, Global Journal of Science
568	Frontier Research: B Chemistry, 16: 1-9.
569	25. Hichri, A. O., Mosbah, H., Majouli, K., Hlila,M. B.,
570	Ben Jannet, H., Flamini, G., Aouni,M., Selmi,B.

571	(2016). Chemical composition and biological activities
572	of Eruca vesicaria subsp. longirostris essential oils',
573	Pharm. Biol.54: 2236-2243.
574	26. Majouli, K., Hlila, M. B., Hamdi, A., Flamini, G.,
575	Ben Jannet, H., Kenani, A. (2016). Antioxidant activity
576	and -glucosidase inhibition by essential oils from Hertia
577	<i>cheirifolia</i> (L.). Ind Crops Prod. 82: 23-29.
578	27. Zhang, Y., Chien <mark>, M., Ho,</mark> C. T. (1988). Comparison
579	of the volatile compounds obtained from thermal
580	degradation of cysteine and glutathione in water. J.
581	Agric. Food Chem. 36: 992- 996.
582	28. Davies, N.W. (1990). Gas chromatographic retention
583	indices of monoterpenes and sesquiterpenes on methyl
584	silicone and carbowax 20 M phases. J. Chromatogr. A.
585	503: 1-24.
586	29. Adams R.P. (2007). Identification of essential oil
587	components by gas chromatography/mass spectroscopy.
588	4th edition. Allured Publishing Corporation, Carol
589	Stream, Illinois: Allured Publ. Corp.
590	29. Cintia, S.G.K., Smania, A.Jr., Pedrosa, R.C.,
591	Ferreira, S.R.S.J. (2007). Antioxidant and
592	antimicrobial activities of shiitake (Lentinulaedodes)
593	extracts obtained by organic solvents and supercritical
594	fluids. Food Eng. 80: 631-638.

595	30. Cuendet, M., Hostettmann K., Potterat O.,
596	Dyatmiko W. (1997). Iridoid glucosides with Free
597	Radical Scavenging Properties from Fagraea blumei,
598	Helv. Chim. Acta. 80: 1144-1152.
599	31. Hatano. T., Kagawa. H., Yasuhara, T., Okuda, T.
600	(1988). Two new flavonoids and other constituents in
601	licorice root: their relative astringency and radical
602	scavenging effects. Chem. Pharm.Bull. 36: 2090-2097.
603	32. Dapkevicius, A., Venskutonis, R., Van Beek, T.A.,
604	Linssen, P.H. (1998). Antioxidant activity of extracts
605	obtained by different isolationprocedures from some
606	aromatic herbs grown in Lithuania. J.
607	Sci. Food Agric.77: 140-146.
608	33. Ikram, E.H.K., Eng, K.H., Jalil, A.M.M., Ismail, A.,
609	Idris, S., Azlan, A., Nazri, H.S.M., Diton, N.A.M.,
610	Mokhtar, R.A.M. (2009). Antioxidant capacity and
611	total phenolic content of Malaysian underutilized fruits.
612	J. Food Compos. Anal. 22: 388-393.
613	34. Re, P., Proteggente, R., Pannala, N., Yang, M., Rice-
614	Evans, C. (1999). Antioxidant activity applying an
615	improved ABTS radical cation decolorization assay.
616	Free Radic Biol Med. 26: 1231-1237.
617	35. Kalemba, D., Kunicka A. (2003). Antibacterial and
618	antifungal properties of essential oil. Curr. Med. Chem.
619	10: 815-829.

1	
2	
3	
4	
5	
6	
7	
3 4 5 6 7 8	
9	
10	
11	
12	
13 14	
14	
16	
15 16 17	
18	
19	
20	
21	
22	
23	
24	
25	
20 21 22 23 24 25 26 27 28 29	
27	
28	
29	
30 21	
31 32	
33	
34	
35	
36	
35 36 37	
38	
39	
40	
41	
42	
43	
44	
45 46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

620 36.	Paster, N., Memasherav M., Ravid U., Juven B.
621	(1995). Antifungal activity of oregano and thyme
622	essential oils applied as fumigants against fungi
623	attacking stored grain. J Food Prot. 58: 81-85.
624 37.	Marino, M., Bersani C., Comi G. (2001). Impedance
625	measurements to study the antimicrobial activity of
626	essential oils from Lamiaceae and Compositae. Int J
627	Food Microbiol. 61: 187-155.
628 38.	Ramandeep K., Geetanjali R., Adarsh P. V. (2011).
629	Evaluation of antifungal and antioxidative potential of
630	hydrolytic products of glucosinolates from some
631	members of Brassicaceae family. J. Plant
632	Breed. Crop Sci. 3: 218-228.
633 39 .	Blazevic I., Radonic A., Mastelic J., Zekic M.,

- 634 Skocibusic M., Maravic A. (2010). Glucosinolates,
 635 glycosidically bound volatiles and antimicrobial activity
 636 of *Aurinia sinuata* (Brassicaceae). Food Chem. 121:
 637 1020-1028.
- 40. Yu J., Lei J., Yu H., Cai X., Zou G. (2004). Chemical
 composition and antimicrobial activity of the essential
- oil of *Scutellaria barbata*. Phytochemistry. 65: 881-884.
- 41. Reddy L. J., Jose B. (2010). Evaluation of
 antibacterial activity of the leaf essential oil of *Costus pictus* D. Don. from South India. Int J Curr Pharm Res.
 2: 68-70.

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

1738.

1168-1171.

42. G. Ruberto, Baratta M. T. (2000). Antioxidant

43. D. Lopes-Lutz, Alviano D. S., Alviano C. S.,

Kolodziejczyk, P. P. (2008). Screening of Chemical

Composition, Antimicrobial and Antioxidant Activities

of Artemisia Essential Oils. Phytochemistry. 69, 1732-

44. Germano M. P., Pasquale R. D., Valeria D. A.,

Catania S., Silvari V., Costa C. (2002). Evaluation of

extracts and isolated fraction from Capparis spinosa L.

buds as an antioxidant source. J. Agric. Food Chem. 50:

45. Burt S. (2004). Essential oils: their antibacterial

J Food Microbiol. 94: 223-253.

properties and potential application in foods. Int

model systems. Food Chem. 69: 167-174.

activity of selected essential oil components in two lipid

1	
2	
3	
4	
5	
0 7	
8	
9	
2 3 4 5 6 7 8 9 10	
11	
12	
13	
14 15	
12 13 14 15 16	
17	
18	
19	
20	
21	
22	
24	
25	
26	
27	
28 20	
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	
31	
32	
33	
34	
35 36	
37	
38	
39	
40	
41	
42 43	
44	
45	
46	
47	
48 40	
49 50	
50 51	
52	
53	
54	
55	
56 57	
57 58	
59	
60	

N⁰.	Compounds (%)	L.r.i.ª	Flowers ^b	Leaves ^b	Stems ^b	Identification	RI ^c
1	dimethyl trisulfide	974	2.6		0.5	GC-MS, RI	978 [18]
2	hexanoic acid	983			0.7	GC-MS, RI	986 [19]
3	1-octanol	1071		0.5	1.2	GC-MS, RI	1070 [20]
4	(<i>E</i> , <i>E</i>)-3,5-octadien-2-one	1096			0.7	GC-MS, RI	1099 [19]
5	Nonanal	1104		0.9	4.3	GC-MS, RI	1108 [19]
6	trans-3,5-dimethyl-1,2,4-trithiolane	1141	2.1		0.6	GC-MS, RI	1135 [21]
7	Camphor	1145			1.8	GC-MS, RI	1143 [20]
8	Borneol	1167			1.1	GC-MS, RI	1165 [20]
9	1-nonanol	1172			0.6	GC-MS, RI	1175 [19]
10	octanoic acid	1175			0.7	GC-MS, RI	1179 [19]
11	Decanal	1206			1.2	GC-MS, RI	1209 [19]
12	dimethyl tetrasulfide	1210	4.5		1.0	GC-MS, RI	1217 [18]
13	1,2,3-trithiane	1213	1.5			GC-MS, RI	1217 [18]
14	β-cyclocitral	1222		2.2	2.0	GC-MS, RI	1217 [22]

Table 1. Chemical composition of essential oil from different parts of *R. rugosum*

URL: https://mc.manuscriptcentral.com/teop E-mail: jeobp@yahoo.co.in

Journal of Essential Oil Bearing Plants

	15	methyl carvacrol	1244	1.4			GC-MS, RI	1241 [22]
	16	nonanoic acid	1276			1.6	GC-MS, RI	1279 [23]
	17	isobornyl acetate	1287	2.1		7.6 ^d	GC-MS, RI	1285 [20]
	18	2-undecanone	1293	2.2			GC-MS, RI	1297 [19]
	19	methyl decanoate	1328	2.4			GC-MS, RI	1322 [24]
	20	dehydro-ar-ionene	1352			0.9	GC-MS, RI	1352 [19]
	21	eugenol	1359	1.6	0.6		GC-MS, RI	1358 [22]
	22	decanoic acid	1375			3.5	GC-MS, RI	1379 [23]
	23	β-maaliene	1381			0.9	GC-MS, RI	1380 [22]
	24	(E)-β-damascenone	1383	5.7	0.6	0.7	GC-MS, RI	1382 [20]
	25	β-elemene	1392		0.5		GC-MS, RI	1391 [22]
	26	(Z)-jasmone	1396		1.2		GC-MS, RI	1396 [20]
	27	dodecanal	1409			0.6	GC-MS, RI	1412 [23]
	28	(E)-β-damascone	1412		0.8		GC-MS, RI	1411 [20]
	29	erucin	1431	2.5			GC-MS, RI	1431 [25]
	30	(E)-geranylacetone	1455	2.3	0.5	2.2	GC-MS, RI	1448 [22]
1	4							

31	(E) - β -ionone	1486	3.5	2.6	6.2	GC-MS, RI	1486 [25]
32	Tridecanal	1508			0.7	GC-MS, RI	1509 [23]
33	berteroin	1521	3.6	0.5	3.4	GC-MS, RI	1521 [25]
34	methyl dodecanoate	1527	2.9			GC-MS, RI	1522 [24]
35	5-methylthiopentyl isothiocyanate	1531			6.7	GC-MS, RI	1531 [25]
36	dodecanoic acid	1569	2.7	3.9	10.0	GC-MS, RI	1573 [23]
37	(Z)-3-hexenyl benzoate	1571	1.5			GC-MS, RI	1569 [24]
38	caryophyllene oxide	1582			2.0	GC-MS, RI	1582 [26]
39	viridiflorol	1591		0.5		GC-MS, RI	1590 [27]
40	1,10-di-epi-cubenol	1616	1.8	1.5	1.7	GC-MS, RI	1616 [27]
41	10-epi-g-eudesmol	1622	1.5	1.0	0.6	GC-MS, RI	1622 [20]
42	α-acorenol	1631	3.7	1.5	0.9	GC-MS, RI	1632 [27]
43	T-cadinol	1641		0.7	0.6	GC-MS, RI	1641 [26]
44	α-cadinol	1654	1.3	1.4	0.5	GC-MS, RI	1654 [26]
45	1-tetradecanol	1675		2.1	1.2	GC-MS, RI	1676 [23]
46	α-bisabolol	1684		1.0	0.9	GC-MS, RI	1681 [27]

Journal of Essential Oil Bearing Plants

47	<i>n</i> -heptadecane	1700	1.3		0.6	GC-MS, RI	1695 [27]
48	pentadecanal	1716	3.6	55.3	0.7	GC-MS, RI	1716 [27]
49	metyl tetradecanoate	1727	1.4			GC-MS, RI	1725 [27]
50	tetradecanoic acid	1765	5.9	5.7	13.1	GC-MS, RI	1767 [23]
51	1-pentadecanol	1780	8.3			GC-MS, RI	1780 [27]
52	<i>n</i> -octadecane	1800	1.4			GC-MS, RI	1800 [20]
53	hexahydrofarnesylacetone	1843	17.2	8.4	10.1	GC-MS, RI	1843 [24]
	Number of compounds identified		28	23	38		
	Oxygenated monoterpenes		3.5	0.0	10.5		
	Sesquiterpene hydrocarbons		0.0	0.5	0.9		
	Oxygenated sesquiterpenes		8.3	7.6	7.2		
	Apocarotenoids		28.7	15.1	22.1		
	Sulfur and/or nitrogen compounds		16.8	0.5	12.2		
	Phenylpropanoids		1.6	0.6	0.0		
	Non-terpene derivatives		33.6	69.6	41.4		
	Yields		0.023	0.0061	0.016		

	Total identified	92.5	93.9	94.3	
^a L.R.I:	Linear retention index relative to n-alkanes	on fused silica capillary colu	mn <i>HP-5</i>		
^b Conte	ent (%): Relative percentage calculated by G	C/ FID on an apolar capillary	v column HP	5.	
	tion index values obtained on column <i>HP-5</i> type indicates major component.	and reported in literature			
	URL: https:/	//mc.manuscriptcentral.com/teop	E-mail: jeobp@	yahoo.co.in	

670	Flowers of <i>R.rugosum</i>								
	Microorganisms	Le	aves	Flo	wers	Ste	ems	GM ^a (µg/mL)	
		MIC	MBC	MIC	MBC	MIC	MBC	MBC	
	Gram positive bacteria								
	Staphylococcus aureus	2.5	5	2.5	5	2.5	5	15.62	
	ATCC 25923								
	Enterococcus	2.5	5	2.5	5	2.5	5	7.81	
	faecalis ATCC29212								
	Gram negative bacteria								
	Escherichia coli ATCC	10	>10	10	>10	10	>10	3.90	
	25922								
	Pseudomonas aeruginosa	10	>10	10	>10	10	>10	500	
	ATCC 27950								
	Acinetobacter baumaniie	10	>10	10	>10	10	>10	nd ^b	
671	^a CMI and CMB (mg/mL)				4				
672	^b GM: Gentamycin				Z Ç				
673	°Nd: Not determined								
674									
675									
676									

AA of β-

Table 3. Antioxidant activities of R.rugosum es	ssential oil on DPPH, ABTS and β-
---	-----------------------------------

PI of DPPH scavenging

carotene/linoleic acid test.

PI of ABTS scavenging

		(1 mg/mL)	(1 mg/mL) Time at 20 min	carotene/linoleic acid
				test (1mg/mL)
	Flowers	69.88 ± 0.02	42.18 ± 0.09	39.52 ± 0.01
	Stems	62.56 ± 0.01	24.87 ± 0.18	23.92 ± 0.01
	Leaves	49.72 ± 0.01	26.87 ± 0.18	18.96 ± 0.04
	BHT	94.7 ± 0.01^{d}	95.2 ± 0.6	92 ± 0.04
679		0	0	
680				
681				
682				
683				
684				
685				
686 687				
688				
689				
690				
691				

2		
3	1	Tables:
4	-	
5	2	
6	2	Table 1. Chemical composition of essential oil from
7		
8	3	different parts of <i>R. rugosum</i>
9		
10	4	
11	•	
12	-	Table 2. Autilia starial Astrita afth a Farmatic Oile Isolated
13	5	Table 2. Antibacterial Activity of the Essential Oils Isolated
14		
15	6	from the Stems, Leaves and Flowers of <i>R.rugosum</i>
16		
17	7	
18		
19	0	Table 2 Antioxidant activities of D suggestime accordial ail on
20	8	Table 3. Antioxidant activities of R.rugosum essential oil on
21		
22	9	DPPH, ABTS and β-carotene/linoleic acid test.
23		
24	10	
25		
26	11	
27	11	
28	10	
29	12	
30		
31	13	
32		
33	14	
34		
35	15	
36	15	
37		
38	16	
39		
40	17	
41		
42	18	
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		

		-		-		U	
Nº.	Compounds (%)	L.r.i.ª	Flowers ^b	Leaves ^b	Stems ^b	Identification	RI ^c
1	dimethyl trisulfide	974	2.6		0.5	GC-MS, RI	978 [18]
2	hexanoic acid	983			0.7	GC-MS, RI	986 [19]
3	1-octanol	1071		0.5	1.2	GC-MS, RI	1070 [20]
4	(E,E)-3,5-octadien-2-one	1096			0.7	GC-MS, RI	1099 [19]
5	Nonanal	1104		0.9	4.3	GC-MS, RI	1108 [19]
6	trans-3,5-dimethyl-1,2,4-trithiolane	1141	2.1		0.6	GC-MS, RI	1135 [21]
7	Camphor	1145			1.8	GC-MS, RI	1143 [20]
8	Borneol	1167			1.1	GC-MS, RI	1165 [20]
9	1-nonanol	1172			0.6	GC-MS, RI	1175 [19]
10	octanoic acid	1175			0.7	GC-MS, RI	1179 [19]
11	Decanal	1206			1.2	GC-MS, RI	1209 [19]
12	dimethyl tetrasulfide	1210	4.5		1.0	GC-MS, RI	1217 [18]
13	1,2,3-trithiane	1213	1.5			GC-MS, RI	1217 [18]
14	β-cyclocitral	1222		2.2	2.0	GC-MS, RI	1217 [22]

Table 1. Chemical composition of essential oil from different parts of *R. rugosum*

URL: https://mc.manuscriptcentral.com/teop E-mail: jeobp@yahoo.co.in

 Journal of Essential Oil Bearing Plants

15	methyl carvacrol	1244	1.4			GC-MS, RI	1241 [22]
16	nonanoic acid	1276			1.6	GC-MS, RI	1279 [23]
17	isobornyl acetate	1287	2.1		7.6 ^d	GC-MS, RI	1285 [20]
18	2-undecanone	1293	2.2			GC-MS, RI	1297 [19]
19	methyl decanoate	1328	2.4			GC-MS, RI	1322 [24]
20	dehydro-ar-ionene	1352			0.9	GC-MS, RI	1352 [19]
21	eugenol	1359	1.6	0.6		GC-MS, RI	1358 [22]
22	decanoic acid	1375			3.5	GC-MS, RI	1379 [23]
23	β-maaliene	1381			0.9	GC-MS, RI	1380 [22]
24	(E)-β-damascenone	1383	5.7	0.6	0.7	GC-MS, RI	1382 [20]
25	β-elemene	1392		0.5		GC-MS, RI	1391 [22]
26	(Z)-jasmone	1396		1.2		GC-MS, RI	1396 [20]
27	dodecanal	1409			0.6	GC-MS, RI	1412 [23]
28	(E)-β-damascone	1412		0.8		GC-MS, RI	1411 [20]
29	erucin	1431	2.5			GC-MS, RI	1431 [25]
30	(E)-geranylacetone	1455	2.3	0.5	2.2	GC-MS, RI	1448 [22]
 1							

31	(<i>E</i>)- β -ionone	1486	3.5	2.6	6.2	GC-MS, RI	1486 [25]
32	Tridecanal	1508			0.7	GC-MS, RI	1509 [23]
33	berteroin	1521	3.6	0.5	3.4	GC-MS, RI	1521 [25]
34	methyl dodecanoate	1527	2.9			GC-MS, RI	1522 [24]
35	5-methylthiopentyl isothiocyanate	1531			6.7	GC-MS, RI	1531 [25]
36	dodecanoic acid	1569	2.7	3.9	10.0	GC-MS, RI	1573 [23]
37	(Z)-3-hexenyl benzoate	1571	1.5			GC-MS, RI	1569 [24]
38	caryophyllene oxide	1582			2.0	GC-MS, RI	1582 [26]
39	viridiflorol	1591		0.5		GC-MS, RI	1590 [27]
40	1,10-di-epi-cubenol	1616	1.8	1.5	1.7	GC-MS, RI	1616 [27]
41	10-epi-g-eudesmol	1622	1.5	1.0	0.6	GC-MS, RI	1622 [20]
42	α-acorenol	1631	3.7	1.5	0.9	GC-MS, RI	1632 [27]
43	T-cadinol	1641		0.7	0.6	GC-MS, RI	1641 [26]
44	α-cadinol	1654	1.3	1.4	0.5	GC-MS, RI	1654 [26]
45	1-tetradecanol	1675		2.1	1.2	GC-MS, RI	1676 [23]
46	α-bisabolol	1684		1.0	0.9	GC-MS, RI	1681 [27]

Journal of Essential Oil Bearing Plants

47	<i>n</i> -heptadecane	1700	1.3		0.6	GC-MS, RI	1695 [27]
48	pentadecanal	1716	3.6	55.3	0.7	GC-MS, RI	1716 [27]
49	metyl tetradecanoate	1727	1.4			GC-MS, RI	1725 [27]
50	tetradecanoic acid	1765	5.9	5.7	13.1	GC-MS, RI	1767 [23]
51	1-pentadecanol	1780	8.3			GC-MS, RI	1780 [27]
52	<i>n</i> -octadecane	1800	1.4			GC-MS, RI	1800 [20]
53	hexahydrofarnesylacetone	1843	17.2	8.4	10.1	GC-MS, RI	1843 [24]
	Number of compounds identified		28	23	38		
	Oxygenated monoterpenes		3.5	0.0	10.5		
	Sesquiterpene hydrocarbons		0.0	0.5	0.9		
	Oxygenated sesquiterpenes		8.3	7.6	7.2		
	Apocarotenoids		28.7	15.1	22.1		
	Sulfur and/or nitrogen compounds		16.8	0.5	12.2		
	Phenylpropanoids		1.6	0.6	0.0		
	Non-terpene derivatives		33.6	69.6	41.4		
	Yields		0.023	0.0061	0.016		

Total identified	92.5	93.9	94.3	
^a L.R.I: Linear retention index relative to n-alkanes on	n fused silica capillary colu	mn <i>HP-5</i>		
^b Content (%): Relative percentage calculated by GC/	/ FID on an apolar capillar	y column <i>HP-5</i>	5.	
^c Retention index values obtained on column <i>HP-5</i> ar	nd reported in literature			
^d Bold type indicates major component.	hd reported in interature			
URL: https://n	nc.manuscriptcentral.com/teo	o E-mail: jeobp@	yahoo.co.in	

	Flowers of <i>R.rugosum</i>									
Microorganisms	Le	aves	Flov	wers	Ste	ems	GM ^a (µg/mL)			
	MIC	MBC	MIC	MBC	MIC	MBC	MBC			
Gram positive bacteria										
Staphylococcus aureus	2.5	5	2.5	5	2.5	5	15.62			
ATCC 25923										
Enterococcus	2.5	5	2.5	5	2.5	5	7.81			
faecalis ATCC29212										
Gram negative bacteria										
Escherichia coli ATCC	10	>10	10	>10	10	>10	3.90			
25922										
Pseudomonas aeruginosa	10	>10	10	>10	10	>10	500			
ATCC 27950										
Acinetobacter baumaniie	10	>10	10	>10	10	>10	nd ^b			
^a CMI and CMB (mg/mL)				2						
^b GM: Gentamycin										
°Nd: Not determined										
	Gram positive bacteria Staphylococcus aureus ATCC 25923 Enterococcus faecalis ATCC29212 Gram negative bacteria Escherichia coli ATCC 25922 Pseudomonas aeruginosa ATCC 27950 Acinetobacter baumaniie ^a CMI and CMB (mg/mL) ^b GM: Gentamycin	MIC Gram positive bacteria Staphylococcus aureus 2.5 ATCC 25923 Enterococcus 2.5 faecalis ATCC29212 Gram negative bacteria Escherichia coli ATCC 10 25922 Pseudomonas aeruginosa 10 ATCC 27950 Acinetobacter baumaniie 10 aCMI and CMB (mg/mL) bGM: Gentamycin	MICMBCGram positive bacteriaStaphylococcusaureus2.55ATCC 25923Enterococcus2.555faecalis ATCC29212Gram negative bacteriaEscherichia coli ATCC10>10-25922Pseudomonas aeruginosa10>10-ATCC 2795010Acinetobacter baumaniie10>10°CMI and CMB (mg/mL)°GM: Gentamycin	MICMBCMICGram positive bacteriaStaphylococcusaureus 2.5 5 2.5 ATCC 25923 2.5 5 2.5 Enterococcus 2.5 5 2.5 faecalis ATCC29212 7 7 Gram negative bacteria 7 7 Escherichia coli ATCC 10 >10 25922 7 7 Pseudomonas aeruginosa 10 >10 ATCC 27950 7 10 $Acinetobacter baumaniie$ 10 >10 a CMI and CMB (mg/mL) b GM: Gentamycin	MICMBCMICMBCGram positive bacteriaStaphylococcusaureus2.55ATCC 25923Enterococcus2.552.5faecalis ATCC29212Gram negative bacteriaEscherichia coli ATCC10>1025922Pseudomonas aeruginosa10>1010ATCC 2795010>1010Acinetobacter baumaniie10>1010°CMI and CMB (mg/mL)*Gentamycin*Communication of the sector of the	MICMBCMICMBCMICMBCMICGram positive bacteriaStaphylococcusaureus 2.5 5 2.5 5 2.5 ATCC 25923Enterococcus 2.5 5 2.5 5 2.5 faecalis ATCC29212Gram negative bacteriaEscherichia coliATCC 10 > 10 10 > 10 25922Pseudomonas aeruginosa 10 > 10 10 > 10 10 ATCC 27950Acinetobacter baumaniie 10 > 10 10 > 10 10 °CMI and CMB (mg/mL)	MIC MBC MIC MBC MIC MBC MIC MBC MBC			

Table 3. Antioxidant activities of <i>R.rugosum</i>	<i>n</i> essential oil on DPPH, ABTS and β-
---	---

carotene/linoleic acid test.							
	PI of DPPH scavenging	PI of ABTS scavenging	AA of β-				
	(1 mg/mL)	(1 mg/mL) Time at 20 min	carotene/linoleic acid				
			test (1mg/mL)				
Flowers	69.88 ± 0.02	42.18 ± 0.09	39.52 ± 0.01				
Stems	62.56 ± 0.01	24.87 ± 0.18	23.92 ± 0.01				
Leaves	49.72 ± 0.01	26.87 ± 0.18	18.96 ± 0.04				
BHT	94.7 ± 0.01^{d}	95.2 ± 0.6	92 ± 0.04				