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Scaling behavior of the stationary states arising from dissipation at continuous quantum transitions
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We study the critical behavior of the nonequilibrium dynamics and of the steady states emerging from the
competition between coherent and dissipative dynamics close to quantum phase transitions. The latter is induced
by the coupling of the system with a Markovian bath, such that the evolution of the system’s density matrix
can be effectively described by a Lindblad master equation. We devise general scaling behaviors for the out-
of-equilibrium evolution and the stationary states emerging in the large-time limit for generic initial conditions
in terms of the parameters of the Hamiltonian providing the coherent driving and those associated with the
dissipative interactions with the environment. Our framework is supported by numerical results for the dynamics
of a one-dimensional lattice fermion gas undergoing a quantum Ising transition in the presence of dissipative
mechanisms which include local pumping and decay of particles.
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I. INTRODUCTION

One of the major challenges of current experimental and
theoretical investigations in the field of quantum statistical
mechanics and condensed-matter physics is the understand-
ing of the out-of-equilibrium dynamics of open many-body
systems, arising from coherent Hamiltonian drivings and dis-
sipative mechanisms. Recent technological breakthroughs in
the manipulation of atomic and quantum optical systems are
paving the way to a careful study of the interplay between the
coherent quantum dynamics and the dissipative effects due to
the interaction with the environment [1–4]. The competition
between these two mechanisms may lead to stationary states
which are not related to a thermalization process, i.e., whose
properties are not describable in terms of thermal Gibbs distri-
butions. In particular, novel phenomena may emerge close to a
quantum phase transition [5], where the low-energy properties
of the system are particularly sensitive to variations of the
external conditions.

In this paper we investigate the dynamics of a many-body
system in the proximity of a continuous quantum transition in
the presence of dissipation arising from the interaction with
the environment. We focus on a class of dissipative mech-
anisms whose dynamics can be reliably described through
a Lindblad master equation governing the time evolution
of the system’s density matrix [6,7]. This framework is of
experimental interest; indeed, the conditions for its validity
are typically realized in quantum optical and circuit quantum
electrodynamics (c-QED) implementations [1,2,8]. We argue
that, in the presence of homogeneous dissipators, the compe-
tition between coherent and dissipative drivings develops dy-
namic scaling laws involving some relevant parameters of the
two mechanisms. This occurs within a low-dissipation regime,
where the decay rate of the dissipation is comparable to the
gap of the Hamiltonian [9]. General scaling behaviors are put
forward which are expected to be developed along the time
evolution described by the Lindblad equation, especially in
the large-time limit where stationary states set in. Analogous

to the scaling laws of closed systems at quantum transitions,
the dynamic scaling behavior in the presence of dissipation
is expected to be universal, i.e., largely independent of the
microscopic details.

To verify the emerging scaling scenario, we found it con-
venient to consider, as an example, the paradigmatic Kitaev
quantum wire [10]. Namely, we study its dynamic behavior
close to the quantum transition in the presence of dissipation
due to local incoherent pumping or decay. Our numerical
results support the general dynamic scaling theory, addressing
the mutual interplay between coherent dynamics and dissipa-
tion at a continuous quantum transition.

Some features arising from the competition of coherent
and dissipative dynamics close to quantum transitions were
recently analyzed within a dynamic finite-size scaling frame-
work (see Ref. [9]), with specific emphasis on finite systems
of linear size L and the dynamic behavior for relatively small
times t ∼ Lz (where z > 0 is the dynamic critical exponent
associated with the quantum transition), thus not including the
large-time stationary regime. In this paper we focus on some
complementary regimes. Indeed, we consider infinite-size
systems, for which we derive dynamic scaling laws extending
to the large-time limit of the evolution described by the
Lindblad equation, thus valid for the corresponding stationary
states. We shall emphasize that, at this stage, our dynamical
scaling theory for quantum dissipative systems should be
considered as a conjecture arising from phenomenological
scaling arguments. Therefore, the scaling behaviors devised
for the two mentioned distinct situations are not trivially
related, and careful numerical checks are crucial to validate
our general framework.

We finally mention that dynamic scaling behaviors have
also been put forward and numerically checked for open
critical systems when the environment is constituted by a
single qubit homogeneously coupled to the whole many-body
system [11].

This paper is organized as follows. In Sec. II we present the
general setup of our dynamic problem, recalling the scaling
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laws developed by closed systems at quantum transitions, and
the main features of the dissipative mechanisms described
by the Lindblad equation. Then, in Sec. III we put forward
the scaling laws describing the competition of coherent and
dissipative drivings as described by the Lindblad equation,
extending the scaling laws of closed systems at quantum tran-
sitions to incorporate the effects of the dissipation. In Sec. IV
we introduce the one-dimensional Kitaev Fermi model in the
presence of dissipation arising from local pumping and decay
and define the observables that we are going to consider in
order to characterize the time evolution of the system, in
particular of the stationary states. Section V contains and
discusses the outcomes of our numerical results, which def-
initely support the dynamic scaling theory in the presence of
dissipation. Finally, in Sec. VI we summarize and draw our
conclusions.

II. CRITICAL SYSTEMS IN THE PRESENCE OF
DISSIPATION

A. Many-body systems at a quantum transition

We start by summarizing the general scaling features of
a many-body system at a continuous quantum transition.
Consider a generic d-dimensional many-body system with
Hamiltonian Ĥ , close to a zero-temperature transition driven
by quantum fluctuations [5,12]. A quantum transition is gener-
ally characterized by few relevant perturbations, whose tuning
gives rise to quantum critical behaviors, characterized by a
diverging length scale, and universal power laws.

Let us assume that the system Hamiltonian has one relevant
parameter μ, whose tuning toward the point μc develops a
quantum critical behavior. The critical power laws are gen-
erally characterized by the renormalization-group dimension
yμ associated with the relevant parameter μ and the dynamic
exponent z, so that the diverging length scale of the critical
modes behaves as

ξ ∼ λ ≡ |μ̄|−ν, μ̄ ≡ μ − μc, ν = y−1
μ , (1)

and the suppression of the gap (that is, the difference of the
two lowest energy levels) behaves as

� ∼ ξ−z. (2)

Moreover, the correlation function of generic local operators
Ô(x),

G(x; μ̄) ≡ 〈0μ|Ô(x)Ô(0)|0μ〉, (3)

where |0μ〉 is the ground state associated with the parameter
μ, obeys an asymptotic scaling law of the form [12,13]

G(x; μ̄) ≈ b−2yoG(x/b, μ̄ byμ ), (4)

where b denotes an arbitrary positive number and yo is the
renormalization-group dimension of Ô(x). The above scaling
equation neglects further dependences on other irrelevant
Hamiltonian parameters, which are supposed to be suppressed
in the large-b limit. Then, if we fix the arbitrary parameter b
by requiring

|μ̄| byμ = 1 (5)

and introduce the variable λ as in Eq. (1), we obtain the
asymptotic scaling behavior

G(x; μ̄) ≈ λ−2yoG(x/λ) (6)

around μc. One may also consider equilibrium states at finite
temperature T , related to a Gibbs distribution of the quantum
states. For sufficiently small temperatures, the dependence on
T is taken into account [5] by adding a further dependence on
T bz in Eq. (4), turning into a dependence on T λz in the scaling
equation (6), that is,

G(x; μ̄, T ) ≈ λ−2yoG(x/λ, T λz ). (7)

These asymptotic scaling behaviors are expected to be ob-
served in the limit λ → ∞. Their approach is generally char-
acterized by power-law scaling corrections, which may come
from different sources [13], such as irrelevant perturbations at
the fixed point describing the quantum transition and analytic
corrections in the nonlinear scaling fields entering the scaling
laws.

One may also study out-of-equilibrium evolutions close
to a quantum transition, for example, arising from a sudden
quench of the Hamiltonian parameter μ at t = 0 from an
initial value μi to μ 	= μi, starting from the ground state at μi.
The corresponding time dependence after the quench can be
taken into account within the scaling laws as well by adding
a further dependence on tb−z in Eq. (4). More precisely, the
fixed-time correlation functions are expected to behave as
[14,15]

G(x, t ; μ̄i, μ̄) = 〈�(t )|Ô(x)Ô(0)|�(t )〉
≈ λ−2yoG(x/λ, tλ−z, μ̄i/μ̄), (8)

where |�(t )〉 is the quantum state after a time t from the
quench and μ̄i ≡ μi − μc.

The above scaling behaviors have been shown to develop
for closed states around the critical point μc. In the following
we study the effects of the presence of dissipation in systems
described by critical Hamiltonians.

B. Dissipative interactions

Suppose that the many-body system is also subject to
dissipative interactions with the environment, so that the
time dependence of its density matrix ρ is described by the
Lindblad master equation [6]

∂ρ

∂t
= − i

h̄
[Ĥ, ρ] + uD[ρ], (9)

where the first term provides the coherent driving, while the
second term accounts for the coupling to the environment,
characterized by a global coupling constant u > 0.

We restrict ourselves to homogeneous dissipation mech-
anisms, preserving translational invariance, as sketched, for
example, in Fig. 1. In the case of systems weakly coupled to
Markovian baths, the trace-preserving superoperator can be
written as a sum of local terms, such as [16,17]

D[ρ] =
∑

o

Do[ρ], (10)

Do[ρ] = L̂oρL̂†
o − 1

2 (ρ L̂†
oL̂o + L̂†

oL̂oρ), (11)
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FIG. 1. Sketch of a quantum system on a one-dimensional lattice
(black squares), in which different sites may undergo a coherent
and uniform nearest-neighbor coupling. Each site is supposed to be
homogeneously and weakly coupled to an external and independent
bath B (blue boxes), whose effect is to introduce local incoherent
mechanisms.

where L̂o is the Lindblad jump operator associated with the
local system-bath coupling scheme and o denotes an appropri-
ate spatial coordinate. Dissipation mechanisms described by
local Lindblad operators L̂o have been considered in various
contexts (see, e.g., Refs. [1,2,8,18,19]). In several quantum
optical devices, in particular in systems with photon leakage
or with some qubit relaxation or dephasing, the conditions
leading to Eqs. (9)–(11) are typically satisfied [1,2,8]; there-
fore, this formalism constitutes the standard choice for their
theoretical investigation. Other interesting implementations in
this respect may be provided by hybrid light-matter systems,
where atoms are strongly coupled to cavities, thus mediating
photon-photon interactions (see, e.g., Ref. [19]).

In the next section, we will address the formation of large-
time stationary states arising from the competition of the co-
herent and dissipative drivings, as described by the Lindblad
equation (9). As we shall see below, while the coupling with a
bath generally drives the system to a noncritical behavior, even
when the Hamiltonian parameters are critical, it is, however,
possible to identify a peculiar low-dissipation regime where
the steady state may develop the above-mentioned compe-
tition and display a critical behavior. To this purpose, we
will put forward general scaling behaviors for the stationary
states in the low-dissipation regime when the many-body
Hamiltonian is within the quantum critical regime, somehow
extending the scaling laws reported in Sec. II A.

III. SCALING BEHAVIOR OF THE STATIONARY STATES

Let us assume that, without loss of generality, the quantum
many-body system is initialized at t = 0 into the ground state
of the Hamiltonian Ĥ (μi ) for a given parameter μi. The time
evolution for t > 0 is dictated by the Lindblad equation (9)
with the Hamiltonian Ĥ (μ), where μ may differ from μi,
thus realizing a sudden quench, and the system-bath coupling
strength is fixed by the coupling u. The dissipator D[ρ] may
drive the system to a steady state, which is generally non-
critical, even when the Hamiltonian parameters are critical.
In the case of dissipation leading to a unique stationary state,
the choice of the initial state (that is, the initial state of the
time evolution, which is eventually fixed by the parameter
μi) is not relevant for the long-time properties of the system;
nonetheless, it may determine the initial and intermediate time
dependence.

We now argue that it is possible to identify a low-
dissipation regime where the dissipation is sufficiently small
to compete with the coherent evolution driven by the (critical)
Hamiltonian. This leads to a late-time stationary state which

can present a critical behavior, depending also on the strength
of the system-bath coupling. The effects of a small dissipation
are taken into account by adding a further dependence on a
scaling variable associated with u in the out-of-equilibrium
scaling laws, i.e., ubζ , where ζ is a suitable exponent which
ensures the substantial balance (thus competition) with the
critical coherent driving. Since dissipation is predicted to
give rise to a relevant perturbation at the quantum transition,
we expect ζ > 0. Thus, the peculiar low-dissipation regime
outlined above should be characterized by u ∼ λ−ζ .

As already argued in Ref. [9], the exponent ζ should gen-
erally coincide with the dynamic exponent z. This is expected
by noting that the parameter u in Eq. (9) plays the role of a
decay rate, i.e., of an inverse relaxation time for the associated
dissipative process [6], and any relevant timescale ts at a
quantum transition behaves as ts ∼ �−1 [14]. In other words,
to observe a nontrivial competition between critical coherent
dynamics and dissipation, one should consider a sufficiently
small coupling u ∼ λ−z, so that its size is comparable with
the energy difference � ∼ λ−z of the lowest energy levels of
the Hamiltonian. An analogous conjecture was put forward to
describe the approach to thermalization of some specific open
systems close to a quantum transition [20]. Here we extend it
to more general situations, even when the final stationary state
is not thermal.

On the basis of such scaling arguments, generic fixed-
time correlation functions in the large-volume limit are thus
expected to behave as

G(x, t ; μ̄i, μ̄, u) = Tr [ρ(t )Ô(x)Ô(0)]

≈ λ−2yoG(x/λ, tλ−z, μ̄i/μ̄, uλz ), (12)

where ρ(t ) is the time-dependent density matrix of the system.
We conjecture that this scaling ansatz describes the low-
dissipation regime of quenching protocols for many-body
systems at quantum transitions. The main features of such a
dynamic critical regime are expected to depend only on the
universality class of the transition and the general properties
of the dissipative mechanism.

In order to derive the scaling laws for the asymptotic
stationary states, we need to consider the large-time limit
of the scaling equation (12). Hereafter we shall assume that
the asymptotic stationary state is unique, i.e., independent of
the initial conditions of the protocol that we consider, as is
the case for several classes of dissipators [21–24]. Such a
stationary state should appear when t 
 λz. Therefore, we
conjecture the scaling law

Gs(x; μ̄, u) ≡ G(x, t → ∞; μ̄i, μ̄, u)

≈ λ−2yo 
(x/λ, uλz ), (13)

where in the definition of Gs we assumed that the dependence
on the initial parameter μ̄i drops under an assumption of
unicity of the stationary state.

It is also possible to define a correlation length ξs from the
exponential large-distance decay of the correlation function
Gs. Indeed, since we expect that the large-distance behavior
Gs ∼ e−x/ξs , we may define

ξ−1
s (μ̄, u) = −limx→∞

ln Gs(x; μ̄, u)

x
. (14)
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Using the scaling laws derived for Gs, we obtain

ξs ≈ λL1(uλz ), (15)

or, alternatively,

ξs ≈ u−1/z L2(uλz ). (16)

Note that this scaling equation is formally analogous to that
obtained at the thermodynamic equilibrium after replacing u
with the temperature T [see Sec. II A, in particular Eq. (7)].
However, we stress that our arguments extend to cases where
the asymptotic stationary state does not coincide with a Gibbs
equilibrium state. This will be, indeed, the case for the Kitaev
model subject to incoherent particle decay or pumping [see
Eq. (20) and the discussion below].

We finally stress that the strictly local (on-site) nature of
the Lindblad operators is not essential for the dynamic scaling
behavior put forward here. The important point is that such
interactions induce only finite-size correlations, whose length
scale becomes negligible in the quantum critical limit, where
critical quantum correlations develop a diverging length scale
in the system.

IV. THE KITAEV QUANTUM WIRE SUBJECT TO
DISSIPATION

To provide evidence of the scaling laws put forward in
Sec. III, we consider a Kitaev quantum wire defined by the
Hamiltonian [10]

ĤK = −t
L∑

j=1

(ĉ†
j ĉ j+1 + δ ĉ†

j ĉ
†
j+1 + H.c.) − μ

L∑
j=1

n̂ j, (17)

where ĉ j is the fermionic annihilation operator on the jth site
of the chain, n̂ j ≡ ĉ†

j ĉ j is the density operator, and δ > 0. We
set h̄ = 1 and t = 1 as the energy scale.

The Hamiltonian (17) can be mapped into a spin-1/2
XY chain by means of a Jordan-Wigner transformation. It
undergoes a continuous quantum transition at μ = μc = −2
independent of δ between a disordered quantum phase
(μ < μc) and an ordered quantum phase (|μ| < |μc|). This
transition belongs to the two-dimensional Ising universality
class [5], characterized by the length-scale critical expo-
nent ν = 1, related to the renormalizaton-group dimension
yμ = 1/ν = 1 of the Hamiltonian parameter μ (more pre-
cisely, the difference μ̄ ≡ μ − μc). The dynamic exponent
associated with the unitary quantum dynamics is z = 1. More-
over, the renormalization-group dimension of the fermionic
operators ĉ j and ĉ†

j is yc = 1/2, and that of the density
operator n̂ j is yn = 1 [5].

In the following we fix δ = 1, such that the corresponding
spin model is the quantum Ising chain

ĤIs = −
∑

j

σ̂
(3)
j σ̂

(3)
j+1 − g

∑
j

σ̂
(1)
j , (18)

with σ̂
(k)
j being the Pauli matrices and g = −μ/2. In the

following we prefer to stick with the Kitaev quantum wire
because the dissipation that we consider is more naturally
defined for Fermi lattice gases.

We focus on the dynamic behavior of the Fermi lattice
gas (17) close to its quantum transition in the presence of

homogeneous dissipation mechanisms following the Lindblad
equation (9). The dissipator D[ρ] is defined as a sum of local
(single-site) terms of the form

D j[ρ] = L̂ jρL̂†
j − 1

2 (ρ L̂†
j L̂ j + L̂†

j L̂ jρ), (19)

where L̂ j denotes the Lindblad jump operator associated with
the system-bath coupling scheme and the index j corresponds
to a lattice site [thus replacing the index o in Eqs. (10) and
(11)]. The on-site Lindblad operators L̂ j describe the coupling
of each site with an independent bath B (Fig. 1). We consider
dissipation mechanisms associated with either particle losses
(l) or pumping (p) [25,26]:

L̂l, j = ĉ j, L̂p, j = ĉ†
j . (20)

The uniqueness of the eventual steady state has been proven
for the above decay and pumping operators [21–24]. The
choice of such dissipators turns out to be particularly conve-
nient for the numerical analysis, allowing us to obtain results
for a quite large Kitaev model (see below).

Our protocol starts from the ground state of ĤK for a
generic μ̄i ≡ μi − μc, sufficiently small to stay within the
critical regime. To address the competition between coherent
and dissipative dynamics, we study the evolution after a
quench of the Hamiltonian parameter to μ̄ and a simultaneous
sudden turning on of the dissipation coupling u. To character-
ize the dynamic properties of the evolution described by the
Lindblad equation, in particular the corresponding asymptotic
large-time behavior, we consider the fixed-time correlations

Gp(x, t ) = Tr[ρ(t ) (ĉ†
j ĉ

†
j+x + ĉ j+xĉ j )], (21a)

Gc(x, t ) = Tr[ρ(t ) (ĉ†
j ĉ j+x + ĉ†

j+xĉ j )], (21b)

Gn(x, t ) = Tr[ρ(t ) n̂ j n̂ j+x] − Tr[ρ(t ) n̂ j] Tr[ρ(t ) n̂ j+x],

(21c)

where we used the space translation invariance of the system.
According to the scaling arguments reported in Sec. III

for systems close to a continuous quantum transition, in
particular for λ ≡ |μ̄|−1 → ∞, these correlation functions are
expected to develop the scaling laws given in Eqs. (12) and
(13). The approach to the asymptotic behavior is foreseen
to be controlled by power-law corrections. Relying on the
analysis of closed systems undergoing quantum transition
belonging to the two-dimensional Ising universality class (see
Ref. [13]), we generally expect O(λ−1) corrections, generally
arising from analytic corrections to the nonlinear scaling fields
[while scaling corrections arising from the leading irrelevant
perturbation are more suppressed in the two-dimensional Ising
universality class, as O(λ−2)]. The numerical results reported
in the next section nicely support these predictions.

V. NUMERICAL RESULTS

In this section we report numerical evidence of the scaling
laws put forward in Sec. III for quantum wires in the presence
of dissipation arising from incoherent particle losses and
pumping. The choice of the dissipators (20) allows us to
numerically solve the dynamic problem for systems with up
to thousands of sites [27,28]. Indeed, the dynamics of the
dissipative fermionic Kitaev chain (Fig. 1) can be written in
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FIG. 2. (a) The correlation function Gp(x, t ) in Eq. (21a), mul-
tiplied by λ, versus the rescaled time t/λ. Different curves are for
various values of λ, as indicated in the legend. Here we fix x/λ = 1.
The dissipation is induced by incoherent particle losses, and its
rescaled strength is kept constant, such that uλ = 1. We also fix
μ̄i = μ̄ (no Hamiltonian quenches) and take μ̄ < 0 (i.e., approaching
the critical point from the left side, μ < μc), which vary for each
curve as |μ̄| = λ−1 [see Eq. (1)]. The curves approach a scaling
function with increasing λ, thus supporting the scaling equation
(12). (b1)–(b3) The convergence with λ of the various curves in
(a) for fixed values of the rescaled time, t/λ = 0.1, 2, and 25,
respectively [arrows in (a)]. Straight lines are fits ∝ λ−1 of numerical
data (circles), whose extrapolation to λ → +∞ produces the values
0.2385, 0.1585, and 0.1429, respectively.

terms of coupled linear differential equations, whose number
scales linearly with the size L. We employ a fourth-order
Runge-Kutta method in order to integrate them. Further de-
tails on the computation of the time trajectories from the
Lindblad equation (9) are reported in Ref. [9].

In our analysis we always consider antiperiodic bound-
ary conditions, such that ĉL+1 = −ĉ1, which turn out to be
technically convenient for the calculations. However, since
we always consider sufficiently large chains to be effectively
in the thermodynamic limit (more precisely, L 
 λ, where
λ = μ̄−1), the results that we present are not affected by this
particular choice. The realization of the infinite-size limit is
easily verified by comparing the numerics at fixed λ and u,
with increasing L. All the data presented here should be
considered in the infinite-size limit with great accuracy (finite-
size effects are invisible on the scales of all the figures shown
below).

Let us start by presenting some numerical outcomes for the
correlation function Gp(x, t ) [see Eq. (21a)] in the presence of
dissipation arising from incoherent particle losses. The curves
shown in Fig. 2 were obtained for the protocol with μ̄i = μ̄

(no Hamiltonian quenches) and μ̄ < 0 (thus approaching the
critical point from the left side: μ < μc), keeping the rescaled
dissipation strength constant, such that uλz = uλ = 1. The
results in Fig. 2(a) clearly support the asymptotic dynamic
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FIG. 3. Same as in Fig. 2, but for the correlation function Gc(x, t )
in Eq. (21b). All the various parameters are the same as in Fig. 2,
except for the value of x/λ, which here is fixed and taken to be equal
to 2. The asymptotic values of the various curves in (a) for λ → +∞,
extrapolated from a linear fit in λ−1, are (b1) −0.0606 (t/λ = 0.1),
(b2) −0.0869 (t/λ = 2), and (b3) −0.0914 (t/λ = 25).

scaling behavior put forward in Eq. (12); that is, for μi = μ,

Gp(x, t ; μ, u) ≈ λ−1 Gp(x/λ, t/λ, uλ). (22)

Indeed, the data for λGp(x, t ) versus t/λ at fixed x/λ = 1
appear to converge toward an asymptotic curve exhibiting
a nontrivial behavior when increasing λ. Notice also that
the long-time limit of such a curve for Gp is different from
zero, thus signaling the approach to a nontrivial stationary
state. Moreover, as expected (see the end of Sec. IV), such
a convergence is characterized by O(λ−1) corrections, which
is visible from the bottom panels of Fig. 2, which focus on
three different values of t/λ: 0.1 [Fig. 2(b1)], 2 [Fig. 2(b2)],
and 25 [Fig. 2(b3)].

We have extensively verified that the same scaling behavior
as in Eq. (22) can be observed for any value of the ratio x/λ
and of the rescaled dissipation strength uλ. Furthermore, an
analogous dynamic scaling is developed by the correlation
function Gc defined in Eq. (21b), as explicitly shown in Fig. 3.
For the sake of clarity in our presentation, in Fig. 3 we
adopt the same framework and conventions as in Fig. 2 and
use the same set of parameters, with the exception of x/λ,
which is set equal to 2. Also in that situation we notice a
remarkable agreement with the predicted O(λ−1) scaling for
finite-λ corrections (see bottom panels of Fig. 3).

As a further check of the dynamic scaling theory, Fig. 4
displays results for the density-density correlation function
Gn(x, t ) [see Eq. (21c)] for two different values of rescaled
dissipation strength uλ. Again, they support the dynamic
scaling behavior put forward in Sec. III [see, in particular,
Eq. (12)], taking into account that the renormalization-group
dimension of the density operator is now yn = 1. Therefore,
for μ̄i = μ̄,

Gn(x, t ; μ, u) ≈ λ−2 Gn(x/λ, t/λ, uλ); (23)
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FIG. 4. The correlation function Gn(x, t ) in Eq. (21c), multiplied
by λ2, versus the rescaled time t/λ. (a) is with dissipation strength
uλ = 1, while (b) is with uλ = 2. Here we fix x/λ = 1, μ̄i = μ̄

and take μ̄ = −1/λ. The horizontal dashed line indicates the zero
value, which is reached asymptotically at long times, and is plotted
as a guideline. The two insets show the convergence with λ of the
curves at t/λ = 2 (arrow in the two main panels). The rather complex
behavior of the large-λ convergence reflects the oscillatory behavior
of the curves as a function of t/λ, which becomes more evident on
the scale of the main frames for 0.3 � t/λ � 1. The dashed lines of
the insets are drawn to guide the eyes (they suggest that the large-λ
limit approached by the data is ≈ 0.127 for uλ = 1 and ≈ 0.155 for
uλ = 2).

that is, the product λ2Gn(x, t ) is expected to approach a
nontrivial asymptotic large-λ scaling behavior in terms of the
scaling variables x/λ, t/λ, and uλ, which eventually vanishes
for t/λ → ∞. The data in the two insets, which focus on a
fixed rescaled time t/λ = 2, reveal that the 1/λ corrections to
the scaling are, for this observable, superimposed to fluctua-
tions which witness the complex oscillatory behavior of the
scaling functions (compare the different scales on the y axes
of the main panels and of the insets).

Analogous scaling results can be obtained when approach-
ing the critical point from the right side: μ > μc; thus, μ̄ > 0,
as shown by the curves reported in Fig. 5 for the three
considered correlation functions. Comparing the results for
the asymptotic stationary states with those for μ < μc at equal
values of |μ̄| [see, in particular, Figs. 2(a), 3(a), and 4], we no-
tice that while the absolute values of the rescaled correlation
functions are the same when approaching the critical point
from either side, the respective signs for the correlation Gc

are exchanged.
Let us now discuss in more detail the behavior of stationary

states, which are approached in the large-time limit. Figure 6
shows that the quantities λGp,s and λGc,s, obtained by taking
the t → ∞ limit of Gp and Gc, approach an asymptotic large-
λ scaling form as a function of x/λ and uλ [cf. Eq. (13)].
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FIG. 5. Results for (a) λ Gp(x, t ), (b) λ Gc(x, t ), and
(c) λ2 Gn(x, t ) versus the rescaled time t/λ. The various system
parameters are set as in Fig. 4(a), with the exception of the
Hamiltonian control parameter μ̄i = μ̄, with |μ̄| = λ−1, which here
has been chosen to be positive (i.e., approaching the critical point
from the right side: μ > μc).

Indeed, they show that

Gp/c,s(x; μi, μ, u) ≈ λ−1 
p/c(x/λ, uλ), (24)

as put forward in Eq. (13). Moreover, they appear to decay
exponentially for sufficiently large distances, i.e.,

λ Gp/c,s ∼ exp [−x/ξs] = exp

[
− x/λ

ξs/λ

]
, (25)

where ξs defines a correlation length which depends on the
dissipation strength [see Eq. (14)]. Therefore, Eq. (25) also
implies the scaling behavior

ξs ∼ λ ≡ |μ̄|−ν, (26)

as predicted by the scaling equation (15).
All the results presented so far have been obtained for

μi = μ, thus in the absence of any Hamiltonian quench.
Relaxing this assumption, we found that the stationary values
approached by the various correlators in the long-time limit
are independent of the initial condition of the protocol, in
particular of the value of μi 	= μ, and thus obey the same
asymptotic scaling behaviors discussed above. This is explic-
itly shown in Fig. 7 for the correlation function Gp. This
fact is consistent with the observation that, for our choice of
dissipators, the asymptotic stationary states are indeed unique.

We conclude our analysis by mentioning that completely
analogous results can be obtained in the case the dissipative
mechanism is related to a uniform local pumping, associated
with the Lindblad operator L̂p, j in Eq. (20) (not shown).
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FIG. 6. Results for (a) λ Gp,s(x) and (b) λ Gc,s(x) in the large-
time limit (checked numerically with great accuracy) as a function
of the rescaled variable x/λ. Smaller and partially filled symbols
stand for three specific values of λ, according to the legend, while
fully filled symbols denote the values extrapolated for λ → +∞,
that is, by extrapolating to zero the data at finite λ−1 [see, e.g.,
Figs. 2(b1)–2(b3) and 3(b1)–3(b3)]. Black data sets and circles are
for a dissipation strength uλ = 1, while red data sets and squares
are for uλ = 2. Here we always choose μ̄ < 0. Straight lines are
exponential fits Gs ∼ e−(x/λ)/(ξ/λ) of the extrapolated numerical data
for λ → +∞. For both kinds of correlation functions, the obtained
decay rates are ξ/λ = 1.789 (for uλ = 1) and ξ/λ = 1.414 (for
uλ = 2), with a relative discrepancy smaller than 10−4, in support
of the scaling law (15).

VI. SUMMARY AND CONCLUSION

We have investigated the effects of dissipation on the dy-
namics of many-body systems close to a continuous quantum
phase transition, arising from the interaction with the envi-
ronment, as sketched in Fig. 1. The latter is modeled through
a class of dissipative mechanisms that can be effectively
described by Lindblad equations for the density matrix of the
system [6,7], with local and homogenous Lindblad operators,
such as those reported in Eqs. (9)–(11). This framework is of
experimental interest; indeed, the conditions for its validity
are typically realized in quantum optical and c-QED imple-
mentations [1,2,8].

We have analyzed how homogeneous dissipative mecha-
nisms change the scaling laws of closed systems at quantum
transitions. For this purpose, we have considered a relatively
simple dynamic protocol: the quantum many-body system is
initialized at t = 0 into the ground state of the Hamiltonian
Ĥ (μi ) for a given parameter μi; then for t > 0 the system
evolves according to the Lindblad equation (9), where the
coherent driving is provided by the Hamiltonian Ĥ (μ), and
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FIG. 7. The correlation function Gp(x, t ) in Eq. (21a), mul-
tiplied by λ, versus the rescaled time t/λ. Here we fix
x/λ = 1, uλ = 1, and μ̄ = −0.01 (corresponding to λ = 100). The
various curves correspond to different initial conditions, determined
by the ground states of the Kitaev Hamiltonian with changing μ̄i,
being either negative (i.e., μi < μc) or positive (μi > μc; see the
legend). The inset provides a magnification of the numerical data for
10 � t/λ � 20 (box in the main frame) after subtracting the asymp-
totic value for t/λ → ∞.

the dissipation arising from the system-bath interaction is
effectively described by the dissipator D[ρ] with a fixed
coupling strength u.

The large-time stationary state is usually noncritical, even
when the Hamiltonian parameters are critical. However, we
identified a low-dissipation regime where the dissipation is
sufficiently small to compete with the coherent evolution
driven by the critical Hamiltonian, leading to stationary
states which present critical behaviors depending also on the
strength of the dissipation coupling. The above-mentioned
regime is generally realized when the dissipation parameter
u scales as the gap � of the Hamiltonian of the many-body
system, i.e., u ∼ �. Therefore, it is a low-dissipation regime
in that the gap gets suppressed at the quantum transition, as
� ∼ ξ−z, where ξ is the large length scale developed by the
critical correlation functions. This reflects the fact that at a
quantum transition the perturbation arising from dissipation
is always relevant, such as the temperature at equilibrium
[5,12,13]. This also means that, when u 
 �, critical fluc-
tuations do not survive to the dissipation.

We argue that, under such low-dissipation conditions,
open many-body systems develop dynamic scaling laws,
which apply to the time evolution described by the Lind-
blad equation (9), in particular to the stationary states aris-
ing in the large-time limit (see Sec. III). Analogous to
the scaling laws of closed systems at quantum transitions,
the dynamic scaling behavior in the presence of dissipa-
tion is expected to be largely independent of the micro-
scopic details of both coherent and dissipative drivings,
like for the critical behavior of closed systems, which
depends only on the universality class of the quantum
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transition. Further investigation is called for to assess the
actual extension of the universality of the dynamic scaling
functions with respect to the properties of the dissipative
mechanisms.

The dynamic scaling laws obtained in this paper apply
to complementary regimes with respect to those recently
reported in Ref. [9], where finite systems of linear size L and
dynamic behavior for relatively small times t ∼ Lz were con-
sidered, thus not including the large-time stationary regime.
On the other hand, here we focused on infinite-size systems,
for which we managed to derive scaling laws extending to the
large-time limit of the evolution described by the Lindblad
equation, thus valid for the corresponding stationary states.

The dynamic scaling scenario has been checked within
fermion wires [see Eq. (17)] in the presence of dissipation due
to local incoherent pumping and decay, which are described
by the Lindblad operators reported in Eq. (20). Our numerical
analysis supports our general, phenomenological, dynamic
scaling theory addressing the competition between coherent
dynamics and dissipation at a continuous quantum transition.

Further checks of the dynamic scaling behaviors may turn
out to be interesting for other many-body systems at quan-
tum transitions, possibly belonging to different universality
classes, and/or dissipation mechanisms, including nonlocal
ones [29–31].

The arguments leading to this scenario are quite gen-
eral. We believe that analogous phenomena should develop
in any homogeneous d-dimensional many-body system at a
continuous quantum transition whose Markovian interaction
with the environment can be described by local or extended
dissipators within the Lindblad equation (9). These arguments
should also apply to non-Markovian system-bath couplings
[32] (not described by Lindblad equations), replacing u with
the parameter controlling the decay rate.

We finally mention that some experimental breakthroughs
were recently achieved in the control of dissipative quan-
tum many-body dynamics through different platforms, such
as Rydberg atoms and c-QED technology. Quantum critical
behaviors in such an out-of-equilibrium context were reported
in Refs. [19,33,34].
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