
Journal of Computer Virology and Hacking Techniques manuscript No.
(will be inserted by the editor)

Formalization and Co-simulation of Attacks on
Cyber-physical Systems

Cinzia Bernardeschi · Andrea Domenici · Maurizio Palmieri

Abstract This paper presents a methodology for the

formal modeling of security attacks on cyber-physical

systems, and the analysis of their effects on the system

using logic theories. We consider attacks only on sen-

sors and actuators. A simulated attack can be triggered

internally by the simulation algorithm or interactively

by the user, and the effect of the attack is a set of

assignments to the variables defined in the Controller.

The global effects of the attacks are studied by inject-

ing attacks in the system model and co-simulating the

overall system, including the system dynamics and the

control part. Interesting properties of the behaviour of

the system under attack can also be formally proved by

theorem proving. The INTO-CPS framework has been

used for co-simulation, and the methodology is applied

to the Line follower robot case study of the INTO-CPS

project. The theorem prover of PVS has been used for

deriving formal proofs of invariants of the system under

attack.

Keywords Security, Cyber-physical attacks, Co-

simulation, Formal verification

1 Introduction

Model-based design of cyber-physical systems (CPS) al-

lows us to analyze the system behavior before a physi-

cal prototype of the system is built. Simulation is one

of the techniques that are usually applied together with

testing in the analysis of systems behaviors. In the case

of cyber-physical systems, simulation often takes place

in the form of co-simulation, which allows sub-systems,

Dept. of Information Engineering, University of Pisa
Lgo. L. Lazzarino 1, I-56122 Pisa, Italy
Tel.: +39-050-2217541
E-mail: first.last@unipi.it

each modeled with its most appropriate languages and

tools, to be composed together. The main advantage of

co-simulation is modeling flexibility, because it does not

require a single modeling language for all system parts

(e.g., discrete and continuous parts). The Functional

Mockup Interface (FMI) [8] is an emerging standard

for co-simulation of cyber-physical systems.

Moreover, model-based design based on formal meth-

ods enables proofs of correctness for the system. For-

mal methods have been used intensively in the past in

the development of safety-critical systems, and they are

also assuming a fundamental role in the security field.

The main advantage of formal methods in the field of

security is that they are the only technique that can be

used to formally prove resilience to attacks. For exam-

ple, [24] reports on the history of application of formal

methods to cryptographic protocol analysis, in [3] ab-
stract interpretation was applied to certify programs

for secure information flow, and in [25] model checking

is applied in order to identify attacks that steal data

stored.

Formal method have already been applied for fault

injection and simulation of the system after the occur-

rence of faults (among which [5,11]). In this paper, we

propose a similar approach for the analysis of system

security.

A CPS basically consists of a physical plant and a

feedback controller. Attacks to CPSs include physical

attacks on sensor devices or actuators, attacks on com-

munications; and attacks on computing components. In

this work, only attacks on sensors and actuators by ma-

nipulation of the sensor measurements provided to the

controller, and by the alteration of data sent from the

controller to the actuators are considered. These at-

tacks affect the physical processes of the CPS. Two

important parameters of the attack are (i) the time

at which the attack occurs, because some states can

2 Cinzia Bernardeschi et al.

be more critical than others and an alteration of such

states can lead to catastrophic failure; and (ii) the du-

ration of the attack, since many attacks may have no

adverse effects if they last only for a short time.

The Prototype Verification System (PVS) tool [31],

a specification, verification, and simulation environment

based on higher-order logic, is used for the specification

of the control parts of CPSs. The physical parts are as-

sumed to be described by other modelling tools. The

effects of attacks to sensors/actuators are modelled by

functions in the theory of the controller that change the

values of data exchanged between the controller and

sensors/actuators, according to the type of attack.

Then the INTO-CPS co-simulation framework [21]

is used to generate simulation traces of the overall sys-

tem. Results on a case study (a simple robot vehicle)

are presented.

Co-simulation can be used to study the effect of the

attacks on the dynamic of the complete CPS. Interest-

ing properties of the CPS can also be proved by the PVS

theorem prover, by building a theory that describes the

physical part at an abstraction level that retains the

details useful for the proof, and using such theory with

the theory of the controller. In particular, invariants

can be proved using induction on the length of the co-

simulation run.

The methodology is general and can be applied to

other type of attacks. Moreover, our analysis can be

used to identify weaknesses of the CPS system. It can

be useful also for the definition of mechanisms for attack

detection, attack tolerance, and the estimation of attack

consequences.

The paper is organized as follows: Section 2 provides

a review of related works; Section 3 briefly describes the

PVS framework, and the co-simulation framework; Sec-

tion 4 describes our methodology to formally model an

attack; Section 5 shows how to perform formal analysis;

Section 6 shows an application of the method, using a

Line Follower robot as a case study (the theory of the

line follower robot, the theories of the modeled attacks

and results of the co-simulation); Section 7 presents re-

sults on formal verification; Section 8 concludes the pa-

per.

2 Related work

A recent survey by Humayed et al. [16] reports on a

large number of publications from the literature on CPS

security and proposes a classification framework based

on three orthogonal criteria: security, with the cate-

gories of threats, vulnerabilities, attacks, and controls;

components, with the categories of cyber, physical, and

cyber-physical components; and systems, with categories

related to general system characteristics, such as archi-

tecture or application field.

A similar work by Alguliyev et al. [1] analyses and

classifies existing research papers on the security of

cyber-physical systems. The paper discusses the main

difficulties and solutions for the estimation of the con-

sequences of cyber-attacks by considering attacks mod-

elling and detection, and the development of security

architectures. A tree of types of attacks is proposed,

that includes attacks on sensor/actuators devices, at-

tacks on computing components, attacks on communi-

cations, and attacks on feedback.

Yampolskiy et al. [35] classify cyber-physical attacks

according to two dimensions: the Target Domain (the

element which is directly targeted by the attack), and

the Effect Domain (the victim elements that suffer the

effects of the attack). In a CPS, these two elements

can differ, e.g., an attack to a sensor (target element),

can change the position (victim element) of a vehicle.

They propose an approach based on Data Flow Dia-

grams (DFD) and the STRIDE threat model.

Burmester et al. [10] describe a formal model for

CPS security based on hybrid timed automata and the

Byzantine fault model, using an international natural

gas distribution grid as a case study.

Ferrante et al. [13] approach the issue of security re-

quirements specification for embedded systems by defin-

ing a UML profile and developing an automatic pro-

cess to generate system requirements from user require-

ments.

Mitchell et al. [26] present a model-based approach

for modelling and analysis of attacks and countermea-

sures in CPSs based on a Stochastic Petri Nets (SPN)

formalism. The approach is applied to an electrical grid.

Khalil [18] presents an approach based on attack

trees and simulation of probabilistically timed physical

attacks for vulnerability assessment of critical infras-

tructures.

Our approach differs from the previous ones since

both simulation and formal proofs of CPS resilience to

an attack can be performed in the adopted framework.

Much research has been carried out on model-checking

and theorem-proving formal verification methods for

CPSs. Among others, SpaceEx [15] and HySAT [14]

are symbolic model checkers for hybrid systems; KeY-

maera [34] is a theorem prover for hybrid systems based

on differential dynamic logic that has been applied in

different application fields from transportation [17] to

robotic systems [27].

Among the languages and verification systems, higher-

order logic can be successfully applied to CPSs for its

expressiveness and versatility. Our work relies on PVS [31],

Formalization and Co-simulation of Attacks on Cyber-physical Systems 3

which defines theories in a higher-order logic language,

and provides an integrated view of formal verification

by theorem proving and simulation.

Recently, a theorethical framework for the estima-

tion of the impact of attacks to sensor devices in CPSs

has been presented by Lanotte et al. [19] using non-

deterministic probabilistic labelled transition systems.

The method is based on weak bi-simulation, which has

been extended with time and the notion of equivalence

up to a given tolerance, measuring the probability that

the system and the system under attack have the same

behaviour.

Differently from [19], in our work co-simulation re-

sults are used to compare experimentally the normal

behaviour of the system with the behaviour under at-

tack, and formal proofs are used to check if the two

behaviours are equivalent (i.e., the attack has no ef-

fect), or to derive hypotheses under which equivalence

is guaranteed. Moreover, attacks on actuators are also

covered, in addition to attacks on sensors.

3 Background

3.1 The PVS Environment

The Prototype Verification System (PVS) [31] is an

interactive theorem-proving environment whose users

can define theories in a higher-order logic language and

prove theorems with respect to them. The language of

PVS is a purely declarative language, but its PVSio ex-

tension [29] can translate PVS function definitions into

Lisp code, so that a PVS expression denoting a function

application with fully instantiated arguments can be

interpreted as an imperative function call. The PVSio

extension includes input/output functions allowing the

system prototype to interact with the user and the com-

puting environment. Moreover, MisraC code can be au-

tomatically generated from PVS theories for automata

[22,23], using the PVSio-web tool-set [30].

The PVS specification language provides basic types,

such as Booleans, naturals, integers, reals, and others,

and type constructors to define more complex types.

The mathematical properties of each type are defined

axiomatically in a set of fundamental theories, called

the prelude. Among the complex types, the ones used

in this work are record types and predicate subtypes.

A record is a tuple whose elements are referred to

by their respective field name. For example, given the

declarations:

wheels: TYPE = [#

left: Speed,

right: Speed #]

axle: wheels =

(# left := 1.0, right := 2.0 #)

axle is an instance of type wheels and the expressions

left(axle) and right(axle) denote the speeds of the

left and right wheels of axle, respectively. Equivalent

notations are axle‘left and axle‘right.

The overriding operator := in a WITH expression

redefines record fields. With the declarations above, the

expression
axle WITH [left := -1.0]

denotes the record value (#-1.0, 2.0#).

An example of predicate subtype is the following:

LightSensorReading: TYPE =

{ x: nonneg_real | x <= 255 }

which represents the real numbers in the [0, 255] in-

terval.

The PVS syntax includes the well-known logical con-

nectives and quantifiers, besides some constructs sim-

ilar to the conditional statements of imperative lan-

guages. These constructs are the IF ... ENDIF expres-

sion and the COND ... ENDCOND expression. The lat-

ter is a many-way switch composed of clauses of the

form condition → expression where all conditions must

be mutually exclusive and cover all possible combina-

tions of their truth values (an ELSE clause provides a

catch-all). The PVS type checker ensures that these

constraints are satisfied.

Definitions within a given theory may refer to def-

initions from other theories. This makes it possible

to build complex system specifications in a modular

and incremental way. Theory control th below im-

ports robot th and defines functions for controlling the

robot.

robot_th: THEORY

BEGIN

id: posnat

State: TYPE [# ... #]

....

END robot_th

control_th: THEORY

BEGIN IMPORTING robot_th

ACC_STEP: Speed = 0.1

accelerate(st: State): State

BRAKE_STEP: Speed = 0.05

brake(st: State): State

...

END control_th

The PVS environment includes the NASALIB the-

ory libraries [12] providing axioms and theorems ad-

dressing many topics in mathematics, including real

number analysis, and it can be applied to model both

the discrete and the continuous part of the system [6].

4 Cinzia Bernardeschi et al.

CO−SIMULATION

ENGINE

FMUFMU

FMU FMU

Fig. 1 FMI architecture.

The PVS theorem prover is based on the sequent

calculus [32]. The structure of a sequent is in the follow-

ing form, where the turnstile symbol ‘|---’ separates

the antecedent formulae above it from the consequents

below.
{-1} A1

...

{-n} An

|-------

{1} B1

...

{m} Bm

A sequent is proved if (i) any consequent Bi is true,

or (ii) any antecedent Ai is false, or (iii) any formula

occurs both as an antecedent and as a consequent. The

proof of a sequent consists in applying various inference

rules until one of the above sequent forms is obtained. A

formula to be proved is represented as a sequent without

antecedents.

3.2 The Co-simulation Framework

Co-simulation is the joint simulation of independent

sub-models each representing a component or subsys-

tem of the overall system.

In the FMI standard [8], co-simulation is performed

by a number of Functional Mockup Units (FMUs), each

responsible for simulating a single model in the native

formalism with the tool used to create the model. An

FMU is a wrapper that executes commands from an

orchestration process, called a Co-Simulation Engine

(COE), interacting with the simulation software encap-

sulated in the FMU, in this case the PVSio interpreter.

The COE communicates with the FMUs to exchange

data, in a master-slave configuration. The FMI archi-

tecture is shown in Figure 1.

The COE and the FMU exchange commands and

data using buffers in the FMU. The COE invokes (i)

fmi2Set() to update the values of the input variables

in the buffers of the FMU; (ii) fmi2DoStep() to execute

a co-simulation step; and (iii) fmi2Get() to get the new

values of the output variables from the buffers of the

FMU.

A PVSio-based FMU implements fmi2DoStep() to

copy the values of the input variables from the FMU

buffers to the PVSio state; invokes the simulator and

copies the values of the output variables from the PVSio

state to the buffers.

INTO-CPS [4,21] is a co-simulation environment

that integrates tools for the engineering of cyber-physical

systems, covering both modeling of discrete and contin-

uous behaviors and formal proofs.

Examples of tools available in INTO-CPS for mod-

eling and analysis are Modelio [28], Overture [20], and

20-sim [9].

In [33], the authors extended the INTO-CPS co-

simulation framework with FMUs based on the PVSio

Formalization and Co-simulation of Attacks on Cyber-physical Systems 5

Fig. 2 The INTO-CPS Line Follower robot case study.

tool. Such FMUs can also implement a user interface

using PVSio-web [30], allowing user interaction in the

co-simulation.

With the approach used in this work, the PVS lan-

guage is used to model the control part of a CPS, while

the plant components are modeled with other industry-

standard languages such as Simulink, 20-Sim, or Mod-

elica. Each of these environments can produce an FMU.

In particular, the FMU for the PVS theory is produced

with the PVSio-web development tool, introduced in

the previous subsection.

Fig. 3 Architecture of interactive FMUs.

Let us consider the INTO-CPS Line Follower robot

case study (http://projects.au.dk/into-cps/). The Line

Follower robot is a small vehicle that can follow a path

defined by a black line painted on a white floor. Figure 2

shows a practical realization of the robot.

Figure 3 shows the co-simulation framework for the

INTO-CPS Line Follower robot case study with auto-

matic and manual control.

The FMU for the controller of the robot is modeled

in PVS and the user interface for the robot is a joystick

rendition, i.e., a picture of a real device with PVS func-

tions assigned to widgets and displays. A PVSio-web

module interprets user interactions as messages sent to

the FMU, which executes the corresponding functions.

The user can acquire control of the robot from the

joystick, manually control the robot with buttons, and

switch the robot back to automatic control. On the

right-hand side of the joystick, the path followed by

the robot is shown. On the left-hand side of the joy-

stick, information on the velocity and direction of the

robot are reported (the upper “D” stands for the gear

(i.e., direct, reverse or neutral).

In the developed environment, a real joystick could

also be used in the co-simulation instead of the virtual

one. The Line Follower robot case study is better ex-

plained in Section 6.

4 Modeling systems and attacks

The behavior of a cyber-physical system relies on a con-

trol loop, designed to implement the desired control

laws. At each cycle of the loop, sensors in the plant

send data to the controller, which acts on the plant

sending commands to the actuators.

In the FMI framework, the controller and the plant

are FMUs, and the COE links outputs of the Plant

FMU with inputs of the Controller, and viceversa.

4.1 Controller theories

A key feature of the PVS environment is the possibil-

ity of specifying a system in a way that is both purely

formal and executable. This is made possible by the

PVSio ground evaluator, which, as hinted to in Sec-

tion 3.1, can interpret a theory and interact with the

computing environment.

A CPS controller can be specified with a theory with

the following schema:

– Definitions of application-specific variable or con-

stant magnitudes.

– A data structure representing the instantaneous state

of the controller, typically including values read from

sensors, values sent to actuators, time information,

and other possible data.

– One or more functions to update the state at each

discrete time step.

– An initial state.

– A time-advancement function that recursively up-

dates the state.

The specification consists of two basic elements:

the state of the sub-system (State) and the function

tick(State), which given a state, according to control

6 Cinzia Bernardeschi et al.

laws, computes the output to be forwarded to other

sub-systems.

4.2 Attack theories

In this work, we consider the following types of attacks:

– Attack to sensors. The effect of such an attack is

the corruption of data read from sensors. At the

beginning of each co-simulation step, such data are

stored into the input variables of the controller’s

state.

– Attack to actuators. The effect of such an attack is

the corruption of data sent to actuators. At the end

of each co-simulation step, such data are stored into

the output variables of the controller’s state.

The FMU of the control part is modified as follows:

– Each attack is modeled by a function that alters the

system state according to the attack’s envisioned

effects.

– For each attack, the time of occurrence of the at-

tack must be specified, distinguishing between per-

manent attacks and temporary attacks, and, in the

latter case, distinguishing between sporadic attacks

and attacks executed only once.

– An attack can be simulated in two ways: (i) It can

be generated internally by the simulation algorithm,

or (ii) it can be activated interactively by the user.

In particular, an attack A is formally specified by a

set of state variables, a set of clocks and a set of guarded

statements:

A = 〈V arA, ClkA ∪ {stepCounter}, ComA〉

– State variables. V arA is the set of variables of the

state of the controller that are accessed by the at-

tacker.

– Clocks. Two types of clocks are used: a set ClkA
of attacker clocks and a global clock stepCounter,

which is initialized to 0 when a co-simulation run

starts and is incremented for each co-simulation step.

The attacker cannot modify this global clock.

– Guarded statements. ComA is a set of guarded state-

ments. A guarded statement has the form:

[condition→ x1 := v1; · · · ;xn := vn], where condition,

the guard of the statement, is a condition on clocks

(using logical operators ∧, ∨, =, 6=) and the state-

ment is a sequence of assignments to state variables

or to local clocks (xi := vi; with x ∈ V arA ∪ClkA).

Guards must be mutually exclusive.

To model attacks, we extend the state of the system

in the controller with the stepCounter and with the set

of local clocks Clock A.

The effects of the attack are described by a function

in PVS, whose skeleton is described below:

fun_attack(st: State): State =

IF condition

THEN st

WITH [x1 := v1,

...,

xn := vn

]

ELSE st

ENDIF

Some possible attacks could be:

- every 20 simulation steps, increment by 3 the value

read from a sensor;

- every 100 simulation steps, lock at zero the value

sent to an actuator for 20 steps;

- double the value of a sensor randomly in the co-

simulation.

A local clock is used to count the number of steps

between two attacks; and two local clocks are used to

model the lock-at-zero attack, one to count the duration

of the attack and another to count the steps between

two attacks.

Probabilistic behaviors can be encoded in attacks

using the function NRANDOM(n: posnat), which is avail-

able in the PVS framework and that implements a uni-

form pseudo-random number generator that returns a

natural number in the interval [0::n). Using the lan-

guage of PVS, more sophisticated attacks could also be

implemented.

The control algorithm comprises a set of pre-defined

functions to model different types of attacks. These

functions can be executed in two modes, programmed

or interactive.

4.3 Programmed Attacks

An attack has an initial time and a duration both of

which may be hardcoded or random.

Let Sensor attack be a function modeling an at-

tack to sensors. The behavior of the system under at-

tack is specified as the result of the function tick()

on the extended state of the system after the attack to

sensors:
system_under_attack(st: State) :

State =

LET st1 = Sensor_attack(st),

IN tick(st1)

We assume that State is the state of the system

with the addition of a variable for each clock defined in

the model of the attacks, and tick() is the function ap-

plied by the controller. The LET ... IN ... construct

Formalization and Co-simulation of Attacks on Cyber-physical Systems 7

introduces a definition to be used in the expression fol-

lowing IN.

If Actuator attack is a function modeling an at-

tack to actuators, the behavior of the system under at-

tack is specified as the result of the Actuator attack

function on the state of the system generated by func-

tion tick().
system_under_attack(st: State) :

State =

LET st1 = tick(st)

IN Actuator_attack(st1)

Finally, the two attacks could be combined. Since

attacks to sensors affect the inputs to the con-

troller and attacks to actuators affect its outputs,

system under attack first passes the current state to

the function modeling sensor attacks, then the resulting

state is passed to the controller, which computes an-

other state that is further transformed by the function

modeling actuator attacks, as shown in the following

code.
system_under_attack(st: State) :

State =

LET st1 = Sensor_attack(st),

st2 = tick(st1)

IN Actuator_attack(st2)

4.4 Interactive Attacks

Interactive attacks are activated and controlled by a

simulation user playing the role of the adversary. This is

implemented through the definition of a predefined set

of attacks as functions in the PVS theories, and the cre-

ation of button widgets on the graphical interface, one

widget for each attack function (Figure 4). An attack

starts when a user clicks the button. The function linked

to the attack is invoked at each co-simulation step. The

attack terminates when the user clicks ”Stop”. Attacks

can be executed in sequence during a co-simulation run,

but only one attack can be active at a time.

This implementation uses the PVSio-web [30] tool,

which allows us to create the graphical interface of a

device and to link interface elements with functions de-

scribing how the device responds to user actions.

When an action is executed (e.g. user clicks a but-

ton), a JavaScript module sends the appropriate com-

mand to the PVS FMU that executes the action in

the co-simulation step. In our case, the command is

“execute fun attack id() before tick()” or “execute

fun attack() id after tick()” depending on the type

of attack.

Interactive attacks have some limitations:

– when an attack is activated interactively, it is inde-

pendent of the current co-simulation timestep, and

Fig. 4 A skeleton of user interface for interactive attacks.

– each sensor/actuator can be assigned distinct val-

ues, but this values are fixed and cannot be changed

during the attack.

When the user clicks ”Stop”, the simulated system

is no longer under attack, until a new attack is acti-

vated. As a consequence, it is possible to change the

number and the duration of the attacks during a co-

simulation run. Further improvements to overcome the

limitations are under development.

5 Analysis of system behaviour

The framework proposed in [33] to generate an FMU

starting from a PVS theory enables the usage of the

co-simulation for validation of the system under attack.

Modelling attacks in PVS enables the usage of the theo-

rem prover for verification. Example of verification and

validation will be applied on the case study.

5.1 Co-simulation for validation

Function fmi2DoStep() invokes the transition function

system under attack(State). Assuming the system

in under sensor attack, values set in the input variable

buffer by the fmi2Set() function will be corrupted by

the attack function before the invocation of the tick()

function. Likewise, if the system is under actuator at-

tack, the changes of the state produced by the tick()

function will be corrupted by the attack function before

the invocation of the fmi2Get().

In both cases, data sent from the controller FMU to

the plant FMU will suffer the effects of the attack thus

affecting the whole co-simulated system. Users can run

the co-simulation to validate the effects of the attack;

if users create an attack that is expected to hinder the

performance of the system then, they need to compare

the co-simulation of the original system against the sys-

tem under attack and check that the performance of the

8 Cinzia Bernardeschi et al.

latter is worse. Through the co-simulation it is possible

to check also if the system stops at the specific time.

Users have three different methods to analyse the

results of the co-simulation: (i) inspect the PVSio-web

user interface; (ii) inspect the graph generated at run-

time by the INTO-CPS application (for example, Fig-

ure 7 shows the speed of the robot), or (ii) inspect the

log file produced by INTO-CPS at the end of the co-

simulation for more detailed information.

5.2 Formal verification of system under attack

Formal proofs can be used to verify key properties of

the control system under attack. In particular, an in-

variant is a property that must be proved for all states

of all possible execution traces. This part only applies

to programmed attacks because interactive attacks rely

on the non deterministic behaviour of the user, which

demands a different approach. An execution trace of the

system is a sequence of states that starts with an initial

state and applies the state-transition function to gener-

ate subsequent states. The following function kth step

can be used to define all sequences of states given by

all possible executions.

kth_step(K: nat): RECURSIVE State =

IF (K = 0) THEN init_state

ELSE system_under_attack(kth_step(K-1))

ENDIF

MEASURE K

Function kth step takes parameter K and recur-

sively applies K steps of the state-transition function
system under attack. In PVS, the termination of the

recursion has to be demonstrated, and the MEASURE

part provides such information to the type checker and

prover.

Function kth step is convenient when proving in-

variants since it allows building the proof by induction

on the length of the trace. For instance, the proof of an

invariant P can be expressed by the following theory:

TH1: THEOREM

FORALL(K: nat):

P((kth_step(K))

PVS provides support for different induction schemes,

e.g., classical induction, or structural induction on graphs

and paths.

Users can enable the verification of the whole system

(the plant and the controller) by expressing the plant

model in PVS. Usually an abstract model of the plant is

built. The abstract model must contain enough details

to keep the difference between the original system and

the abstract one below an acceptance threshold of toler-

ance for the properties that must be proved. An exam-

ple of abstract model is shown in Section 7.2, where the

time-continuous kinematics of the Line Follower robot

are modelled with a discrete-time PVS theory, assum-

ing a constant angular and linear speeds of the robot

for every ∆ discretization time.

6 A case study

The system considered in this work is the Line Fol-

lower robot case study of the INTO-CPS project1, see

Figure 2 in Section 3.

The robot has two drive wheels each propelled by

its own independent motor, and two optical sensors,

symmetrical with respect to the longitudinal axis, that

measure the reflected light intensity of the floor imme-

diately ahead of the robot. The robot starts astride the

black line, so that both sensors see the white floor. The

robot keeps heading forward as long as both sensors

detect a white color. When the path curves, one sensor

intercepts the black line while the other still sees the

white floor.

The robot controller then steers the vehicle by slow-

ing down the internal wheel (on the side of the sensor

detecting the line) with respect to the external one. In

addition to the automatic mode of operation, it is pos-

sible for an operator to override the automatic control

and drive the robot with a remote dashboard (see Fig-

ure 3 in Section 3).

This work considers the automatic mode of oper-

ation, identified by the string AUTO on the graphical

interface (top of Figure 3).

6.1 Robot Theory

In the following, we show the main parts of a PVS the-

ory describing the above system.

First, some type definitions provide the types of

data needed for the model: CruiseControl to distin-

guish the two modes of operation, LightSensorReading

to specify the values from the sensors, LightSensors

to access the left and right sensor readings, Speed to

specify the angular speed range for the wheels, and

MotorSpeed to control the two wheel motors, and Gear

to distinguish the three modes of the gear train. Posi-

tive and negative speed values represent clockwise and

counterclockwise rotation, respectively.

robotUI: THEORY

BEGIN

1 http://projects.au.dk/into-cps/

Formalization and Co-simulation of Attacks on Cyber-physical Systems 9

CruiseControl: TYPE = { AUTO, MANUAL }

LightSensorReading: TYPE =

{ x: nonneg_real | x <= 255 }

LightSensors: TYPE = [#

left: LightSensorReading,

right: LightSensorReading

#]

Speed: TYPE =

{ x: real | x >= -1 AND x <= 1 }

MotorSpeed: TYPE = [#

left: Speed,

right: Speed

#]

Data of the above types compose the system state.

State: TYPE =

[# lightSensors: LightSensors,

motorSpeed: MotorSpeed,

gear: Gear,

time: real,

cc: CruiseControl,

%fields for attacks

#]

The control algorithm is specified by functions that

update the system state by setting the motor speed de-

pending on the sensor readings. In the two following

functions, a value of 150 units is chosen as the thresh-

old thr between a high (white) and a low (black) light

intensity. Note that for each combination of readings,

the two motors have opposite directions, due to the me-

chanical arrangement.

thr: LightSensorReading = 150

low: Speed = 0.1

med: Speed = 0.4

hi: Speed = 0.5

update_left_motor_speed(st: State): Speed =

LET ls = lightSensors(st) IN

COND ls‘right <= thr AND ls‘left <= thr -> med,

ls‘right <= thr AND ls‘left > thr -> hi,

ls‘right > thr AND ls‘left <= thr -> low,

ELSE -> motorSpeed(st)‘left

ENDCOND

update_right_motor_speed(st: State): Speed =

LET ls = lightSensors(st) IN

COND ls‘right <= thr AND ls‘left <= thr -> -med,

ls‘right <= thr AND ls‘left > thr -> -low,

ls‘right > thr AND ls‘left <= thr -> -hi,

ELSE -> motorSpeed(st)‘right

ENDCOND

The simulation is driven by a tick() function that

is called at each simulation step to update the motor

speeds and increment time:

tick(st: State): State =

IF cc(st) = AUTO

THEN st WITH [motorSpeed := (#

left := update_left_motor_speed(st),

right := update_right_motor_speed(st)#),

time := time(st) + 0.01]

ELSE st WITH [time := time(st) + 0.01]

ENDIF

where init state is a constant of type State defining

the initial state.

Finally, the theory defines functions (not shown)

called from the user interface to switch between au-

tomatic and manual control, and in the latter case to

execute user requests, such as accelerating, decelerat-

ing, or steering.

Figure 5 shows the results of the co-simulation (blue

line) superimposed on the expected path (gray line)

when the system is co-simulated for 20 s, assuming a

co-simulation step of 0.01.

6.2 Attack Theories

An attack is injected into the system by executing the

controller together with the functions modeling attacks.

In order to model attacks, the robot state is extended

with fields characterizing the different types of attacks.

In the present example, three attacks are considered:

an attack to sensors that occurs once and acts indefi-

nitely; another attack to sensors that repeated N num-

ber of steps ever M steps; and attack to actuators that

occurs sporadically with a duration of one co-simulation

step.

The following function implements an attack that indef-

initely forces to black the value read by the left sensor,

starting from a randomly chosen co-simulation step.

Function NRANDOM in the initial state is invoked

with an upper bound of 500. Variable lightSensors

is modified (140 is the constant for black color); clock

step of attack specifies the co-simulation step at which

the attack starts. The attack is defined as:

V ar = {lightSensors}
Clock = {start step, stepCounter}
Com is the body of the following function.

attack1(st: State): State = % sensor attack

IF stepCounter(st) > start_step(st)

THEN st WITH [

lightSensors :=

(# left := 140,

right := st‘lightSensors‘right #)

]

ELSE st

ENDIF

The following function implements an attack that

forces to white the value read by the left sensor for

10 Cinzia Bernardeschi et al.

L steps every M timesteps. This is repeated indefi-

nitely, starting from the first co-simulation step. Vari-

able lightSensors is modified (160 is the constant for

white color); clock elapsed steps specifies the number

of steps since the last attack has been activated. The

attack is defined as:

V ar = {lightSensors}
Clock = {elapsed steps, stepCounter}
Com is the body of the following function.

attack2(st: State): State = % sensor attack

IF elapsed_steps(st) <= L

THEN st WITH [

lightSensors :=

(# left := 160,

right := st‘lightSensors‘right #),

elapsed_steps := elapsed_steps + 1

]

ELSE IF elapsed_steps(st) < M

THEN st WITH [

elapsed_steps := elapsed_steps + 1

]

ELSE IF elapsed_steps(st) = M

THEN st WITH [

elapsed_steps := 0]

ENDIF

The following function implements an attack that spo-

radically switches off the power of each motor for one

co-simulation step. The co-simulation step, at which

the power of each motor is switched off, is chosen ran-

domly. Function NRANDOM is invoked in the initial

state and in the attack function with an upper bound

of 20. Clock occurrence step specifies the co-simulation

step at which the next occurrence of the attack starts.

The attack is defined as:

V ar = {motorSpeed}
Clock = {occurrence step, stepCounter}
Com is the body of the following function.

attack3(st: State): State = % actuator attack

IF stepCounter(st) = occurrence_step(st)

THEN st WITH [

motorSpeed :=

(# left := 0,

right := 0 #),

occurrence_step := NRANDOM(20) + 1

]

ELSE st

ENDIF

The full definition of State, including information

about the attacks above, is the following:

State: TYPE =

[# % ... robot state

% global clock

stepCounter:int,

Fig. 5 No attack.

%local clocks

start_step: int, % attack1

elapsed_steps: int, % attack2

occurrence_step: int % attack3

#]

In the initial state, the step at which attack1 start

and the the step at which the first occurrence of at-

tack3 starts are initialized with a random value; the

elapsed steps since the last occurrence of the attack2 is

initialized to 0:
init_state: State =

(# % ... robot state

% global clock

stepCounter := 0;

% attack1

start_step = NRANDOM(500),

% attack2

elapsed_steps = 0,

% attack3

occurrence_step = NRANDOM(20) + 1

#)

Function tick() implements the controller as previ-

ously shown in Section 6.1, except that it also updates

the global clock (stepCounter).

tick(st: State): State =

IF cc(st) = AUTO THEN

% ... omitted

stepCounter := stepCounter + 1;

ELSE

% ... omitted

stepCounter := stepCounter + 1;

ENDIF

6.3 Execution Traces

Figure 6 shows the sample trajectory when the attack3

to actuators occurs. The robot follows the nominal path,

but the execution traces, reporting the simulated time

at each simulation step, show that the robot is delayed

with respect to the resulting trace shown in Figure 5.

This is expected, since the attack consists in stopping

Formalization and Co-simulation of Attacks on Cyber-physical Systems 11

Fig. 6 Attack to actuators (attack3).

Fig. 7 INTO-CPS graph of left motor (blue line) and right
motor (red line) speed under attack3.

Fig. 8 Attack to sensors: attack1.

both motors for a short time. Since the motors stop

at the same time, the robot heading at each instant is

unchanged.

Figure 7 shows the two outputs of the control FMU

during a co-simulation run: according to the actuator

attack function the values on the graph sporadically go

to zero.

Figure 8 show the sample trajectory for the attack1

to sensors. The left sensor is stuck at a fixed value, so

that the robot starts turning at the onset of the attack,

ending up in a closed trajectory.

Figure 9 shows the effect of the attack2 to sensors,

assuming L = 40 and M = 2*L. At a given point, the

robot looses the line. The same attack under different

values of L has no effect. In case of L = 20, the tra-

jectory of the robot is equivalent to the one shown in

Figure 5. This example is better investigated in Sec-

tion 7.3.

Fig. 9 Attack to sensors: attack2.

Fig. 10 User interface for interactive attacks of LFR.

6.4 Interactive attack theory

The attacks formalized in the previous section can also

be performed interactively by combining the functions

shown below with the user interface shown in Figure 10.

ActsZero (Actuators to zero) forces the motor speed to

zero and SLBlack (Sensor Left Black) forces the left

sensor to a value above the threshold.

SLBlack(st:State): State = st WITH [

lightSensors := (#

left:=140,

right:=st‘lightSensors‘right

#)

]

ActsZero(st:State): State = st WITH [

motorSpeed := (# left:=0,right:=0#)

]

Figure 10 shows a co-simulation run where the user

(i) has pushed the SLBlack button after the start, forc-

ing the robot to turn left, and then (ii) has pushed

the Stop button to stop the attack and successively has

pushed the ActsZero button while the robot is the mid-

dle of the shape, far away from the line.

7 Formal verification

In this section some invariants of the system are proved.

7.1 A property of the Controller

As an example of a possible verification on the con-

troller’s behavior, this section shows results concerning

attacks causing a sensor to be stuck at a given value.

12 Cinzia Bernardeschi et al.

In particular, the following theorem shows that, un-

der an attack forcing the left sensor to read a “black”

value (i.e., greater than thr), the robot can never turn

right (i.e. motorSpeed of the right wheel will always be

greater or equal than motorSpeed of the left wheel).

N: above(1)

never_right_random: THEOREM

FORALL(K: above(NRANDOM(500) + N)):

motorSpeed(kth_step(K))‘left

<= -motorSpeed(kth_step(K))‘right

The proof is inductive on the number of steps K.

The prover’s induct rule generates the induction base

and the inductive step:

Rule? (induct K)

Inducting on K on formula 1,

this yields 2 subgoals:

never_right_random.1 :

|-------

{1} motorSpeed(

kth_step(NRANDOM(500) + N + 1))‘left <=

-motorSpeed(

kth_step(NRANDOM(500) + N + 1))‘right

.

.

.

never_right_random.2 :

|-------

{1} FORALL (ja: above(NRANDOM(500) + N)):

motorSpeed(kth_step(ja))‘left <=

-motorSpeed(kth_step(ja))‘right

IMPLIES

motorSpeed(kth_step(ja + 1))‘left <=

-motorSpeed(kth_step(ja + 1))‘right

Both subgoals are proved with a lengthy but obvi-

ous sequence of function expansions, introduction of a

small number of intermdiate lemmas (not shown), and

automatic simplifications with the simplify rule, closed

by invocations of the assert and grind rules that con-

clude the subproofs.

7.2 A theory for the robot kinematics

In the preceding sections, the robot kinematics have

been simulated by an FMU encapsulating a 20-sim

model, and formal verification has addressed only the

controller model. In this section, a PVS model of the

robot kinematics is introduced. This model extends the

original definition of State by introducing new fields

for co-simulation: step size (stepsize), linear and angu-

lar speed (linspeed and angspeed), position (coordinates

xx and yy, and direction (angle theta).

extended_robot: THEORY

BEGIN

IMPORTING RobotUi

ext_State: TYPE =

[# state: State,

stepsize: real,

linspeed: real,

angspeed: real,

xx: real,

yy: real,

theta: real

#]

The model also extends the previous definition of tick

introducing two new functions: update position and up-

date speed.

ext_tick(st: ext_State): ext_State =

update_position(update_speed(st))

update_position(st: ext_State): ext_State =

st WITH

[

xx:= st‘xx-st‘linspeed*st‘stepsize*SIN(st‘theta),

yy:= st‘yy+st‘linspeed*st‘stepsize*COS(st‘theta),

theta := st‘theta+st‘angspeed*st‘stepsize

]

update_speed(st: ext_State): ext_State =

LET st1: ext_State =

st WITH [state := tick(st‘state)] IN

st1 WITH [

linspeed := COND

st1‘state‘motorSpeed‘left = 0 -> 0,

st1‘state‘motorSpeed‘left = med -> 0.062,

st1‘state‘motorSpeed‘left = hi -> 0.057,

st1‘state‘motorSpeed‘left = low -> 0.057,

else -> st1‘linspeed

ENDCOND,

angspeed := COND

st1‘state‘motorSpeed‘left = 0 -> 0,

st1‘state‘motorSpeed‘left = med -> 0,

st1‘state‘motorSpeed‘left = hi -> -0.47,

st1‘state‘motorSpeed‘left = low -> 0.47,

else -> st1‘angspeed

ENDCOND

]

Formalization and Co-simulation of Attacks on Cyber-physical Systems 13

END extended_robot

Function update speed invokes the tick function and

then computes the linear and angular speeds. Function

update position updates the position and the direction

of the robot based on the linear and angular speeds.

The formulas used in these functions are a simplified

version of the formulas used in the 20-sim models. The

simplification consists of introducing instant changes

of both the linear speed of the robot and the angular

one. The constant values in function update speed are

taken from a co-simulation log and they represent:

the maximum linear speed when the robot is moving

forward (0.062 m/s), the maximum linear speed when

the robot is turning (0.057 m/S) and the angular

speed when the robot is turning (0.47 rad/s).

Using the maximum speed, we obtain an over-

approximation of the distance covered by the robot.

This abstract model can be used to prove properties

such as the one described later in this section, where

the maximum distance covered in a co-simulation step

is used in the proof; if a property is satisfied using the

abstract model, the property holds also on the real sys-

tem.

The new theory has been embedded into an FMU

and co-simulated for validation: the result is shown in

Figure 11 where the temporal evolution of the y and

x coordinates generated with the 20-sim model (blue

lines) are compared with the ones of the PVS model

(red lines); the behaviour is the same within a tolerance

of approximately 5 centimeters.

PVS allows us to describe a system at different lev-

els of abstractions. Adding more details to the PVS

kinematics model finer properties could be proved and

better tolerance could be achieved.

7.3 A property of the complete CPS

The usage of the kinematic theory enables the proof of

properties related to the physical process. Let us con-

sider the attack2 described in Section6.2, with

– L a value that represents a generic number of co-

simulation steps

– S a value for the step size (stepsize)

– 1.5 centimeters (0.015 meters) the width of the black

line painted on the floor of the robotic system.

Under the hypothesis that L * S <= 0.24 it can be

proved that the difference between the initial and final

y coordinate of the robot is less than or equal to 0.015

meters (the width of the line).

The property can be expressed in PVS as follows:

Fig. 11 Comparison between 20-sim model and PVS model.

maximum_step_attack: THEOREM

L*S <= 0.24 IMPLIES

FORALL(K:above(L)):

kth_step(K)‘yy - kth_step(K-L)‘yy <=0.015

The theorem states that if L*S <=0.24 then within

L steps the y (x) coordinate of the robot change at most

of 1.5 centimeters (0.015 meters) which is the width of

the line in the current case study.

The proof is inductive on the number of steps K,

using the same commands used for the theorem in the

previous section

[-1] L * S <= 6/25

|-------

{1} kth_step(K)‘yy -

kth_step(K - L)‘yy <= 3/200

In the sequent, [-1] is the antecedent and {1} is

the consequent. The property holds independently of

the initial position of the robot on the line, only the

constraint on the duration of the attack (L * S) must

be satisfied. A similar theorem can be proved on the x

coordinate.

This theorem can be exploited in the design of at-

tacks: if an attack changes the value of the left sensor

to white for less than L * S time, then the attack will

14 Cinzia Bernardeschi et al.

never move the robot from one side of the line to the

other. This means that if a security system is able to

detect an attack within L steps, it manages to keep the

robot close to the line.

If the hypothesis of the theorem is not true, we do

not have information. Figure 9 shows a co-simulation

run with L = 40 and M = 80 and S = 0.01. Since L ∗
S = 0.4 > 0.24, the hypothesis of the theorem is not

met. In this case, the left sensor moves from the internal

side of the path to the external side and the robot drives

away from the painted line.

8 Conclusions

This paper reports on our work in defining a methodol-

ogy to model attacks and analyzing the effects of se-

curity attacks in cyber-physical systems using a co-

simulation framework and formal verification. We re-

strict our attention to attacks on sensors and actuators.

As further work, other categories of attacks will be con-

sidered and we intend to improve the formalisation of

attacks using timed automata [2] and the translation

from networks of timed automata to PVS theories de-

fined in [7].

Moreover, the framework allows formal proofs of in-

variants on the state of the system through theorem

proving. Examples of properties of the system under

attack that are satisfied for all co-simulation runs have

been shown. The level of abstraction of the physical pro-

cess requires a careful consideration, and we intend to

investigate strategies to generate abstract models that

retain sufficient information to enable the proof of some

type of properties.

Acknowledgements

The authors also thank the INTO-CPS project for pro-

viding the case study and the co-simulation environ-

ment.

References

1. Alguliyev, R., Imamverdiyev, Y., Sukhostat, L.: Cyber-
physical systems and their security issues. Computers in
Industry 100, 212 – 223 (2018). DOI https://doi.org/10.
1016/j.compind.2018.04.017

2. Alur, R., Dill, D.L.: A theory of timed automata. Theo-
retical Computer Science 126(2), 183–235 (1994)

3. Avvenuti, M., Bernardeschi, C., Francesco, N.D., Masci,
P.: JCSI: A tool for checking secure information flow in
java card applications. Journal of Systems and Software
85(11), 2479–2493 (2012). DOI 10.1016/j.jss.2012.05.061

4. Bagnato, A., Brosse, E., Quadri, I., Sadovykh, A.: INTO-
CPS: An integrated “tool chain” for comprehensive
model-based design of cyber-physical systems (2015).
This publication is part of the Horizon 2020 project:
Integrated Tool chain for model-based design of CPSs
(INTO-CPS), project/GA number 644047.

5. Bernardeschi, C., Cassano, L., Domenici, A., Sterpone,
L.: ASSESS: A simulator of soft errors in the configu-
ration memory of SRAM-Based FPGAs. IEEE Trans.
on CAD of Integrated Circuits and Systems 33(9), 1342–
1355 (2014). DOI 10.1109/TCAD.2014.2329419

6. Bernardeschi, C., Domenici, A.: Verifying safety proper-
ties of a nonlinear control by interactive theorem prov-
ing with the Prototype Verification System. Inf. Process.
Lett. 116(6), 409–415 (2016). DOI 10.1016/j.ipl.2016.02.
001

7. Bernardeschi, C., Domenici, A., Masci, P.: A PVS-
Simulink Integrated Environment for Model-Based Anal-
ysis of Cyber-Physical Systems. IEEE Trans. Software
Eng. 44(6), 512–533 (2018). DOI 10.1109/TSE.2017.
2694423

8. Blochwitz, T., Otter, M., Akesson, J., Arnold, M., Clauß,
C., Elmqvist, H., Friedrich, M., Junghanns, A., Mauss, J.,
Neumerkel, D., Olsson, H., Viel, A.: Functional Mockup
Interface 2.0: The Standard for Tool independent Ex-
change of Simulation Models. In: Proceedings of the
9th International MODELICA Conference;September 3-
5; 2012; Munich; Germany, no. 76 in Linköping Electronic
Conference Proceedings, pp. 173–184. Linköping Univer-
sity Electronic Press (2012). DOI 10.3384/ecp12076173

9. Broenink, J.F.: 20-SIM software for hierarchical bond-
graph/block-diagram models. Simulation Practice and
Theory 7(5), 481–492 (1999). DOI https://doi.org/10.
1016/S0928-4869(99)00018-X

10. Burmester, M., Magkos, E., Chrissikopoulos, V.: Model-
ing security in cyberphysical systems. International Jour-
nal of Critical Infrastructure Protection 5(3), 118 – 126
(2012). DOI https://doi.org/10.1016/j.ijcip.2012.08.002

11. Butler, M., Jones, C., Romanovsky, A., Troubitsyna, E.
(eds.): Methods, Models and Tools for Fault Tolerance.
Springer-Verlag, Berlin, Heidelberg (2009)

12. Dutertre, B.: Elements of mathematical analysis in pvs.
In: Proceedings of the 9th International Conference on
Theorem Proving in Higher Order Logics, TPHOLs ’96,
pp. 141–156. Springer-Verlag, Berlin, Heidelberg (1996)

13. Ferrante, A., Kaitovic, I., Milosevic, J.: Modelling re-
quirements for security-enhanced design of embedded
systems (2014). DOI 10.5220/0005050003150320

14. Fränzle, M., Herde, C.: Hysat: An efficient proof engine
for bounded model checking of hybrid systems. Formal
Methods in System Design 30(3), 179–198 (2007). DOI
10.1007/s10703-006-0031-0

15. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray,
R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler,
O.: Spaceex: Scalable verification of hybrid systems. In:
G. Gopalakrishnan, S. Qadeer (eds.) Proc. 23rd In-
ternational Conference on Computer Aided Verification
(CAV), no. 6806 in LNCS, pp. 379–395. Springer (2011).
DOI 10.1007/978-3-642-22110-1 30

16. Humayed, A., Lin, J., Li, F., Luo, B.: Cyber-Physical Sys-
tems Security—A Survey. IEEE Internet of Things Jour-
nal 4(6), 1802–1831 (2017). DOI 10.1109/JIOT.2017.
2703172

17. Jeannin, J., Ghorbal, K., Kouskoulas, Y., Gardner, R.,
Schmidt, A., Zawadzki, E., Platzer, A.: A formally veri-
fied hybrid system for the next-generation airborne col-
lision avoidance system. In: C. Baier, C. Tinelli (eds.)

Formalization and Co-simulation of Attacks on Cyber-physical Systems 15

TACAS, LNCS, vol. 9035, pp. 21–36. Springer (2015).
DOI 10.1007/978-3-662-46681-0 2

18. Khalil, Y.: A novel probabilistically timed dynamic model
for physical security attack scenarios on critical infras-
tructures. Process Safety and Environmental Protection
102, 473 – 484 (2016). DOI https://doi.org/10.1016/j.
psep.2016.05.001

19. Lanotte, R., Merro, M., Tini, S.: Towards a formal no-
tion of impact metric for cyber-physical attacks. In: In-
tegrated Formal Methods - 14th International Confer-
ence, IFM 2018, Proceedings, pp. 296–315 (2018). DOI
10.1007/978-3-319-98938-9 17

20. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J.,
Lausdahl, K., Verhoef, M.: The Overture Initiative In-
tegrating Tools for VDM. SIGSOFT Softw. Eng. Notes
35(1), 1–6 (2010). DOI 10.1145/1668862.1668864

21. Larsen, P.G., Fitzgerald, J., Woodcock, J., Fritzson, P.,
Brauer, J., Kleijn, C., Lecomte, T., Pfeil, M., Green,
O., Basagiannis, S., Sadovykh, A.: Integrated tool chain
for model-based design of Cyber-Physical Systems: The
INTO-CPS project. In: 2016 2nd International Workshop
on Modelling, Analysis, and Control of Complex CPS
(CPS Data), pp. 1–6 (2016). DOI 10.1109/CPSData.
2016.7496424

22. Masci, P., Zhang, Y., Jones, P.L., Oladimeji, P., D’Urso,
E., Bernardeschi, C., Curzon, P., Thimbleby, H.: Combin-
ing PVSio with Stateflow. In: NASA Formal Methods -
6th International Symposium, NFM 2014, Houston, TX,
USA, April 29 - May 1, 2014. Proceedings, pp. 209–214
(2014). DOI 10.1007/978-3-319-06200-6 16

23. Mauro, G., Thimbleby, H., Domenici, A., Bernardeschi,
C.: Extending a user interface prototyping tool with auto-
matic MISRA C code generation. In: C. Dubois, P. Masci,
D. Méry (eds.) Proceedings of the Third Workshop on
Formal Integrated Development Environment, Limassol,
Cyprus, November 8, 2016, Electronic Proceedings in The-

oretical Computer Science, vol. 240, pp. 53–66. Open Pub-
lishing Association (2017). DOI 10.4204/EPTCS.240.4

24. Meadows, C.: Formal methods for cryptographic protocol
analysis: emerging issues and trends. IEEE Journal on
Selected Areas in Communications 21(1), 44–54 (2003).
DOI 10.1109/JSAC.2002.806125

25. Mercaldo, F., Nardone, V., Santone, A., Visaggio, C.: Hey
malware, i can find you! pp. 261–262 (2016). DOI 10.
1109/WETICE.2016.67

26. Mitchell, R., Chen, I.: Modeling and analysis of attacks
and counter defense mechanisms for cyber physical sys-
tems. IEEE Transactions on Reliability 65(1), 350–358
(2016). DOI 10.1109/TR.2015.2406860

27. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe ob-
stacle avoidance for autonomous robotic ground vehicles.
In: P. Newman, D. Fox, D. Hsu (eds.) Robotics: Science
and Systems (2013)

28. Modelio web site (2018). http://www.modelio.org re-
trieved 11/29/2018

29. Muñoz, C.: Rapid prototyping in PVS. Tech. Rep. NIA
2003-03, NASA/CR-2003-212418, National Institute of
Aerospace, Hampton, VA, USA (2003)

30. Oladimeji, P., Masci, P., Curzon, P., Thimbleby, H.:
PVSio-web: a tool for rapid prototyping device user inter-
faces in PVS. In: FMIS2013, 5th International Workshop
on Formal Methods for Interactive Systems, London, UK,
June 24, 2013 (2013). DOI 10.14279/tuj.eceasst.69.963.
944

31. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype
verification system. In: D. Kapur (ed.) Automated De-
duction — CADE-11, Lecture Notes in Computer Science,

vol. 607, pp. 748–752. Springer Berlin Heidelberg (1992).
DOI 10.1007/3-540-55602-8\ 217

32. Owre, S., Rushby, J., Shankar, N., Von Henke, F.: Formal
verification for fault-tolerant architectures: Prolegomena
to the design of PVS. IEEE Transactions on Software
Engineering 21(2), 107–125 (1995)

33. Palmieri, M., Bernardeschi, C., Masci, P.: Co-simulation
of semi-autonomous systems: The line follower robot
case study. In: Software Engineering and Formal Meth-
ods — SEFM 2017 Collocated Workshops: DataMod,
FAACS, MSE, CoSim-CPS, and FOCLASA, Trento,
Italy, September 4-5, 2017, Revised Selected Papers, pp.
423–437 (2017). DOI 10.1007/978-3-319-74781-1\ 29

34. Platzer, A., Quesel, J.D.: Keymaera: A hybrid theorem
prover for hybrid systems. In: 3rd International Joint
Conference on Automated Reasoning (IJCAR), vol. Lec-
ture Notes in Computer Science, pp. 171–178 (2008).
DOI 10.1109/ISRCS.2012.6309293

35. Yampolskiy, M., Horvath, P., Koutsoukos, X.D., Xue, Y.,
Sztipanovits, J.: Systematic analysis of cyber-attacks on
cps-evaluating applicability of dfd-based approach. In:
2012 5th International Symposium on Resilient Control
Systems, pp. 55–62 (2012). DOI 10.1109/ISRCS.2012.
6309293

	Introduction
	Related work
	Background
	Modeling systems and attacks
	Analysis of system behaviour
	A case study
	Formal verification
	Conclusions

