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SPACE-TIME DISCRETIZATION FOR NONLINEAR PARABOLIC

SYSTEMS WITH p-STRUCTURE

LUIGI C. BERSELLI AND MICHAEL RŮŽIČKA

Abstract. In this paper we consider nonlinear parabolic systems with elliptic
part which can be also degenerate. We prove optimal error estimates for
smooth enough solutions. The main novelty, with respect to previous results,
is that we obtain the estimates directly without introducing intermediate semi-
discrete problems. In addition, we prove the existence of solutions of the
continuous problem with the requested regularity, if the data of the problem
are smooth enough.

1. Introduction

In this paper we study the (full) space-time discretization of a parabolic prob-
lem with Dirichlet boundary conditions. Our method differs from most previous
investigations in as much as we use no intermediate problems to prove an optimal
error estimate. This result is achieved under certain natural regularity assumptions
of the solution of the continuous problem. Moreover, we also prove this required
regularity for the solution of the singular problem for large data, in the case of
Dirichlet boundary conditions. We restrict ourselves to the three-dimensional set-
ting, however, all results carry over to the general setting in d-dimensions.

More precisely, we consider for a sufficiently smooth bounded domain Ω ⊂ R
3

and a finite time interval I := (0, T ), for some given T > 0, the parabolic system

∂u

∂t
− divS(Du) = f in I × Ω,

u = 0 on I × ∂Ω ,

u(0) = u0 in Ω ,

(parabolicp)

where the elliptic operator S has (p, δ)-structure and depends only on the symmet-
ric part of the gradient Du of the vector-valued unknown u : Ω → R

3. Of course,
the whole theory also works with some simplifications if S depends on the full gra-
dient ∇u and in an d-dimensional setting with d ≥ 2. The variational formulation
of (parabolicp) is (for smooth enough solutions) the following

(∂u
∂t

(t),v
)
+ (S(Du(t)),Dv) = (f(t),v) ∀v ∈ V, a.e. t ∈ I,

(u(0),v) = (u0,v) ∀v ∈ V ,
(1.1)

where we will set, for reasons explained later, V = (W 1,p
0 (Ω)∩L2(Ω))3. We perform

an error analysis for the fully implicit space-time discretization

(dtu
m
h ,vh) + (S(Dum

h ),vh) = (f(tm),vh) ∀vh ∈ Vh, m = 1, . . . ,M ,

(u0
h,vh) = (u0,vh) ∀vh ∈ Vh ,

(1.2)
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where dtu
m := κ−1(um − um−1) is the backward difference quotient with κ := T

M ,
M ∈ N given, tm := mκ, and where Vh ⊂ V is an appropriate finite element space
with mesh size h > 0. Precise definitions will be given below.

2. Notation and preliminaries

In this section we introduce the notation we will use. Moreover, we recall some
technical results which will be needed in the proof of the main convergence result.

2.1. Function spaces. We use c, C to denote generic constants, which may change
from line to line, but are not depending on the crucial quantities. Moreover we write
f ∼ g if and only if there exists constants c, C > 0 such that c f ≤ g ≤ C f .

We will use the customary Lebesgue spaces (Lp(Ω), ‖ . ‖p) and Sobolev spaces

(W k,p(Ω), ‖ . ‖k,p), k ∈ N. We do not distinguish between scalar, vector-valued or
tensor-valued function spaces in the notation if there is no danger of confusion.
However, we denote scalar functions by roman letters, vector-valued functions by
small boldfaced letters and tensor-valued functions by capital boldfaced letters. If
the norms are considered on a setM different from Ω, this is indicated in the respec-
tive norms as ‖ . ‖p,M , ‖ . ‖k,p,M . We equipW 1,p

0 (Ω) (based on the Poincaré Lemma)

with the gradient norm ‖∇ . ‖p. We denote by |M | the 3-dimensional Lebesgue mea-
sure of a measurable set M . The mean value of a locally integrable function f over
a measurable set M ⊂ Ω is denoted by 〈f〉M := −

´

M
f dx = 1

|M|

´

M

f dx. Moreover,

we use the notation (f, g) :=
´

Ω

fg dx, whenever the right-hand side is well defined.

2.2. Basic properties of the elliptic operator. For a tensor P ∈ R
3×3 we

denote its symmetric part by Psym := 1
2 (P+P⊤) ∈ R

3×3
sym := {A ∈ R

3×3 |P = P⊤}.
The scalar product between two tensors P,Q is denoted by P ·Q, and we use the
notation |P|2 = P·P. We assume that the extra stress tensor S has (p, δ)-structure,
which will be defined now. A detailed discussion and full proofs of the following
results can be found in [14, 27].

Assumption 2.1. We assume that S : R3×3 → R
3×3
sym belongs to C0(R3×3,R3×3

sym) ∩

C1(R3×3 \ {0},R3×3
sym), satisfies S(P) = S

(
Psym

)
, and S(0) = 0. Moreover, we

assume that S has (p, δ)-structure, i.e., there exist p ∈ (1,∞), δ ∈ [0,∞), and
constants C0, C1 > 0 such that

∑3

i,j,k,l=1
∂klSij(P)QijQkl ≥ C0

(
δ + |Psym|

)p−2
|Qsym|2, (2.2a)

∣∣∂klSij(P)
∣∣ ≤ C1

(
δ + |Psym|

)p−2
, (2.2b)

are satisfied for all P,Q ∈ R
3×3 with Asym 6= 0 and all i, j, k, l = 1, . . . , 3. The

constants C0, C1, and p are called the characteristics of S.

Remark 2.3. We would like to emphasize that, if not otherwise stated, the con-
stants in the paper depend only on the characteristics of S but are independent of
δ ≥ 0.

Another important tool are shifted N-functions {ϕa}a≥0, cf. [14, 16, 27]. Defining
for t ≥ 0 a special N-function ϕ by

ϕ(t) :=

t
ˆ

0

ϕ′(s) ds with ϕ′(t) := (δ + t)p−2t , (2.4)
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we can replace Ci

(
δ + |Psym|

)p−2
in the right-hand side of (2.2) by C̃i ϕ

′′
(
|Psym|

)
,

i = 0, 1. Next, the shifted functions are defined for t ≥ 0 by

ϕa(t) :=

t
ˆ

0

ϕ′
a(s) ds with ϕ′

a(t) := ϕ′(a+ t)
t

a+ t
. (2.5)

Note that ϕa(t) ∼ (δ+a+ t)p−2t2 and also (ϕa)
∗(t) ∼ ((δ+a)p−1+ t)p

′−2t2, where
the ∗-superscript denotes the complementary function. We will use also the Young
inequality: for all ε > 0 there exists cε > 0, such that for all s, t, a ≥ 0 it holds

ts ≤ ε ϕa(t) + cε (ϕa)
∗(s) ,

t ϕ′
a(s) + ϕ′

a(t) s ≤ ε ϕa(t) + cε ϕa(s).
(2.6)

Closely related to the extra stress tensor S with (p, δ)-structure is the function
F : R3×3 → R

3×3
sym defined through

F(P) :=
(
δ + |Psym|

) p−2

2 Psym . (2.7)

In the following lemma we recall several useful results, which will be frequently
used in the paper. The proofs of these results and more details can be found
in [14, 27, 16, 3].

Proposition 2.8. Let S satisfy Assumption 2.1, let ϕ be defined in (2.4), and let
F be defined in (2.7).

(i) For all P,Q ∈ R
3×3

(
S(P)− S(Q)

)
·
(
P−Q

)
∼
∣∣F(P)− F(Q)

∣∣2,
∼ ϕ|Psym|(|P

sym −Qsym|),

∼ ϕ′′
(
|Psym|+ |Qsym|

)
|Psym −Qsym|

2
,

S(Q) ·Q ∼ |F(Q)|
2
∼ ϕ(|Qsym|),

|S(P) − S(Q)| ∼ ϕ′
|Psym|

(
|Psym −Qsym|

)
.

The constants depend only on the characteristics of S.
(ii) For all ε > 0, there exist a constant cε > 0 (depending only on ε > 0 and

on the characteristics of S) such that for all u,v,w ∈W 1,p(Ω)
(
S(Du)− S(Dv),Dw−Dv

)
≤ ε ‖F(Du)− F(Dv)‖

2
2 + cε ‖F(Dw)− F(Dv)‖

2
2 ,(

S(Du)− S(Dv),Dw−Dv
)
≤ ε ‖F(Dw)− F(Dv)‖

2
2 + cε ‖F(Du)− F(Dv)‖

2
2 ,

and for all P,Q ∈ R
3×3
sym, t ≥ 0

ϕ|Q|(t) ≤ cε ϕ|P|(t) + ε |F(Q)− F(P)|2,

(ϕ|Q|)
∗(t) ≤ cε (ϕ|P|)

∗(t) + ε |F(Q)− F(P)|
2
.

(iii) Let Ω be a bounded domain. Then, for all H ∈ Lp(Ω)
ˆ

Ω

|F(H)− 〈F(H)〉Ω|
2
dx ∼

ˆ

Ω

|F(H)− F(〈H〉Ω)|
2
dx ,

where the constants depend only on p.

There hold the following important equivalences, first proved in [29]. See also [8,
Proposition 2.4].
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Proposition 2.9. Assume that S has (p, δ)-structure. For i = 1, 2, 3 and for
sufficiently smooth symmetric tensor fields Q we denote1

Pi(Q) := ∂iS(Q) · ∂iQ =

3∑

k,l,m,n=1

∂klSmn(Q) ∂iQkl ∂iQmn . (2.10)

Then we have for all smooth enough symmetric tensor fields Q and all i = 1, 2, 3

Pi(Q) ∼ ϕ′′(|Q|)|∂iQ|2 ∼ |∂iF(Q)|2 , (2.11)

Pi(Q) ∼
|∂iS(Q)|2

ϕ′′(|Q|)
, (2.12)

where the constants only depend on the characteristics of S.

2.3. Discretizations. For the time-discretization, given T > 0 and M ∈ N, we
define the time step size as κ := T/M > 0, with the corresponding net IM :=
{tm}Mm=0, tm := mκ. We use the notation Im := (tm−1, tm], with m = 1, . . . ,M .
For a given sequence {vm}Mm=0 we define the backward differences quotient as

dtv
m :=

vm − vm−1

κ
.

For the spatial discretization we assume that Ω ⊂ R
3 is a polyhedral domain

with Lipschitz continuous boundary. Let Th denote a family of shape-regular trian-
gulations, consisting of 3-dimensional simplices K. We denote by hK the diameter
of K and by ρK the supremum of the diameters of inscribed balls. We assume that
Th is non-degenerate, i.e., maxK∈Th

hK

ρK
≤ γ0. The global mesh-size h is defined by

h := maxK∈Th
hK . Let SK denote the neighborhood of K, i.e., SK is the union

of all simplices of Th touching K. By the assumptions we obtain that |SK | ∼ |K|
and that the number of patches SK to which a simplex belongs are both bounded
uniformly in h and K.

We denote by Pk(Th), with k ∈ N0 := N ∪ {0}, the space of scalar or vector-
valued functions, which are polynomials of degree at most k on each K ∈ Th. Given
a triangulation Th of Ω with the above properties and given r0 ≤ r1 ∈ N0 we denote
by Xh the space

Xh :=
{
v ∈ (C(Ω))3

∣∣v ∈ P
}
,

with Pr0(Th) ⊂ P ⊆ Pr1(Th). Note that there exists a constant c = c(r1, γ0) such
that for all vh ∈ Xh, K ∈ Th, j ∈ N0, and all x ∈ K holds

|∇jvh(x)| ≤ c −

ˆ

K

|∇jvh(y)| dy . (2.13)

For the weak formulation of the continuous and discrete problems we will use the
following function spaces

V := (W 1,p
0 (Ω) ∩ L2(Ω))3 and Vh := V ∩Xh.

We also need some numerical interpolation operators. Rather than working with
a specific interpolation operator we make the following assumptions:

Assumption 2.14. We assume that r0 = 1 and that there exists a linear projection
operator Ph : (W

1,1(Ω))3 → Xh which

1Note that there is no summation convention over the repeated Latin lower-case index i in
∂iS(Q) · ∂iQ.
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(a) is locally W 1,1-stable in the sense that

−

ˆ

K

|Phw| dx ≤ c −

ˆ

SK

|w| dx+ c −

ˆ

SK

hK |∇w| dx ∀w ∈ (W 1,1(Ω))3, ∀K ∈ Th;

(2.15)

(b) preserves zero boundary values, i.e., Ph : (W
1,1
0 (Ω))3 → (W 1,1

0 (Ω))3 ∩Xh.

Note that, e.g., the Scott-Zhang operator (cf. [28]) satisfies this assumption. The
properties of interpolation operators Ph satisfying Assumption 2.14 are discussed
in detail in [20, Sec. 4,5], [3, Sec. 3.2]. We collect the for us relevant properties in
the next proposition.

Proposition 2.16. Let Ph satisfy Assumption 2.14.

(i) Let F(Dv) ∈ W 1,2(Ω). Then there exists a constant c = c(p, r1, γ0) such
that

‖F(Dv)− F(DPhv)‖2 ≤ c h ‖∇F(Dv)‖2.

(ii) Let q ∈ [1, 2) and ℓ = 1 or ℓ = 2 be such that W ℓ,q(Ω) →֒→֒ L2(Ω). Then,
there exists a constant c = c(q, ℓ, r1, γ0) such that for all v ∈ W ℓ,q(Ω) holds

‖v − Phv‖2 ≤ c hℓ+3( 1
2
− 1

q
) ‖∇ℓv‖q .

(iii) Let F(Dv) ∈ W 1,2(Ω) and F(Dw) ∈ L2(Ω). Then, there exists a constant
c = c(p, r1, γ0) such that

ˆ

Ω

ϕ|Dv|

(∣∣DPhv −DPhw
∣∣) dx ≤ c h2‖∇F(Dv)‖22 + c ‖F(Dv)− F(Dw)‖22 ,

where the constants depends only on γ0 and p.

Proof. The first assertion is proved e.g. in [20, Cor. 5.8]. The second assertion is
a generalization of the well known approximation property if on both sides there
would be the same exponent q. Assertion (ii) will be proved in a more general
context in the Appendix. Also assertion (iii), which is of more technical character,
will be proved in the Appendix. �

2.4. Main results. Let us now formulate the main result, proving optimal conver-
gence rates for the error between the solution u of the continuous problem (parabolicp)

and the discrete solution {um
h }Mm=0 of the space-time discretization (1.2). Observe

that the existence and uniqueness of the solution {um
h }Mm=0 of the discrete prob-

lem (1.2) follows directly from the assumptions on the operator. Moreover, testing
(1.2) with {um

h }Mm=0 yields the energy estimate

max
m=1,...,M

‖um
h ‖22 + κ

M∑

m=1

‖F(Dum
h )‖22 ≤ C,

for some constant independent of h, κ.

Theorem 2.17. Let the tensor field S in (parabolicp) have (p, δ)-structure for some

p ∈ (1, 2], and δ ∈ [0,∞) fixed but arbitrary, and let Ω ⊂ R
3 be a bounded polyhedral

domain with Lipschitz continuous boundary. Assume that f ∈W 1,2(I;L2(Ω)), u0 ∈

W
1,3p/2
0 (Ω) and that the solution u of (parabolicp) satisfies (1.1) and

F(Du) ∈W 1,2(I × Ω). (2.18)
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Let the space Vh be defined as above with r0 = 1 and let {um
h }Mm=0 be solutions

of (1.2). Then there exists κ0 ∈ (0, 1] such that for given h ∈ (0, 1), κ ∈ (0, κ0),
satisfying

h4/p
′

≤ σ0 κ, (2.19)

for some σ0 > 0, we have the following error estimate

max
m=1,...,M

‖um
h − u(tm)‖22 + κ

M∑

m=1

‖F(Dum
h )− F(Du(tm))‖22 ≤ c (h2 + κ2),

where the constant c depends only on the characteristics of S, ‖F(Du)‖W 1,2(I×Ω),

‖∂tf‖L2(I;L2(Ω), ‖u0‖1,2, γ0, r1, δ, and σ0.

Remark 2.20. An optimal error estimate for problem (parabolicp) with a non-
linearity depending on the full gradient ∇u under slightly different assumptions
has been proved in [13] for p > 2d

d+2 . The case of evolutionary p-Navier-Stokes
equations, where the nonlinearity depends on the symmetric gradient Du, has been
treated in [26, 17, 18, 6] in the case of space periodic boundary conditions. The
evolutionary p-Stokes equations have been treated in [22] in the case of Dirichlet
boundary conditions. All these results treat intermediate semi-discrete problems,
for which a certain regularity has to be proved, to obtain the desired optimal con-
vergence rates. This in fact limits the results in [26, 17, 18, 6] to the case of space
periodic boundary conditions. Here we avoid such problems by proving the error
estimate directly without using intermediate semi-discrete problems. The approach
can be extended to the treatment of p-Navier-Stokes equations, which will be done
in a forthcoming paper.

In [32], [30] the convergence of a fully implicite space-time discretization (without
convergence rate but also with no assumptions of smoothness of the limiting prob-
lem) of the evolutionary p-Navier-Stokes equations in the case of Dirichlet boundary
conditions is proved. The convergence of the same numerical scheme (1.2) towards
a weak solution has been recently proved in [2] even for general evolution equations
with pseudo-monotone operators.

We wish also to mention the recent results in [10] concerning the parabolic prob-
lem with a variable exponent.

The regularity assumed in (2.18) is natural in the sense that under certain cir-
cumstances the existence of such solutions can be proved.

Theorem 2.21. Let the tensor field S in (parabolicp) have (p, δ)-structure for

some p ∈ (1, 2], and δ ∈ [0,∞) fixed but arbitrary, and let Ω ⊂ R
3 be a bounded

domain with C2,1 boundary. Assume that

f ∈ Lp′

(I;Lp′

(Ω)) ∩W 1,2(I;L2(Ω)),

and

u0 ∈W 2,2(Ω) ∩W 1,2
0 (Ω), with divS(Du0) ∈ L2(Ω).

Then, the system (parabolicp) has a unique regular solution, i.e., u ∈ Lp(I;W 1,p
0 (Ω))

fulfils

‖u‖W 1,∞(I;L2(Ω))+‖F(Du)‖W 1,2(I×Ω) ≤ c0 , (2.22)

where2 c0 depends only on the characteristics of S, δ, T , Ω, ‖u0‖2,2, ‖divS(Du0)‖2,

‖f‖Lp′(I×Ω), ‖f‖L2(I×Ω), ‖
∂f
∂t‖L2(I×Ω)

, and satisfies (1.1) with V =W 1,p
0 (Ω) ∩ L2(Ω).

2Note that the dependence of the constant c0 on δ is such that c0(δ) ≤ c0(δ0) for all δ ≤ δ0.
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Remark 2.23. In the literature exist several regularity results which are related to
Theorem 2.21. In most cases the regularity is studied for a scalar equation and/or
in the steady case with a nonlinearity depending on the full gradient. The main
difficulty of our problem is the regularity near the boundary in normal direction.
Results in the interior are rather standard, since they can be considered as a special
sub-case of the problem with space periodic boundary conditions (cf. [5] and refer-
ences therein). Most results treating a nonlinearity depending on the symmetric
gradient strongly rely on the non-degeneracy of the elliptic operator (δ > 0) and
more regular data, see e.g. [9]. In addition, some results concern the case p > 2
(cf. [25], [1]), while we are here considering the case p ∈ (1, 2) which has some very
special features already in the steady case.

The results proved here are not covered in the classical literature. A crucial fact
is that our problem does not contain a divergence-free constraints. This allows us
to prove optimal regularity results up to the boundary (cf. [8] for a treatment of
the steady case). For recent results on a related parabolic system cf. [11], [12] and
references therein.

The regularity F(Du) ∈ W 1,2(I × Ω) can be formulated in terms of Bochner–
Sobolev spaces. From [19, Thm. 33] and standard embedding results it follows

F(Du) ∈ L∞(I;L3(Ω)).

Since |Du|p/2 + δ
p
2 ∼ |F(Du)|+ δ

p
2 we get, by Hölder’s inequality,

u ∈ L∞(I;W 1,3p/2(Ω)).

In [5, Lemma 4.5] it is shown that

‖∇2u‖26p
4+p

≤ c ‖∇F(Du)‖22(δ + ‖∇u‖3p/2)
2−p,

∥∥∥∂∇u

∂t

∥∥∥
2

6p
4+p

≤ c ‖∂tF(Du)‖22(δ + ‖∇u‖3p/2)
2−p .

Thus, we also get

u ∈ L2(I;W 2, 6p
4+p (Ω)),

∂u

∂t
∈ L2(I;W 1, 6p

4+p (Ω)),
(2.24)

where the bounds depend only on ‖F(Du)‖W 1,2(I×Ω) and δ0. This implies in par-

ticular that u ∈ C(I ;W 1, 6p
4+p (Ω)).

3. On the numerical error

In this section we prove the error estimates from Theorem 2.17. To this end we
need to derive the equation for the error and to use the discrete Gronwall lemma
together with approximation properties coming from the fact that we have regular
enough solutions, together with the assumption on the nonlinear operator S.

3.1. Approximation properties. Crucial properties to estimate the quasi-norm
of the finite dimensional projections concern the time regularity of the continuous
solution. In particular, the last term in the estimate from Proposition 2.16 (ii) for
v = v(t), w = v(s) will give convergence rates with respect to time, under appro-
priate regularity assumptions on the partial derivative with respect to time. This
is based on the following lemma which is in the same spirit as [4, Proposition 3.6]
and which will be used several times in the sequel.
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Lemma 3.1. Let be given f : I → X, where X is a Banach space and let f be
strongly measurable. Let us assume that

f,
∂f

∂t
∈ L2(I;X).

Then, it holds

κ

M∑

m=1

−

ˆ

Im

−

ˆ

Im

‖f(s)− f(t)‖2X ds dt ≤ κ2
∥∥∥∂f
∂t

∥∥∥
2

L2(I;X)
,

κ
M∑

m=1

−

ˆ

Im

‖f(s)− f(tm)‖2X ds ≤ κ2
∥∥∥∂f
∂t

∥∥∥
2

L2(I;X)
.

(3.2)

Proof. We prove the first estimate from (3.2). We start, thanks to the Bochner
theorem (see Yosida [33, Chap. V.5]), by estimating the difference as follows

‖f(s)− f(t)‖X =
∥∥∥

s
ˆ

t

∂f

∂t
(ρ) dρ

∥∥∥
X

≤

s
ˆ

t

∥∥∥∂f
∂t

(ρ)
∥∥∥
X
dρ ∀ s, t ∈ I.

Hence, by Cauchy-Schwarz inequality, for all s, t ∈ Im ⊆ I, since |s − t| ≤ κ, it
follows

‖f(s)− f(t)‖2X ≤
( s
ˆ

t

∥∥∥∂f
∂t

(ρ)
∥∥∥
X
dρ
)2

≤

s
ˆ

t

∥∥∥∂f
∂t

(ρ)
∥∥∥
2

X
dρ
∣∣∣

s
ˆ

t

dρ
∣∣∣,

≤ κ

s
ˆ

t

∥∥∥∂f
∂t

(ρ)
∥∥∥
2

X
dρ.

From the latter, we get by a double integration

−

ˆ

Im

−

ˆ

Im

‖f(s)− f(t)‖2X ds dt ≤ κ −

ˆ

Im

−

ˆ

Im

ˆ

Im

∥∥∥∂f
∂t

(ρ)
∥∥∥
2

X
dρ ds dt = κ

ˆ

Im

∥∥∥∂f
∂t

(ρ)
∥∥∥
2

X
dρ,

since the right-hand side does not depend on s and t. Multiplying by κ and summing
over m we get

κ

M∑

m=1

−

ˆ

Im

−

ˆ

Im

‖f(s)− f(t)‖2X ds dt ≤ κ2κ

M∑

m=1

ˆ

Im

∥∥∥∂f
∂t

(ρ)
∥∥∥
2

X
dρ = κ2

∥∥∥∂f
∂t

∥∥∥
2

L2(I;X)
.

The second estimates follows in the same way observing that f, ∂f∂t ∈ L2(I;X)
implies f ∈ C(I;X), hence f(tm) is well defined. Then, one can re-write the
difference term as follows

‖f(s)− f(tm)‖X =
∥∥∥

s
ˆ

tm

∂f

∂t
(ρ) dρ

∥∥∥
X
,

and by using the same techniques as before one concludes the proof. �

3.2. Error estimates. To prove the Theorem 2.17 we take the retarded averages
of (1.1) over Im, m = 1, . . . ,M

(dtu(tm),v) +−

ˆ

Im

(S(Du(s)),Dv) ds = −

ˆ

Im

(f(s),v) ds, (3.3)
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which is valid for all v ∈ V . As usual, we subtract equation (3.3) from (1.2) to
obtain the equation for the error

(dt(u
m
h − u(tm)),vh) +−

ˆ

Im

(S(Dum
h )− S(Du(s)),Dv) ds = −

ˆ

Im

(f(tm)− f(s),v) ds,

(3.4)
valid for all m = 1, . . . ,M and for all vh ∈ Vh.

Proposition 3.5. Under the assumptions of Theorem 2.17 we have the following
discrete inequality, valid for m = 1, . . . ,M and 0 < κ ≤ 1

dt‖u
m
h − u(tm)‖22 + c ‖F(Dum

h )− F(Du(tm))‖22

≤ c h2 −

ˆ

Im

‖∇F(Du(s))‖22 ds+ c−

ˆ

Im

‖F(Du(s)) − F(Du(tm))‖22 ds

+ c
h2+4/p′

κ
−

ˆ

Im

‖∇2u(s)‖26p
4+p

ds+ c
h4/p

′

κ

∥∥∥∇u(tm)−−

ˆ

Im

∇u(s) ds
∥∥∥
2

6p
4+p

+ c
∥∥∥f(tm)−−

ˆ

Im

f(s) ds
∥∥∥
2

2
+ c ‖um

h − u(tm)‖22.

(3.6)

To prove Proposition 3.5 we treat separately the terms resulting from using
in (3.4) the legitimate test function

vh = um
h − Phu(tm) .

We start with the term involving the discrete time-derivative.

Lemma 3.7. It holds that

(dt(u
m
h − u(tm)),um

h − Phu(tm))

≥
1

2
dt‖u

m
h − u(tm)‖22 − c

h2+4/p′

κ
−

ˆ

Im

‖∇2u(s)‖26p
4+p

ds

− c
h4/p

′

κ

∥∥∥∇u(tm)−−

ˆ

Im

∇u(s) ds
∥∥∥
2

6p
4+p

.

Proof. We re-write in this case the test function as follows

vh = um
h − u(tm) + u(tm)− Phu(tm), (3.8)

to obtain

(
dt(u

m
h − u(tm)),um

h − u(tm)
)
=

1

2
dt‖u

m
h − u(tm)‖22 +

κ

2
‖dt(u

m
h − u(tm))‖22.

The remaining term is treated as follows

(dt(u
m
h −u(tm)),u(tm)−Phu(tm)) ≤

κ

4
‖dt(u

m
h −u(tm))‖22+

1

κ
‖u(tm)−Phu(tm)‖22.

The first term is absorbed in the last term of the previous equality. Note that the
second term can not be estimated as ‖u(tm)−Phu(tm)‖22 ≤ c h2+4/p′

‖∇2u(tm)‖26p
4+p

,

since the right-hand side might be infinite; in view of the regularity of u the norm
‖∇2u(t)‖ 6p

4+p
is only finite for almost everywhere t ∈ I. Thus, we proceed dif-

ferently and add and subtract (time) mean values. Using that Ph −
´

Im
u(s) ds =
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−
´

Im
Phu(s) ds, and Fubini’s theorem, we get

‖u(tm)− Phu(tm)‖2

≤
∥∥∥u(tm)−−

ˆ

Im

u(s) ds− Ph

(
u(tm)−−

ˆ

Im

u(s) ds
)∥∥∥

2
+
∥∥∥−
ˆ

Im

u(s)− Phu(s) ds
∥∥∥
2
.

Both terms are estimated using Proposition 2.16 (ii) and the regularities (2.24) to
obtain
∥∥∥u(tm)−−

ˆ

Im

u(s) ds− Ph

(
u(tm)−−

ˆ

Im

u(s) ds
)∥∥∥

2
≤ c h2/p

′
∥∥∇u(tm)−−

ˆ

Im

∇u(s) ds
∥∥

6p
4+p

,

where we used that W 1, 6p
4+p (Ω) →֒→֒ L2(Ω), valid for all p > 1, and

∥∥∥−
ˆ

Im

u(s)− Phu(s) ds
∥∥∥
2

2
=

ˆ

Ω

∣∣∣−
ˆ

Im

u(s)− Phu(s) ds
∣∣∣
2

dx ≤

ˆ

Ω

−

ˆ

Im

|u(s)− Phu(s)|
2 ds dx

= −

ˆ

Im

‖u− Phu‖
2
2 ds ≤ c h2+4/p′

−

ˆ

Im

‖∇2u(s)‖26p
p+4

ds.

Putting the estimates together we obtain the assertion. �

Next, we estimate the term with the (p, δ)-structure and obtain the following
inequality:

Lemma 3.9. It holds that

−

ˆ

Im

(
S(Dum

h )− S(Du(s)),Dum
h −DPhu(tm)

)
ds

≥ ‖F(Dum
h )− F(Du(tm))‖22 − c h2 −

ˆ

Im

‖∇F(Du(s))‖22 ds

− c−

ˆ

Im

‖F(Du(s))− F(Du(tm))‖22 ds.

Proof. We re-write the term with the p-structure as follows

−

ˆ

Im

(
S(Dum

h )− S(Du(tm)) + S(Du(tm)) − S(Du(s)),Dum
h −DPhu(tm)

)
ds

= −

ˆ

Im

(
S(Dum

h )− S(Du(tm)),Dum
h −DPhu(tm)

)
ds

+−

ˆ

Im

(
S(Du(tm))− S(Du(s)),Dum

h −DPhu(tm)
)
ds =: A1 +A2,

and estimate the two terms separately.
Estimate of A1: We have

A1 =
(
S(Dum

h )− S(Du(tm)),Dum
h −Du(tm)

)

+
(
S(Dum

h )− S(Du(tm)),Du(tm)−DPhu(tm)
)
=: A1,1 +A1,2.

The first term is giving the information

A1,1 =
(
S(Dum

h )− S(Du(tm)),Dum
h −Du(tm)

)
≥ c ‖F(Dum

h )− F(Du(tm))‖22,



SPACE-TIME NONLINEAR PARABOLIC SYSTEMS 11

while the second can be estimated as follows, by adding and subtracting the average
−
´

Im
u(s) ds in the second entry. In fact, we have

A1,2 = −

ˆ

Im

(
S(Dum

h )− S(Du(tm)),Du(s)−DPhu(tm)
)
ds

+−

ˆ

Im

(
S(Dum

h )− S(Du(tm)),Du(tm)−Du(s)
)
ds =: B1 + B2.

By Proposition 2.8 it follows

|B2| ≤ ε ‖F(Du(tm))− F(Dum
h )‖22 + cε −

ˆ

Im

‖F(Du(s))− F(Du(tm))‖22 ds.

Next, we split B1 as follows, by adding and subtracting Ph −
´

Im
u(s) ds = −

´

Im
Phu(s) ds,

again in the second entry,

B1 = −

ˆ

Im

(
S(Dum

h )− S(Du(tm)),Du(s)−DPhu(s)
)
ds

+−

ˆ

Im

(
S(Dum

h )− S(Du(tm)),DPhu(s)−DPhu(tm)
)
ds =: C1 + C2.

The term C2 can be estimated by using Proposition 2.8 (i) and Young’s inequal-
ity (2.6) as

C2 ≤ c−

ˆ

Im

ˆ

Ω

ϕ′
|Du(tm)|

(
|Dum

h −Du(tm)|
) ∣∣D(Ph[u(s)− u(tm)])

∣∣ dx ds

≤ ε−

ˆ

Im

ˆ

Ω

ϕ|Du(tm)|

(
|Dum

h −Du(tm)|
)
dx ds

+ cε −

ˆ

Im

ˆ

Ω

ϕ|Du(tm)|

(∣∣D(Ph[u(s)− u(tm)])
∣∣) dx ds

≤ ε ‖F(Dum
h )− F(Du(tm)‖22 + cε −

ˆ

Im

ˆ

Ω

ϕ|Du(tm)|

(∣∣D(Ph[u(s)− u(tm)])
∣∣) dx ds.

The latter term from the above inequality can be estimated by a shift change, see
Proposition 2.8 (ii)

ˆ

Ω

ϕ|Du(tm)|

(∣∣D(Ph[u(s)− u(tm)])
∣∣) dx

≤ c ‖F(Du(tm)− F(Du(s))‖22 + c

ˆ

Ω

ϕ|Du(s)|

(∣∣D(Ph[u(s)− u(tm)])
∣∣) dx.

For the last term we use Proposition 2.16 (iii) and obtain

|C2| ≤ ε ‖F(Dum
h )− F(Du(tm)‖22 + cε −

ˆ

Im

‖F(Du(tm)− F(Du(s))‖22 ds

+ cε h
2−

ˆ

Im

‖∇F(Du(s))‖22 ds.
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We estimate now C1 by adding and subtracting S(Du(s)) in the first entry and get

C1 = −

ˆ

Im

(
S(Du(s))− S(Du(tm)),Du(s)−DPhu(s)

)
ds

+−

ˆ

Im

(
S(Dum

h )− S(Du(s)),Du(s)−DPhu(s)
)
ds =: D1 +D2.

Then, by Proposition 2.8 (ii) and Proposition 2.16 (i) it follows

|D1| ≤ c−

ˆ

Im

‖F(Du(s))− F(Du(tm))‖22 ds+ c−

ˆ

Im

‖F(DPhu(s))− F(Du(s))‖22 ds

≤ c−

ˆ

Im

‖F(Du(s))− F(Du(tm))‖22 ds+ c h2 −

ˆ

Im

‖∇F(Du(s))‖22 ds.

The other term D2 is estimated in the following manner, by Proposition 2.8 (ii), by
adding and subtracting F(Du(tm)), and Proposition 2.16 (i)

|D2| ≤ ε−

ˆ

Im

‖F(Du(s))− F(Dum
h )‖22 ds+ cε −

ˆ

Im

‖F(DPhu(s))− F(Du(s))‖22 ds

≤ ε ‖F(Dum
h )− F(Du(tm))‖22 + ε−

ˆ

Im

‖F(Du(s))− F(Du(tm))‖22 ds

+ cεh
2 −

ˆ

Im

‖∇F(Du(s))‖22 ds.

Estimate of A2: We now estimate the term A2, first by adding and subtracting
DPhu(s) in the second entry to get

A2 = −

ˆ

Im

(
S(Du(tm))− S(Du(s)),DPhu(s)−DPhu(tm)

)
ds

+−

ˆ

Im

(
S(Du(tm))− S(Du(s)),Dum

h −DPhu(s)
)
ds =: E1 + E2.

The term E1 is estimated using Young’s inequality, Proposition 2.8 and Proposi-
tion 2.16 (iii)

|E1| ≤ c−

ˆ

Im

ˆ

Ω

ϕ′
|Du(s)|

(∣∣Du(tm)−Du(s)
∣∣
)∣∣DPhu(s)−DPhu(tm)

∣∣ dx ds

≤ c−

ˆ

Im

ˆ

Ω

ϕ|Du(s)|

(∣∣Du(tm)−Du(s)
∣∣
)
dx ds

+ c−

ˆ

Im

ˆ

Ω

ϕ|Du(s)|

(∣∣DPhu(s)−DPhu(tm)
∣∣
)
dxds

≤ c−

ˆ

Im

‖F(Du(tm))− F(Du(s))‖22 ds+ c h2 −

ˆ

Im

‖∇F(Du(s))‖22 ds.
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The term E2 is estimated by adding and subtracting Du(s) and Du(tm) in the
second entry to get

E2 = −

ˆ

Im

(
S(Du(tm))− S(Du(s)),Du(s)−DPhu(s)

)
ds

+ −

ˆ

Im

(
S(Du(tm))− S(Du(s)),Du(tm)−Du(s)

)
ds

+ −

ˆ

Im

(
S(Du(tm))− S(Du(s)),Dum

h −Du(tm)
)
ds =: E2,1 + E2,2 + E2,3.

Then, Proposition 2.8 and Proposition 2.16 (i) yield

|E2,1| ≤ c−

ˆ

Im

‖F(Du(s))− F(Du(tm))‖22 ds+ c−

ˆ

Im

‖F(Du(s))− F(DPhu(s))‖
2
2 ds

≤ c−

ˆ

Im

‖F(Du(s))− F(Du(tm))‖22 ds+ c h2 −

ˆ

Im

‖∇F(Du(s))‖22 ds,

as well as

E2,2 ≤ c−

ˆ

Im

‖F(Du(s)) − F(Du(tm))‖22 ds,

and

|E2,3| ≤ ε ‖F(Dum
h )− F(Du(tm))‖22 + cε −

ˆ

Im

‖F(D(s)) − F(Du(tm))‖22 ds.

Putting all these estimate together and choosing ε small enough, we arrive at the
estimate in Lemma 3.9. �

Lemma 3.10. It holds that
∣∣∣ −
ˆ

Im

(
f(tm)− f(s),um

h − Phu(tm)
)
ds
∣∣∣

≤ c
∥∥∥f(tm)−−

ˆ

Im

f ds
∥∥∥
2

2
+ c ‖um

h − u(tm)‖22

+ c h2+4/p′

−

ˆ

Im

‖∇2u(s)‖26p
p+4

ds+ c h4/p
′

∥∥∥u(tm)−−

ˆ

Im

u(s) ds
∥∥∥
2

1, 6p
4+p

.

Proof. Using the splitting (3.8) and Young’s inequality we get
∣∣∣ −
ˆ

Im

(
f(tm)− f(s),um

h − Phu(tm)
)
ds
∣∣∣

≤ c
∥∥∥f(tm)−−

ˆ

Im

f(s) ds
∥∥∥
2

2
+ c ‖um

h − u(tm)‖22 + c ‖u(tm)− Phu(tm)‖22 .

The last term was already treated in the proof of Lemma 3.7. There we proved

‖u(tm)− Phu(tm)‖22

≤ c h2+4/p′

−

ˆ

Im

‖∇2u(s)‖26p
p+4

ds+ c h4/p
′

∥∥∥u(tm)−−

ˆ

Im

u(s) ds
∥∥∥
2

1, 6p
4+p

,

which yields the assertion. �
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Proof of Proposition 3.5. The assertion follows from Lemma 3.7, Lemma 3.9 and
Lemma (3.10). �

Proof of Theorem 2.17. We now prove the main result. Multiplying (3.6) by κ and
summing over m = 1, . . . , N , for N ≤M , we get

‖uN
h − u(tN )‖22 +

N∑

m=1

‖F(Dum
h )− F(Du(tm))‖22

≤ c h2
N∑

m=1

ˆ

Im

‖∇F(Du(s))‖22 ds+ c κ
N∑

m=1

−

ˆ

Im

‖F(Du(s)) − F(Du(tm))‖22 ds

+ c
h2+4/p′

κ

N∑

m=1

ˆ

Im

‖∇2u(s)‖26p
p+4

ds+ c h4/p
′

N∑

m=1

∥∥∥u(tm)−−

ˆ

Im

u(s) ds
∥∥∥
2

1, 6p
4+p

+ c κ

N∑

m=1

∥∥∥f(tm)−−

ˆ

Im

f(s) ds
∥∥∥
2

2
+ c κ

N∑

m=1

‖um
h − u(tm)‖22 + c ‖u0

h − u0‖
2
2 .

First we observe that by condition (2.19)

h2+4/p′

κ

N∑

m=1

ˆ

Im

‖∇2u(s)‖26p
p+4

ds ≤
h4/p

′

κ
h2

T̂

0

‖∇2u(s)‖26p
p+4

ds ≤ c h2
T̂

0

‖∇2u(s)‖26p
p+4

ds.

Next, by using Lemma 3.1 we have

κ
N∑

m=1

−

ˆ

Im

‖F(Du(s))− F(Du(tm))‖22 ds ≤ k2
T̂

0

∥∥∥∂F(Du)

∂t
(s)
∥∥∥
2

2
ds,

and also, by using again (2.19),

h4/p
′

κ
κ

N∑

m=1

∥∥∥u(tm)−−

ˆ

Im

u(s) ds
∥∥∥
2

6p
4+p

≤
h4/p

′

κ
κ2

T̂

0

∥∥∥∂∇u

∂t
(s)
∥∥∥
2

6p
4+p

ds

≤ c κ2
T̂

0

∥∥∥∂∇u

∂t
(s)
∥∥∥
2

6p
4+p

ds.

Moreover, Lemma 3.1 also yields

κ

N∑

m=1

∥∥∥f(tm)−−

ˆ

Im

f(s) ds
∥∥∥
2

2
≤ c κ2

T̂

0

∥∥∥∂f
∂t

(s)
∥∥∥
2

2
ds.

Hence we have, by using (2.24) and the fact that u0
h is the L2-projection of u0

‖uN
h − u(tN )‖22 +

N∑

m=1

‖F(Dum
h )− F(Du(tm))‖22

≤ c(h2+κ2)

T̂

0

‖∇F(Du(s))‖22 +
∥∥∥∂F(Du)

∂t
(s)
∥∥∥
2

2
+
∥∥∥∂f
∂t

(s)
∥∥∥
2

2
+
∥∥∥∂∇u

∂t
(s)
∥∥∥
2

6p
4+p

+ ‖∇2u(s)‖26p
4+p

ds

+ c κ

N∑

m=1

‖um
h − u(tm)‖22 + c h2‖∇u0‖

2
2 .
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Then, if κ > 0 is small enough such that c κ < 1, we can absorb the last addendum
in the sum from the right-hand side and obtain (using the regularity of u to bound
the time integrals in the above formula)

‖uN
h − u(tN )‖22 +

N∑

m=1

‖F(Dum
h )− F(Du(tm))‖22

≤ c(h2+κ2) + c κ

N−1∑

m=1

‖um
h − u(tm)‖22.

The discrete Gronwall lemma yields the assertion. �

4. on the existence and uniqueness of regular solutions

In this section we prove Theorem 2.21, i.e., the existence and uniqueness of
regular solutions of (parabolicp), solely based on appropriate assumptions on the
data. To this end we proceed as in [8] and treat a perturbed problem, obtained by
adding to the tensor field S with (p, δ)-structure a linear perturbation. We use this
approximation to justify the computations that follow and to avoid some technical
problems related with the case p ∈ (1, 6/5) and the lack of an evolution triple in
this range. From now on we restrict ourselves to the case that S has (p, δ)-structure

some p ∈ (1, 2], δ ∈ [0,∞). Let f ∈ Lp′

(I × Ω) and u0 ∈ L2(Ω) be given.

4.1. The perturbed problem and some global regularity in the time vari-

able. We have the following result on existence and uniqueness of time-regular
solutions of the perturbed problem.

Proposition 4.1. Let the tensor field S have (p, δ)-structure for some p ∈ (1, 2],

and δ ∈ [0,∞) and let f ∈ Lp′

(I;Lp′

(Ω)) ∩W 1,2(I;L2(Ω)) and u0 ∈ W 1,2
0 (Ω) ∩

W 2,2(Ω) with div(Sε(Du0)) ∈ L2(Ω) be given. Then, the perturbed problem

∂uε

∂t
− divSε(Duε) = f in I × Ω ,

uε = 0 on I × ∂Ω ,

uε(0) = u0 in Ω ,

(4.2)

where

Sε(Q) := εQ+ S(Q), with ε > 0 ,

possesses a unique time-regular solution uε, i.e., uε ∈W 1,∞(I;L2(Ω))∩W 1,2(I;W 1,2
0 (Ω))

with F(Duε) ∈W 1,2(I;L2(Ω)) satisfies for all ψ ∈ C∞
0 (I) and all v ∈ W 1,2

0 (Ω)

T̂

0

(∂u
∂t

(t),v
)
ψ(t) dt+

T̂

0

(Sε(Du(t)),Dv)ψ(t) dt =

T̂

0

(f(t),v)ψ(t) dt , (4.3)
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and uε(0) = u0 in W 1,2
0 (Ω). In addition, the solution uε satisfies for a.e. t ∈ I the

estimates3

1

2
‖uε(t)‖

2
2 +

t
ˆ

0

ˆ

Ω

ε |∇uε|
2 + ϕ(|Duε|) dx ds

≤
1

2
‖u0‖

2
2 + c(δ,Ω)

T̂

0

‖f(s)‖p
′

p′ ds ,

(4.4)

∥∥∥∂uε

∂t
(t)
∥∥∥
2

2
+

t
ˆ

0

ε
∥∥∥∂Duε

∂t
(s)
∥∥∥
2

2
+
∥∥∥∂F(Duε)

∂t
(s)
∥∥∥
2

2
ds

≤ C(δ,Ω)
(
ε‖u0‖

2
2,2 + ‖ div(S(Du0))‖

2
2 +

T̂

0

‖f(s)‖22 +
∥∥∥∂f
∂t

(s)
∥∥∥
2

2
ds
)
.

(4.5)

The estimate (4.4) and (4.5) imply that uε ∈ L∞(I;L2(Ω)), F(Duε) ∈ L2(I × Ω);
and uε ∈ W 1,∞(I;L2(Ω)), F(Duε) ∈ W 1,2(I;L2(Ω)), resp., with bounds indepen-
dent of ε > 0.

Proof. The proof is based on a standard Galerkin approximation. The existence of
the Galerkin approximations follows from the standard theory of systems of ordi-
nary differential equations. Estimate (4.4) is proved on the Galerkin level by testing
with the Galerkin approximation. Estimate (4.5) is obtained by differentiating the
Galerkin equations with respect to time and testing with the time derivative of
the Galerkin approximation. We refer to [5, 19] for more details. Note that the
regularity is enough to justify all calculations and to employ the Gronwall lemma
to prove uniqueness. �

Remark 4.6. Note that by the fundamental theorem on the calculus of variations
the weak formulation (4.3) is equivalent to

(∂u
∂t

(t),v
)
+ (Sε(Du(t)),Dv) = (f(t),v) a.e. t ∈ I, ∀v ∈W 1,2

0 (Ω) . (4.7)

In order to prove existence and uniqueness of regular solutions to (parabolicp),

by taking the limit ε → 0+, we need to prove further regularity for the solution
uε, namely on the second order spatial derivatives. The regularity in the spatial
variables requires an ad hoc treatment (localization) for the Dirichlet boundary
value problem. To do this we adapt the argument in [8] for the steady problem, to
handle the parabolic problem. We sketch the relevant steps, pointing out the main
new aspects which are present in the time-dependent case.

Remark 4.8. In the space periodic case the requested regularity for the spatial
derivatives can be obtained simply by testing (again the Galerkin approximations)
with −∆u, as in [5] to prove for a.e. t ∈ I the inequality

1

2
‖∇uε(t)‖

2
2 +

t
ˆ

0

ε‖∆uε(s)‖
2
2 + ‖∇F(Duε(s))‖

2
2 ds ≤

1

2
‖∇u0‖

2
2 + c

T̂

0

‖f(s)‖p
′

p′ ds,

with c depending only on δ and Ω.

3Note that c(δ) only indicates that the constant c depends on δ and will satisfy c(δ) ≤ c(δ0)
for all δ ≤ δ0.
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4.2. Description and properties of the boundary. We assume that the bound-
ary ∂Ω is of class C2,1, that is for each point P ∈ ∂Ω there are local coordinates
such that in these coordinates we have P = 0 and ∂Ω is locally described by a
C2,1-function, i.e., there exist RP , R

′
P ∈ (0,∞), rP ∈ (0, 1) and a C2,1-function

aP : B2
RP

(0) → B1
R′

P
(0) such that

(b1) x ∈ ∂Ω ∩ (B2
RP

(0)×B1
R′

P
(0)) ⇐⇒ x3 = aP (x1, x2),

(b2) ΩP := {(x, x3)
∣∣x = (x1, x2)

⊤ ∈ B2
RP

(0), aP (x) < x3 < aP (x) +R′
P } ⊂ Ω,

(b3) ∇aP (0) = 0, and ∀x = (x1, x2)
⊤ ∈ B2

RP
(0) |∇aP (x)| < rP ,

where Bk
r (0) denotes the k-dimensional open ball with center 0 and radius r > 0.

Note that rP can be made arbitrarily small if we make RP small enough. In the
sequel we will also use, for 0 < λ < 1, the scaled open sets λΩP ⊂ ΩP , defined as
follows

λΩP := {(x, x3)
∣∣ x = (x1, x2)

⊤ ∈ B2
λRP

(0), aP (x) < x3 < aP (x) + λR′
P }.

To localize near ∂Ω ∩ ∂ΩP , for P ∈ ∂Ω, we fix smooth functions ξP : R3 → R such
that

(ℓ1) χ 1
2
ΩP

(x) ≤ ξP (x) ≤ χ 3
4
ΩP

(x),

where χA(x) is the indicator function of the measurable set A. For the remaining
interior estimate we localize by a smooth function 0 ≤ ξ00 ≤ 1 with spt ξ00 ⊂ Ω00,
where Ω00 ⊂ Ω is an open set such that dist(∂Ω00, ∂Ω) > 0. Since the boundary
∂Ω is compact, we can use an appropriate finite sub-covering which, together with
the interior estimate, yields the global estimate.

Let us introduce the tangential derivatives near the boundary. To simplify the
notation we fix P ∈ ∂Ω, h ∈ (0, RP

16 ), and simply write ξ := ξP , a := aP . We

use the standard notation x = (x′, x3)
⊤ and denote by ei, i = 1, 2, 3 the canonical

orthonormal basis in R
3. In the following lower-case Greek letters take values 1, 2.

For a function g with spt g ⊂ spt ξ we define for α = 1, 2 tangential translations:

gτ (x
′, x3) = gτα(x

′, x3) := g
(
x′ + h eα, x3 + a(x′ + h eα)− a(x′)

)
,

tangential differences ∆+g := gτ − g, and tangential divided differences d+g :=
h−1∆+g. It holds that, if g ∈W 1,1(Ω), then we have for α = 1, 2

d+g → ∂τg = ∂ταg := ∂αg + ∂αa ∂3g as h→ 0, (4.9)

almost everywhere in spt ξ, (cf. [25, Sec. 3]). Moreover, uniform Lq-bounds for d+g
imply that ∂τg belongs to Lq(spt ξ). More precisely, if we define, for 0 < h < RP

ΩP,h =
{
x ∈ ΩP

∣∣ x′ ∈ B2
RP−h(0)

}
,

and if f ∈ W 1,q
loc (R

3), then
ˆ

ΩP,h

|d+f |q dx ≤ c

ˆ

ΩP

|∂τf |
q dx.

Moreover, if d+f ∈ Lq(ΩP,h0
), for all 0 < h0 < RP and all 0 < h0 and if

∃ c1 > 0 :

ˆ

ΩP,h0

|d+f |q dx ≤ c1 ∀h0 ∈ (0, RP ) and ∀h ∈ (0, h0),

then ∂τf ∈ Lq(ΩP ) and
ˆ

ΩP

|∂τf |
q dx ≤ c1.

For simplicity we denote ∇a := (∂1a, ∂2a, 0)
⊤. The following variant of formula of

integration by parts will be often used.
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Lemma 4.10. Let spt g ∪ spt f ⊂ spt ξ = spt ξP and 0 < h < RP

16 . Then
ˆ

Ω

fg−τ dx =

ˆ

Ω

fτg dx.

Consequently,
´

Ω

fd+g dx =
´

Ω

(d−f)g dx. Moreover, if in addition f and g are

smooth enough and at least one vanishes on ∂Ω, then
ˆ

Ω

f∂τg dx = −

ˆ

Ω

(∂τf)g dx.

4.3. A first regularity result in space. We start proving spatial regularity for
the perturbed problem in the non-degenerate case δ > 0. The estimates proved
in this intermediate step are uniform with respect to ε > 0 and δ > 0 in: a) the
interior and b) in the case of tangential derivatives; estimates depend on ε, δ > 0
in the normal direction. Nevertheless, this allows later on to use the equations
pointwise to prove in a different way estimates independent of ε, δ > 0 even near
the boundary. Thus, we can pass to the limit with ε → 0 to treat the original
problem in the non-degenerate case. Finally, the degenerate case is treated by a
suitable approximation using that the estimates are independent of δ > 0.

We observe that by using a translation method, the result is proved directly for
solutions and not anymore for the Galerkin approximations.

Proposition 4.11. Let the tensor field S in (4.2) have (p, δ)-structure for some
p ∈ (1, 2] and δ ∈ (0,∞), and let F be the associated tensor field to S. Let Ω ⊂ R

3

be a bounded domain with C2,1 boundary and let u0 ∈W 1,2
0 (Ω) and f ∈ Lp′

(I ×Ω).
Then, the unique time-regular solution uε of the approximate problem (4.2) satisfies
for a.e. t ∈ I

‖ξ20∇uε(t)‖
2
2 +

t
ˆ

0

ˆ

Ω

ε ξ20 |∇
2uε|

2
+ ξ20 |∇F(Duε)|

2
dx ds

≤ c(‖u0‖1,2, ‖f‖Lp′(I×Ω), ‖ξ0‖2,∞, δ) ,

‖ξ2P∂τuε(t)‖
2
2 +

t
ˆ

0

ˆ

Ω

ε ξ2P |∂τDuε|
2
+ ξ2P |∂τF(Duε)|

2
dx ds

≤ c(‖u0‖1,2, ‖f‖Lp′(I×Ω), ‖ξP ‖2,∞, ‖aP ‖C2,1 , δ) .

(4.12)

Here ξ0(x) is a cut-off function with support in the interior of Ω and, for arbitrary
P ∈ ∂Ω, the tangential derivative is defined locally in ΩP by (4.9).

Moreover, there exists a constant C1 > 0 such that4 for a.e. t ∈ I

‖ξ2P∂3uε(t)‖
2
2 +

t
ˆ

0

ˆ

Ω

ε ξ2P |∂3Duε|
2 + ξ2P |∂3F(Duε)|

2 dx ds

≤ c(‖u0‖1,2, ‖f‖Lp′(I×Ω), ‖ξP ‖2,∞, ‖aP‖C2,1 , δ
−1, ε−1, C1),

(4.13)

provided that in the local description of the boundary there holds rP < C1 in (b3),
where ξP (x) is a cut-off function with support in ΩP .

Remark 4.14. Proposition 4.11 and Proposition 4.1 imply that uε(t) ∈ W 2,2(Ω)
and ∂uε

∂t (t) ∈ L2(Ω) for a.e. t ∈ I. Hence, equations (4.2) hold pointwise a.e. in I.

4Recall that c(δ−1) indicates a possibly critical dependence on δ as δ → 0.
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Proof of Proposition 4.11. Fix P ∈ ∂Ω and use in ΩP

v = d−(ξ2d+(uε| 1
2
ΩP

)),

where ξ := ξP , a := aP , and h ∈ (0, RP

16 ), as a test function in (4.3). This yields,
after integration by parts over Ω, for a.e. t ∈ I
ˆ

Ω

ξ2d+
∂uε

∂t
(t) · d+uε(t) dx +

ˆ

Ω

ξ2d+Sε(Duε(t)) · d
+Duε(t) dx

=−

ˆ

Ω

Sε(Duε(t)) ·
(
ξ2d+∂3uε(t)− (ξ−τd

−ξ + ξd−ξ)∂3uε(t)
) s
⊗ d−∇a dx

−

ˆ

Ω

Sε(Duε(t)) · ξ
2(∂3uε(t))τ

s
⊗ d−d+∇a− Sε(Duε(t)) · d

−
(
2ξ∇ξ

s
⊗ d+uε(t)

)
dx

+

ˆ

Ω

Sε((Duε(t))τ ) ·
(
2ξ∂3ξd

+uε(t) + ξ2d+∂3uε(t)
) s
⊗ d+∇a dx

+

ˆ

Ω

f(t) · d−(ξ2d+uε(t)) dx =:
8∑

j=1

Ij .

Hence, by using the estimates for Ij as in [8, Proposition 3.1] (see also [7, Propo-

sition 4.4]) and by observing that d+ ∂uε

∂t = ∂d+uε

∂t , one gets

d

dt

1

2

ˆ

Ω

ξ2|d+uε(t)|
2 dx+ ε

ˆ

Ω

ξ2
∣∣d+∇uε(t)

∣∣2 + ξ2
∣∣∇d+uε(t)

∣∣2dx

+

ˆ

Ω

ξ2
∣∣d+F(Duε(t))

∣∣2+ϕ(ξ|d+∇uε(t)|) + ϕ(ξ|∇d+uε(t)|) dx

≤ c(‖ξ‖2,∞, ‖a‖C2,1 , δ)

ˆ

Ω

|f(t)|p
′

+ ε|∇uε(t)|
2 + ϕ(|Duε(t)|) dx ,

and, after integration over [0, t] ⊆ I and the use of the a priori estimate (4.4), we
get

1

2

ˆ

Ω

ξ2|d+uε(t)|
2 dx+ ε

t
ˆ

0

ˆ

Ω

ξ2
∣∣d+∇uε(s)

∣∣2 + ξ2
∣∣∇d+uε(s)

∣∣2dx ds

+

t
ˆ

0

ˆ

Ω

ξ2
∣∣d+F(Duε(s))

∣∣2+ϕ(ξ|d+∇uε(s)|) + ϕ(ξ|∇d+uε(s)|) dx ds

≤
1

2

ˆ

Ω

|ξ2d+u0|
2 dx+

1

2
‖u0‖

2
2 + c(‖ξ‖2,∞, ‖a‖C2,1 , δ)

T̂

0

‖f(t)‖p
′

p′ dt

≤
1

2
‖u0‖

2
1,2 + c(‖ξ‖2,∞, ‖a‖C2,1 , δ)

T̂

0

‖f(t)‖p
′

p′ dt ,

from which (4.12)2 follows by standard arguments, using that the estimates are
independent of h > 0.

The same argument used with a test function ξ00 with compact support in Ω,
and standard finite differences can be used to prove (4.13)1: this implies that

uε ∈ L∞(I;W 1,2
loc (Ω)) ∩ L

2(I;W 2,2
loc (Ω)) and F(Duε) ∈ L2(I;W 1,2

loc (Ω)).



20 LUIGI C. BERSELLI AND MICHAEL RŮŽIČKA

Coupling the latter with the time regularity from Proposition 4.1 one obtains that
the equations (4.2) hold pointwise a.e. in I × Ω.

We prove now the result on the regularity in the normal direction from (4.13).
We re-write the equations in (4.2) as follows

−
∂uiε
∂t

+

3∑

k=1

∂k3S
ε
i3(Duε)∂3Dk3uε + ∂3αS

ε
i3(Duε)∂3D3αuε = fi a.e. in I × Ω ,

where fi := −f i − ∂γσS
ε
i3(Duε)∂3Dγσuε −

∑3
k,l=1 ∂klS

ε
iβ(Duε)∂βDkluε, i = 1, 2, 3.

We now proceed as in [8, Eq. (3.3)] and we multiply these equations by ∂3D̂i3uε,

where D̂αβuε = 0, for α, β = 1, 2, D̂α3uε = D̂3αuε = 2Dα3uε, for α = 1, 2,

D̂33uε = D33uε and sum over i = 1, 2, 3. In this way we get a lower bound on the
nonlinear term from the left-hand-side in such a way that

−

3∑

i=1

∂uiε
∂t

∂3D̂i3uε + (ε+ ϕ′′(|Duε|)) |b|
2 ≤ c|f||b| a.e. in I × Ω ,

where bi := ∂3Di3uε.
By straightforward manipulations (cf. [8, Sections 3.2 and 4.2]) we have that for

a.e. (t,x) in I × ΩP

|f| ≤ c
(
|f |+ (ε+ ϕ′′(|Duε|))

(
|∂τ∇uε|+ ‖∇a‖∞|∇2uε|

))

|b| ≥ 2|b̃| − |∂τ∇uε| − ‖∇a‖∞|∇2uε|,

for b̃i := ∂233u
i
ε, i = 1, 2, 3. These results imply that a.e. in I × ΩP

−

3∑

l=1

∂ulε
∂t

∂3D̂l3uε + (ε+ ϕ′′(|Duε|)) |b̃|
2

≤ c
[
|f |+ (ε+ ϕ′′(|Duε|))

(
|∂τ∇uε|+ ‖∇a‖∞|∇2uε|

)]
|b|.

We then add on both sides, for α = 1, 2 and i, k = 1, 2, 3 the term

(ε+ ϕ′′(|Duε|)) |∂α∂iu
k
ε |

2 ,

and estimate b with all second order spatial derivatives obtaining

−

3∑

l=1

∂ulε
∂t

∂3D̂l3uε + (ε+ ϕ′′(|Duε|)) |∇
2uε|

2

≤
ε

4
|∇2uε|

2 +
1

4
(ε+ ϕ′′(|Duε|))|∇

2uε|
2

+ c
(
|f |2 + (ε+ ϕ′′(|Duε|))

(
|∂τ∇uε|

2 + ‖∇a‖∞|∇2uε|
))
,

where in the right-hand side we used also the definition of the tangential deriva-
tive (cf. (4.9)). Next, we choose the open sets ΩP in such a way that ‖∇a‖∞ =
‖∇aP (x1, x2)‖∞,ΩP

is small enough, so that we can absorb the last term from the
right-hand side. We finally arrive at the following pointwise inequality

−

3∑

i=1

∂uiε
∂t

∂3D̂i3uε + (ε+ ϕ′′(|Duε|)) |∇
2uε|

2

≤ c
(
|f |2 + (ε+ ϕ′′(|Duε|))

(
|∂τ∇uε|

2
))

a.e. in I × ΩP .

(4.15)

We neglect ϕ′′(|Duε|) (which is non-negative) from the left-hand side, multiply by
ξ2, and integrate in the spatial variable over the whole domain Ω. In particular,
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since uε and ∂uε

∂t both vanish on I × ∂Ω, the first term coming from the left-hand
side of (4.15) can be written as follows by performing some integration by parts:

ˆ

Ω

−

3∑

i=1

ξ2
∂uiε
∂t

∂3D̂i3uε dx

=

ˆ

Ω

ξ2
1

2

d

dt
|∂3uε|

2 −

2∑

α=1

ξ2
∂uαε
∂t

∂23αu
3
ε +

3∑

i=1

ξ ∂3ξ
∂uiε
∂t

∂3u
i
ε dx.

After a further integration over [0, t] ⊆ I we obtain from (4.15), the tangential
regularity already proved in (4.12)2 and Korn’s inequality the following inequality

‖ξ2∂3uε(t)‖
2
2 + ε

t
ˆ

0

ˆ

Ω

|∇2uε|
2 dx ds

≤ ‖ξ2∂3u0‖
2
2 + c(ε−1, ‖ξ‖2,∞, ‖a‖C2,1 , δ

−1)

T̂

0

‖f(s)‖p
′

p′ +
∥∥∥∂uε

∂t
(s)
∥∥∥
2

2
ds,

hence the boundedness of the right-hand side, by using Proposition 4.1.
With this estimate and recalling the properties of the covering we finish the

proof. �

4.4. Uniform estimates for the second order spatial derivatives. We now
improve the estimate in the normal direction in the sense that we will show that
they are bounded uniformly with respect to ε, δ > 0. The used method is an
adaption to the time evolution problem of the treatment in [8], which is based on
previous results from [29].

Proposition 4.16. Let the same hypotheses as in Theorem 2.21 be satisfied with
δ > 0 and let the local description aP of the boundary and the localization function
ξP satisfy (b1)– (b3) and (ℓ1) (cf. Section 4.2). Then, there exists a constant C2 > 0

such that the time-regular solution uε ∈ L∞(I;W 1,2
0 (Ω)) ∩ L2(I;W 2,2(Ω)) of the

approximate problem (4.2) satisfies5 for every P ∈ ∂Ω and for a.e. t ∈ I

ˆ

Ω

ξ2P |∂3uε(t)|
2 dx+

t
ˆ

0

ˆ

Ω

ε ξ2P |∂3Duε|
2 + ξ2P |∂3F(Duε)|

2 dx ds ≤ c , (4.17)

provided rP < C2 in (b3), with c depending on ‖u0‖2,2, ‖divS(Du0)‖2, ‖f‖Lp′(I×Ω),

‖f‖L2(I×Ω), ‖
∂f
∂t‖L2(I×Ω)

, ‖ξP ‖2,∞, ‖aP ‖C2,1 , δ, C2.

Proof. We adapt the strategy as in [8, Proposition 3.2] to the time-dependent prob-
lem. Fix an arbitrary point P ∈ ∂Ω and a local description a = aP of the boundary
and the localization function ξ = ξP satisfying (b1)– (b3) and (ℓ1). In the following
we denote by C constants that depend only on the characteristics of S. First we
observe that, by the results of Proposition 2.9 there exists a constant C0, depending
only on the characteristics of S, such that6

1

C0
|∂3F(Duε)|

2 ≤ P3(Duε) a.e. in I × Ω.

5Recall that c(δ) only indicates that the constant c depends on δ and will satisfy c(δ) ≤ c(δ0)
for all δ ≤ δ0.

6In this section we do not write explicitly the dependence on space and time variables, since
the reader at this point will be acquainted enough with the matter to avoid heavy notation.
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Thus, we get, using also the symmetry of both Duε and S,
ˆ

Ω

ε ξ2|∂3Duε|
2 +

1

C0
ξ2|∂3F(Duε)|

2 dx

≤

ˆ

Ω

ξ2
(
ε ∂3Dαβuε + ∂3Sαβ(Duε)

)
∂3Dαβuε dx

+

ˆ

Ω

ξ2
(
ε ∂3D3αuε + ∂3S3α(Duε)

)
∂αD33uε dx

+

ˆ

Ω

3∑

j=1

ξ2∂3
(
εDj3uε + Sj3(Duε)

)
∂23u

j
ε dx =: J1 + J2 + J3 .

The terms J1 and J2 can be estimated exactly as in [8] to prove, for λ > 0, that

|J1|+ |J2| ≤λ

ˆ

Ω

ξ2|∂3F(Duε)|
2 + ε ξ2|∂3Duε|

2 dx

+ cλ−1(1 + ‖∇a‖2∞)

2∑

β=1

ˆ

Ω

ξ2|∂βF(Duε)|
2 + ε ξ2|∂βDuε|

2 dx

+ cλ−1

2∑

β=1

ˆ

Ω

ξ2|∂τβF(Duε)|
2 + ε ξ2|∂τβDuε|

2 dx

+ cλ−1

(
1 + ‖∇ξ‖2∞ + ‖∇a‖2∞

) ˆ

Ω

ϕ(|Duε|) + ε |Duε|
2 dx,

for some constant cλ−1 depending only on λ−1. The term J3 can be estimated by
observing that we can re-write the equations (4.2) as follows

∂3
(
εDj3uε + Sj3(Duε)

)
=
∂ujε
∂t

− f j − ∂β
(
εDjβuε + Sjβ(Duε)

)
a.e. in I ×Ω .

Hence, we can multiply by uε and integrate by parts in space, since uε =
∂uε

∂t = 0

on I × ∂Ω. We treat the terms without time derivative as I3 in [8, p. 186] and
integrate by parts the one involving ∂tuε to get the following

J3 =

=

3∑

j=1

ˆ

Ω

ξ2
∂ujε
∂t

∂233u
j
ε − ξ2

(
f j + ∂βSjβ(Duε) + ε∂βDjβuε

)(
2∂3Dj3uε − ∂jD33uε

)
dx

= −
1

2

d

dt

ˆ

Ω

ξ2|∂3uε|
2 dx− 2

3∑

j=1

ˆ

Ω

ξ∂3ξ
∂ujε
∂t

∂3u
j
ε dx

−
3∑

j=1

ˆ

Ω

ξ2
(
f j + ∂βSjβ(Duε) + ε∂βDjβuε

)(
2∂3Dj3uε − ∂jD33uε

)
dx

≤ −
1

2

d

dt

ˆ

Ω

ξ2|∂3uε|
2 dx+ λC

ˆ

Ω

ξ2|∂3F(Duε)|
2 dx+ cλ−1

2∑

β=1

ˆ

Ω

ξ2|∂βF(Duε)|
2 dx

+ λ

ˆ

Ω

ε ξ2|∂3Duε|
2 dx+ cλ−1

2∑

β=1

ˆ

Ω

ε ξ2|∂βDuε|
2 dx+ c

ˆ

Ω

ξ2|∂3uε|
2 dx

+ c ‖∇ξ‖
2
∞

∥∥∥∂uε

∂t

∥∥∥
2

2
+ cλ−1

(
‖f‖p

′

p′ + ‖Duε‖
p
p + δp

)
.
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In these estimates we use for the terms with ∂βF(Duε) and ∂βDuε the definition
of the tangential derivative in (4.9) to get

ˆ

Ω

ξ2|∂βF(Duε)|
2 + ε ξ2|∂βDuε|

2 dx

≤

ˆ

Ω

ξ2|∂τβF(Duε)|
2 + ε ξ2|∂τβDuε|

2 dx

+ ‖∇a‖
2
∞

ˆ

Ω

ξ2|∂3F(Duε)|
2 + ε ξ2|∂3Duε|

2 dx .

Note that such terms already are present in the estimates for {Ji}i=1,2,3. Now we
choose the covering such that ‖∇a‖∞ is small enough and only at this point we fix
λ > 0 small enough (in order to absorb in the left-hand side terms involving ∂3Duε

and ∂3F(Duε)). We then obtain after integration in time over [0, t] ⊆ [0, T ] the
following estimate

ˆ

Ω

ξ3|∂3uε(t)|
2 dx +

t
ˆ

0

ˆ

Ω

ε ξ2|∂3Duε|
2 +

1

C0
ξ2|∂3F(Duε)|

2 dx ds

≤

ˆ

Ω

ξ3|∂3u0|
2 dx+ c

2∑

β=1

T̂

0

ˆ

Ω

ξ2|∂τβF(uε)|
2 + ε ξ2|∂τβDuε|

2 dx ds

+ c

T̂

0

ˆ

Ω

|f |p
′

+ ϕ(|Duε|) + ϕ(δ) + ε|Duε|
2
+
∣∣∣∂uε

∂t

∣∣∣
2

dx ds+

t
ˆ

0

ˆ

Ω

ξ3|∂3uε|
2 dx ds.

Using the uniform estimates (4.4), (4.5) and (4.12) we can apply Gronwall’s in-
equality to prove the estimate (4.17). �

Choosing now an appropriate finite covering of the boundary (for the details see
also [7]), Propositions 4.11, 4.16 yield the following result:

Proposition 4.18. Let the same hypotheses as in Theorem 2.21 with δ > 0 be
satisfied. Then, it holds7 for all t ∈ I

‖∇uε(t)‖
2
2 +

t
ˆ

0

ε ‖∇Duε(s)‖
2
2 + ‖∇F(Duε(s))‖

2
2 ds ≤ C

with C depending on ‖u0‖2,2, ‖divS(Du0)‖2, ‖f‖Lp′(I×Ω), ‖f‖L2(I×Ω), ‖
∂f
∂t ‖L2(I×Ω)

,δ,

∂Ω and the characteristics of S.

4.5. Passage to the limit. Since the estimates in Propositions 4.1, 4.18 are uni-
form with respect to ε > 0, they are inherited by u = limε→0 uε. The function u

is the unique regular solution to the initial boundary value problem (parabolicp).
We can now prove the existence result for regular solutions.

Proof (of Theorem 2.21). First, let us assume that δ > 0. From Proposition 4.1,
Proposition 2.8, and Proposition 4.18 we know that F(Duε) is uniformly bounded
with respect to ε in W 1,2(I × Ω). This also implies (cf. [5, Lemma 4.4]) that uε

is uniformly bounded with respect to ε in Lp(I;W 2,p(Ω))∩W 1,p(I;W 1,p(Ω)). The
properties of S and Proposition 4.1 also yield that S(Duε) is uniformly bounded

7Recall that c(δ) only indicates that the constant c depends on δ and will satisfy c(δ) ≤ c(δ0)
for all δ ≤ δ0.
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with respect to ε in Lp′

(I×Ω). Thus, there exists a sub-sequence {εn} (which con-

verges to 0 as n→ +∞), u ∈ Lp(I;W 2,p(Ω))∩W 1,p(I;W 1,p
0 (Ω))∩W 1,∞(I;L2(Ω)),

F∗ ∈ W 1,2(I × Ω), and S∗ ∈ Lp′

(I × Ω) such that

uεn ⇀ u in Lp(I;W 2,p(Ω) ∩W 1,p
0 (Ω)) ∩W 1,p(I;W 1,p

0 (Ω)),

uεn
∗
⇀ u in W 1,∞(I;L2(Ω)) ,

Duεn → Du a.e. in I × Ω ,

F(Duεn)⇀ F∗ in W 1,2(I × Ω) ,

S(Duεn)⇀ S∗ in Lp′

(I × Ω) .

The continuity of S and F and the classical result stating that the weak limit and
the a.e. limit in Lebesgue spaces coincide (cf. [23]) implies that

F∗ = F(Du) and S∗ = S(Du) .

These results enable us to pass to the limit in the weak formulation (4.3) of the
perturbed problem (4.2), which yields for all ψ ∈ C∞

0 (I) and all v ∈ V

T̂

0

(∂u
∂t

(t),v
)
ψ(t) dt+

T̂

0

(S(Du(t)),Dv)ψ(t) dt =

T̂

0

(f(t),v)ψ(t) dt , (4.19)

since limεn→0

T́

0

´

Ω

εnDuεn(t) · Dvψ(t) dx dt = 0. The weak lower semi-continuity

of the norm implies that

‖F(Du)‖W 1,2(I×Ω) ≤ lim inf
εn→0

‖F(Duεn)‖W 1,2(I×Ω) ,

‖u‖W 1,∞(I;L2(Ω)) ≤ lim inf
εn→0

‖uεn‖W 1,∞(I;L2(Ω)) .

By density and the strict monotonicity of S we thus know that u is the unique
regular solution of problem (parabolicp). This proves Theorem 2.21 in the case
δ > 0, since the weak formulation (1.1) follows immediately from (4.19).

Let us consider now the case δ = 0. Proposition 4.11 and Proposition 4.16
are valid only for δ > 0 and thus cannot be used directly for the case that S

has (p, δ)-structure with δ = 0. However, it is proved in [5, Section 3.1] that for
any stress tensor with (p, 0)-structure S, there exist8 a stress tensors Sκ, having
(p, κ)-structure with κ > 0 approximating S in an appropriate way. Thus we
approximate (parabolicp) by the system

∂uε,κ

∂t
− divSε,κ(Duε,κ) = f in I × Ω ,

uε,κ = 0 on I × ∂Ω ,

uε,κ(0) = u0 in Ω ,

where

Sε,κ(Q) := εQ+ Sκ(Q), with ε > 0 , κ ∈ (0, 1) .

For fixed κ > 0 we can use the above theory and use that fact that the estimates
are uniform in ε to pass to the limit as ε→ 0. Thus, we obtain that for all κ ∈ (0, 1)

there exists a unique uκ ∈ Lp(I;W 1,p
0 (Ω)) fulfilling

‖uκ‖W 1,∞(I;L2(Ω))+‖F(Duκ)‖W 1,2(I×Ω) ≤ c0(f ,u0, ∂Ω) ,

8The special case Sκ(D) = |D|p−2
D could be approximated by Sκ(D) := (κ+ |D|)p−2D as

κ → 0. However, for a general extra stress tensor S having only (p, δ)-structure this is not possible.
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satisfying for all ψ ∈ C∞
0 (I) and all v ∈ W 1,2

0 (Ω)

T̂

0

(∂uκ

∂t
(t),v

)
ψ(t) dt+

T̂

0

(Sκ(Duκ(t)),Dv)ψ(t) dt =

T̂

0

(f(t),v)ψ(t) dt ,

The constant c0 is independent of κ ∈ (0, 1) and Fκ : R3×3 → R
3×3
sym is defined

through

Fκ(P) :=
(
κ+ |Psym|

) p−2

2 Psym .

Now we can proceed as in [5]. Indeed, it follows that Fκ(Duκ) is uniformly bounded
in W 1,2(I × Ω), that uκ is uniformly bounded in W 1,p(I × Ω) and that Sκ(Duκ)

is uniformly bounded in Lp′

(I × Ω). Thus, there exist F∗ ∈ W 1,2(I × Ω), u ∈

Lp(I;W 1,p
0 (Ω)), S∗ ∈ Lp′

(I ×Ω), and a sub-sequence {κn}, with κn → 0, such that

Fκn(Duκn
)⇀ F∗ in W 1,2(I × Ω) ,

Fκn(Duκn
) → F∗ in L2(I × Ω) and a.e. in I × Ω ,

uκn
⇀ u in Lp(I;W 1,p

0 (Ω)) ,

Sκ(Duκ)⇀ S∗ in Lp′

(I × Ω) .

Setting B := (F0)−1(F∗), it follows from [5, Lemma 3.23] that

Duκn
= (Fκn)−1(Fκn(Duκn

)) → (F0)−1(F∗) = B a.e. in I × Ω.

Since weak and a.e. limit coincide we obtain that

Duκn
→ Du = B a.e. in I × Ω .

From [5, Lemma 3.16] and [5, Corollary 3.22] it now follows that

Fκn(Duκn
)⇀ F0(Du) in W 1,2(I × Ω) ,

Sκn(Duκn
) → S(Du) a.e. in I × Ω .

Since weak and a.e. limit coincide we obtain that

F∗ = F0(Du) and S∗ = S(Du) a.e. in I × Ω .

Now we can finish the proof in the same way as in the case δ > 0. �

Appendix A. On the interpolation operator.

We will deduce some results on interpolation operators which satisfy rather gen-
eral assumptions. They are satisfied, e.g., by the ScottZhang operator. We work
now in a general d-dimensional setting, i.e., we assume that Ω ⊂ R

d is a polyhedral
domain with Lipschitz continuous boundary. Let Th denote a family of shape-
regular triangulations, consisting of d-dimensional simplices K. We assume that
Th is non-degenerate, i.e., maxK∈Th

hK

ρK
≤ γ0. The global mesh-size h is defined by

h := maxK∈Th
hK . By the assumptions we obtain that |SK | ∼ |K| and that the

number of patches SK to which a simplex belongs are both bounded uniformly in
h and K. The finite element space Xh is given by

Xh := {v ∈ L1
loc(Ω)

∣∣v ∈ PK(Th)} ,

where Pr0(Th) ⊂ PK(Th) ⊂ Pr1(Th) for some r0 ≤ r1 ∈ N0.
We assume that the interpolation operator Ph is W ℓ,1-stable.

Assumption A.1. Let ℓ0 ∈ N0 and let Ph : (W
ℓ0,1(Ω))d → (Xh)

d.
(a) For some ℓ ≥ ℓ0 and m ∈ N0 holds uniformly in K ∈ Th and v ∈ (W l,1(Ω))d

m∑

j=0

hjK −

ˆ

K

|∇jPhv| dx ≤ c(m, ℓ)

ℓ∑

k=0

hkK −

ˆ

SK

|∇kv| dx,
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(b) For all v ∈ (Pr0)
d(Ω) holds

Phv = v.

Note that we have to choose ℓ0 ≥ 1, if the operator Ph is preserving the boundary
values, i.e., Ph : (W ℓ0,1(Ω))d → (Xh ∩W 1,1

0 (Ω))d. Otherwise we allow ℓ0 = 0.
The properties of the interpolation operator Ph are discussed in detail in [20,

Sec. 4,5], [3, Sec. 3.2]. Let us now prove the two additional features formulated in
Proposition 2.16 (ii), (iii). We start with the following non-homogeneous approxi-
mation property of Ph (Note that Proposition 2.16 (ii) is a special case of the result
below).

Proposition A.2. Let Ph satisfy Assumption A.1 with ℓ ≤ r0 + 1 and let
r, q ∈ [1,∞) be such that W ℓ,q(Ω) →֒→֒ Wm,r(Ω). Moreover, assume that h ∼ hK
uniformly in Th. Then, there exists a constant c = c(ℓ,m, q, r, r0, r1, γ0) such that

m∑

j=0

hj ‖∇j(v − Phv)‖r ≤ c

ℓ∑

k=0

hℓ+dmin{0, 1
r
− 1

q
} ‖∇kv‖q . (A.3)

To prove Proposition A.2 we start by deriving from Assumption A.1 the non-
homogeneous Sobolev stability adapting the approach in the case of Orlicz stability
from [20] (cf. [28, Thm. 3.1] for the classical approach).

Lemma A.4. Let Ph satisfy Assumption A.1 and let r, q ∈ [1,∞) be given. Then
there exists c = c(ℓ,m, r0, r1) such that for all K ∈ Th

m∑

j=0

hjK


−

ˆ

K

|∇jPhv|
r dx




1
r

≤ c
l∑

k=0

hkK


−

ˆ

SK

|∇kv|q dx




1
q

,

or, in a non-averaged way, this can be formulated as follows

m∑

j=0

hjK ‖∇jPhv‖r,K ≤ c h
d( 1

r
− 1

q )
K

l∑

k=0

hkK‖∇kv‖q,SK
.

Proof. We can write, using (2.13), (A.3), and Hölder’s inequality

m∑

j=0

hjK


−

ˆ

K

|∇jPhv|
r dx




1
r

≤

m∑

j=0

hjK ‖∇jPhv‖∞,K ≤ c

m∑

j=0

hjK −

ˆ

K

|∇jPhv| dx

≤ c

ℓ∑

k=0

hkK −

ˆ

SK

|∇kv| dx ≤ c

ℓ∑

k=0

hkK


−

ˆ

SK

|∇kv|q dx




1
q

.

�

Next, we prove a generalized Poincaré-Sobolev-Wirtinger inequality

Lemma A.5. Let ℓ ∈ N and q, r ∈ [1,∞) be such that W ℓ,q(K) →֒→֒ Wm,r(K).
Then, there exists a constant c = c(ℓ,m, γ0, r, q) such that for all v ∈ W ℓ,q(K) with
−
´

K

∇kv dx = 0 for k = 0, . . . , ℓ− 1 it holds

m∑

j=0

hjK ‖∇jv‖r,K ≤ c h
ℓ+d( 1

r
− 1

q )
K ‖∇ℓv‖q,K .
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Proof. Let us first show that for every j = 0, . . . ,m there exists cj > 0 (depending
on K) such that there holds ‖∇jv‖r,K ≤ cj‖∇

ℓv‖q,K . Fix j and assume per
absurdum that there exists {ṽn} ⊂W ℓ,q(K) such that

‖∇jṽn‖r,K > n‖∇ℓṽn‖q,K .

Setting vn := ṽn

‖∇j ṽn‖r,K
we get

‖∇jvn‖r,K = 1 and ‖∇ℓvn‖q,K <
1

n
. (A.6)

Note that ‖w‖q,K + ‖∇ℓ−jw‖q,K is an equivalent norm on W ℓ−j,q(K) (cf. [31,
p. 179]). We have to distinguish the cases r ≥ q and r < q.
Case 1: r ≥ q. The sequence {∇jvn} is bounded inW ℓ−j,q(K) →֒→֒ Lr(K), hence
there exists a sub-sequence (relabelled as {∇jvn}) such that ∇jvn → V strongly in
Lr(K) and ‖V‖r,K = 1. This and (A.6) imply that {∇jvn} is a Cauchy sequence
in W ℓ−j,q(K), hence ∇jvn → W in W ℓ−j,q(K). Uniqueness of the limit implies
that W = V. This proves that ∇jvn → V in W ℓ−j,q(K). Moreover, (A.6) implies
‖∇ℓ−jV‖q,K = 0, hence that V ∈ Pℓ−j−1. Next, the convergence in W ℓ−j,q(K)
implies that also the averages converge. Hence

0 = −

ˆ

K

∇k∇jvn dx → −

ˆ

K

∇kV dx for k = 0, . . . , ℓ− j − 1,

but as V is polynomial of degree less or equal than ℓ− j, this implies that V = 0.
Thus, ‖V‖r,K = 0, contradicting the fact that ‖V‖r,K = 1.
Case 2: r < q. In this case the same argument as in the previous case shows that

‖∇jv‖q,K ≤ cj‖∇
ℓv‖q,K ,

and then by Hölder’s inequality

‖∇jv‖r,K ≤ c ‖∇jv‖q,K ≤ c cj ‖∇
lv‖q,K ,

with c = c(K).
To prove how the constants cj depend on K we proceed as follows: We pass

from a generic simplex K to the reference simplex K̂, use the previous inequalities

in the reference domain with constants depending only K̂, and then we come back
to the original simplex K. This shows for every j = 0, . . . ,m

‖∇jv‖rr,K ≃ hdK‖∇̂jv‖r
r,K̂

≤ hdKcj(K̂)‖∇̂ℓ−j∇̂jv‖r
q,K̂

≃ hdKcj(K̂)h
(ℓ−j− d

q )r
K ‖∇ℓv‖rq,K .

Hence, we get

hjK‖∇jv‖r,K ≤ cj(K̂)h
ℓ+d( 1

r
− 1

q )
K ‖∇ℓv‖q,K ,

which implies the assertion with c =
∑m

j=0 cj(K̂). �

We recall now a Poincaré-Wirtinger type inequality, where it is possible to replace
the average over the whole domain G with that one over a sub-domain A ⊂ G
(cf. [15, Cor. 8.2.6], [24, Ch. 7.8]), provided that G is an α-John domain and

|A| ≃ |G| .

Note that, due to our assumptions on the triangulation, we have that SK are α-John
domains, where α depends only on γ0, and that |K| ≃ |SK | for all K ∈ Th.

Lemma A.7. There exists a constant c = c(d, γ0) such that

‖v − 〈v〉K‖q,SK
≤ c hK ‖∇v‖q,SK

∀v ∈ W 1,q(SK) .

This enables us to prove a local variant of Proposition A.2.
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Lemma A.8. Let Ph satisfy Assumption A.1 with ℓ ≤ r0 + 1 and let r, q ∈ [1,∞)
be such that W ℓ,q(Ω) →֒→֒ Wm,r(Ω). Then there exists c = c(ℓ,m, r0, r1, γ0, r, q, d)
such that for all v ∈W ℓ,q(Ω) and all K ∈ Th

m∑

j=0

hjK ‖∇jv −∇jPhv‖r,K ≤ c h
ℓ+d( 1

r
− 1

q )
K ‖∇ℓv‖q,SK

.

Proof. We split the interpolation error by adding and subtracting a polynomial p
of degree less than ℓ and use Assumption A.1 (b) and Lemma A.4 to get for all
j = 0, . . . ,m

m∑

j=0

hjK ‖∇jv −∇jPhv‖r,K

≤

m∑

j=0

hjK ‖∇jv −∇j
p‖r,K +

m∑

j=0

hj ‖∇jPh

(
v − p

)
‖r,K

≤
m∑

j=0

hjK ‖∇jv −∇j
p‖r,K + c h

d( 1
r
− 1

q )
K

ℓ∑

k=0

hkK‖∇k(v − p)‖r,SK
.

Since l ≤ r0+1 we can use Lemma A.5 to infer that for all polynomials p such that
−
´

K

∇kv dx = −
´

K

∇k
p dx, for k = 0, . . . , ℓ− 1, we have

m∑

j=0

hjK ‖∇jv −∇j
p‖r,K ≤ c h

ℓ+d( 1
r
− 1

q )
K ‖∇ℓv‖q,K ≤ c h

ℓ+d( 1
r
− 1

q )
K ‖∇ℓv‖q,SK

.

For the same polynomials we have −
´

K
∇k(v−p) dx = 0, k = 0, . . . , ℓ− 1, and thus,

Lemma A.7 yields for k = 0, . . . , ℓ− 1

‖∇k(v − p)‖q,SK
≤ c hℓ−k

K ‖∇ℓ(v − p)‖q,SK
= c hℓ−k

K ‖∇ℓv‖q,SK
.

The last three inequalities prove the assertion. �

We now have all results to prove Proposition A.2.

Proof of Proposition A.2. We split the integration over Ω into a sum over K, and
then we use Lemma A.8 to get for each j ∈ {0, . . . ,m}

‖∇jv −∇jPhv‖
r
r,Ω =

∑

K∈Th

‖∇jv −∇jPhv‖
r
r,K

≤ c
∑

K∈Th

h
ℓr−jr+dr( 1

r
− 1

q )
K ‖∇ℓv‖rq,SK

.

We set now αK := ‖∇ℓv‖qq,SK
and observe that ∇ℓv ∈ Lq(Ω) is equivalent to

αK ∈ ℓ1(N) = ℓ1. We use Hölder inequality in the ℓq spaces to estimate the
right-hand side. We distinguish again the two cases q ≤ r and q > r.
Case 1: q ≤ r. In this case, since r

q − 1 ≥ 0 and since for {an} ⊂ ℓ1 it holds

‖an‖ℓ∞ ≤ ‖an‖ℓ1 , we can write

∑

K∈Th

‖∇ℓv‖rq,SK
=
∑

K∈Th

α
r
q

K =
∑

K∈Th

αK α
r
q
−1

K

≤
∑

K∈Th

αK ‖αK‖
r
q
−1

ℓ∞ ≤ ‖αK‖
r
q
−1

ℓ∞ ‖αK‖ℓ1 ≤ ‖αK‖
r
q

ℓ1.
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Case 2: q > r. In this case

∑

K∈Th

α
r
q

K ≤

( ∑

K∈Th

αK

) r
q
( ∑

K∈Th

1

)1− r
q

=

( ∑

K∈Th

αK

) r
q

(#K)1−
r
q .

Since h ∼ hK uniformly in Th we get |Ω| ≃ #K hd and thus #K ∼ h−d. Hence we
obtain ∑

K∈Th

α
r
q

K ≤ c h−dr( 1
r
− 1

q )‖αK‖
r
q

ℓ1 .

Putting the two cases together, using hK ≤ h and W ℓ,q(Ω) →֒Wm,r(Ω), we proved
for each j ∈ {0, . . . ,m}

‖∇jv −∇jPhv‖
r
r,Ω ≤ c hℓr−jr+drmax{0,( 1

q
− 1

r )}

( ∑

K∈Th

‖∇ℓv‖qq,SK

) r
q

.

Taking the r-th root, multiplying by hj and summing up over j = 0, . . . ,m proves

the assertion, since
(∑

K∈Th
‖∇ℓv‖qq,SK

) 1
q

≤ c ‖∇ℓv‖q,Ω. �

Finally, we prove the following version of the continuity of the interpolation
operator Ph in Orlicz spaces.

Lemma A.9. Let F(Dv),F(Dw) ∈ W 1,2(Ω). Then there exists a constant c =
c(p, r1, γ0) such that

ˆ

Ω

ϕ|Dv|

(∣∣DPhv −DPhw
∣∣) dx ≤ c h2‖∇F(Dv)‖22 + c ‖F(Dv)− F(Dw)‖22 ,

where the constants depends only on γ0 and p.

Proof. Using again
´

Ω
f dx =

∑
K∈Th

´

K
f dx, it suffices to treat one simplex K.

We obtain, thanks to back and forth shift changes (cf. Proposition 2.8 (ii)), the
properties of the interpolation operator, Korn’s inequality (cf. [21, Thm. 6.13])
and Proposition 2.8 (i), Poincaré’s inequality applied to F(Du) in L2(SK) and
Proposition 2.8 (iii), the properties of the triangulation, the following chain of
inequalities
ˆ

K

ϕ|Dv|

(∣∣DPhv −DPhw
∣∣) dx

≤ cδ

ˆ

K

ϕ|〈Dv〉SK
|

(∣∣DPhv −DPhw
∣∣) dx+ δ

ˆ

K

ϕ|〈Dv〉SK
|

(∣∣Dv − 〈Dv〉SK

∣∣) dx

≤ c cδ

ˆ

SK

ϕ|〈Dv〉SK
|

(∣∣∇v −∇w
∣∣) dx+ δ

ˆ

K

ϕ|〈Dv〉SK
|

(∣∣Dv − 〈Dv〉SK

∣∣) dx

≤ c cδ

ˆ

SK

ϕ|〈Dv〉SK
|

(∣∣Dv −Dw)
∣∣) dx+ δ

ˆ

K

ϕ|〈Dv〉SK
|

(∣∣Dv − 〈Dv〉SK

∣∣) dx

≤ cδ

ˆ

SK

ϕ|Dv|

(∣∣Dv −Dw)
∣∣) dx+ δ

ˆ

SK

ϕ|〈Dv〉SK
|

(∣∣Dv − 〈Dv〉SK

∣∣) dx

≤ cδ ‖F(Dw)− F(Dv)‖22,SK
+ δ

ˆ

SK

|F(Dv) − 〈F(Dv)〉SK
|2 dx
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≤ cδ ‖F(Dw)− F(Dv)‖22,SK
+ c δ h2

ˆ

SK

|∇F(Dv)|2 dx.

This yields the assertion. �
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