
Bayesian Network Semantics for Petri NetsI

Roberto Brunia, Hernán Melgrattib,∗, Ugo Montanaria

aDipartimento di Informatica, Università di Pisa, Italy
bInstituto de Investigación en Ciencias de la Computación (ICC), Universidad de Buenos

Aires & Conicet, Argentina

Abstract

Recent work by the authors equips Petri occurrence nets (PN) with probability

distributions which fully replace nondeterminism. To avoid the so-called confu-

sion problem, the construction imposes additional causal dependencies which

restrict choices within certain subnets called structural branching cells (s-cells).

Bayesian nets (BN) are usually structured as partial orders where nodes define

conditional probability distributions. In the paper, we unify the two structures

in terms of Symmetric Monoidal Categories (SMC), so that we can apply to PN

ordinary analysis techniques developed for BN. Interestingly, it turns out that

PN which cannot be SMC-decomposed are exactly s-cells. This result confirms

the importance for Petri nets of both SMC and s-cells.

Keywords: Bayesian nets, Petri nets, conditional probability distributions,

confusion, branching cells, Kleisli categories, symmetric monoidal categories,

forward and backward inference

IThe first author has been partially supported by the MIUR PRIN 201784YSZ5 ASPRA:
Analysis of program analyses and by University of Pisa PRA 2018 66 DECLWARE: Metodologie
dichiarative per la progettazione e il deployment di applicazioni. The second author has been
partially supported by UBACyT projects 20020170100544BA and 20020170100086BA, and
CONICET project PIP 11220130100148CO. The third author carried on part of the work
while attending a Program on Logical Structures in Computation at Simons Institute, Berkeley,
2016.
∗Corresponding author
Email addresses: bruni@di.unipi.it (Roberto Bruni), hmelgra@dc.uba.ar (Hernán

Melgratti), ugo@di.unipi.it (Ugo Montanari)

Preprint submitted to Elsevier August 5, 2019

1. Introduction

At first sight, Bayesian nets (BN) and Petri Nets (PN) have very different

purposes: efficient/intelligent analysis of probabilistic distributions for BN, a

concurrent, nondeterministic model of computation for PN. But in fact BN and

PN share a similar structure: a partial ordering representing incremental, local5

evolutions via concurrent firings for PN, the introduction of new variables with

independent, conditional probabilities for BN.

A closer comparison can be carried on when equipping also PN with a suitable

probability structure. A recent approach [1, 2] aims at fully replacing nonde-

terministic choices with probability distributions, while keeping concurrency10

expressiveness as much as possible. The problem here is the so-called confusion:

in PN with confusion, a concurrent computation may exhibit non stable decision

steps: delaying a choice may change the available options, due to the action of a

concurrent transition.

The simplest example of confusion is the Petri net in Fig. 1(a). Transitions a15

and b are enabled but in conflict, because they compete for the token in place 1;

transition c is also enabled and concurrent w.r.t. a and b; however the firing of

transition a enables the transition d that is in conflict with c. As a consequence,

the concurrent run where a and c are executed puts in the same equivalence

class two quite different traces, where different decisions are taken: (1) if a is20

executed first, then two choices are taken (a over b and c over d); (2) if c is

executed first, then only one choice is taken (a over b). When choices are taken

according to some probability distributions, this makes it impossible to assign a

unique probability to the concurrent computation with a and c.

The solution proposed by the authors in [2] is to translate the given PN into25

an equivalent confusionless net (ClPN). This is done by partitioning the net in

structural branching cells (s-cells) where decisions must be resolved. The s-cells

of a PN are the equivalence classes of a preorder v, that introduces some further

causal dependencies. The preorder is obtained by closing transitively the relation

including prime mutual exclusion and immediate causality. It follows that the30

2

•
�� $$

1

a

��

b

•
�� $$

3

��
4

c

��
d

��
5 6

(a) A PN

•
�� $$

1 C1

a

��

b

•
�� $$

3 C2

��
4

c

��
d

��
5 6

(b) Its s-cells

JLNC1
M, δK

4

JLNC2
M, δK

5 6

(c) Its BN

Figure 1: A PN with confusion

preorder induces a partial order on s-cells, still denoted v. In the example above

there are two s-cells C1 v C2, meaning that the choice between a and b must be

resolved before the one between c and d (see Fig. 1(b)). Each s-cell can then

be translated to a confusionless net fragment and all fragments are assembled

together, where the dependencies between s-cells are implemented by additional35

places in a way that corresponds to the execution strategy of [1].

To make confusionless a PN with confusion, it is necessary to delay non stable

decisions until any two enabled transitions either do not share any precondition

or they share all of them. Then such choice steps are equipped with probability

distributions. In practice, our construction introduces a negation place p for40

every place p of the original net, and adds suitable controls to make sure that

whenever place p becomes inhabited, place p is guaranteed never to become

occupied. Thus when the present marking includes p, all transitions requiring p

can be erased and the net simplified. The process is hierarchical, because each

s-cell can be further decomposed in smaller s-cells under the assumption that45

some place p becomes inhabited.

The aim of this paper is to show that the partial order of s-cells induces

a BN structure. The potential is to develop the countless applications of BN

for inference and learning in the context of an expressive model like PN. We

propose a strong formal connection between PN and BN via Symmetric Monoidal50

Categories (SMC).

3

On the side of BN, convenient categorical presentations have been recently

proposed [3, 4, 5] which, in the discrete model, represent BN as string diagrams of

a SMC K`(D). Here, objects are natural numbers n which express that 2n cases

are possible, and arrows are rectangular matrices, where rows assign probability55

distributions on the output cases for every input case. An arrow f : X → D(Y)

models a conditional probability distribution P (Y |X). Concurrent arrows of

string diagrams represent independent probability distributions. Usual inference

analysis of BN, like forward and backward inference, Bayesian inversion and

disintegration can be made explicit as standard categorical constructions [4].60

A ClPN, and thus a PN, can also be mapped to an arrow of K`(D), amenable

to the same inference analysis techniques developed for BN. As for our translation

PN-ClPN, this mapping is defined by well founded recursion on hierarchical

branching cells. Here the effect of positive-negative information p/p is played by

associating object 1 to a place (that is 21 = 2 cases), which represents explicitly65

the two options.

Translating a ClPN into a BN is more difficult. In fact, an s-cell may produce

several nodes of the BN, since the presence of negative information may break

down the cell into a full BN. Thus while in K`(D) associativity of sequential

composition takes care of the nested structure, at the level of Bayesian networks70

it would be necessary to introduce a nested version of BN, which, as far as we

know, has not been proposed in the literature.

In Fig. 1(c) we show the BN derived from the PN in Fig. 1(a), represented as

a string diagram. There, NC is the subnet associated with the s-cell C and δ is

the family of probability distributions that rule the choices within C1 (between

a and b) and C2 (between c and d when place 4 is marked, the trivial choice of c

when 4 remains empty, i.e., they are conditional probabilitities depending on

the presence/absence of tokens in 4). Roughly, there is one node for each s-cell

and wires are associated with places. The first node represents a variable that

4

Marked Occurrence net M (Definition 3)

s-cell decomposition (Proposition 1)

��
Canonical representation can(M) (Definition 8)

compilation (Lemma 4)

��
Confusion-less representation LMM (Definition 9)

translation (Proposition 3)

��
Bayesian Net JLMM, δK (Definition 10)

Figure 2: Roadmap of technical contribution

may take values 4/4, i.e., it is the arrow

∅ {4}

∅ pb pa
: 0→ 1

where the probabilities pa and pb = 1− pa are of course determined by δ. The

second node represents a variable that may take all combination of values 5/5

and 6/6, conditioned to the value of the first variable, i.e., it is the arrow

∅ {5} {6} {5, 6}

∅ 0 1 0 0

{4} 0 pc pd 0

: 1→ 2

where, again, the values pc and pd = 1− pc are drawn by δ. For instance, pc is

the conditional probability that the place 5 is marked given that the place 4 is

marked.75

To define the arrow in K`(D) that corresponds to a PN we exploit the

monoidal category structure of nets and K`(D): first each net is uniquely

decomposed in a term of an algebra whose constants are no further hierarchically

decomposable s-cells, then a homomorphism returns the corresponding string

diagram in K`(D).80

More precisely, Fig. 2 summarises the transformation steps that allows us to

map a marked occurrence netM into a Bayesian network. Firstly, we show that

5

any occurrence netM is an arrow of a strictly symmetric monoidal pre-category,

called its canonical representation can(M), which represents M as a sequential

and parallel composition of s-cells. Then, we show that occurrence nets can be85

described as terms LMM of a suitable algebra (see Section 4.1) by decomposing

s-cells further: terms make explicit the non-deterministic choices in s-cells and

remove confusion. Finally, terms LMM are mapped into string diagrams JLMM, δK

in the Kleisli category K`(D) of discrete probability distributions.

It is interesting to compare the ClPN and the K`(D) arrow for the same90

PN. The former model is much more informative in terms of concurrency and

causality (see [6] for an event structure theory of persistent nets), while the latter

is more straightforward in terms of structure and execution mode. It could be

considered a fair algorithmic description of the execution style of [1, 2] original

model.95

Structure of the paper. In Section 2 we fix the notation, recall the basics of Petri

nets and occurrence nets and explain the notion of s-cell from [2]. In Section 3

we provide a novel alternative characterisation of (the pre-oreder induced by)

s-cells based on straightforward notion of parallel and sequential (de)composition

of nets. This result further justifies the notion of s-cell as basic building block100

for occurrence nets. In Section 4 we define the mapping from PN to BN. To

this aim, an intermediate term algebra is used that builds on the decomposition

defined in Section 3 to break s-cells with non-empty initial interface into the

hierarchical composition of other terms. Here some sort of case analysis is done:

for each marking that can be provided to the s-cell we explore how it can be105

simplified (the absence of tokens allows for the removal of places and transitions).

In Section 5 we show how the Bayesian structure can be exploited to reason

about the marking of places of the original PN. Finally, in Section 6 we draw

some concluding remarks and give pointers to related and future work.

In Appendix A we show the correspondence between PN decomposition and110

the approach by Abbes and Benveniste based on event structures, which justifies

the assignment of probability distributions to s-cells.

6

We assume the reader is familiar with some basic concepts from Bayesian

networks and category theory.

2. Background115

2.1. Notation

We let N be the set of natural numbers and 2 = {0, 1}. We write US for the

set of functions from S to U : hence a subset of S is an element of 2S , and a

multiset m over S is an element of NS . A set can be seen as a multiset whose

elements have unary multiplicity. Membership, union, difference and inclusion120

over sets and multisets are denoted by the (overloaded) symbols: ∈, ∪, \ and ⊆,

respectively.

Given a relation R ⊆ S × S, we let R−1 = {(y, x) | (x, y) ∈ R} be its inverse

relation, R+ be its transitive closure and R∗ be its reflexive and transitive closure.

We say that R is acyclic if ∀s ∈ S. (s, s) 6∈ R+.125

2.2. Petri Nets

Definition 1. A Petri net N is a tuple (P, T, F) where: P is the set of places,

T is the set of transitions, and F ⊆ (P × T) ∪ (T × P) is the flow relation.

For x ∈ P ∪ T , we denote by •x = {y | (y, x) ∈ F} and x• = {z | (x, z) ∈ F}

its pre-set and post-set, respectively. We assume that P and T are disjoint and130

non-empty and that •t is non empty for every t ∈ T . We write t : X → Y for

t ∈ T with X = •t and Y = t•. A marking is a multiset m ∈ NP . A marking

denotes a state of a Petri net. We say that the place p ∈ P is marked at m if

p ∈ m. We write (N,m) for the net N marked by m. In the following we write

just N for the marked net (N, ∅).135

Graphically, a Petri net is a directed bipartite graph whose nodes are the

places (circles) and transitions (rectangles) and whose arcs are the elements of F .

The marking m is represented by inserting m(p) tokens (bullets) in each place

p ∈ m (see Fig. 3(a)).

7

�� $$
1 •

�� $$
2

a

��

b

��
c

��

d

5

•
�� $$

3

��
4

uu �� $$
6

e

��
f

��
g

��
h

��
7 8 9 10

(a) N

�� $$
1 C1 •

�� $$
2 C2

a

��

b

��
c

��

d

5

•
�� $$

3

��
4

C3

uu �� $$
6

e

��
f

��
g

��
h

��
7 8 9 10

(b) N

�� $$
1

a

��
b

��
4 5

(c) NC1

•
�� $$

2

c

��
d

6

(d) NC2

•
�� $$

3

��
4

vv �� $$
6

e

��
f

��
g

��
h

��
7 8 9 10

(e) NC3

�� $$
1 •

�� $$
2

a

��
b

��
c

��
d

4 5 6

(f) NC1
⊕NC2

•
��

3

e

��
7

(g) NC3
@{3}

•
��

3

e

��
7

(h) NC3
@{3, 4}

•
��

3 •
�� $$

6

e

��
g

��
h

��
7 9 10

(i) NC3
@{3, 6}

•
�� $$

3 •
��

4 •
vv �� $$

6

e

��
f

��
g

��
h

��
7 8 9 10

(j) NC3
@{3, 4, 6}

Figure 3: A simple PN

8

The operational semantics of a Petri net is defined by events called firings. A140

transition t is enabled at the marking m, written m
t−→, if •t ⊆ m. The firing of

a transition t enabled at m is written m
t−→ m′ with m′ = (m \ •t) ∪ t•. A firing

sequence m
t1···tn−−−−→ m′ from m to m′ is a finite sequence of firings, sometimes

abbreviated m→∗ m′. Moreover, it is maximal if no transition is enabled at m′.

We say that m′ is reachable from m if m→∗ m′. The set of markings reachable145

from m is written [m〉. A marked net (N,m) is safe if each m′ ∈ [m〉 is a set.

In the rest of the paper we only consider safe nets. More precisely we consider

so-called occurrence nets.

2.3. Occurrence nets

We say that a net (P, T, F) is acyclic if its flow relation F is so. Given150

an acyclic net we let �= F ∗ be the (reflexive) causality relation and say that

two transitions t1 and t2 are in immediate conflict, written t1#0t2 if t1 6=

t2 ∧ •t1 ∩ •t2 6= ∅. The conflict relation # is defined by letting x#y if there are

t1, t2 ∈ T such that (t1, x), (t2, y) ∈ F+ and t1#0t2.

Definition 2 (Occurrence Net). A nondeterministic occurrence net (or just155

occurrence net) is an acyclic net O = (P, T, F) such that:

1. there are no backward conflicts (i.e., ∀p ∈ P. |•p| ≤ 1), and

2. there are no self-conflicts (i.e., ∀t ∈ T. ¬(t#t)).

An occurrence net is deterministic if it does not have forward conflicts (i.e.,

∀p ∈ P. |p•| ≤ 1).160

A place p of an occurrence net O is called initial if its pre-set is empty; it is

called final if its post-set is empty; it is called isolated if it is both initial and

final. We denote by ◦O the set of its initial places and by O◦ the set of its final

places. The net N in Fig. 3(a) is an occurrence net. The sets of its initial and

final places respectively are ◦N = {1, 2, 3} and N◦ = {5, 7, 8, 9, 10}.165

Typically it is left implicit that all the initial places of an occurrence net are

marked. Here we need to distinguish the cases in which only some initial places

are marked.

9

Definition 3 (Marked Occurrence Net). A marked occurrence net M = (O,m)

is an occurrence net O together with a subset m of initial, non-isolated places.170

The idea is that:

• any initial place in m is already marked (by one token);

• any initial place not in m can receive a token from the context.

Given a marked occurrence netM = (O,m), we denote by ◦M = ◦O\m the

set of its initial (unmarked) places and byM◦ = O◦ the set of its final places. For175

the marked occurrence net (N, {2, 3}) in Fig. 3(a), we have ◦(N, {2, 3}) = {1}

and (N, {2, 3})◦ = N◦ = {5, 7, 8, 9, 10}.

A deterministic nonsequential process (or just process) [7] represents the

equivalence class of all firing sequences of a net that only differ in the order

in which concurrent firings are executed. It is given as a mapping θ : D → N180

from a deterministic occurrence net D to N (preserving pre- and post-sets). The

firing sequences of a processes D are its maximal firing sequences starting from

the marking ◦D. A process of N is maximal if its firing sequences are maximal

in N .

When N is an acyclic safe net, the mapping θ is just an injective graph185

homomorphism: without loss of generality, we name the nodes in D as their

images in N and let θ be the identity.

2.4. Structural Branching Cells

In [2] we have proposed a solution for determining the minimal choice points

within an acyclic finite net, called structural branching cells: they are subnets190

where the decision of firing some transition is taken when it is guaranteed that

no conflicting transition which is currently not enabled can become enabled in

the future.

The construction in [2] takes a (finite) occurrence net as input, which can

be, e.g., the (truncated) unfolding of any safe net and returns a partial order of195

structural branching cells.

10

To each transition t we assign a unique s-cell [t]. This is achieved by taking

the equivalence class of t w.r.t. the equivalence relation ↔ induced by the

least preorder v that includes immediate conflict #0 and causality �. Formally,

we let v be the transitive closure of the relation #0 ∪ � ∪ Pre−1, where200

Pre = F ∩ (P × T). This way, each s-cell [t] also includes the places in the

pre-sets of the transitions in [t]. Since #0 is subsumed by the transitive closure

of the relation � ∪ Pre−1, we equivalently set v = (� ∪ Pre−1)∗.

Definition 4 (s-cells). Let N = (P, T, F) be a finite occurrence net and v

defined as above. Let ↔ = {(x, y) | x v y ∧ y v x}. The set bc(N) of s-cells is205

the set of equivalence classes of ↔, i.e., bc(N) = {[t]|↔ | t ∈ T}.

We let C range over s-cells. It is immediate to note that s-cells are ordered

by v: we let C v C′ if there are t ∈ C, t′ ∈ C′ with t v t′.

For any s-cell C, we denote by NC the subnet of N whose elements are in

C∪
⋃
t∈C t

•, i.e., we include in NC also all places in the post-set of some transition210

in C.

Abusing the notation, we denote by ◦C the set of all the initial places in NC

and by C◦ the set of all the final places in NC. When the original net (N,m)

is marked we sometimes let its cells inherits the marking, i.e., we let the initial

marking of NC be m ∩ ◦C.215

Example 1. The net in Fig. 3(a) has three s-cells, which are depicted in

Fig. 3(b): C1 = {1, a, b} concerning the choice between a and b, and C2 = {2, c, d}

concerning the choice between c and d, and C3 = {3, 4, 6, e, f, g, h}. The nets

NC1
, NC2

and NC3
are respectively shown in Fig. 3(c), 3(d) and 3(e). For C1,

◦C1 = ◦NC1
= {1} and C◦1 = (NC1

)◦ = {4, 5}. For C2, ◦C2 = ◦NC2
\ {2} =220

{2} \ {2} = ∅ and C◦2 = (NC2
)◦ = {6}.

The behaviour of a branching cell is characterised in terms of all its possible

executions.

Definition 5 (Transactions). Let C ∈ bc(N) and m = ◦C. Then, a transaction

θ of C, written θ : C, is a maximal (deterministic) process of (NC,m). We225

11

denote by Θ(C) the set of all the transactions of C.

Since the set of transitions in a transaction θ uniquely determines the cor-

responding process in NC, we write a transaction θ simply as the set of its

transitions. If i = ◦θ is the set of initial places of θ and o = θ◦ is the set of its

final places, we write θ : i→ o. Note that in general, for θ : i→ o ∈ Θ(C), we230

have i ⊆ ◦C and o ⊆ C◦. We write n(θ) for the set of transitions and places of θ.

Example 2. Consider the net NC3
in Fig. 3(e). It has the following three

transactions: θ1 = {f}, θ2 = {e, g} and θ3 = {e, h}, with θ1 : {3, 4, 6} → {8}

θ2 : {3, 6} → {7, 9} θ3 : {3, 6} → {7, 10}.

3. Petri Nets Decomposition235

We have already said that s-cells form a partial order. Here we show that it

can be seen as a particular monoidal category structure.

We proceed as follows:

1. we define set-theoretical parallel and sequential composition of nets;

2. we show that parallel and sequential composition, together with a suitable240

notion of identities, induce a strictly symmetric monoidal category structure

over occurrence nets;

3. we show that s-cells are neither decomposable in parallel nor in series;

4. we show that each Petri net admits a unique maximal decomposition in

terms of parallel and sequence (up to the axioms of strictly symmetric245

monoidal categories) and that such decomposition coincides with the partial

order of s-cells.

This provides a new characterisation of s-cells as the building blocks of

occurrence nets that supports our intuition about their relevance.

Intuitively, parallel composition takes two nets and put them side by side.250

Definition 6 (Parallel composition). Let (P1, T1, F1,m1) and (P2, T2, F2,m2)

be two Petri nets whose nodes are disjoint (i.e., with (P1 ∪ T1) ∩ (P2 ∪ T2) = ∅).

12

Their parallel composition is given by the element-wise union of their components:

(P1, T1, F1,m1)⊕ (P2, T2, F2,m2) = (P1 ∪ P2, T1 ∪ T2, F1 ∪ F2,m1 ∪m2)

Sequential composition is defined over (marked) occurrence nets only.

Definition 7 (Sequential composition). LetM1 = (O1,m1) andM2 = (O2,m2)

be two marked occurrence nets, with Oj = (Pj , Tj , Fj) for j = 1, 2, whose nodes

are disjoint except for the final places of M1 that are identical to the unmarked

initial places of M2 (i.e., with M◦1 = (P1 ∪ T1) ∩ (P2 ∪ T2) = ◦M2). Their

sequential composition is given by the element-wise union of their components

(but note that the places in (M◦1 = ◦M2 are shared):

(P1, T1, F1,m1); (P2, T2, F2,m2) = (P1 ∪ P2, T1 ∪ T2, F1 ∪ F2,m1 ∪m2)

Let us write M : i → o for a marked occurrence net with i = ◦M and

o =M◦ Then we note that for Mj : ij → oj for j ∈ [1, 4]:

• M1 ⊕M2 : i1 ∪ i2 → o1 ∪ o2, when the parallel composition is defined;

• M1;M2 : i1 → o2, when the sequential composition is defined;255

• parallel composition is commutative and associative and has the empty

net 0 = (∅, ∅, ∅, ∅) : ∅ → ∅ as neutral element, i.e. it forms a commutative

monoid;

• sequential composition is associative;

• for each set of places i the identity net Ii = (i, ∅, ∅, ∅) : i→ i consisting just260

of (unmarked) isolated places i behaves as the identity w.r.t. composition;

• the monoid of parallel composition is functorial: I∅ = 0, Ii1∪i2 = Ii1 ⊕ Ii2
and (M1;M2)⊕ (M3;M4) = (M1 ⊕M3); (M2 ⊕M4).

In the following, we assume ⊕ has higher precedence over ;, e.g. we write

M1 ⊕M2;M3 instead of (M1 ⊕M2);M3.265

From the above we get that marked occurrence nets form the arrows of a

strictly symmetric (strict) monoidal pre-category. We get a pre-category and

13

not a category just because parallel and sequential compositions are defined on

concrete nets and impose some disjointness requirements on their places and

transitions, i.e. they are partial operations instead of total ones. This is not270

an issue here because we are mainly interested in decomposing concrete nets

into parts, not in building new nets and we aim to have a unique decomposition.

As the parts are obtained by decomposition, it is guaranteed that they can be

reassembled later. Another point that is worth paying attention to is the fact

that parallel composition is commutative and thus the monoidal (pre-)category275

we get is strictly symmetric: its symmetries are identities. In Section 4.3, when

translating nets to string diagrams in K`(D) that are arrows of a symmetric

monoidal category, we need to be parametric w.r.t. some fixed orders of initial

and final places. However, we prove that the actual choice of a given order is

inessential (see Proposition 3).280

One possible alternative to carry out the translation as a proper symmetric

monoidal functor between symmetric monoidal categories, would be to consider

nets up to isomorphism and equip them with some sort of ordered interface

from the very beginning. We prefer not to do so for several reasons. First,

standard Petri nets (as well as s-cells) do not come with ordered interfaces.285

Second, decomposition should take into account also symmetries besides s-

cells and identities, so that its uniqueness would only hold up to the axioms

of symmetric monoidal categories and there would be special nets (with no

transitions) representing symmetries. Third, while in Section 4.1 we propose a

syntax for representing concrete nets (in canonical forms), if we choose to work290

up to net isomorphism, then the description of s-cells becomes more complicated

because places and transitions names would have only a local scope and some

canonical choice of names would be needed. Additionally, symmetries should be

considered in the syntax.

One important issue to bear in mind is that parallel and sequential composi-295

tions as defined here give a precise characterisation of s-cells.

In the literature, many other approaches to net composition have been studied.

Among the most recent ones we mention [8, 9, 10, 11]. There the objective is

14

typically the generation of all nets starting from a small number of components [9,

10, 11] or the preservation of the semantics [8] via composition. The work in [11]300

focuses on the algebraic structure of non-deterministic computations but is

based on pre-nets [12] rather than Petri nets. The difference is that the pre-

and post-sets of transitions are lists and not sets, so that the interfaces for

composition are intrinsically ordered. The work in [9, 10] represents nets as

some sort of circuits generated by elementary blocks. There interfaces are lists305

of ports (neither places nor transitions) that are used by sequential composition

to perform some non-trivial synchronisation between transitions. If we were

to exploit their circuit algebra for decomposition, then the characterisation of

s-cells would be difficult to obtain, because decomposition is too fine grained.

The work in [8] exploits a colimit-based composition operation that is suited to310

model interaction between (open) nets and their sorrounding environment. The

main result there is that several behavioural equivalences are congruences w.r.t.

composition. Again, applying this approach to decompose nets would not allow

to characterise s-cells.

Example 3. Consider the marked occurrence nets NC1
: {1} → {4, 5}, (NC2

, {2}) :

∅ → {6}, and (NC3
, {3}) : {4, 6} → {7, 8, 9, 10} in Fig. 3(c), 3(d) and 3(e). Note

that the parallel composition of NC1 and NC2 is defined because the nets nei-

ther share places nor transitions. The resulting net NC1 ⊕ (NC2 , {2}) : {1} →

{4, 5, 6} is shown in Fig 3(f). We remark that neither NC1
⊕ (NC3

, {3}) nor

(NC2
, {2}) ⊕ (NC3

, {3}) are defined because NC3
shares the place 4 with NC1

and the place 6 with NC2 . Similarly, note that none of the considered oc-

currence nets can be composed sequentially, because their interfaces do not

match. For instance, the final place 5 of NC1
⊕ (NC2

, {2}) : {1} → {4, 5, 6}

does not appear as an initial place of (NC3
, {3}) : {4, 6} → {7, 8, 9, 10}. We

can fix this mismatch by considering the net I{5} : {5} → {5} and noting that

(NC3 , {3})⊕ I{5} : {4, 6, 5} → {7, 8, 9, 10, 5} is well defined. Then,

NC1
⊕ (NC2

, {2}); (NC3
, {3})⊕ I{5} : {1} → {5, 7, 8, 9, 10}

stands for the net N in Fig. 3(a).315

15

A marked occurrence net is called trivial if it has no transitions.

We say a marked occurrence netM is decomposable in parallel if there exists

two non-trivial marked occurrence nets M1 and M2 such that M =M1 ⊕M2.

Similarly, we say that it is decomposable in series if there exists two non-trivial

marked occurrence nets M1 and M2 such that M =M1;M2.320

Lemma 1. Any s-cell NC cannot be decomposed in series and in parallel.

Proof. By contraposition, it is immediate to prove that the sequential/parallel

composition of two non-trivial nets is not an s-cell.

Proposition 1. Any marked occurrence net can be uniquely decomposed as the

parallel and sequential composition of its s-cells (and identities), up to the axioms325

of strictly symmetric monoidal pre-categories.

Proof. For the existence, the partial order of s-cell (is unique and it) induces a

decomposition of the net. For instance this can be done by stratifying the s-cells

in layers L1, ..., Ln where each layer Lj is the (largest) parallel composition of

some identity Isj with all s-cells whose predecessors are in layers L1, ..., Lj−1330

and then taking their sequential composition L1; ...;Ln.

For uniqueness, suppose two different decompositions can be found, then

they must have the same s-cells (because s-cells are not decomposable) ordered

in the same way (because the ordering is induced by the places they share),

hence they coincide.335

Definition 8 (Canonical form). Given a marked occurrence net M we denote

by can(M) its unique decomposition.

Example 4. The canonical form of (N, {2, 3}) in Fig. 3(a) is given by the

decomposition below, already discussed in Example 3:

NC1
⊕ (NC2

, {2}); (NC3
, {3})⊕ I{5} : {1} → {5, 7, 8, 9, 10}

A s-cell can be itself a fairly complicated fragment. To ease the translation

to Bayesian nets we would like to exploit some form of induction over the

16

structure of s-cells themselves. This can be done by some sort of hierarchical340

decomposition, to be defined next, where each s-cell is studied according to its

possible dynamic activations: depending on the conditions under which an s-cell

is enabled, some alternatives can be immediately discarded, the structure of the

s-cells can be simplified and further decomposed. In this way, the behaviour of

an s-cell can be entirely defined by collecting its decompositions for each possible345

initial marking.

3.1. Place Removal

Given a possibly marked s-cell NC : i→ o (with i 6= ∅), we are interested in

studying what happens under the hypothesis that some tokens arrive in a subset

of places m ⊆ i while the places in s = i \m are guaranteed to stay empty (i.e.,350

they are dead). In fact it can happen that the removal of the places in s and of

the transitions and places that causally depend on them1 will allow to further

decompose the s-cell.

We let NC 	 s be the net obtained by removing all dead nodes as explained

above. Additionally, isolated places are also removed. The cancellation of some355

transitions can break the equivalence class induced by v, which explains why

NC 	 s is not necessarily an s-cell. Also note that some of the final places of NC

can become dead and canceled. The final dead places can be computed by taking

N◦C \ (NC 	 s)◦. Thus in general we have NC 	 s : i′ → o′ for some i′ ⊆ i \ s and

o′ ⊆ o. We write NC@m for the marked net (NC 	 s, ◦(NC 	 s)) : ∅ → o′, where360

NC : i → o and s = i \m, i.e., for the net NC 	 s whose initial places are all

marked.

To some extent the behaviour of an s-cell is determined by considering its

behaviour under all possible initial markings. Consequently we can further

explore the behaviour of NC : i→ o by considering NC@m for all m ⊆ i.365

Example 5. Consider the s-cell (NC3
, {3}) : {4, 6} → {7, 8, 9, 10} in Fig. 3(e).

1In such cases, all the transitions that depend on some place in s cannot be fired and the

places in their post-set are also dead.

17

The behaviour of (NC3 , {3}) can be explained by considering all the possible ways

in which its initial places 4 and 6 can be marked: none of them is marked (i.e.,

NC3
@{3}), just one of them is marked (i.e., either NC3

@{3, 4} or NC3
@{3, 6}),

or both of them are marked (i.e., NC3
@{3, 4, 6}). Net NC3

@{3} depicted in370

Fig. 3(g) is obtained by removing from NC3 the initial places 4 and 6, and all

the elements that causally depends on them, i.e., the transitions f , g and h and

the places 7, 8, 9 and 10. The remaining nets are in Fig. 3(h)-3(j). It is worth

noticing that in NC3
@{3, 4} the place 4 is also removed from NC3

	 {6} because,

after removing the place 6 and thus the transition f , the place 4 remains isolated.375

4. Compiling nets

In this section we associate each finite occurrence net with a string diagram in

the Kleisli category K`(D) of discrete probability distributions. This is achieved

in two steps. We first introduce a language for representing occurrence nets and

show how the s-cell decomposition can be used to associate each occurrence net380

with a particular term. Then, we map terms into string diagrams in K`(D).

4.1. Language of nets

The decomposition of a net in branching cells can be described by terms

generated by the following grammar, where m, s are sets of places and Θ is a set

of transactions:385

T ::= Is | ⊥s | T ⊕ T | T ;T | C(Θ) |
∑
m⊆s

m . T

Here the idea is that C(Θ) denotes a basic building block consisting of the

set of transactions of an s-cell whose initial places are all marked. The case of an

s-cell C with a set of unmarked initial places s is represented as the formal sum∑
m⊆s m . T , where all the possibile (2|s|) initial markings m are considered,

each paired with the encoding of NC@m. This accounts for the hierarchical390

decomposition of s-cells. The term Is denotes the identity net, consisting just of

a set of unmarked places with no transitions (i.e., all places are initial and final).

18

The term ⊥s denote a net with no initial places and no transitions, whose only

final places are s (i.e., the places s are dead). The terms T ⊕ T and T ;T denote

respectively the composition in parallel and in series.395

The terms of the algebra are taken up to the axioms of strictly symmetric

monoidal (pre-)categories, where additionally we have ⊥∅ = I∅ and ⊥s1∪s2 =

⊥s1 ⊕⊥s2 .

4.1.1. Typing

Not all terms are valid though. We introduce a type system to discard400

ill-formed terms. Our types are triples of the form (i, s, o) where i is the set of

initial unmarked places, s is the set of all places and transitions appearing in a

term and o is the set of final places.

We write T : i
s−→ o for T : (i, s, o). The typing rules are in Fig. 4. The rules

for Is and ⊥s are self-explanatory. The rule for ⊕ states that a term is well-typed405

when its subterms are well-typed and do not share place nor transitions (i.e.,

s ∩ s′ = ∅). The case of sequential composition T ;T ′ additionally requires that

the set of final places of T coincides with the set of the initial unmarked places

of T ′. The rule for
∑
m⊆im.Tm requires all subterms Tm to have the same sets

of initial and final places (respectively, ∅ and o), which captures the idea that a410

sum represents the execution of a s-cell under all possible markings. The rule

for C(Θ) follows immediately.

Lemma 2. If T : i
s−→ o then i ∪ o ⊆ s.

Proof. The proof is by rule induction.

Typing is unique, as stated by the following result.415

Lemma 3. If T : i
s−→ o and T : i′

s′−→ o′ then i = i′, o = o′, s = s′.

Proof. The proof is by rule induction.

Hereafter we assume terms to be well-typed.

19

Is : s
s−→ s ⊥s : ∅ s−→ s

T : i
s−→ o T ′ : i′

s′−→ o′ s ∩ s′ = ∅

T ⊕ T ′ : i ∪ i′ s∪s
′

−−−→ o ∪ o′

T : i
s−→ m T ′ : m

s′−→ o s ∩ s′ = m

T ;T ′ : i
s∪s′−−−→ o

∀m ⊆ i. Tm : ∅ sm−−→ o s =
⋃
m⊆i

sm∑
m⊆i

m . Tm : i
s−→ o

o =
⋃
θ∈Θ

θ◦ s =
⋃
θ∈Θ

n(θ)

C(Θ) : ∅ s−→ o

Figure 4: Type system

4.2. From Nets to Terms

In this section we introduce a mapping from occurrence nets to terms.420

Definition 9. Let M be a marked occurrence net. The corresponding term LMM

is given by the homomorphic extension (w.r.t. identitites, parallel and sequential

composition)2 of the encoding defined below over s-cells.

LNC, iM

C(Θ(NC)) if ◦NC = i (1a)∑
m⊆◦(NC,i)

m . (⊥dm ⊕ Tm) otherwise (1b)

where:

Nm = NC@i ∪m

Tm = Lcan(Nm)M

dm = N◦C \N◦m

The encoding of a marked s-cell C considers two cases: (i) all initial places425

of the s-cell are marked (Eq. 1a); and (ii) some initial tokens are unmarked. In

the first case, a completely marked s-cell is mapped to the term C(Θ(NC)) that

2This just means that LIsM = Is, LM1 ⊕M2M = LM1M ⊕ LM2M and LM1;M2M =

LM1M; LM2M.

20

describes all the possible executions of NC, i.e., its transactions. Differently,

when some initial places are unmarked, the corresponding term is obtained by

composing the behaviour of the s-cell under each possible marking m ⊆ ◦(NC, i).430

The term m . (⊥dm ⊕ Tm) describes the behaviour of C when all places in i ∪m

are marked and the remaining initial places are dead. For this reason, ⊥dm and

Tm are defined in terms of the net Nm = NC@i ∪m. The term ⊥dm stands for

the final places that are dead when the initial marking is i ∪m. The term Tm

encodes the net NC@i ∪m: we just remark here, as already mentioned, that we435

need to compute the canonical form of Nm, because removing elements from C

may originate a complex net an not an s-cell (as for NC3
@{3, 6} in Fig. 3(i)).

Lemma 4. For any finite occurrence net N and marking m ⊆ ◦N , LN,mM is

defined, unique (up-to the structure of strictly symmetric monoidal pre-categories)

and well-typed.440

Example 6. Consider the marked occurrence net (N, {2, 3}) in Fig. 3(a), whose

canonical form is in Example 4

(N, {2, 3}) = NC1
⊕ (NC2

, {2}); (NC3
, {3})⊕ I{5}

Then, the corresponding term is obtained by

LN, {2, 3}M = LNC1M⊕ LNC2 , {2}M; LNC3 , {3}M⊕ LI{5}M (2)

The term LNC1M is obtained by applying Eq. (1b) because i = ∅ and ◦NC1 =

{1} 6= ∅ (see NC1
in Fig. 3(c)). Then,

LNC1
M = ∅ . (⊥d∅ ⊕ T∅) + {1} . (⊥d{1} ⊕ T{1}) (3)

Note that N∅ = NC1
@∅ is obtained from NC1

by removing all elements that

depends on the unique unmarked initial place 1. Hence, N∅ = NC1
@∅ = 0 = I∅.

Consequently, T∅ = LNmM = I∅. Moreover d∅ = {4, 5}.

For the marking {1}, we have N{1} = NC1@{1} = (NC1 , {1}). Since NC1

is an s-cell, can(NC1
@{1}) = (NC1

, {1}). Therefore, T{1} = LNC1
, {1}M, which

is obtained by using Eq. (1a). The net NC1
has two transactions, one for each

21

transition, i.e., Θ(NC1) = {{a}, {b}}. Then, T{1} = C({{a}, {b}}). Moreover,

d{1} = ∅ because (N{1})
◦ = (NC1

, {1})◦ = N◦C1
. Consequently,

LNC1
M = ∅ . (⊥{4,5} ⊕ I∅) + {1} . (⊥∅ ⊕ C({{a}, {b}}))

= ∅ .⊥{4,5} + {1} . C({{a}, {b}})
(4)

Intuitively, the term ∅ . ⊥{4,5} states that the s-cell C1 does not generate any

token in its final places when the initial place 1 remains unmarked. Differently,445

{1} .C({{a}, {b}}) describes the behaviour of C1 when its initial place is marked.

In this case, the behaviour corresponds to the non-deterministic choice of the

transactions {a} and {b}.

The encoding of (NC2
, {2}) is obtained by using Eq. (1a),

LNC2
, {2}M = C({{c}, {d}}) (5)

For (NC3
, {3}), we obtain the following term by analogous calculations

LNC3
, {3}M = ∅ . (⊥{8,9,10} ⊕ C({{e}}))

+ {4} . (⊥{8,9,10} ⊕ C({{e}}))

+ {6} . (⊥{8} ⊕ C({{e}})⊕ C({{g}, {h}}))

+ {4, 6} . C({{f}, {e, g}, {e, h}})

(6)

which describes the behaviour of C3 for every possible initial marking of its initial

places (i.e., ∅, {4}, {6}, and {4, 6}). The most interesting case is the subterm450

{6} . (⊥{8} ⊕ C({{e}}) ⊕ C({{g}, {h}})) obtained from {6} . (⊥d{6} ⊕ T{6}).

Consider the net N{6} = (NC3
@{3, 6}) in Fig. 3(i), which contains two s-cells.

Consequently, its canonical form is given by the parallel composition of two s-cells,

which are respectively encoded as C({{e}}) and C({{g}, {h}}).

Finally,

LI{5}M = I{5} (7)

To show that the term LN,mM is a good representative of the probabilistic455

semantics of N , we prove that it characterises the configurations allowed by the

semantics of Abbes and Benveniste. The interested reader can find all technical

details in the Appendix.

22

4.3. From Terms to K`(D)

Given a set X, a discrete probability distribution with finite support over X

is a function ω : X → [0, 1] such that
∑n
x∈X ω(x) = 1 and supp(ω) = {x ∈ X |

ω(x) > 0} is a finite set. The function ω can be sometimes written as the formal

convex combination3

ω = r1|x1〉+ ...+ rn|xn〉

where supp(ω) = {x1, ..., xn} and rj = ω(xj) for j ∈ [1, n]. We let D(X) be the460

set of discrete probability distributions ω over X and write D for the discrete

probability monad over the category Set of sets (as objects) and functions (as

arrows). The category K`(D) is the Kleisli category of the monad D: its objects

are sets, its arrows f : X → Y are functions f : X → D(Y). It has been

shown in [3] that K`(D) forms a symmetric monoidal category and that Bayesian465

networks can be seen as special kinds of arrows in K`(D) that can be represented

as string diagrams using wire-and-box notation (see also [13]). According to this

view, a diagram from n to k represents an arrow from 2n to 2k in K`(D).

We next show how to interpret Petri nets as Bayesian networks by exploiting

K`(D). To this aim we need to map the arrows of a strictly symmetric monoidal470

pre-category to those of a symmetric monoidal category: in the first case the

objects are sets of places, while in the latter they are natural numbers representing

a totally ordered set of ports. Therefore the mapping is defined parametrically

on some arbitrarily chosen total orders of initial and final places.

Given a set of places s, we let πs denote a bijective function πs : s→ |s| that475

assigns a position to each element of s. We write π when the set s is implicit.

Overloading the notation, we let π also denote the string such that the place

p ∈ s appears in position π(p). Note that π is without repetitions: each p ∈ s

appears exactly once in π. We let ε denote the empty string (over the empty set

of places). For p ∈ s and m ⊆ s, we also write p ∈ π and m ⊆ π when π is a480

linearization of s.

3The ‘ket’ notation r|x〉 has no particular meaning: it is just syntactic sugar.

23

Given π and π′ two such strings over s, we let χππ′ : |s| → |s| denote the

unique permutation that swaps π into π′, i.e. such that for any p ∈ s we have

χππ′(π(p)) = π′(p). By coherence of symmetries we have, e.g., χππ′ ;χ
π′

π′′ = χππ′′ .

Given two strings π over s and π′ over s′ with s∩ s′ = ∅ we use juxtaposition485

to denote the string ππ′ over s ∪ s′ such that (ππ′)(p) = π(p) if p ∈ s and

(ππ′)(p) = |s|+ π′(p) if p ∈ s′.

As a matter of notation, we assume that a string π over s implicitly defines

an ordering over 2s, e.g., a subset of s can be seen as a binary string of length

|s|, which are then ordered lexicographically. Correspondingly, the permutation490

χππ′ : |s| → |s| induces an isomorphism on 2s, that we denote with the same

name χππ′ .

In the following we assume a function δ is given that associates every constant

C(Θ) with a finite discrete probability distribution over the elements in Θ. To

ease readability, we write δC(Θ) for the probability distribution δ(C(Θ)) over Θ.495

Definition 10. Let T : i
s−→ o be a well-typed term, π a string over i, ρ a string

over o. Then, JT, δKπρ stands for an arrow 2|i| → 2|o| in K`(D) (i.e., a diagram

from |i| to |o|) defined by structural induction as follows:

JIs, δKπρ = χπρ (8)

J⊥s, δKερ = δ
|s|
0 (9)

JT1 ⊕ T2, δKπρ = χππ1π2
; (JT1, δKπ1

ρ1 ⊗ JT2, δKπ2
ρ2);χρ1ρ2ρ (10)

JT1;T2, δKπρ = JT1, δKπγ ; JT2, δKγρ (11)

JC(Θ), δKερ = λm.
∑

θ:∅→m∈Θ

δC(Θ)(θ) (12)

J
∑
m⊆i

m . Tm, δKπρ = [JTπ−1(1), δKερ, ..., JTπ−1(2|i|), δK
ε
ρ] (13)

where in Eq. (9) the probability distribution δ
|s|
0 assigns probabilty 1 to the case ∅

and 0 to all the remaining 2|s| − 1 cases and in Eq. (13) the arrows is obtained500

24

as the copairing of each Tm for all m ⊆ i.4

The cases in Eqs. (8) and (9) are straightforward. The cases in Eqs. (10)

and (11) just exploit the monoidal category structure. It is worth noting that

while the operation ⊕ is commutative, this is not the case for the monoidal

operation of the Kleisli category, hence denoted with a different symbol ⊗. The505

case in Eq. (12) is the most interesting: JC(Θ), δKερ must assign a probability

distribution to the elements in the powerset of the places in ρ; given m ⊆ ρ its

probability is computed by taking the sum of the probabilities assigned by δ to

all processes θ whose final places are exactly m. This is correct as any two such

processes are mutually exclusive alternatives. Finally, the case in Eq. (13) is the510

most complex, as it exploits the hierarchical decomposition of s-cells. Here we

take each Tm and compute 2|i| arrows JTm, δKερ : 20 → 2|ρ|. Then, via co-pairing

we get an arrow from 2|i| to 2|ρ|. The order of the arrows in the co-pair expression

is important to associate them to the right element m ⊆ i (according to the

order induced by π).515

From the encoding it is maybe not evident that the image of the mapping

are string diagrams and not arbitrary arrows in K`(D). However it can be

proved inductively that the encoding produces some sort of acyclic graph, in

the style of [13]. This is immediately evident for Eq. 8 (symmetries) and Eqs. 9

and 12 (single node diagrams). For Eqs. 10 and 11 we use a simple inductive520

argument. The most complicated case is that of Eq. 13, which however also

leads to the definition of a single node diagram whose probability matrix is

obtained by collecting the rows associated with the probability distributions of

each hierarchical decomposition.

Proposition 2. JT, δKπρ = χππ′ ; JT, δK
π′

ρ′ ;χ
ρ′

ρ .525

Proof. The proof is by structural induction on T .

4It is important to mention that in Eq. (13) the order of the arrows in the copairing is the

one induced by π: remember that π induces an order on 2i, then π−1(k) denotes the k-th

subset m ⊆ i according to the order in π.

25

For the case T = ⊥s, we have χεε; J⊥s, δKερ′ ;χρ
′

ρ = J⊥s, δKερ′ ;χρ
′

ρ = δ
|s|
0 ;χρ

′

ρ =

δ
|s|
0 .

For the case T = Is, we have χππ′ ; JIs, δK
π′

ρ′ ;χ
ρ′

ρ = χππ′ ;χ
π′

ρ′ ;χ
ρ′

ρ = χπρ by

coherence of symmetries.530

For the case T = T1 ⊕ T2, we have

χππ′ ; JT1 ⊕ T2, δKπ
′

ρ′ ;χ
ρ′

ρ = χππ′ ;χ
π′

π1π2
; (JT1, δKπ1

ρ1 ⊗ JT2, δKπ2
ρ2);χρ1ρ2ρ′ ;χρ

′

ρ

= χππ1π2
; (JT1, δKπ1

ρ1 ⊗ JT2, δKπ2
ρ2);χρ1ρ2ρ

= JT1 ⊕ T2, δKπρ

by coherence of symmetries.

For the case T = T1;T2, let us assume that JT1, δKπ1
ρ1 = χπ1

π′1
; JT1, δK

π′1
ρ′1

;χ
ρ′1
ρ1 and

JT2, δKπ2
ρ2 = χπ2

π′2
; JT2, δK

π′2
ρ′2

;χ
ρ′2
ρ2 , so that, as a particular case we have JT1, δKπγ =

χππ′ ; JT1, δKπ
′

γ and JT2, δKγρ = JT2, δK
γ
ρ′ ;χ

ρ′

ρ (because χγγ = I|γ|). Then we have535

χππ′ ; JT1;T2, δKπ
′

ρ′ ;χ
ρ′

ρ = χππ′ ; JT1, δKπ
′

γ ; JT2, δK
γ
ρ′ ;χ

ρ′

ρ

= JT1, δKπγ ; JT2, δKγρ

= JT1;T2, δKπρ

For the case T = C(Θ), likewise the case for ⊥s, the definition is purely

functional.

For the case T =
∑
m⊆im . Tm, let us assume that for any m ⊆ i we have

JTm, δKερ = χεε; JTm, δKερ′ ;χ
ρ′

ρ = JTm, δKερ′ ;χ
ρ′

ρ . Then, we have

χππ′ ; J
∑
m⊆i

m . Tm, δKπ
′

ρ′ ;χ
ρ′

ρ = χππ′ ; [JTπ′−1(1), δKερ′ , ..., JTπ′−1(2|i|), δK
ε
ρ′];χ

ρ′

ρ

= χππ′ ; [JTπ′−1(1), δKερ′ ;χ
ρ′

ρ , ..., JTπ′−1(2|i|), δK
ε
ρ′ ;χ

ρ′

ρ]

= χππ′ ; [JTπ′−1(1), δKερ, ..., JTπ′−1(2|i|), δK
ε
ρ]

= [JTπ−1(1), δKερ, ..., JTπ−1(2|i|), δK
ε
ρ]

= J
∑
m⊆i

m . Tm, δKπρ

540

Proposition 3. The definition of JT, δKπρ is well given.

26

Proof. We must show that: (1) the typing is consistent with the definition,

(2) that the choice of π1, ρ1, π2, ρ2 in Eq. (10) and of γ in Eq. (11) is inessential

for the result, and (3) that JT1 ⊕ T2, δKπρ = JT2 ⊕ T1, δKπρ .

For (1), we must prove that if T : i
s−→ o, π is a string over i and ρ is a string545

over o, then JT, δKπρ : 2|i| → 2|o|. The proof is a straightforward rule induction.

For (2), we just exploit Proposition 2. In the case of Eq. (10), we have

JT1 ⊕ T2, δKπρ = χππ1π2
; (JT1, δKπ1

ρ1 ⊗ JT2, δKπ2
ρ2);χρ1ρ2ρ

= χππ1π2
; ((χπ1

π′1
; JT1, δK

π′1
ρ′1

;χ
ρ′1
ρ1)⊗ (χπ2

π′2
; JT2, δK

π′2
ρ′2

;χ
ρ′2
ρ2));χρ1ρ2ρ

= χππ1π2
; (χπ1

π′1
⊗ χπ2

π′2
); (JT1, δK

π′1
ρ′1
⊗ JT2, δK

π′2
ρ′2

); (χ
ρ′1
ρ1 ⊗ χ

ρ′2
ρ2);χρ1ρ2ρ

= χππ1π2
;χπ1π2

π′1π
′
2
; (JT1, δK

π′1
ρ′1
⊗ JT2, δK

π′2
ρ′2

);χ
ρ′1ρ
′
2

ρ1ρ2 ;χρ1ρ2ρ

= χππ′1π′2 ; (JT1, δK
π′1
ρ′1
⊗ JT2, δK

π′2
ρ′2

);χ
ρ′1ρ
′
2

ρ

In the case of Eq. (11), we have

JT1;T2, δKπρ = JT1, δKπγ ; JT2, δKγρ

= JT1, δKπγ′ ;χ
γ′

γ ;χγγ′ ; JT2, δKγ
′

ρ

= JT1, δKπγ′ ; JT2, δKγ
′

ρ

Finally, for (3), we have:

JT1 ⊕ T2, δKπρ = χππ1π2
; (JT1, δKπ1

ρ1 ⊗ JT2, δKπ2
ρ2);χρ1ρ2ρ

= χππ1π2
;χπ1π2

π2π1
; (JT2, δKπ2

ρ2 ⊗ JT1, δKπ1
ρ1);χρ2ρ1ρ1ρ2 ;χρ1ρ2ρ

= χππ2π1
; (JT2, δKπ2

ρ2 ⊗ JT1, δKπ1
ρ1);χρ2ρ1ρ

= JT2 ⊕ T1, δKπρ

550

Example 7. Consider the net depicted in Fig. 3(a) and the corresponding term

calculated in Example 6. We show the encoding of the net by considering a

generic distribution δ and use lexicographic order of places. We start from Eq. 2.

LN, {2, 3}M = LNC1
M⊕ LNC2

, {2}M; LNC3
, {3}M⊕ LI{5}M

27

1

JLNC1M, δK

4

5

JLNC2 , {2}M, δK

6

JLNC3
, {3}M, δK

7 8 9 10

Figure 5: String diagram for JLN, {2, 3}M, δK

Then, the string diagram for JLN, {2, 3}M, δK1
5,7,8,9,10 is shown in Fig. 5 and

can be computed as follows.

JLN, {2, 3}M, δK1
5,7,8,9,10

= JLNC1M⊕ LNC2 , {2}M; LNC3 , {3}M⊕ LI{5}M, δK1
5,7,8,9,10 by def.

= JLNC1
M⊕ LNC2

, {2}M, δK1
4,5,6; JLNC3

, {3}M⊕ LI{5}M, δK
4,5,6
5,7,8,9,10 by (11)

= χ1
1ε; JLNC1

M, δK1
4,5 ⊗ JLNC2

, {2}M, δKε6;χ4,5,6
4,5,6; by (10)

χ4,5,6
4,6,5; JLNC3

, {3}M, δK4,6
7,8,9,10 ⊗ JLI{5}M, δK5

5;χ7,8,9,10,5
5,7,8,9,10

We now show the calculation for each of the boxes in Fig. 5. To ease

readability, in the following we let

Ca = C({{a}, {b}}) Cc = C({{c}, {d}})

Ce = C({{e}}) Cg = C({{g}, {h}}))

Cf = C({{f}, {e, g}, {e, h}})

For JLNC1M, δK1
4,5, we start from Eq. (4), i.e.,

LNC1
M = ∅ .⊥{4,5} + {1} . Ca

28

By Eq. (13),

∅ {4} {5} {4, 5}

JLNC1
M, δK1

4,5 =

 J⊥{4,5}, δKε4,5
 =

∅ 1 0 0 0

JCa, δKε4,5 {1} 0 pa 1− pa 0

(14)

where the first row in the table corresponds to δ
|{4,5}|
0 , as prescribed by Eq. (9).

The second row is obtained by Eq. (12), by assuming that δCa
({a}) = pa and

δCa
({b}) = 1− pa.

For JLNC2 , {2}M, δKε6, we start from Eq. (5), i.e.,

LNC2
, {2}M = Cc

Then,

∅ {6}

JLNC2
, {2}M, δKε6 = JCc, δKε6 = ∅ 1− pc pc

(15)

where δCc({c}) = pc and δCc({d}) = 1− pc.

For JLNC3
, {3}M, δK4,6

7,8,9,10, we start from Eq. (6), i.e.,

LNC3 , {3}M = ∅ . (⊥{8,9,10} ⊕ Ce)

+ {4} . (⊥{8,9,10} ⊕ Ce)

+ {6} . (⊥{8} ⊕ Ce ⊕ Cg)

+ {4, 6} . Cf

JLNC3 , {3}M, δKε7,8,9,10 =

J⊥{8,9,10} ⊕ Ce, δKε7,8,9,10

J⊥{8,9,10} ⊕ Ce, δKε7,8,9,10

J⊥{8} ⊕ Ce ⊕ Cg, δKε7,8,9,10

JCf , δKε7,8,9,10

=

∅ {7} {7, 9} {7, 10} {8} . . .

∅ 0 1 0 0 0 0

{4} 0 1 0 0 0 0

{6} 0 0 pg 1− pg 0 0

{4, 6} 0 0 p′g 1− pf − p′g pf 0

(16)

29

where the last column (i.e., the one tagged with dots) represents all the remaining

nine (inessential) cases. The first two rows are obtained as follows:

J⊥{8,9,10} ⊕ Ce, δKε7,8,9,10 = J⊥{8,9,10}, δKε8,9,10 ⊗ JCe, δKε7;χ8,9,10,7
7,8,9,10

=
∅ . . .

∅ 1 0
⊗

∅ {7}

∅ 0 1

=
∅ {7} . . .

∅ 0 1 0

The third row is obtained analogously after fixing δCg
({g}) = pg and δCg

({h}) =555

1 − pg. The last row is obtained by Eq. (13) and taking δCf
({f}) = pf ,

δCf
({e, g}) = p′g, and δCf

({e, h}) = 1− pf − p′g.

5. Forward and Backward Inference and Disintegration

In this section we illustrate how to perform Bayesian reasoning over Petri

nets by following the approach presented in [3, 4].560

One of the advantage of the Bayesian net representation is that we can

study conditional probability distributions about events happening at the level

of the Petri net. For example, we can estimate the probability that a place is

eventually marked under different scenarios about the past (e.g. under different

hypothesis about other places being marked). Similarly, backward reasoning can565

be exploited to study the probability that something happened in the past given

that some event is observed. For example, if a net represents the behaviour of

a possibly faulty system and it is observed a token in a place that represents

a malfunctioning of the system, we can estimate the probability that different

causes of the malfunctioning happened in the past. In the Baysian nets, the570

random variables are associated with the initial/final places of s-cells. However,

by the structure of the nets we are considering, since each place has at most one

incoming arc and each token a unique history, we can transfer the probability

distribution to the firing of transitions.

30

1

JLNC1
M, δK

4

5
_

JLNC2
, {2}M, δK

6

JLNC3
, {3}M, δK

7 8_ 9_ 10_

Figure 6: Simplified string diagram for JLN, {2, 3}M, δK

We first recall some notions, which will be used in our reasoning. Marginali-575

sation is an operation Π1 : X ⊕ Y → X that projects a joint distribution P (x, y)

on X ⊕ Y to the marginal distribution on X computed as P (x) =
∑
y P (x, y).

Similarly, we have Π2 : X ⊕ Y → Y for the projection of P (x, y) over Y defined

as P (y) =
∑
y P (x, y).

Consider the arrow LN, {2, 3}M : 21 → 25 in Fig. 5 and suppose we are

interested in reasoning about the probability of producing a token in the place 7.

In such case, marginalisation can be used to obtain an arrow f : 21 → 21 that

discards the wires corresponding to the places 5, 8, 9 and 10, as shown in Fig. 6.

The wire diagram corresponds to the term:

(JLNC1
M, δK1

4,5; Π1)⊗ JLNC2
, {2}M, δKε6; (JLNC3

, {3}M, δK4,6
7,8,9,10; Π1 ⊗Π1; Π1)

From Eq. (14), we obtain

∅ {4}

α = JLNC1
M, δK1

4,5; Π1 =
∅ 1 0

{1} 1− pa pa

(17)

31

Analogously, from Eq. (16)

γ = JLNC3 , {3}M, δKε7,8,9,10; Π1 ⊗Π1; Π1 =

∅ {7}

∅ 0 1

{4} 0 1

{6} 0 1

{4, 6} pf 1− pf

(18)

We write β for JLNC2
, {2}M, δKε6 in Eq. 15.580

Then, α⊗ β is obtained as

∅ {4} {6} {4, 6}

α⊗ β =
∅ 1− pc 0 pc 0

{1} (1− pa)(1− pc) pa(1− pc) (1− pa)pc papc

(19)

Finally,

∅ {7}

ψ = α⊗ β; γ =
∅ 0 1

{1} papcpf 1− papcpf

(20)

This means that, given that a token appears in place 1 with probability 1, the

place 7 will be marked with probability 1−papcpf . This is also the probability of

firing the transition e, which is the only one producing the token in place 7. Using

the notation in [3], this value is computed by precomposing the state ω = 1|{1}〉

with the arrow ψ, i.e., by letting ψ∗(ω) = ω;ψ = papcpf |∅〉+ (1− papcpf)|{7}〉.585

As an example of backward reasoning, given the a priori probability 1
2 that

a token can appear in place 1, we can compute the probability that place 1 is

marked given that a token appears in place 7, which is

1− papcpf
1 + (1− papcpf)

=
1− papcpf
2− papcpf

Using the notation in [3], this value is computed by setting (for ψ : X → D(Y)

and q a predicate on Y)

ψ∗(q)(x) =
∑
y∈Y

ψ(x)(y) · q(y)

= ψ(x)(∅) · q(∅) + ψ(x)({7}) · q({7})

= ψ(x)({7})

32

where q is the predicate such that q({7}) = 1 (and q(∅) = 0) and then computing

ω|ψ∗(q) =
∑
x∈X

ω(x) · ψ∗(q)(x)

ω |= ψ∗(q)
|x〉

=
ω(∅) · ψ∗(q)(∅)
ω |= ψ∗(q)

|∅〉+
ω({1}) · ψ∗(q)({1})

ω |= ψ∗(q)
|{1}〉

=
1
2 · 1

ω |= ψ∗(q)
|∅〉+

1
2 · (1− papcpf)

ω |= ψ∗(q)
|{1}〉

=
1
2

ω |= ψ∗(q)
|∅〉+

1−papcpf
2

ω |= ψ∗(q)
|{1}〉

where

ω |= ψ∗(q) =
∑
x∈X

ω(x) · ψ∗(q)(x)

= ω(∅) · ψ∗(q)(∅) + ω({1}) · ψ∗(q)({1})

=
1

2
· 1 +

1

2
· (1− papcpf)

=
2− papcpf

2

If the presence of a token in place 7 represents a malfunctioning of the system,590

and the presence of a token in place 1 a possible fault, then the probability we

compute is that the malfunctioning is dependent on that fault.

6. Conclusion

In this paper we have shown how to derive a Bayesian network from a

probabilistic Petri net in the style of [1, 2]. The construction is computed via595

an intermediate representation of a PN as a term in a monoidal (pre-)category

structure, exploiting the string diagram representation of BN outlined in [3].

As shown in Section 5, the BN representation can then be exploited to reason

about conditional probabilities of marking reachability, via forward and backward

inference. Notably, when transitions have non-empty post-sets then each marking600

corresponds to a unique deterministic process (i.e., a unique configuration of

the underlying event structure) and thus the inference can be transferred to

processes as well.

33

There are many ways in which PN have been enriched with probabilistic

behaviour [14, 15, 16, 17, 18, 19, 20, 21]. To avoid confusion, most of them605

replace nondeterminism with probability only in part, or focus on interleaved

computations, or introduce time dependent stochastic distributions. The ap-

proach considered here differs from the others in the literature because: (1) it

is purely probabilistic, (2) it deals well with concurrent computations, (3) it

addresses confusion.610

In the literature, there are very few papers investigating the connections

between PN and BN. In [22] the relation is drawn in the opposite direction, i.e.,

PN are used to encode the reasoning of BN. The connection established in this

paper provides two views for the same model: on the one side, the standard

token game of the PN view (suitable extended with probabilistic choices) gives a615

concrete, probabilistic computational model. On the other side, the BN semantics

allows us to reason about the properties of the computations of the underlying

concrete model.

The relation between Petri nets and Bayesian networks opens the way to

several interesting directions for future work. One is about causality, in the sense620

of Pearl [23]. There the idea is to distinguish between statistical correlation

and cause-effect relationship. Causality plays an important role in concurrent

semantics and is explicitly represented by the Petri net structure. Using the

Bayesian network semantics presented here, we would like to explore the con-

nections between causality in Petri nets and the approach in [13] that shapes625

Pearl’s ideas on a string diagram perspective.

Another direction for future work is in exploring the notion of influence. In

Bayesian networks, influence is a relationship between nodes A and B, telling

how an observation on node A may have an effect also on node B. In particular,

such influence can be quantified by defining suitable metrics as done in [24].630

Given the Bayesian network semantics of a Petri net, we can try to recast the

notion of influence between markings of the net and study how it is related with

causal dependencies arising from the structure of the net.

34

References

[1] S. Abbes, A. Benveniste, True-concurrency probabilistic models: Branching635

cells and distributed probabilities for event structures, Inf. Comput. 204 (2)

(2006) 231–274. doi:10.1016/j.ic.2005.10.001.

[2] R. Bruni, H. C. Melgratti, U. Montanari, Concurrency and probability:

Removing confusion, compositionally, in: A. Dawar, E. Grädel (Eds.), Pro-

ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer640

Science, LICS 2018, Oxford, UK, July 09-12, 2018, ACM, 2018, pp. 195–204.

doi:10.1145/3209108.3209202.

[3] B. Jacobs, F. Zanasi, A predicate/state transformer semantics for Bayesian

learning, Electr. Notes Theor. Comput. Sci. 325 (2016) 185–200. doi:

10.1016/j.entcs.2016.09.038.645

[4] K. Cho, B. Jacobs, Disintegration and Bayesian inversion, both abstractly

and concretely, CoRR abs/1709.00322. arXiv:1709.00322.

URL http://arxiv.org/abs/1709.00322

[5] F. Clerc, V. Danos, F. Dahlqvist, I. Garnier, Pointless learning, in: J. Es-

parza, A. S. Murawski (Eds.), Foundations of Software Science and Compu-650

tation Structures - 20th International Conference, FOSSACS 2017, Held

as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceed-

ings, Vol. 10203 of Lecture Notes in Computer Science, 2017, pp. 355–369.

doi:10.1007/978-3-662-54458-7_21.655

[6] P. Baldan, R. Bruni, A. Corradini, F. Gadducci, H. C. Melgratti, U. Mon-

tanari, Event structures for petri nets with persistence, Logical Methods in

Computer Science 14 (3). doi:10.23638/LMCS-14(3:25)2018.

[7] U. Goltz, W. Reisig, The non-sequential behavior of Petri nets, Informa-

tion and Control 57 (2/3) (1983) 125–147. doi:10.1016/S0019-9958(83)660

80040-0.

35

http://dx.doi.org/10.1016/j.ic.2005.10.001
http://dx.doi.org/10.1145/3209108.3209202
http://dx.doi.org/10.1016/j.entcs.2016.09.038
http://dx.doi.org/10.1016/j.entcs.2016.09.038
http://dx.doi.org/10.1016/j.entcs.2016.09.038
http://arxiv.org/abs/1709.00322
http://arxiv.org/abs/1709.00322
http://arxiv.org/abs/1709.00322
http://arxiv.org/abs/1709.00322
http://arxiv.org/abs/1709.00322
http://dx.doi.org/10.1007/978-3-662-54458-7_21
http://dx.doi.org/10.23638/LMCS-14(3:25)2018
http://dx.doi.org/10.1016/S0019-9958(83)80040-0
http://dx.doi.org/10.1016/S0019-9958(83)80040-0
http://dx.doi.org/10.1016/S0019-9958(83)80040-0

[8] P. Baldan, A. Corradini, H. Ehrig, R. Heckel, B. König, Bisimilarity and

behaviour-preserving reconfigurations of open petri nets, Logical Methods

in Computer Science 4 (4). doi:10.2168/LMCS-4(4:3)2008.

[9] R. Bruni, H. C. Melgratti, U. Montanari, P. Sobocinski, Connector algebras665

for C/E and P/T nets’ interactions, Logical Methods in Computer Science

9 (3). doi:10.2168/LMCS-9(3:16)2013.

[10] F. Bonchi, J. Holland, R. Piedeleu, P. Sobocinski, F. Zanasi, Diagrammatic

algebra: from linear to concurrent systems, PACMPL 3 (POPL) (2019)

25:1–25:28.670

[11] P. Baldan, F. Gadducci, Petri nets are dioids: a new algebraic foundation

for non-deterministic net theory, Acta Inf. 56 (1) (2019) 61–92. doi:10.

1007/s00236-018-0314-0.

[12] R. Bruni, J. Meseguer, U. Montanari, V. Sassone, Functorial models for petri

nets, Inf. Comput. 170 (2) (2001) 207–236. doi:10.1006/inco.2001.3050.675

[13] B. Jacobs, A. Kissinger, F. Zanasi, Causal inference by string diagram

surgery, in: M. Boja’nczyk, A. Simpson (Eds.), Foundations of Software

Science and Computation Structures - 22nd International Conference, FOS-

SACS 2019, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2019, Prague, Czech Republic, April680

6-11, 2019, Proceedings, Vol. 11425 of Lecture Notes in Computer Science,

Springer, 2019, pp. 313–329. doi:10.1007/978-3-030-17127-8_18.

[14] J. B. Dugan, K. S. Trivedi, R. Geist, V. F. Nicola, Extended stochastic

Petri nets: Applications and analysis, in: Performance’84, North-Holland,

1984, pp. 507–519.685

[15] M. A. Marsan, G. Conte, G. Balbo, A class of generalized stochastic Petri

nets for the performance evaluation of multiprocessor systems, ACM Trans.

Comput. Syst. 2 (2) (1984) 93–122. doi:10.1145/190.191.

36

http://dx.doi.org/10.2168/LMCS-4(4:3)2008
http://dx.doi.org/10.2168/LMCS-9(3:16)2013
http://dx.doi.org/10.1007/s00236-018-0314-0
http://dx.doi.org/10.1007/s00236-018-0314-0
http://dx.doi.org/10.1007/s00236-018-0314-0
http://dx.doi.org/10.1006/inco.2001.3050
http://dx.doi.org/10.1007/978-3-030-17127-8_18
http://dx.doi.org/10.1145/190.191

[16] M. K. Molloy, Discrete time stochastic Petri nets, IEEE Trans. Softw. Eng.

11 (4) (1985) 417–423.690

[17] C. Eisentraut, H. Hermanns, J. Katoen, L. Zhang, A semantics for every

GSPN, in: Petri Nets 2013, Vol. 7927 of Lect. Notes in Comp. Sci., Springer,

2013, pp. 90–109. doi:10.1007/978-3-642-38697-8_6.

[18] M. Kudlek, Probability in petri nets, Fundam. Inform. 67 (1-3) (2005)

121–130.695

[19] S. Haar, Probabilistic cluster unfoldings, Fundam. Inform. 53 (3-4) (2002)

281–314.

[20] A. Bouillard, S. Haar, S. Rosario, Critical paths in the partial order unfolding

of a stochastic petri net, in: J. Ouaknine, F. W. Vaandrager (Eds.), Formal

Modeling and Analysis of Timed Systems, 7th International Conference,700

FORMATS 2009, Budapest, Hungary, September 14-16, 2009. Proceedings,

Vol. 5813 of Lecture Notes in Computer Science, Springer, 2009, pp. 43–57.

doi:10.1007/978-3-642-04368-0_6.

[21] J. Katoen, R. Langerak, D. Latella, Modeling systems by probabilistic

process algebra: an event structures approach, in: R. L. Tenney, P. D. Amer,705

M. Ü. Uyar (Eds.), Formal Description Techniques, VI, Proceedings of the

IFIP TC6/WG6.1 Sixth International Conference on Formal Description

Techniques - FORTE ’93, Boston, MA, USA, 26-29 October 1993, Vol. C-22

of IFIP Transactions, North-Holland, 1993, pp. 253–268.

[22] K. Lautenbach, S. Philippi, A. Pinl, Bayesian Networks and Petri Nets,710

Fachberichte Informatik 2–2006, Universität Koblenz-Landau (2006).

URL http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/

RR-2-2006.pdf

[23] J. Pearl, Causality: Models, Reasoning and Inference, 2nd Edition, Cam-

bridge University Press, New York, NY, USA, 2009.715

37

http://dx.doi.org/10.1007/978-3-642-38697-8_6
http://dx.doi.org/10.1007/978-3-642-04368-0_6
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-2-2006.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-2-2006.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-2-2006.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-2-2006.pdf

[24] B. Jacobs, F. Zanasi, A formal semantics of influence in bayesian reasoning,

in: K. G. Larsen, H. L. Bodlaender, J. Raskin (Eds.), 42nd International

Symposium on Mathematical Foundations of Computer Science, MFCS

2017, August 21-25, 2017 - Aalborg, Denmark, Vol. 83 of LIPIcs, Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, pp. 21:1–21:14. doi:720

10.4230/LIPIcs.MFCS.2017.21.

[25] M. Nielsen, G. D. Plotkin, G. Winskel, Petri nets, event structures and

domains, part I, Theor. Comput. Sci. 13 (1981) 85–108. doi:10.1016/

0304-3975(81)90112-2.

[26] G. Winskel, Event structures, in: Advances in Petri Nets 1986, Part II, Vol.725

255 of Lect. Notes in Comp. Sci., Springer, 1987, pp. 325–392.

Appendix A. Correctness of mapping to terms

The remaining of this section is devoted to establish a correspondence be-

tween the semantics of Abbes and Benveniste for a marked net (N,m) and the

corresponding term LN,mM.730

Appendix A.1. Prime Event Structures

A prime event structure (also PES) [25, 26] is a triple E = (E,�,#) where:

E is the set of events; the causality relation � is a partial order on events;

the conflict relation # is a symmetric, irreflexive relation on events such that

conflicts are inherited by causality, i.e., ∀e1, e2, e3 ∈ E. e1#e2 � e3 ⇒ e1#e3.735

The PES EN associated with a net N can be formalised using category theory

as a chain of universal constructions, called coreflections. Hence, for each PES

E , there is a standard, unique (up to isomorphism) nondeterministic occurrence

net NE that yields E and thus we can freely move from one setting to the other.

Given an event e, its downward closure bec = {e′ ∈ E | e′ � e} is the set of740

causes of e. As usual, we assume that bec is finite for any e. Given B ⊆ E, we

say that B is downward closed if ∀e ∈ B. bec ⊆ B and that B is conflict-free if

38

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.21
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.21
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.21
http://dx.doi.org/10.1016/0304-3975(81)90112-2
http://dx.doi.org/10.1016/0304-3975(81)90112-2
http://dx.doi.org/10.1016/0304-3975(81)90112-2

∀e, e′ ∈ B. ¬(e#e′). We let the immediate conflict relation #0 be defined on

events by letting e#0e
′ iff (bec × be′c) ∩ # = {(e, e′)}, i.e., two events are in

immediate conflict if they are in conflict but their causes are compatible.745

Appendix A.2. Abbes and Benveniste’s Branching Cells

In the following we assume that a finite PES E = (E,�,#) is given. A

prefix B ⊆ E is any downward-closed set of events (possibly with conflicts). Any

prefix B induces an event structure EB = (B,�B ,#B) where �B and #B are

the restrictions of � and # to the events in B. A stopping prefix is a prefix B750

that is closed under immediate conflicts, i.e., ∀e ∈ B, e′ ∈ E. e#0e
′ ⇒ e′ ∈ B.

Intuitively, a stopping prefix is a prefix whose (immediate) choices are all available.

It is initial if the only stopping prefix strictly included in B is ∅.

A configuration v ⊆ E is any set of events that is downward closed and

conflict-free. Intuitively, a configuration represents (the state reached after755

executing) a concurrent but deterministic computation of E . Configurations are

ordered by inclusion and we denote by VE the poset of configurations of E and

by ΩE the poset of maximal configurations of E .

The future of a configuration v, written Ev, is the set of events that can be

executed after v, i.e., Ev = {e ∈ E \ v | ∀e′ ∈ v.¬(e#e′)}. We write Ev for the760

event structure induced by Ev.

A configuration v is stopped if there is a stopping prefix B with v ∈ ΩB.

and v is recursively stopped (or r-stopped) if there is a sequence of configurations

∅ = v0 ⊂ . . . ⊂ vn = v such that for any i ∈ [0, n) the set vi+1 \ vi is a stopped

configuration of Evi for vi in E .765

A branching cell is any initial stopping prefix of the future Ev of a recursively

stopped configuration v. Intuitively, a branching cell is a minimal subset of

events closed under immediate conflict. We remark that branching cells are

determined by considering the whole (future of the) event structure E and

they are recursively computed as E is executed. Remarkably, every maximal770

configuration has a branching cell decomposition.

39

b a

��
c

�� �� ��
d

e f g h

(a) EN

b a

��
c

�� �� ��
d

e f g h

(b) Initial stopping prefixes

c

�� �� ��
d

e f g h

(c) E{a}N

e f g h

(d) E{a,c}N

c

�� ��
d

e g h

(e) E{b}N

Figure A.7: AB’s branching cell decomposition (running example)

Example 8. Consider the PES EN in Fig. A.7(a) and its maximal configuration

v = {a, c, e, g}. We show that v is recursively stopped by exhibiting a branching

cell decomposition. The initial stopping prefixes of EN = E∅N are shown in

Fig. A.7(b). There are two possibilities for choosing v1 ⊆ v and v1 recursively775

stopped: either v1 = {a} or v1 = {c}. When v1 = {a}, the choices for v2

are determined by the stopping prefixes of E{a}N (see Fig. A.7(c)) and the only

possibility is v2 = {a, c}. From E{a,c}N in Fig. A.7(d), we take v3 = v. Note that

{a, c, e} is not recursively stopped because {e} is not maximal in the stopping

prefix of E{a,c}N (see Fig. A.7(d)). Finally, note that the branching cells of E{a}N780

(Fig. A.7(c)) and E{b}N (Fig. A.7(e)) correspond to different choices in E∅N and

thus have different stopping prefixes.

Appendix A.3. AB’s decomposition and terms

The recursively stopped configurations of a marked net (N,m) characterise

all the allowed executions of N under the marking m. Hence, we formally link785

the recursively stopped configurations of E(N,m) with the deterministic processes

associated with LN,mM. We start by introducing the notion of configurations

associated to a term.

Definition 11. Given a term T : i
s−→ o and a marking m ⊆ i, the set of

configurations of T under m, written Conf(T,m), is defined inductively as

40

follows.

Conf(Is,m) = {∅}

Conf(⊥s, ∅) = {∅}

Conf(T1 ⊕ T2,m) = {v1 ∪ v2 | ∀j = 1, 2. Tj : ij
sj−→ oj

∧ vj ∈ Conf(Tj ,m ∩ ij))}

Conf(T1;T2,m) = {v1 ∪ v2 | v1 ∈ Conf(T1,m) ∧ T2 : i2
s2−→ o2

∧ v2 ∈ Conf(T2, v
◦
1 ∩ i2)}

Conf(C(Θ), ∅) = Θ

Conf(
∑
m⊆i m . Tm,mj) = Conf(Tj , ∅)

Proposition 4. Let (N,m) : i → o be a finite marked occurrence net and

T = LN,mM. Then, for j ⊆ i, v is a maximal r-stopped configuration of E(N,m∪j)790

iff v ∈ Conf(T, j).

Proof. The proof follows by structural induction on T .

• T = Is. For all j ⊆ i, we have Conf(Is, j) = {∅}. Consequently, v ∈

Conf(Is, j) implies v = ∅. Since LN,mM = Is, (N,m) = Is. Then, s = i

and m = ∅. Therefore, E(N,m∪j) = ∅. Consequently, v ∈ E(N,m∪j) implies795

v = ∅.

• T = ⊥s. It holds trivially because there is no (N,m) such that LN,mM =

⊥s.

• T = T1 ⊕ T2. Then, (N,m) = (N1,m1) ⊕ (N2,m2), T1 = LN1,m1M

T2 = LN2,m2M. By inductive hypothesis, vi ∈ Conf(Ti, ji) iff vi is an800

r-stopped configuration of E(Ni,mi∪ji). The proof follows by noting that the

union of two disjoint r-stopped configurations is an r-stopped configuration.

• T = T1;T2. Then, (N,m) = (N1,m1); (N2,m2), T1 = LN1,m1M T2 =

LN2,m2M. By inductive hypothesis, vi ∈ Conf(Ti, ji) iff vi is an r-stopped

configuration of E(Ni,mi∪ji). The proof follows by noting that v1 is an805

r-stopped configuration of E(N,m∪j) and v2 is an r-stopped configuration

of Ev1(N,m∪j). Consequently, v = v1 ∪ v2 is an r-stopped configuration of

E(N,m∪j).

41

• T = C(Θ(NC)). Then, N = NC and m = ◦C. Moreover, v ∈ E(C,◦C) implies

that v is a maximal deterministic process of (C, ◦C), i.e., a transaction.810

Hence, v ∈ Θ(NC) and v ∈ Conf(T, ∅).

• T =
∑
j⊆i j .⊥dj ⊕ Tj with Tj = Lcan(NC@m ∪ j)M. Then, v ∈ Conf(T, j)

iff v ∈ Conf(Tj , ∅). By inductive hypothesis, v is a maximal r-stopped con-

figuration of ENC@m∪j . The proof is completed by noting that ENC@m∪j =

E(NC,m∪j).815

42

	Introduction
	Background
	Notation
	Petri Nets
	Occurrence nets
	Structural Branching Cells

	Petri Nets Decomposition
	Place Removal

	Compiling nets
	Language of nets
	Typing

	From Nets to Terms
	From Terms to K(D)

	Forward and Backward Inference and Disintegration
	Conclusion
	Correctness of mapping to terms
	Prime Event Structures
	Abbes and Benveniste's Branching Cells
	AB's decomposition and terms

