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1 Introduction and summary of results

In recent years attention has been brought to the utility of expectation values of integrated

projections of the stress-energy tensor along null lines in conformal field theories (CFTs).

Such observables have a long history in jet physics — see for example [1–3] — and they

were first examined in the CFT context in the seminal work [4]. There, it was shown that

an energy-positivity condition implies constraints on the coefficients in the three-point

function of the stress-energy tensor. More precisely, given a state |ψ〉 of a local CFT with

stress-energy tensor Tµν and a null geodesic parametrized by λ with tangent vector uµ, the

following inequality, called the Averaged Null Energy Condition (ANEC), holds:

〈ψ|E|ψ〉 =

∫ ∞
−∞

dλ 〈ψ|Tµν |ψ〉uµuν > 0 . (1.1)

In [4] this was viewed as a positivity requirement for the energy measured by a hypothet-

ical “calorimeter” placed at a large distance from the region where |ψ〉 is localized. The

inequality (1.1) was later established more rigorously as a theorem [5, 6]. It has also been

understood that the ANEC is part of a larger class of constraints, which also follow from

a thought collider experiment, namely the deep inelastic scattering bounds [7, 8], which

state the positivity of an expectation value similar to (1.1) but with Tµν replaced by the

lowest-twist operator of a given spin ` > 2. Recently it was shown that the integral (1.1)

is a special case of a larger set of integral transforms [9].

An important, perhaps unexpected application of (1.1) is that it implies lower bounds

on operator dimensions ∆ in CFTs [10]. It is of course known that in CFTs scaling

dimensions of operators are bounded from below as a consequence of unitarity [11, 12]. This

is true independently of locality properties of the CFT, i.e. it does not rely on the presence

of a stress-energy tensor in the CFT spectrum. However, it was demonstrated in [10] that

in CFTs with a stress-energy tensor the unitarity bound is suboptimal for some classes of

operators. The analysis of a few examples led [10] to the conjecture ∆ > max{j, ̄}, where

(1
2j,

1
2 ̄) is the Lorentz representation of the CFT operator. This becomes stronger than

the unitarity bound whenever |j− ̄| > 4. We find that this conjecture is not supported by

the ANEC for large values of j in the case of (1
2j, 0) and (1

2j,
1
2) operators — see figures 5

and 6 below.

In this work we apply the methods of [10] to four-dimensional N = 1 superconformal

field theories (SCFTs). We find that for certain classes of operators the unitarity bounds

of [13–15] cannot be saturated. Just as in [10], our results follow from a careful analysis of

three-point functions of the schematic type 〈OTµνO〉 with O a conformal primary and O

its conjugate. The difference with the nonsupersymmetric case is that here such conformal

three-point functions are encoded in superconformal three-point functions involving the

Ferrara-Zumino multiplet [16]. The constraints of 4d N = 1 superconformal symmetry on

three-point functions of superconformal primary operators have been examined in great

detail in [17, 18], and we rely heavily on those results.

The constraints imposed by the ANEC and explored in [10] are schematically of

the form

∆O > ∆ANEC(j, ̄) and M(λOOT ,∆O) � 0 , (1.2)

– 1 –
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where M is a matrix that depends linearly on the three-point function coefficients λOOT .

In a nonsupersymmetric theory, the constraints on the three-point function coefficients

generically admit a solution. Therefore, the first condition determines the bound on oper-

ator dimensions.

In the presence of supersymmetry things can change significantly. First, there exist

certain multiplet shortening conditions, without a nonsupersymmetric analog, that fix some

of the three-point function coefficients λOOT , thus leaving less freedom to satisfy (1.2).

Moreover, even without imposing any shortening conditions, the ANEC must hold on

any state |ψ〉 given by the most general superposition of states in a super-multiplet —

schematically

|ψ〉 ∼
(
O + αQO + βQO + . . .

)
|0〉 . (1.3)

Computing the integral (1.1) on states (1.3) leads to more intricate constraints on the three-

point function coefficients λOOT , which sometimes do not admit a solution. Intuitively, we

then expect that in the presence of supersymmetry a broader class of operators will violate

the ANEC and must thus be absent in any unitary local SCFT.

In the remainder of this section we briefly outline the logic behind our computations

and present our final results. The rest of the paper carefully goes through the details of

our calculations.

1.1 Strategy

In this work we focus on superconformal multiplets O(x, θ, θ̄) for which the lowest compo-

nent field O transforms in the ( 1
2j, 0) irreducible representation of the Lorentz group. Our

first goal is to determine the most general form of the three-point function in superspace

among O, its complex conjugate superfield, and the Ferrara-Zumino multiplet J , which

contains the stress-energy tensor:1

〈O(z1)J (z2)O(z3)〉, zi = (xi, θi, θ̄i) . (1.4)

In order to determine (1.4), in section 2 we write the most general three-point function

consistent withN = 1 superconformal invariance, complex conjugation, and conservation of

the Ferrara-Zumino multiplet. Next, we fix certain combinations of the three-point function

coefficients entering (1.4) by imposing the Ward identities generated by the conserved

currents JµR, Tµν and Sαµ in J . Although in principle it should be possible to obtain a

superspace version of the Ward identities, along the lines of [18], in this work we impose the

constraints at the level of the individual primaries and superdescendants. More specifically,

we find that once the JRµ and Tµν Ward identities are imposed in the three-point function

involving the superprimary O, all other ones we checked follow.2

In addition to the above, the three-point function (1.4) could satisfy further constraints,

associated to various shortening conditions of the superconformal multiplet O. Following

1In this section we only present schematic formulas. Details are given in the next sections.
2More specifically, we checked the Ward identities for 〈(QO)JR(QO)〉, 〈(QO)T (QO)〉 and 〈(QO)SO〉.

In principle there could be extra relations that we did not take into account.

– 2 –



J
H
E
P
0
1
(
2
0
2
0
)
0
9
3

the convention of [19] we denote N = 1 multiplets as [XL,XR], where XL,R represents

the action of the charges Q and Q, which give rise to long (L), semi-short (A1, A2) or

chiral (B) multiplets. We spell out the exact definitions in section 3.4, together with the

corresponding unitarity bounds, and we compute the most general form of (1.4) compatible

with these constraints. The results are summarized in the tables in appendix C.1.

As a final step, we need to decompose the superspace three-point function in the

various θ components and extract the nonsupersymmetric three-point functions of the

superprimary O and various primary superdescendants. This task is performed in section 4

and summarized in the tables in appendix C.2. Unfortunately the computations required

to perform this step become rapidly very complicated. In this work we only pushed to

the fourth order in θi or θ̄i and computed three-point functions involving at most Tµν and

superdescendants QO± and QO.3

After all these preparatory steps, we can impose the ANEC (1.1) on a general state of

the form of (1.3). Due to R-charge conservation, only a few three-point functions are non

vanishing. In the end we impose that4

〈O|E|O〉 > 0 , 〈(QO)|E|(QO)〉 > 0

and

(
〈(QO+)|E|(QO+)〉 〈(QO+)|E|(QO−)〉
〈(QO−)|E|(QO+)〉 〈(QO−)|E|(QO−)〉

)
� 0 . (1.5)

We should stress that the above conditions are a subset of all conditions one can impose,

since they do not include superdescendants of the form Q2O or QQO for example. Never-

theless, we find that in any unitary and local SCFT superprimaries that transform in the

(1
2j, 0) representation and satisfy the usual unitarity bounds do not necessarily satisfy the

conditions (1.5).

In section 5 we obtain closed-form expressions for all the correlators appearing in (1.5)

as rational functions of the spin j and dimension ∆. Such formulas allow us to easily

compute bounds up to large values of j and in some cases rigorously prove bounds for

any j.

Finally, we explore the consequences of our analysis for theories with extended su-

persymmetry. In section 6 we consider special N = 2 and N = 4 supermultiplets and

decompose them with respect to an N = 1 subalgebra. The ANEC constraints presented

in the next subsection are then recast as bounds on the N = 2, 4 superprimaries.

1.2 Summary of results

Let us first mention the results of our analysis for nonsupersymmetric CFTs, in the case

of a conformal primary with dimension ∆, transforming in ( 1
2j,

1
2 ̄) representation, with

3We remind that the action of a supercharge produces in general two distinct primary superdescendants,

which we schematically denote with ±, with equal dimension and R-charge but transforming in different

Lorentz representations. For operators in the ( 1
2
j, 0) representation only QO+ exists, so we will denote it

as QO.
4For certain short supermultiplets some of these three-point functions vanish.
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̄ = 0, 1. In section 5.5 we show convincing evidence that the ANEC requires

∆ > min

(
j,

1

15
(13j + 42)

)
. (1.6)

For ̄ = 0, 1 the above expression is stronger than the corresponding unitarity bound for

j > 2, 6, respectively. Although we don’t have an analytic proof, we checked (1.6) up

to j = 103.

Next, we summarize the results of applying the ANEC inequality to superconformal

multiplets O(j,0). We present them as bounds on the quantum numbers q, q̄, which are

related to the dimension and the R-charge of a given operator by the simple relations

∆ = q + q̄ , R =
2

3
(q − q̄) . (1.7)

We considered all possible shortening conditions classified in [19] and we also follow their

notation,5 which we briefly explain in section 3.4.

All cases for j = 0. In this case the ANEC requires only q > 0 and q̄ > 0. Therefore,

it is never stronger than the unitarity bound.

[A1, B] for j = 1. For these operators there are no free three-point function coefficients

and the dimension and R-charge are fixed. It can be easily verified that the ANEC holds.

[A1, B] for j > 2. As shown in table 1, these operators do not admit a three-point func-

tion with the Ferrara-Zumino multiplet consistent with all conditions. They are therefore

absent in any local SCFT.6

[L,B] for j > 1. With this shortening condition, corresponding to chiral operators, there

are no free three-point function coefficients. Therefore the ANEC for any given j is simply

a system of inequalities on q that can be solved algebraically. The result is

∆ = q >
3

2
j . (1.8)

This is equivalent to the unitarity bound for j = 1 and it is stronger for all j > 1. This

result is not in contradiction with already known Lagrangian constructions, which so far

have only provided examples for j = 1 [20, 21]. Also note that the bound is saturated by

j copies of a free j = 1 superconformal chiral primary ψαi

Ψα1...αj = : ψ
(α1

1 · · ·ψαj)j : . (1.9)

In N = 2 theories, the bound in (1.8) implies a constraint on the dimension of the so called

“exotic chiral primaries” discussed in [22]. In section 6.2 we show that

∆exotic >
3

2
j + 1 . (1.10)

5In a nutshell, L (resp. L) stand for long, B (resp. B) for short or chiral, A (resp. A) for semi-short

with respect to the supercharge Q (resp. Q).
6This conclusion does not require the ANEC.
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Figure 1. Lower bounds on the conformal dimension as a result of the ANEC for long multiples.

Each point is the result of a bisection algorithm done with sdpb [23] (see section 5.4). The solid lines

are the unitarity bound: the red line is the bound on q̄ and the colored lines are the j-dependent

bounds on q. The larger dots correspond to the points with shortening conditions [L,A2] (for the

red circled dots) and [A1, L] (for the black circled dots).
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Figure 2. Plot of the results in figure 1 in the (R,∆) plane.

[L,L] for j > 1. In this case there are two free parameters q and q̄ and two undetermined

three-point function coefficients (one for j = 1). For every value of j we fixed q̄ and ran

a bisection algorithm on q. The results are in figure 1. See also figure 2 for a plot in the

(R,∆) plane.

[L,A2] for j > 1. For this shortening condition the constraints are equivalent to [L,L]

for q̄ = 1. The results are given in figure 3 and correspond to the red circled dots on
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q ≈ 1.43j − 1.79

j

q

Figure 3. Lower bounds on the conformal dimension as a result of the ANEC for [L,A2] multiplets.

Each point is the result of a bisection algorithm done with sdpb [23] (see section 5.4). The red line

is the unitarity bound q = 1
2j + 1. The operators for j 6 3 that lie on the red line satisfy [A1, A2].

figure 1. The operators at the unitarity bound, which satisfy the [A1, A2] shortening, are

not allowed for j > 3 (see below). Therefore, for j > 3 the ANEC provides a constraint

strictly stronger than unitarity.

[A1, L] for j > 1. Since for this case there is only one free three-point function coefficient

and one parameter, q̄, the system of inequalities is considerably simpler to solve. The results

are given in figure 4 and correspond to the black circled dots on figure 1. As before, for

j > 3, the ANEC is strictly stronger than unitarity.

[A1, A2] for j > 1. This condition admits solutions only for j 6 3. In the edge case

j = 3 the ANEC inequalities fix the only independent three-point function coefficient to

C6 = −16

π2
. (1.11)

For all j > 3 the ANEC admits no solution and thus such operators must be absent in any

local SCFT.

2 Setup

Our object of study will be the three-point correlator in four dimensional N = 1 superspace

of a superconformal multiplet O(j,0)(z), its conjugate O(0,j)
(z) and the Ferrara-Zumino

multiplet J (1,1)(z). The charges of J are qJ = q̄J = 3
2 , while those of O and O are

qO = q̄O = q and qO = q̄O = q̄. The superscript (j, ̄) refers to the SO(3, 1) representation,7

7Following standard conventions we denote the irreducible representations of the Lorentz group by

( 1
2
j, 1

2
̄), where j is the number of undotted and ̄ the number of dotted indices.

– 6 –
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q̄ = 1
2(j − 1)

j

q̄

Figure 4. Lower bounds on the conformal dimension as a result of the ANEC for [A1, L] multiplets.

Each point is the result of a bisection algorithm done with Mathematica. The operators for j 6 3

that lie on the red line satisfy [A1, A2].

and will be henceforth dropped for brevity. The shorthand z denotes

zi = (zi, ηi, η̄i) , where zi = (xi, θi, θ̄i) . (2.1)

The polarizations ηi, η̄i are commuting spinors used to contract all free indices as follows:

O(j,̄)(z) = ηα1 · · · ηαj η̄α̇1 · · · η̄α̇̄Oα1...αj α̇1...α̇̄ (z) . (2.2)

The tensor can be recovered by using spinor derivatives ∂η, ∂η̄ which obey ∂ηαη
β = δβα and

∂ηαηβ = εβα, and similarly for the barred counterparts. We will follow the notation of [24]

and the formalism introduced in [18].

The most general three-point function involving O(j,0)(z) can be written as〈
O(z1)J (z2)O(z3)

〉
=

(∂χ1x31̄ η̄1)j η2x23̄∂χ̄2 ∂χ2x32̄ η̄2

x1̄3
2q+j x3̄1

2q̄ x3̄2
4 x2̄3

4
t(Z3;χ1, χ2, χ̄2, η3) , (2.3)

where Z3 = (X3,Θ3,Θ3) will be defined shortly and χi, χ̄i are auxiliary spinor polariza-

tions.8 The function t can be expressed as a linear combination of ten tensor structures,

but the coefficients multiplying them are not arbitrary as they are constrained by reality of

the correlator, conservation of J , eventual shortening conditions on O and the Ward iden-

tities for the R-symmetry and the conformal group. We will analyze all these constraints

in the next section. Let us now briefly describe all the fundamental building blocks of such

tensor structures. They are functions of the supersymmetric interval xī defined as

(xī )αα̇ = −εαβεα̇β̇(x̃̄ i)
β̇β = −σµαα̇(x̄ i)µ = (xij)αα̇− 2iθiαθ̄iα̇− 2iθjαθ̄jα̇ + 4iθiαθ̄jα̇ , (2.4)

8They are denoted with a different letter than η only to emphasize the fact that they are eventually

removed by the derivatives in the numerator.
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with xij = xi−xj , xı̄ja = (xı̄j
2)a/2 and of the Grassmann intervals θij = θi−θj , θ̄ij = θ̄i−θ̄j .

We can use these objects to define

X3 =
x31̄x̃1̄2x23̄

x1̄3
2x3̄2

2
, X3 = −x32̄x̃2̄1x13̄

x3̄1
2x2̄3

2
= X†3 ,

Θ3 = i

(
x31̄θ̄31

x1̄3
2
− x32̄θ̄32

x2̄3
2

)
, Θ3 = i

(
θ31x13̄

x3̄1
2
− θ32x23̄

x3̄2
2

)
= Θ†3 . (2.5)

Similar objects Xi, Θi, Θi, i = 1, 2, can be defined by a cyclic permutation of the points.

We will further define

U3 =
1

2
(X3 + X3) . (2.6)

Also, note that X3 − X3 = 4iΘ3Θ3. We can then form fully contracted monomials of the

quantities defined above to obtain the building blocks of the tensor structures in t. A

complete list is

[ī] =
ηiUη̄j
|U | , [ΘΘ] =

ΘUΘ

U2
, [ij] = ηiηj , [̄ı̄] = η̄iη̄j , [Θ2] =

Θ2

|U | ,

[Θ
2
] =

Θ
2

|U | , [Θj] =
Θηj

|U |1/2 , [Θ̄] =
Θη̄j

|U |1/2 , [jΘ] =
ηiUΘ

|U |3/2 , [Θ̄] =
ΘUη̄j

|U |3/2 . (2.7)

Other than the physical constraints mentioned before, that will be addressed later, t

must satisfy certain homogeneity properties, which can be summarized as

t(λλ̄X, λΘ, λ̄Θ;κη1, µη2, µ̄η̄2, κ̄η3) = (λλ̄)−3(κκ̄)jµµ̄ t(X,Θ,Θ; ηi, η̄i) . (2.8)

All possible tensor structures are built out of the blocks in eq. (2.7) times a factor U−3 to

take care of the λλ̄ scaling. Not all combinations will be independent due to several relations

termed Schouten identities which stem from the vanishing of εα[βεγδ] and the corresponding

tensor with dotted indices. We will now produce a list of ten tensor structures that we

have explicitly checked to be linearly independent. We can then claim it is a basis because

it agrees with the expected number of structures obtained with a group theoretic formula

introduced in [25] as a superspace generalization of [26].

As already mentioned, t can be written as a linear combination

t(Z; η1, η2, η̄2, η3) =
1

U3

10∑
k=1

Ck Tk(Z; η1, η2, η̄2, η3) . (2.9)

The explicit expressions for the Tk’s are

T1 = i [22̄] [13]j T6 = [12][12̄] [Θ3][3Θ][13]j−2

T2 = i [12][32̄] [13]j−1 T7 = [12][Θ2̄][Θ3][13]j−1

T3 = [3Θ][Θ2][12̄] [13]j−1 T8 = [12][32̄] [ΘΘ][13]j−1

T4 = [Θ2][Θ2̄][13]j T9 = i [Θ2] [Θ
2
] [22̄] [13]j

T5 = [22̄] [ΘΘ][13]j T10 = i [Θ2] [Θ
2
] [12][32̄] [13]j−1 .

(2.10)

The factors of i are introduced for later convenience. If j = 1 then T6 is not present and

if j = 0 then T2,3,6,7,8,10 are not present.

– 8 –
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3 Constraints on the supersymmetric three-point correlator

3.1 Conservation

The superconformal multiplet J (z) contains the R-symmetry current, the supersymmetry

current and the stress-energy tensor. As a consequence, it satisfies a shortening condition

(see e.g. [27]) which can be expressed in superspace as

DαJαα̇(z) = Dα̇Jαα̇(z) = 0 , (3.1)

with D and D the superspace derivatives. In this subsection we will explore the conse-

quences of this constraint on the correlator at separated points. In section 3.3 we will

study the contact terms instead. At separated points the prefactor in (2.3) commutes with

the conservation differential operators acting on z2,9 thus we can express the conservation

condition as an equation involving only t and the variable Z:

∂η2D t(Z; ηi, η̄i) = ∂η̄2D t(Z; ηi, η̄i) = 0 , (3.2)

where

Dα =
∂

∂Θα
− iσµαα̇Θ

α̇ ∂

∂Uµ
, Dα̇ =

∂

∂Θ
α̇

+ iΘασµαα̇
∂

∂Uµ
. (3.3)

Equation (3.2) imposes the following linear constraints for general j > 1:

C5 = −C3 − 2C4 , C7 = 2C2 − C3 − C6 , C8 = −4C2 + 2C3 + C6 , C9 = C10 = 0 . (3.4)

When j = 1 it suffices to set C6 to zero and when j = 0 one simply has

C5 = −2C4 , C9 = 0 . (3.5)

3.2 Reality

Since O and O = O† are conjugated to each other and J is hermitian, the correlator under

study must be real. Concretely, we want to impose that〈
O(z1)J (z2)O(z3)

〉∗
=
〈
O(z3)J (z2)O(z1)

〉
, (3.6)

namely that taking the complex conjugation is the same as swapping points 1 and 3. The

prefactor in (2.3) is not invariant under this transformation, moreover the exchange 1 ↔ 3

does not act nicely on Z3. This means that we cannot translate the reality condition into

a constraint for t right away.10 We proceed, then, to expand the definition of (3.6)

(−η1x13̄∂χ̄1)j η2x23̄∂χ̄2 ∂χ2x32̄ η̄2

x3̄1
2q+j x1̄3

2q̄ x2̄3
4 x3̄2

4
t(Z3;χ1, χ2, χ̄2, η3)∗

=
(∂χ1x13̄ η̄3)j η2x21̄∂χ̄2 ∂χ2x12̄ η̄2

x3̄1
2q+j x1̄3

2q̄ x1̄2
4 x2̄1

4
t(Z1;χ1, χ2, χ̄2, η1) , (3.7)

9Due to Dα
2 (x23̄)αα̇/x

4
3̄2 = Dα̇

2 (x32̄)αα̇/x
4
2̄3 = 0 when x23 6= 0.

10This is obviously a consequence of our parametrization. In the ordering 〈OOJ 〉 the reality condition

can be solved easily. On the other hand we would lose the fact that the conservation operator commutes

with the prefactor thus making conservation much harder to impose.
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where we defined, Z1 = (−X1,−Θ1,−Θ1). The prefactor appearing in the above expression

can be recast in terms of the supersymmetric inversion tensor I īı introduced in [18], which

we review in appendix A. The indices i (resp. ı̄) collectively denote j symmetrized α (resp.

(α̇)) indices and µ is an ordinary Lorentz vector index. In this notation (3.7) reads

x2̄1
3 x1̄2

3

x2̄3
3 x3̄2

3
Ii1 ı̄1(x13̄) Iµν(x23̄, x2̄3)(t∗) ν

ı̄1 ı̄3(Z3) = Īı̄3i3(x3̄1)Iµν(x21̄, x2̄1) ti3ν i1(Z1) . (3.8)

Contracting both sides of this expression with Īσλ(X1, X1)Ii4 ı̄3(x13̄) Iλρ(x13̄, x1̄3)

Īρµ(x3̄2, x32̄) and using the various identities listed in appendix A we get to the final

expression

Ii1 ı̄1(X1)Ii4 ı̄3(X1) (t∗) σ
ı̄1 ı̄3(Z1) = ti4σ i1(Z1) , (3.9)

which, in index-free form, reads11

(−1)jX−2j (t∗)(Z; Xη1, η2, η̄2,Xη3) = t(Z; η3, η2, η̄2, η1) . (3.10)

We can then solve this equation much more easily. In doing so we find the following linear

constraints for even j > 1:

C1
∗ = C1 , C2

∗ = C2 ,

C3
∗ = 2C2 − C6 − C7 , C4

∗ = −2C2 + C3 + C4 + C6 + C7 ,

C5
∗ = C5 , C6

∗ = C6 ,

C7
∗ = 2C2 − C3 − C6 , C8

∗ = C8 ,

C9
∗ = C2 −

1

2
(C3 + C6 + C7) + C9 , C10

∗ = −2C2 + C3 + C6 + C7 + C10 . (3.11)

If j is odd the equations are obtained by adding an overall minus sign on the right hand

side. If j = 1 it is sufficient to set C6 = C6
∗ = 0. For j = 0 instead one has simply

C1
∗ = C1 , C4

∗ = C4 , C5
∗ = C5 , C9

∗ = C9 . (3.12)

Combined with conservation (3.4), these equations imply that the remaining Ck are purely

real (resp. imaginary) if j is even (resp. odd).

3.3 Ward identities

There are in principle two ways to impose the Ward identities: one could apply them

directly in superspace with the formalism of [18], or alternatively one could expand the

correlator in components and apply the nonsupersymmetric Ward identity to each triplet of

superdescendants. Since we already need the three-point function in components to make

contact with the ANEC and since nonsupersymmetric Ward identities are much easier to

compute, we opted for the second approach. We did not explore all possible combinations

of superdescendants but we observed that after imposing the identities for 〈OJO〉 and

11By (t∗)(Z; . . .) we mean: first apply the complex conjugation to t(Z; η1, η2, η̄2, η3), then replace η̄1(3)

with Xη1(3).
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〈OTO〉, all other choices of superdescendants that we investigated were not yielding any

new constraints. By O,O we mean the lowest component of O,O, while the R-current

Jµ and the stress-energy tensor Tµν are, respectively, the lowest component and the QQ

component of J . We will also denote the supersymmetry currents as Sµα and Sµα̇. They

are, respectively, the Q and the Q components of J .

For nonsupersymmetric three-point functions we use the conventions of [28].12 A three-

point function t can be expressed as a prefactor multiplying a linear combination of tensor

structures,

tO1O2O3(x1,2,3, η1,2,3, η̄1,2,3) ≡ 〈∏3
i=1Oi(xi, ηi, η̄i)〉 = K

∑
k

λk Tk(x1,2,3, η1,2,3, η̄1,2,3) ,

(3.13)

where K is of the form K =
∏
j>i xij

δij , δij being linear functions of the dimensions and

spins of the operators in the three-point function. The tensor structures Tk can be built

out of the following invariants:

I ij , Jkij , Kijk , Kijk .

We refer the reader to [28, appendix D] for their definition. For the two-point function we

use the convention

nOO(x12, η1,2, η̄1,2) ≡ 〈O(x1, η1, η̄1)O(x2, η2, η̄2)〉 = cO i
j+̄ (η2x12η̄1)j(η1x12η̄2)̄

x12
2∆+j+̄

, (3.14)

assuming O has spin (1
2j,

1
2 ̄). In a unitary theory cO > 0. The coefficient cO is usually

set to 1 by normalizing the operator in the two-point function, but here we do not do

this rescaling of operator because in the supersymmetric case the relative normalizations

of the operators in the same superconformal multiplet are fixed. We will assume that

the superconformal primary is normalized to cO = 1 and use the results of [29] to fix the

normalization of its superdescendants.

R-current. Let us start our analysis with the Ward identity for the U(1)R symmetry.

The three-point function under study is tOJO, where O is any operator with charge r under

U(1)R and O its conjugate (with charge −r). Now consider a codimension-one surface Σ

enclosing x2 and x3 but not x1. The Ward identity states

i

2

∫
Σ

dΩ(x23)x2
23 ∂η2x23∂η̄2 tOJO(xi; ηi, η̄i) = N r nOO(x13, η1,3, η̄1,3) . (3.15)

The factor i/2 on the left hand side comes from the −1/2 obtained from xµJµ = −1
2 x̃α̇αJαα̇

and a −i from the Wick rotation. Indeed the integral in the above equation is in Euclidean

signature and the right prescription for the Wick rotation is the one that keeps the operators

radially ordered as indicated, namely if x0
i = −iτi, then τ1 > τ2 > τ3. The constant N is a

normalization for the multiplet J . In order to match the conventions of [10] we must set

12We used their Mathematica package CFTs4D to generate the tensor structures.
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N = 2. Since this integral depends only topologically on the points we can evaluate it in

the simplified limit x1 → ∞, x23 → 0. The results for an operator O of spin (1
2j, 0) are

summarized in table 3 and those for O of spin (1
2j,

1
2) in table 4.13

Stress-energy tensor. We proceed by considering the Ward identities for the conformal

group. To each conformal Killing vector εaµ is associated a possibly independent identity. It

is sufficient to impose only εµ = xµ (dilatations) and ενµ = δνµ (translations).14 Dilatations

and translations imply respectively the identities

− i

8

∫
Σ

dΩ(x23)x23
2 ∂η2x23∂η̄2 ∂η2x2∂η̄2 tOTO(xi, ηi, η̄i)

= −iN
(
∆ + x3 · ∂3

)
nOO(x13, η1,3, η̄1,3) ,

− i

8

∫
Σ

dΩ(x23)x23
2 ∂η2x23∂η̄2 ∂η2y∂η̄2 tOTO(xi, ηi, η̄i)

= −iN y · ∂3 nOO(x13, η1,3, η̄1,3) , (3.16)

where yµ is an arbitrary vector used to contract the free index of the translation Killing

vector. The operator O in the above expression can be regarded to be the superconformal

primary of spin ( 1
2j, 0), in which case the result is summarized in table 5. We can also

replace O → QO of spin (1
2j,

1
2) whose results are in table 6. Finally one could also

consider O → QO; the result is obtained by a simple rescaling of the coefficients in table 5

and a replacement j → j ± 1. For the reader’s convenience we report here the relative

normalizations for the operators in the O multiplet as derived in [29]:

c(QO)(j+1,0)

cO
= 2

j + 2q

(j + 1)2
,

c(QO)(j−1,0)

cO
= 2

(j + 1)(2q − j − 2)

j
,

c(QO)

cO
= 4 q̄ . (3.17)

Supersymmetry current. For this Ward identity let us fix the third operator to be O.

We then have three choices: t(QO)SO and t(QO±)SO, where we used QO± as a shorthand for

(QO)(j±1,0). The topological operator obtained by integrating S or S over Σ is precisely

the supercharge Q or Q respectively. We thus readily obtain the following identities

i

2

∫
Σ

dΩ(x23)x23
2 ∂η2x23∂η̄2 t(QO)SO(xi; ηi, η̄i)

= N η̄2∂η̄3 n(QO)(QO)(x13, η1,3, η̄1,3) ,

i

2

∫
Σ

dΩ(x23)x23
2 ∂η2x23∂η̄2 t(QO+)SO(xi; ηi, η̄i)

= N η2∂η3 n(QO+)(QO+)(x13, η1,3, η̄1,3) ,

13The results showed in these tables and the subsequent ones already assume the normalization N = 2.
14Following [30, appendix B] the independent constraints given by the Ward identities are as many as

the number of singlets in

ρO ⊗ ρ†O ⊗ (• ⊕ (1, 0)⊕ (0, 1)) ,

ρO representing the Lorentz representation of O and • the singlet. For ρO = ( 1
2
j, 0) the tensor product

contains two singlets (one if j = 0) and for ρ = ( 1
2
j, 1

2
) it contains three singlets (two if j = 0). The

equations (3.16) yield the exact same number of independent constraints.
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i

2

∫
Σ

dΩ(x23)x23
2 ∂η2x23∂η̄2 t(QO−)SO(xi; ηi, η̄i)

= N
j

j + 1
η2η3 n(QO−)(QO−)(x13, η1,3, η̄1,3) . (3.18)

The two-point functions must be normalized according to eq. (3.17). All the results are

summarized in tables 7, 8 and 9.

3.4 Shortening conditions

The possible shortening conditions on the superconformal multiplet O have been classified

in [19]. In this section we will explore all of them. On the algebra generated by Q we can

have the shortening conditions

L: Unconstrained action on O (no null states). Unitarity bound q > 1
2j + 1.

A1: Null state (QO)(j−1,̄), j > 1. Unitarity bound q = 1
2j + 1.

A2: Null state (Q2O)(0,̄), j = 0. Unitarity bound q = 1.

B: Null state (QO)(1,̄), j = 0. Unitarity bound q = 0.

The same applies to the algebra generated by Q. Therefore, a shortening condition on a

superconformal multiplet can be described by specifying a choice of Xi = L,A1, A2, B for

each of the two subalgebras: [XL,XR]. For simplicity we will refer to [L,B] as chirality.

Furthermore the conditions [XL, A1] are absent because we are considering the case ̄ = 0.

Since O = O†, O will satisfy the conjugate shortening [XR,XL]. However, after imposing

reality, either one of the two conditions is sufficient.

Shortening B or B. For the QO = 0 case (q̄ = 0) the prefactor of (2.3) does not

depend on x3̄1, while for the QO = 0 case (q = j = 0) the prefactor does not depend on

x1̄3. In both cases we can commute the superspace derivative and obtain conditions on t

only. They read, respectively,

η̄1D t(Z; ηi, η̄i) = 0 , η1D t(Z; ηi, η̄i) = 0 . (3.19)

Shortening A1. Also in this case (when q = j/2 + 1) we can commute the differential

operator with the prefactor due to

∂η̄1D1
(η1x31̄η̄1)j

x1̄3
2j+2

= 0 , for x13 6= 0 , (3.20)

and thus we readily obtain

∂η1D t(Z; ηi, η̄i) = 0 . (3.21)
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(a) j > 1 (b) j = 1 (c) j = 0

L A2 B

L 2 2 0

A1 1 1 �

L A2 B

L 1 1 0

A1 1 1 0

L A2 B

L 0 0 0

A2 0 0 0

B 0 0 0

Table 1. Number of independent coefficients Ck of the superspace correlator as different shortening

conditions are chosen. The slash means that there is no consistent three-point function. The

boldface zero means that the three-point function is identically zero. Other zeros imply that the

three-point function is completely fixed in terms of q, q̄ and j. In all cases these numbers refer to

real degrees of freedom as the Ck are either all real or all purely imaginary.

Shortening A2 or A2. In this case the commutation of the derivative and the prefactor

is due to the identities

D1
2 1

x1̄3
2

= D1
2 1

x3̄1
2

= 0 , for x13 6= 0 . (3.22)

Thus for Q2O = 0 (q = 1 and j = 0) and for Q2O = 0 (q̄ = 1) we get, respectively

D2 t(Z; ηi, η̄i) = 0 , D2 t(Z; ηi, η̄i) = 0 . (3.23)

In table 2 we summarize all the constraints arising from (3.19), (3.21) and (3.23). All

shortening conditions can be easily obtained by combining them. table 1 instead shows how

many independent coefficients are left in the superspace correlator as we choose different

shortening conditions and impose all other constraints obtained before.

4 Expansion of the superspace correlator

In order to apply the various constraints originating from the ANEC to our three-point

function in superspace we need to express its components in a basis of nonsupersymmet-

ric three-point functions. This will be achieved by Taylor expanding in the Grassmann

coordinates θi, θ̄i. We relied on a Mathematica package15 to perform the spinor algebra

involved in this computation. Due to the Schouten identities mentioned above, it is hard to

determine whether two quantities are equal. Therefore we check for equality by replacing

the various quantities that appear with random numerical values.16

Every order that contains at least a θ and a θ̄ at the same point will mix with conformal

descendants due to {Qα, Qα̇} = 2Pαα̇. The results of [29] can be used to subtract these

contributions. We will only perform this expansion to first order in θi, θ̄i and not for all

possible combinations but only the ones of interest. We also performed the expansion to

15Which can be made available upon request.
16After sufficiently many replacements, this is equivalent to picking a basis at random and checking for

equality for every vector in it. The fact that we replace numerical values to Grassmann coordinates is not

an issue if one orders the factors in a canonical way before applying the replacement. Moreover there are

no precision issues because we use exact rational numbers.
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Constraints Conditions

A1

C6 = (j − 1)C3 +
j(j − 1)

j + 1
(C5 − 4C1) ,

C7 = −2C2 + C3 + jC4 +
2j

j + 1
(C5 + (j − 3)C1) ,

C8 = 4C2 − C3 +
2j

1 + j
(4C1 − C5) ,

C10 = jC9 = jC4 +
j

2
(C3 + C5) .

j > 1, q = j/2 + 1

A2 C9 = C4 +
1

2
C5 . j = 0, q = 1

A2

C9 = −1

2
(C3 + C5)− C4 ,

C10 = −1

2
(C6 + C8)− C7 .

q̄ = 1

B C4 = −2C1 , C5 = 4C1 , C9 = 0 . j = 0, q = 0

B

C4 = 2C1 , C5 = −4C1 ,

C7 = 2C2 , C8 = −4C2 ,

C3 = C6 = C9 = C10 = 0 .

q̄ = 0

Table 2. Constraints on the coefficients Ck following from the various shortening conditions on the

multiplet O (here ̄ = 0 is implicit). Case A1 for j = 1 and cases A2 and B for j = 0, 1 can be

obtained by setting to zero the absent coefficients (C6 for j = 1 and C2,3,6,7,8,10 for j = 0).

all orders in θ2, θ̄2 and to all orders in θ1, θ̄1 to make some consistency checks,17 but we

will not present these results here. For nonsupersymmetric three-point functions we will

remain consistent with the conventions introduced in section 3.3.

4.1 Lowest order

At this order we simply have J . Consistently with the previous sections we denote the

three-point function coefficients by

tOJO −→ Ck . (4.1)

The results, without assuming the reality condition and conservation, are shown in table 10.

4.2 Three-point function 〈OTO〉

At order θ2θ̄2 we have the stress-energy tensor. Consistently with the previous sections we

denote the three-point function coefficients by

tOTO −→ Dk . (4.2)

17Namely we observed that the order θ2
2 θ̄2

2 consists only of descendants when the conservation condi-

tion (3.4) is applied, consistently with the operator content of J . In addition we verified that applying the

shortening differential operators in section 3.4 on the expanded correlator yields the same constraints.
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The results are shown in table 11. The conservation of J and the reality condition are

not assumed there. In principle the expansion also contains superdescendants of J of

spin (0, 0), (0, 1) and (1, 0). We checked that those contributions vanish after imposing

conservation and we will not report those results here.

4.3 Three-point functions 〈(QO)SO〉 and 〈(QO)SO〉

At order θ1θ̄2, θ̄1θ2 we have the supersymmetry current with the first superdescendant of

O. The naming of the coefficients is

t(QO+)SO −→ Ek , t(QO−)SO −→ Fk , t(QO)SO −→ Gk .

As before QO± stands for (QO)(0,j±1). Also in these cases the results are presented without

conservation and reality applied — they can be found in tables 12, 13 and 14. There are also

contributions from superdescendants of spin (0, 1
2) or (1

2 , 0). As in the previous subsection

we have verified that they vanish after conservation is imposed and we will not report

those results.

4.4 Three-point functions 〈(QO)J(QO)〉 and 〈(QO)J(QO)〉

At order θ1θ̄3, θ̄1θ3 we extract the descendants QO,QO and their conjugates. We need

this mainly as a preliminary result for the computation of the next subsection. We named

t(QO+)J(QO+) −→ Nk , t(QO+)J(QO−) −→ Ok ,

t(QO−)J(QO+) −→ Pk , t(QO−)J(QO−) −→ Qk , (4.3)

where (QO±) stands for (QO)(j±1,0), and

t(QO)J(QO) −→ Ik . (4.4)

In order to make the computation more manageable, this time we applied conservation and

reality from the start. The results are in tables 15, 16, 17, 18 and 19.

4.5 Three-point functions 〈(QO)T (QO)〉 and 〈(QO)T (QO)〉

At order θ1θ2θ̄2θ̄3, θ̄1θ2θ̄2θ3 we extract the descendants QO,QO and their conjugates cou-

pled with the stress tensor. These terms are needed in order to impose the ANEC on

superconformal descendants inside O. We named

t(QO+)T (QO+) −→ Jk , t(QO+)T (QO−) −→ Kk ,

t(QO−)T (QO+) −→ Lk , t(QO−)T (QO−) −→ Mk , (4.5)

t(QO)T (QO) −→ Hk . (4.6)

Also this time we applied conservation and reality from the start. The results are in

tables 20, 21, 22, 23 and 24.
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5 The averaged null energy condition

Following [10, 31] we define the state |ψ〉 of (1.1) by acting with some operator O(x, η, η̄)

on the CFT vacuum |0〉. Then we take the Fourier transform in order to give the state a

definite momentum,18 which can be set to qµ = (1,0) without loss of generality. Next we

multiply by (x+)2/16 and send x+ →∞ to simplify the computations. Lastly we need to

specify a polarization, but using the auxiliary spinors η and η̄ we can obtain all possible

polarizations at once.

The ANEC integral breaks rotation invariance to an SO(2) generated by σ12 β
α and

σ̄12α̇
β̇ in the respective representations. Under a ϕ rotation of this subgroup, fundamental

spinors with a lower index transform as follows:(
a

b

)
α

−→
(
a e−iϕ/2

b eiϕ/2

)
α

,

(
ā

b̄

)
α̇

−→
(
ā eiϕ/2

b̄ e−iϕ/2

)
α̇

. (5.1)

This will help us in the following way: in principle, if there are s choices for the polar-

ization of O and O one would have to apply the ANEC integral to each pair of choices,

diagonalize an s × s matrix and require the positivity of each eigenvalue (or equivalently

require semidefinite positiveness of an s×s matrix). This rotational symmetry reduces the

matrix to a block diagonal form, making much simpler the study of its positiveness.

5.1 Operators of spin (1
2
j, 0)

Let us focus first on the case where O(x, η, η̄) has spin (1
2j, 0). We can expand the η’s in

the eigenbasis of the SO(2) spin,

ηα3 =

(
m

p

)
≡ m ξα− + p ξα+ , η̄α̇1 =

(
p̄

m̄

)
≡ p̄ ξ̄α̇+ + m̄ ξ̄

α̇
− , (5.2)

where the redundancy ξ± = ξ̄∓ has been introduced for convenience. The stress tensor is

instead polarized along the null geodesic uµ, which is translated to

ηα2 = ξα− , η̄α̇2 = ξ̄
α̇
+ . (5.3)

Now we can perform the ANEC integral (1.1) with the prescriptions defined above on an

arbitrary three-point function tOTO.19 We define x13 = x, x23 = y and

A[tOTO] ≡
∫ ∞
−∞

dy− lim
y+→∞

(y+)2

16

∫
R4

d4x e−ix
0
tOTO(x, y; η̄1, η2, η̄2, η3)

∣∣∣η̄1,η3→ (5.2)
η̄2,η2→ (5.3)

. (5.4)

18Due to translational invariance, Fourier transforming in both x1 and x3 will lead to a divergent an-

swer. This can be fixed by using Gaussian wavepackets and taking the limit of plane waves in the end.

Alternatively we can simply keep the third point fixed and integrate in x13 only.
19The conventions are

x+ = x0 + x3 = ξ− x ξ̄+ , x− = x0 − x3 = ξ+ x ξ̄− , x2 = −x+x− + ~x2
⊥ .
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In order to enforce the correct ordering, the integral in y− must be supplemented with

the appropriate iε prescription, namely y0 → y0 − iε and x0 → x0 − 2iε. The integrals

and the limit y+ →∞ remove all dependence on the points x, y. The result is therefore a

polynomial in the variables p,m, p̄ and m̄. The same considerations apply for the norm of

the state, which is computed by Fourier transforming the two-point function

F [nOO] ≡
∫
R4

d4x e−ix
0
nOO(x; η̄1, η3)

∣∣∣
η̄1,η3→ (5.2)

. (5.5)

The restrictions imposed by SO(2) invariance imply that only certain terms can ap-

pear, i.e.

A[tOTO] =

j∑
s=0

As[tOTO] (pm̄)s(mp̄)j−s , F [nOO] =

j∑
s=0

Fs[nOO] (pm̄)s(mp̄)j−s . (5.6)

Each coefficient of this polynomial corresponds to a different choice for the polarizations

of O and O, therefore the polarization matrix is diagonal and the ANEC states

E [∆; (j, 0); s] ≡ As[tOTO]

Fs[nOO]
> 0 , for s = 0, . . . , j . (5.7)

The integrals have been computed explicitly for some values of j in [10]. Here we provide

a general formula, whose proof can be found in appendix B:

E [∆; (j, 0); s] =
3π (−i)j

8

(δ − 1)(δ + j)

(δ + j − s− 1)3

(
D1 +

j − s
j

δ + j − 1

δ + j − s− 2
D2 (5.8)

+
(j − s− 1)2

(j − 1)2

(δ − j − 2)2

(δ + j − s− 3)2
D3

)
,

where δ = ∆− 1
2j−1 and (a)n = Γ(a+n)/Γ(a) is the Pochhammer symbol. See table 5 for

the meaning of the three-point function coefficients. For the special cases j = 0, 1 it suffices

to set to zero the absent coefficient(s). Note that (5.9) is real because the coefficients Di

are purely real (resp. imaginary) if j is even (resp. odd).

5.2 ANEC on a superposition of states

In the previous subsection the operator O could have been either the superconformal pri-

mary or the first superdescendant QO±. However, these operators mix with each other,

i.e. the three-point function 〈(QO+)T (QO−)〉 is nonzero. This means that we can impose

an even stronger constraint by demanding positivity on the general superposition

|ψ〉 =
v (QO+)|0〉

|〈(QO+)(QO+)〉|1/2 +
w (QO−)|0〉

|〈(QO−)(QO−)〉|1/2 . (5.9)

A similar approach was used in [32]. Since v and w can be chosen arbitrarily, the ANEC

now becomes a semidefinite-positiveness constraint on a 2(j + 1) × 2(j + 1) matrix. Such

a matrix can be decomposed in j blocks of size 2× 2 and two 1× 1 blocks, resulting in(
E [∆ + 1

2 ; (j + 1, 0); s+ 1] Eint[∆ + 1
2 ; (j ± 1, 0); s]

Eint[∆ + 1
2 ; (j ± 1, 0); s] E [∆ + 1

2 ; (j − 1, 0); s]

)
� 0 for s = 0, . . . , j − 1 ,

E
[
∆ +

1

2
; (j + 1, 0); s

]
> 0 for s = 0, j + 1 . (5.10)
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The diagonal entries have the same expression as (5.9) with the substitution Di → Ji
or Di → Mi (see tables 20, 23), together with the appropriate redefinition of δ. The

“interference” terms Eint are defined as follows:20

Eint

[
∆ +

1

2
; (j + 1, 0); s

]
= Eint

[
∆ +

1

2
; (j − 1, 0); s

]
≡

As[t(QO+)T (QO−)](
Fs+1[n(QO+)(QO+)]Fs[n(QO−)(QO−)]

)1/2 . (5.11)

Following steps similar to the ones illustrated in appendix B one can prove the general

formula

Eint

[
∆ +

1

2
; (j ± 1, 0); s

]
=

3π(−i)j−1

16

√
δ(s+ 1)(j − s)

j(j + 1)(δ + j + 1)

(δ + j − 1)3

(δ + j − s− 2)4

×
(
δ + j − s− 2

δ + j − 1
K1 +

j − s− 1

j − 1
K2

)
, (5.12)

where the coefficients Ki = Li are defined in tables 21, 22 and δ = ∆QO − 1
2j − 3

2 . Here

∆QO = ∆ + 1
2 is the dimension of the superdescendant. The polarization s takes values

from 0 to j − 1.

5.3 Operators of spin (1
2
j, 1

2
)

The only difference when considering more general SO(1, 3) representations is that the

polarization matrix will not be diagonal. This means that the ANEC will not be a set

of simple inequalities but rather semidefinite positiveness constraints. In the ( 1
2j,

1
2) case

we further have to specify the polarizations η1 and η̄3; thus together with (5.2) and (5.3)

one has

ηα1 =

(
m′

p′

)
≡ m′ ξα− + p′ ξα+ , η̄α̇3 =

(
p̄′

m̄′

)
≡ p̄′ ξ̄α̇+ + m̄′ ξ̄

α̇
− . (5.13)

The ANEC integral for an arbitrary operator O of spin (1
2j,

1
2) takes the form

Ã[tOTO] ≡
∫ ∞
−∞

dy− lim
y+→∞

(y+)2

16

∫
R4

d4x e−ix
0
tOTO(x, y; η1,2,3, η̄1,2,3)

∣∣∣η̄1,η3→ (5.2)
η̄3,η1→ (5.13)
η̄2,η2→ (5.3)

. (5.14)

We also define F̃ [nOO] in a similar way. The constraints of SO(2) invariance allow us

to express

Ã[tOTO] =

j+1∑
s=0

1∑
a,b=0

(
Ãs[tOTO]

)
ab

(pm̄)s(mp̄)j−sp′m̄′
(
p̄m′

m̄p′

)a(mp̄′
pm̄′

)b
, (5.15)

20The definition of As for the interference correlator is similar to (5.6) with the difference that we pick

up the term m̄p̄(pm̄)s(mp̄)j−s−1 for 〈(QO+)T (QO−)〉 and mp(pm̄)s(mp̄)j−s−1 for its conjugate.

– 19 –



J
H
E
P
0
1
(
2
0
2
0
)
0
9
3

and similarly for F̃ [nOO]. The terms for s = 0 and s = j + 1 are restricted to, respectively,

a = b = 0 and a = b = 1. Thus we can see that the polarization matrix is block diagonal

with j blocks of size 2× 2 and two blocks of size 1× 1. Defining

(
E [∆; (j, 1); s]

)
ab
≡ (Ãs[tOTO])ab(

(F̃s[nOO])aa F̃s[nOO])bb
)1/2 , (5.16)

the positivity constraints are

E [∆; (j, 1); s] � 0 , for s = 1, . . . , j ,

E [∆; (j, 1); s] > 0 , for s = 0, j + 1 . (5.17)

In the next subsection we will explain how to implement a numerical study of this system

of inequalities. We obtained a general formula for E [∆; (j, 1); s] as well — unfortunately,

however, the expression is too unwieldy to be reported here. In appendix B we briefly

explain how to obtain it.

5.4 The ANEC as a semidefinite programming problem

Imposing semidefinite positiveness on a symmetric matrix is a well known problem for

which there exist algorithms that go under the name of semidefinite programming. We will

make use of the implementation realized by the software sdpb [23], which was developed

for the numerical bootstrap approach for the study of CFTs [33], but is general purpose

enough to work for our problem too.

In general we need to solve a system of inequalities

E [∆; (j, ̄); s] � 0 , for s = 0, . . . , j + ̄ , (5.18)

where E [∆; (j, ̄); s] is a symmetric ms×ms matrix with ms = min{j, ̄ , s, j+̄−s}+1. The

matrices E will depend on N arbitrary three-point function coefficients (given by table 1)

plus an inhomogeneous part which is fixed by the Ward identities. Dropping the ∆ and

(j, ̄) labels for brevity one has

E [s] = E(0)[s] +

N∑
n=1

λn E(n)[s] � 0 , for s = 0, . . . , j + ̄ . (5.19)

This is known as the dual formulation of a semidefinite problem. We are interested in

studying the feasibility of (5.19). The algorithm we used only terminates when either

a solution λn is found, or when a numerical threshold for the internal computations21 is

exceeded. For our purposes, a problem that terminates for the latter condition is considered

to have no solution. This means that our ANEC-disallowed points are not disallowed in a

mathematically rigorous way. We expect this to not have any practical consequences.22

21Called --maxComplementarity.
22In principle there is also a way to mathematically prove that no solutions exist by providing a certificate

of infeasibility [34]. By using [35–37] this amounts to finding a solution of another (larger) semidefinite

problem.

– 20 –
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Figure 5. Lower bounds on the conformal dimension ∆ as a result of the ANEC for primaries

transforming in the ( 1
2j, 0) Lorentz representation. Each point is the result of a bisection in ∆. The

red line is the unitarity bound, ∆ = 1
2j + 1. The black line corresponds to the conjecture of [10],

∆ = j, and the green line gives an approximate behavior of the bound valid above j = 20.

5.5 Details on ANEC bounds: nonsupersymmetric case

Let us briefly review the results obtained in [10] and prove a few results for generic values

of j. First let us consider conformal primaries in the ( 1
2j, 0) Lorentz representation. The

ANEC condition is expressed by the formula (5.9), where the coefficients Di are given in

table 5. In particular, one can take D̂1 = −ijD1 to be the only independent real coefficient.

By choosing the value s = 0 and s = j in (5.9) and restricting to the case j > 2 for simplicity

we obtain

(δ − 1)
(
(π2D̂1 − 4)δ + j(π2D̂1 + 2δ − 6) + 2j2 + 4

)
> 0 , D̂1 > 0 , (5.20)

where δ > 0 represents the distance from the unitarity bound. It is straightforward to

verify that the above conditions cannot be simultaneously satisfied unless δ > 1.

By considering all polarizations we can obtain stronger bounds at the price of fixing

the value of j, for instance by using the function Reduce of Mathematica. We show our

results in figure 5 up to j = 103. Although the bound initially agrees with the conjecture

of [10], it departs from it for j > 21 and follows a different pattern which is well fitted by

the expression ∆ = 1
2j + 1 + δ > 1

15(13j + 42). It would be tempting to assign a meaning

to the kink at j ∼ 21, but the explanation might simply reside in the fact that, going to

large values, the integer nature of j becomes less and less important and new solutions for

D̂1 become available.

Let us now move to the case of conformal primaries in the ( 1
2j,

1
2) representation. The

procedure to obtain the general formula is described in appendix B.2. After imposing the

Ward identities, whose solution is reported in table 6, one is left with four independent

three-point function coefficients Hi. In order to systematically address the feasibility of the

ANEC we translated the linear matrix inequality into a semidefinite problem as discussed

in the previous subsection. We found agreement with the results of [10] for j 6 7 and

– 21 –
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Figure 6. Lower bounds on the conformal dimension ∆ as a result of the ANEC for primaries

transforming in the ( 1
2j,

1
2 ) Lorentz representation. Each point is the result of a bisection in ∆. The

red line is the unitarity bound, ∆ = 1
2j + 5

2 . The operators for j 6 5 lie on the red line. The black

line corresponds to the conjecture of [10], ∆ = j, and the green line gives an approximate behavior

of the bound valid above j = 20.

extended the bounds up to j = 50. A lower bound on ∆ as a function of j is shown in

figure 6: again we observe that for j > 21 the bounds departs from the conjecture ∆ > j

of [10] and closely follows the bound ∆ > 1
15(13j + 42) instead.

In the case of conserved operators the problem simplifies considerably: only two co-

efficients remain independent23 and we can easily prove that conserved currents cannot

exist for j > 5. For instance, we can take Ĥ9,10 = −ij+1H9,10 to be the two independent

real coefficients. By considering the eigenvalues of matrices with s = j − 3, . . . , j and the

condition at s = j + 1, we obtain the following set of inequalities:

Ĥ10 > 0 , 3Ĥ9 +
18

π2

j − 1

j + 1
6 Ĥ10

2j + 1

j − 1
,

Ĥ9 6
2

3
Ĥ10 , 3Ĥ9 +

12

π2
> 2Ĥ10

j + 1

j − 1
. (5.21)

One can immediately check that the above conditions admit a solution only for j 6 5,

corresponding to the cases when conserved currents can be constructed in free theories.

Interestingly, for the boundary case j = 5 the solution to the ANEC is unique:

Ĥ9 = − 4

π2
, Ĥ10 = 0 . (5.22)

5.6 Details on ANEC bounds: supersymmetric case

In the supersymmetric case the analysis follows the same steps as before, except that now

one needs to combine multiple conditions. Let us discuss some of the results presented

23The relation imposed by conservation of the operator O can be easily computed using the pack-

age CFTs4D.
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in the introduction. We first start from a multiplet whose zero component transforms

in the (1
2j, 0) representation and satisfies the [L,B] shortening condition. These are the

generalizations to j > 1 of the usual chiral scalar and gauge-invariant spin- 1
2 multiplets. In

this case q̄ = 0 and q = ∆. The multiplet contains only four conformal primaries: O, QO±

and Q2O. In this work we only consider the first three. As discussed in section 3.4 the

superspace three-point function does not have any free parameters. Let us consider, then,

the ANEC applied to the superprimary only. The condition is again encoded in (5.9), where

now the coefficients Di are related to the superspace coefficients through the relations in

table 11, supplemented by the relations in table 2. The analog of D̂1 > 0 in (5.20) is

now simply

2q − 3j > 0 . (5.23)

We explicitly checked that including other constraints does not strengthen the bound. This

is expected since one can construct chiral operators with ∆ = 3
2j by taking products of

free chiral vector multiplets. The bound is therefore optimal.

Let us move to another simple case, namely [A1, A2], corresponding to superprimaries

again in the (1
2j, 0) representation with q = 1

2j + 1 and q̄ = 1. This multiplet contains

conserved operators in the ( 1
2(j + 1), 1

2) and, due to the results of the previous subsection,

we can immediately conclude that j > 4. It turns out, however, that j = 4 is excluded

since the values Ĥ9 and Ĥ10 fixed by supersymmetry do not satisfy (5.22). Smaller values

of j must be consistent since these operators appear in the decomposition of extended

supersymmetry multiplets in the free limit.

All other bounds found in this work were obtained with a numerical approach. For

completeness we collect here all the conditions we imposed in the most complicated case

[L,L]. In simpler cases some of them do not appear since the corresponding superdescen-

dant is absent. At the same time, the correct three-point function coefficient relations

must be imposed. Given an [L,L] supermultiplet with a superprimary transforming in the

(1
2j, 0) representation and q > 1

2j + 1, q̄ > 1, the ANEC can be satisfied if there exist real

coefficients Ĉk = ijCk, k = 2, 6, such that

〈OTO〉 :

E [∆, (j, 0); s] > 0 , for s = 0, . . . , j ,

〈(QO)T (QO)〉 :(
E [∆ + 1

2 ; (j + 1, 0); s+ 1] Eint[∆ + 1
2 ; (j ± 1, 0); s]

Eint[∆ + 1
2 ; (j ± 1, 0); s] E [∆ + 1

2 ; (j − 1, 0); s]

)
� 0 for s = 0, . . . , j − 1 ,

E
[
∆ +

1

2
; (j + 1, 0); s

]
> 0 for s = 0, j + 1 ,

〈(QO)T (QO)〉 :

E
[
∆ +

1

2
; (j, 1); s

]
� 0 , for s = 0, . . . , j + 1 . (5.24)
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As usual we defined ∆ = q + q̄. Whenever the above system of conditions does not admit

a solution, we conclude that the corresponding supersymmetry multiplet cannot exist in a

local unitary SCFT.

6 Bounds on extended supersymmetry multiplets

6.1 Conventions

The aim of this section is to constrain the superconformal multiplets of theories with N > 1

supersymmetry by decomposing them into N = 1 multiplets. This approach does not make

use of the additional linear relations among the three-point function coefficients and thus

may not yield optimal bounds. Following [19], we will denote N = 2 supermultiplets as

XLXR[j, ̄]
(R,r)
∆ , where (R, r) are the quantum numbers under the su(2) ⊕ u(1) algebra,

while we will denote N = 4 supermultiplets as XLXR[j, ̄]
(p1,p2,p3)
∆ , where p1, p2 and p3

are the Dynkin labels of the su(4) algebra representation [p1, p2, p3], for which we use

the conventions of [38]. As in previous sections, the left/right shortening can take values

XL,R = L,A1, A2, B1.

We define the supercharges to transform under the u(1) R-symmetry of the N 6= 4

superalgebra as

[rN , Q
I
α] = −QIα , [rN , QIα̇] = QIα̇ . (6.1)

We consider for any N the superalgebra generated by Q1
α and Q1 α̇. The embedding of the

N = 1 u(1) R-charge in the larger R-symmetry group is

N = 2 : R ≡ rN=1 = −4

3
R3 +

1

3
rN=2 ,

N = 4 : R ≡ rN=1 = −1

3
(3H1 + 2H2 +H3) ,

(6.2)

where Hi is the Cartan generator associated to the i-th Dynkin label in [p1, p2, p3]. The

generator R3 is the su(2) Cartan in units of 1
2 (R3 = −1

2R, . . . , 1
2R). Consistently with the

rest of the paper, R is the N = 1 R-charge. We will also abbreviate r ≡ rN=2.

6.2 N = 2

Let us start by considering the so-called “exotic chiral primaries,” namely the LB1[j; 0]
(0,r)
∆

multiplets, with ∆ = 1
2r.

24 The bound on chiral multiplets (1.8) for the N = 1 subalgebra

generated by Q1
α, applied to the chiral superprimary Q2

(α1
O(exotic)
α2...αj+1) implies that

∆ +
1

2
>

3

2
(j + 1) ⇒ ∆ >

3

2
j + 1 . (6.3)

The unitarity bound is ∆ > 1
2j + 1, and so we see that the ANEC bound is stronger

for j > 0.

24Denoted E r
2

(j,0) in [38].
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A similar argument can be made on operators with nonzero su(2) R-charge

LB1[j; 0]
(R,r)
∆ , where ∆ = R+ 1

2r and R is in integer units. We considered several values

of R and performed the decomposition into N = 1 multiplets. Imposing (1.8) on each of

the chiral multiplets that appear yields the following pattern (which we conjecture to be

true for arbitrary R):

r > 3j + 2− 2R ⇒ ∆ >
3

2
j + 1 . (6.4)

This is stronger than unitarity (r > j + 2) for j > R. As a consequence, short multiplets

of the form A`B1[j; 0]
(R,r)
∆ are only allowed for j 6 R.

The multiplets A1B1[j; 0]
(1,j+2)
∆ and A1A2[j; 0]

(0,j)
∆ with ∆ = 1

2j+2 are absent from any

local SCFT for j > 2. This is a consequence of the presence of an A1A2[j + 1; 0] multiplet

in their N = 1 decomposition, which we have shown to be forbidden by the ANEC when

j + 1 > 3.

We also considered long multiplets LL[j; 0]
(R,r)
∆ for some values of R. Calling δ the

difference of their dimension and their unitarity bound,

δ = ∆− 2− j −R+
1

2
r , (6.5)

and calling f(R, j) the separation between the unitarity and the ANEC bound in figure 2,

we find the following pattern

δ > f

(
1

3
(r + 1), j + 1

)
−R . (6.6)

6.3 N = 4

We considered a few short multiplets and found no constraints from the ANEC. Interest-

ingly, B1B1[0; 0]
(1,0,1)
2 contains a chiral multiplet that saturates (1.8), namely

B1B1[0; 0]
(1,0,1)
2 ⊃ LB1[2; 0]

(2)
3 . (6.7)

The simplest long multiplet is the Konishi multiplet LL[0; 0](0,0,0). In its N = 1 decom-

position we find a long multiplet of spin ( 3
2 , 0) and R-charge 1 with dimension ∆Konishi +

3
2 .

In terms of the Q1
α subalgebra, calling φ the Konishi operator, one has

Oα1α2α3 = ε1IJKQ
I
(α1
QJα2

QKα3)φ . (6.8)

Since in perturbation theory one can compute ∆Konishi = 2+O(g2), we see that the ANEC

and the unitarity bound for N = 1 long multiplets of spin ( 3
2 , 0) are saturated.

More generally, we checked some cases of long multiplets LL[j; 0](p1,p2,p3), namely those

with Dynkin labels [p1, p2, p3] = [0, 0, 0], [0, 2, 0] and [1, 0, 1]. Calling δ the difference of

their dimension and their unitarity bound,

δ = ∆− 2− j − 1

2
(3p1 + 2p2 + p3) , (6.9)
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and calling f(R, j) the separation between the unitarity and the ANEC bound in figure 2,

we find

[0, 0, 0] : δ > f

(
4

3
, j + 2

)
− 2 ,

[0, 2, 0] : δ > f

(
7

3
, j + 3

)
− 4 ,

[1, 0, 1] : δ > f

(
7

3
, j + 3

)
− 4 . (6.10)

7 Conclusions and outlook

In this paper we studied effects of the ANEC on the operator spectrum of CFTs. In

particular, we showed that the ANEC imposes lower bounds on operator dimensions that

are stronger than unitarity bounds. Our considerations were mostly limited to the case of

N = 1 superconformal multiplets whose superconformal primaries transform in the ( 1
2j, 0)

representation of the Lorentz group. This suffices to show that the unitarity bounds are

typically suboptimal to the ANEC bounds.

Our methods apply in more general situations, with or without supersymmetry. It

would be of great value to obtain an educated guess for the ANEC bound on multiplets

whose superconformal primaries transform in the general ( 1
2j,

1
2 ̄) representation. In this

respect, the techniques presented here to compute the ANEC integral in closed form and

the usage of semidefinite programming will considerably simplify the analysis.

These ideas can also be generalized to extended supersymmetry, in particular N = 2.

In principle it is possible to carry out a similar analysis for the three-point functions in

N = 2 superspace with a formalism similar to the one used in this paper and using results

of [39, 40]. One of the motivations behind pursuing this direction would be to potentially

further constrain the exotic chiral primaries LB1[j; 0]
(0,r)
r/2 . These operators for j > 1 have

been proved to be absent in a very large class of theories [22]. Using the results in section 6

we are able to constrain their dimension to

∆exotic >
3

2
j + 1 . (7.1)

It would be interesting to see if ANEC forbids them in general once the N = 2 supercon-

formal symmetry is fully taken into account.

In N = 2 one could also investigate the higher-spin version of the ANEC mentioned

in the introduction [7, 8]. In a generic CFT it is hard to address such a problem because,

unlike the spin-two case, the dimension of the lowest-twist operator is not fixed and there

are no Ward identities to constrain the three-point function coefficients. In N = 2 SCFTs,

however, there are higher-spin operators with protected dimensions that are not at the

unitarity bound (hence do not decouple from the theory [41, 42]). An example are the

A1A1[`; `]
(R,0)
∆ multiplets, with ∆ = ` + 2 + R and R > 0. Clearly the bounds obtained

this way will not be general but will assume that R is the smallest R-charge among these

protected operators and, at spin `, the unprotected spectrum has a gap larger than `+2+R.

We leave these questions for future investigations.
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A Supersymmetric inversion tensors

Here we list the properties needed to derive equation (3.10). The order in which they

appear is roughly the order in which one needs to apply them. First of all, the explicit

definition of the tensors is

Iµν(x12̄, x1̄2) = Īνµ(x2̄1, x21̄) =
tr (σµx̃1̄2σν x̃2̄1)

2
√
x1̄2

2x2̄1
2

=
tr (σ̄µx12̄σ̄ν x̃21̄)

2
√
x1̄2

2x2̄1
2

, (A.1a)

I īı(x12̄) =
ij

j!

(x12̄)α1(α̇1
· · · (x12̄)αj |α̇j)

x2̄1
j

, (A.1b)

Īı̄i(x2̄1) =
(−i)j
j!

(x̃2̄1)α̇1(α1 · · · (x̃21̄)α̇j |αj)

x2̄1
j

. (A.1c)

The needed properties are

Iµν(x, x̄)Īνρ(−x,−x̄) = δρµ , (A.2a)

I īı(x)Īı̄i′(−x) = δii′ , (A.2b)

Iλρ(x13̄, x1̄3)Īρν(x3̄2, x32̄)Iνµ(x21̄, x2̄1) = Iλµ(−X1,−X1) . (A.2c)

The covariance property of the t and its λλ̄ scaling (2.8) imply

Ii1 ı̄1(x13̄)Ii4 ı̄3(x13̄) Iλν(x13̄, x1̄3)t ν
ı̄1 ı̄3(Z3)

= X1
3X1

3x1̄3
3 x3̄1

3Ii1 ı̄1(X1)Ii4 ı̄3(X1) Iλν(X1, X1)t ν
ı̄1 ı̄3(Z1) . (A.3)

The last identities that we need are

X1
2 =

x2̄3
2

x2̄1
2x1̄3

2
, X1

2 =
x3̄2

2

x3̄1
2x1̄2

2
. (A.4)
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B Proof of the general formula

B.1 Formula for the (1
2
j, 0) case

In this section we provide a proof of the formula (5.9) which we reproduce here for

convenience:

E [∆; (j, 0); s] =
As[tOTO]

Fs[nOO]

=
3π (−i)j

8

(δ − 1)(δ + j)

(δ + j − s− 1)3

(
D1 +

j − s
j

δ + j − 1

δ + j − s− 2
D2

+
(j − s− 1)2

(j − 1)2

(δ − j − 2)2

(δ + j − s− 3)2
D3

)
. (B.1)

The first step is to realize that the dependence on j and s is entirely coming from the tensors

(I13)̃ which appear both in tOTO at the numerator (with ̃ = j, j − 1, j − 2) and in nOO at

the denominator (with ̃ = j). Let us then expand this tensor when the polarizations are

replaced as in (5.2),

(I13)̃ = (η3xη̄1)̃ =
(
mp̄x+ + pm̄ x− +mm̄ x−−̇ + pp̄ x++̇

)̃
=

̃∑
s=0

min(s,̃−s)∑
r=0

(
̃

2r

)(
̃− 2r

s− r

)(
2r

r

)
(x−)s−r(x+)̃−r−s(x2

⊥)r (pm̄)s(mp̄)̃−s . (B.2)

We obtained this result by simply doing a double binomial expansion and using x−−̇x++̇ =

x2
⊥ ≡ (x1)2 + (x2)2. All terms where x−−̇ and x++̇ appear with different powers can

be thrown away as they are not SO(2) neutral and there are no other invariants in the

tensor structures that can compensate for them.25 The first sum is precisely the sum over

polarizations, and so we can remove it and focus on one s at a time. The second sum,

instead, can be extended to
∑∞

r=0 since the binomial coefficients are automatically zero

when r is out of bounds. This fact will be useful later on.

This expansion completely takes care of the polarizations of nOO and of the structure

D1 of tOTO. For the other two structures it is not hard to see that the terms (pm̄)s(mp̄)̃−s

of the (I13)̃ tensor of each structure all contribute to the same term (pm̄)s(mp̄)j−s.26

Concretely we find

As[tOTO] = −3iπ

4

∫
R4

d4x e−ix
0
∑
r=0

(x−)s−r−5(x+)j−r−s−2(x2
⊥)r(x2)1−∆−j/2

×
(
I(j)
r,s (x−)2(x+)2D1 − I(j−1)

r,s x−x+x2D2 + I(j−2)
r,s (x2)2D3

)
, (B.3)

where

I(j)
r,s =

(
j

2r

)(
j − 2r

s− r

)(
2r

r

)
. (B.4)

25This statement holds in the y+ →∞ limit.
26To be more precise there are contributions also to the terms (pm̄)s+a(mp̄)j−s−a (a = 1, 2), but it can

be verified that in the limit y+ →∞ they are subleading.
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Similarly, the denominator has the form

Fs[nOO] = ij
∫
R4

d4x e−ix
0
∑
r′=0

I
(j)
r′,s (x−)s−r

′
(x+)j−r

′−s(x2
⊥)r

′
(x2)−∆−j/2 . (B.5)

The Fourier transforms can be straightforwardly computed using the general formulas∫
R2

d2x⊥ (x2)a(x2
⊥)b =

πΓ(1− a− b)Γ(1 + b)

Γ(−a)
(−x−x+)1+a+b ,∫

R2

dx+dx− e−i(x
++x−)/2 (x+)a(x−)b =

(2π)2(−i)a+b(−2)a+b+2

Γ(−a)Γ(−b) . (B.6)

What remains now is to compute the sums in r and r′. After some simplifications all sums

can be reduced to the following general form for some m,n:27

Σm,n =

∞∑
r=0

(−1)r

r!

Γ
(
∆ + j

2 − r −m
)

Γ(1− r + s) Γ(j − r − s+ n)
. (B.7)

We stress again that even though the upper limit is ∞, there are actually only a finite

number of nonzero terms. After using the property

Γ(X − r) = (−1)r
Γ(X)

(1−X)r
(B.8)

of the Γ function, we can rewrite this sum in the form of a 2F1 hypergeometric function

evaluated at 1, for which the explicit expression is known:

Σm,n =
Γ
(
∆ + j

2 −m
)

Γ(1 + s) Γ(j − s+ n)
2F1

(
− s, 1− j − n+ s; 1−∆− j

2
+m; 1

)
=

Γ
(
∆ + j

2 −m
)

Γ(1 + s) Γ(j − s+ n)

Γ
(
1−∆− j

2 +m
)
Γ
( j

2 +m+ n−∆
)

Γ
(
s+ 1−∆− j

2 +m
)
Γ
( j

2 +m+ n−∆− s
) .

The final result will be expressed in terms of ratios Σm,n/Σ1,1 which are rational functions of

∆, j and s. It is now straightforward to check that it agrees with the general formula (5.9).

B.2 Formula for the (1
2
j, 1

2
) case

In order to obtain a formula for this case we mostly need to follow the same steps as

in the previous subsection, with some minor modifications. The main difference is that

the invariants I31, J3
12 and J1

23 can yield contributions with SO(2) charge ±1 in the limit

y+ →∞. By looking at table 24 we see that all tensor structures have at most one of these

invariant except for H8 which contains two. Since that particular structure is zero in our

superspace correlator we will not compute a formula for it. As a consequence we need to

27(m,n) can be (1, 1), (2, 1), (3, 0) or (4,−1)
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expand (I13)̃ keeping also terms of charge ±1. This is easily done as follows:

(I13)̃ =
(
mp̄x+ + pm̄ x− +mm̄ x−−̇ + pp̄ x++̇

)̃
=

̃∑
s=0

min(s,̃−s)∑
r=0

(
̃

2r

)(
̃− 2r

s− r

)(
2r

r

)
(x−)s−r(x+)̃−r−s(x2

⊥)r (pm̄)s(mp̄)̃−s

+

̃−1∑
s=0

min(s,̃−s−1)∑
t=0

(
̃

2t+ 1

)(
̃− 2t− 1

s− t

)(
2t+ 1

t+ 1

)
(x−)s−t(x+)̃−t−s−1(x2

⊥)t

× (mm̄ x−−̇ + pp̄ x++̇) (pm̄)s(mp̄)̃−s−1 . (B.9)

As before, both sums in r and t can be extended to any range. After taking care of the

remaining polarizations and performing the Fourier transform with (B.6) we again end up

with sums in the form of (B.7). The result will be a 2 × 2 matrix whose entries are ratios

of Γ functions, which can be reduced to rational functions of ∆, j and s. For the extreme

cases s = 0 and s = j + 1 one needs to retain only the appropriate entry of this matrix

— respectively the upper left and the lower right — and discard the other ones. As an

example we show the part of the formula that multiplies the coefficient H2:

E [∆; (j, 1); s]
∣∣∣
H2

= −3π (−i)j+1 (δ+1)(δ+j+2)

8(δ + j − s+ 1)3

 δ+j−s+3
δ+j−s+1

√
s(j−s+1)

(s+δ)(δ+j−s+1)√
s(j−s+1)

(s+δ)(δ+j−s+1)
(δ+s−1)(δ+j−s+1)

(δ+s)(δ+j−s+4)

 ,

(B.10)

where now δ = ∆− j/2− 5/2 with ∆ the dimension of the operator of spin ( 1
2j,

1
2).

Clearly the same logic can be applied to more general cases ( 1
2j,

1
2 ̄) with ̄ fixed and j

arbitrary. It suffices to expand like in (B.9) keeping terms with charge up to ±u where u is

the total number of invariants I31, J3
12 and J1

23 in the tensor structure under consideration.

Then all steps follow in the same way, except that one may get sums more complicated

than Σm,n.
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C Tables

C.1 Ward identities

Ci Structure j > 1 j = 1 j = 0

C1 J2
13 (I13)j −1

2
C2 +

2ij+1(q − q̄)
3π2

−1

2
C2 −

2(q − q̄)
3π2

2i(q − q̄)
3π2

C2 I23(I13)j−1 C2 C2 �

Table 3. Ward identities of the R-current for the correlator 〈OJO〉 when O has spin ( 1
2j, 0).

Ii Structure j > 1 j = 1 j = 0

I1 J1
23 I23 I32 (I13)j−1 I1 �

I2 J2
13I31(I13)j I2

I3 I21I32(I13)j
2I2 + I5 −

1

2
(I1 + I6 + I4)

− 4ij(3 + 2(q − q̄))
3π2

I4 J1
23J3

12I12I23(I13)j−2 I4 � �

I5 I12I23I31(I13)j−1 I5 �

I6 J3
12I12I21(I13)j−1 I6 �

Table 4. Ward identities of the R-current for the correlator 〈O′JO′〉 when O′ has spin ( 1
2j,

1
2 ),

R-charge 2
3 (q− q̄)+1 and is assumed to be unit normalized. If O′ = QO the terms not proportional

to Ik must be rescaled by c(QO). The unbarred entries in the j = 1, 0 columns are obtained by

setting the absent coefficients to zero.

Di Structure j > 1 j = 1 j = 0

D1 (J2
13)2(I13)j D1

i(2∆− 3)

3π2

2∆

3π2

D2 I12I23J2
13(I13)j−1 −6D1 +

4ij(∆− j)
π2

2i

π2
�

D3 (I12)2(I23)2(I13)j−2 6D1 −
2ij(2∆− 3j)

π2
� �

Table 5. Ward identities of the stress tensor for the correlator 〈OTO〉 when O has spin ( 1
2j, 0).

We have defined ∆ = q + q̄.
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Hi Structure j > 1 j = 1 j = 0

H1 I23I32J2
13J1

23(I13)j−1 H6 H6 �

H2 I31(J2
13)2(I13)j

− 1

9
(3H5 + 2H6 +H10)

− 1

6
H9 − ij+1 2∆− j − 2

3π2

−2

3
H6 +

2∆− 5

3π2
−i2(∆− 1)

3π2

H3 I21I32J2
13(I13)j

− 1

9
(3H5 + 8H6 +H10)

− 1

3
H9 −

2ij+1(j − 3)

3π2

−4

3
H6 −

2

π2

2i

π2

H4 I12I32(I23)2J1
23(I13)j−2 H10 � �

H5 I12I31I23J2
13(I13)j−1 H5

4

3
H6 +

2

π2
�

H6 I12I21J2
13J3

12(I13)j−1 H6 H6 �

H7 I12I21I23I32(I13)j−1 2

3
(H6 −H10)

2

3
H6 �

H8 (I12)2(I23)2J3
12J1

23(I13)j−3
− 4

3
(2H6 +H10)

+ 2(H5 +H9) +
4ij+1j

π2

� �

H9 (I12)2(I23)2I31(I13)j−2 H9 � �

H10 (I12)2I21I23J3
12(I13)j−2 H10 � �

Table 6. Ward identities of the stress tensor for the correlator 〈O′TO′〉 when O′ has spin ( 1
2j,

1
2 ),

dimension ∆ + 1
2 and is assumed to be unit normalized. If O′ = QO the terms not proportional to

Hk must be rescaled by c(QO).

Gi Structure j > 1 j = 1 j = 0

G1 J1
23J2

13I23(I13)j−1 G1 G1 �

G2 I21J2
13(I13)j −1

2
(G1 +G4)− 1

3
G3 +

8ij q̄

3π2
−1

2
(G1 +G4) +

8iq̄

3π2

8q̄

3π2

G3 I12(I23)2J1
23(I13)j−2 G3 � �

G4 I12I21I23(I13)j−1 G4 G4 �

Table 7. Ward identities of the supersymmetry current for the correlator 〈(QO)SO〉 when QO has

spin ( 1
2 ,

1
2j).

Ei Structure j > 1 j = 1 j = 0

E1 J2
13I12(I13)j −2

3
E2 −

4ij (2q + j)

3π2(j + 1)
−2

3
E2 −

2i(2q + 1)

3π2
− 8q

3π2

E2 (I12)2(I13)j−1 E2 E2 �

Table 8. Ward identities of the supersymmetry current for the correlator 〈(QO)SO〉 when QO has

spin (0, 12 (j + 1)).
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Fi Structure j > 1 j = 1

F1 J2
13K23

1 (I13)j−1 −1

3
F2 +

4ij (2q − j − 2)

3π2

4i(2q − 3)

3π2

F2 I12I23K23
1 (I13)j−2 F2 �

Table 9. Ward identities of the supersymmetry current for the correlator 〈(QO)SO〉 when QO has

spin (0, 12 (j − 1)).

C.2 Expansion in components

Ci Structure j > 0 j = 0

C1 J2
13(I13)j i(C1 + C2) iC1

C2 I23(I13)j−1 −iC2 �

Table 10. Expansion of the supersymmetric correlator in the component 〈OJO〉 when O has

spin ( 1
2j, 0).

Di Structure j > 1 j = 1 j = 0

D1 (J2
13)2(I13)j −1

4
(C5 + C8) −1

4
(C5 + C8) −1

4
C5

D2 I12I23J2
13(I13)j−1 1

4
(C6 + C8)

1

4
C8 �

D3 (I12)2(I23)2(I13)j−2 −1

4
C6 � �

Table 11. Expansion of the supersymmetric correlator in the component 〈OTO〉 when O has

spin ( 1
2j, 0).

Ei Structure j > 0 j = 0

E1 J2
13I12(I13)j − 1

2(1 + j)
(4C1 + 4C2 + C3 − C5 + C6 − C8) −2C1 −

1

2
C5

E2 (I12)2(I13)j−1 1

2(1 + j)
(4C2 + C3 + C6 − C8) �

Table 12. Expansion of the supersymmetric correlator in the component 〈(QO)SO〉 when QO has

spin (0, 12 (j + 1)). The result for j = 1 is obtained by setting C6 = 0.

Fi Structure j > 1 j = 1

F1 J2
13K23

1 (I13)j−1 2(C1 + C2)− 1

2
(C5 + C8)− 1

2j
(C3 + C6)

F2 I12I23K23
1 (I13)j−2 1

j
C6 −

j − 1

2j
(4C2 + C3 − C8) �

Table 13. Expansion of the supersymmetric correlator in the component 〈(QO)SO〉 when QO has

spin (0, 12 (j − 1)). The unbarred entry in the j = 1 column is obtained by setting C6 = 0.
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Gi Structure j > 1 j = 1 j = 0

G1 J1
23J2

13I23(I13)j−1 C2 −
1

2
C7 �

G2 I21J2
13(I13)j −2(C1 + C2)− 1

2
(C5 + C8) −2C1 −

1

2
C5

G3 I12(I23)2J1
23(I13)j−2 −1

2
C6 � �

G4 I12I21I23(I13)j−1 C2 +
1

2
(C6 + C7 + C8) �

Table 14. Expansion of the supersymmetric correlator in the component 〈(QO)SO〉 when QO has

spin ( 1
2 ,

1
2j). The unbarred entries in the j = 1 column can be obtained by setting the C6 = 0.

Ni Structure j > 0

N1 J2
13(I13)j+1 −2(2q + j − 1)

(j + 1)2
(C1 + C2)− 1

(j + 1)2
(C4 + C5 + C7 + C8)

N2 I12I23(I13)j
1

(j + 1)2
(2C1 + 2(2q + j − 1)C2 + C4 + C7 + C8)

Table 15. Expansion of the supersymmetric correlator in the component 〈(QO)J(QO)〉 when QO

has spin (0, 12 (j + 1)) and QO has spin ( 1
2 (j + 1), 0). The result for j = 0, 1 can be obtained by

setting the absent coefficients to zero (see caption of table 2).

Oi Structure j > 1

O1 I12K12
3 (I13)j−1 1

j(j + 1)
(4(q − 1)C2 + C8)− 1

j + 1
(2C1 + C4 + C7)− 1

j
(C3 + C6)

Table 16. Expansion of the supersymmetric correlator in the component 〈(QO)J(QO)〉 when QO

has spin (0, 12 (j+1)) and QO has spin ( 1
2 (j−1), 0). The result for j = 1 can be obtained by setting

C6 to zero.

Pi Structure j > 1

P1 I23K23
1 (I13)j−1 1

j(j + 1)
(2(2q − j − 3)C2 + C8 + C7)− 1

j + 1
(2C1 + C4)

Table 17. Expansion of the supersymmetric correlator in the component 〈(QO)J(QO)〉 when QO

has spin (0, 12 (j − 1)) and QO has spin ( 1
2 (j + 1), 0).
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Qi Structure j > 1

Q1 J2
13(I13)j−1 −2 Ξ1

j
C1 −

2 Ξ2

j2
C2 −

1

j2
C7 +

1

j
C4 +

j + 1

j2
(C3 + C6 + jC5) +

j2 + j − 1

j2
C8

Q2 I12I23(I13)j−2

2(j − 1) Ξ3

j2
C2 +

j − 1

j
(2C1 + C4) +

j2 − 1

j2
C3 −

2(j + 1)

j2
C6 −

j − 1

j2
C7

− (j − 1)(j + 2)

j2
C8

Table 18. Expansion of the supersymmetric correlator in the component 〈(QO)J(QO)〉 when QO

has spin (0, 12 (j−1)) and QO has spin ( 1
2 (j−1), 0). The result for j = 1 can be obtained by setting

C6 to zero and removing the last row. Furthermore we defined

Ξ1 = j2 − 2jq + 5j − 2q + 3 ,

Ξ2 = j3 − 2j2q + 5j2 − 2jq + 3j + 2q − 3 ,

Ξ3 = j2 − 2jq + 6j − 4q + 7 .

Ii Structure j > 1 j = 1 j = 0

I1 J1
23I23I32(I13)j−1 C7 − 2C2 �

I2 J2
13I31(I13)j

2(2q̄ − 1)(C1 + C2)

− C4 − C5 − C7 − C8

2(2q̄ − 1)C1 − C4 − C5

I3 I21I32(I13)j 2(C1 + C2)− C4 − C7 2C1 − C4

I4 J1
23J3

12I12I23(I13)j−2 C6 � �

I5 I12I23I31(I13)j−1 −2(2q̄ − 1)C2 − C3 + C7 + C8 �

I6 J3
12I12I21(I13)j−1 −C3 − C6 �

Table 19. Expansion of the supersymmetric correlator in the component 〈(QO)J(QO)〉 when QO

has spin ( 1
2 ,

1
2j). The unbarred entries in the j = 1 column can be obtained by setting C6 = 0.

Ji Structure j > 0 j = 0

J1 (J2
13)2(I13)j+1

− i

2(j + 1)2

(
4C1 + (2q + j)(C3 + C6)

− (2q + j − 2)(4C2 + 2C4)
) −2iC1 + i(2q − 1)C4

J2 J2
13I12I23(I13)j

i

(j + 1)2

(
6C1 + 3C4 − 2(2q + j − 10)C2

+ (2q + j − 1)C3 + (2q + j)C6

) 3i(2C1 + C4)

J3 (I12)2(I23)2(I13)j−1 − i

2(j + 1)2

(
32C2 − 4C3 + (2q + j)C6

)
�

Table 20. Expansion of the supersymmetric correlator in the component 〈(QO)T (QO)〉 when QO

has spin (0, 12 (j+1)) and QO has spin ( 1
2 (j+1), 0). The result for j = 1 can be obtained by setting

C6 = 0.
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Ki Structure j > 1 j = 1

K1 K12
3 J2

13I12(I13)j−1
− 3i

j + 1
(2C1 + C4) +

i

j(j + 1)

(
(2q + j − 1)C3

− (2q + j)C6 + 2(2q + 7j − 4)C2

)
K2 K12

3 I23(I12)2(I13)j−2 i

j(j + 1)

(
2(j − 1)(8C2 − C3)− (2q + j)C6

)
�

Table 21. Expansion of the supersymmetric correlator in the component 〈(QO)T (QO)〉 when QO

has spin (0, 12 (j + 1)) and QO has spin ( 1
2 (j − 1), 0). The unbarred entry in the j = 1 column can

be obtained by setting C6 = 0.

Li Structure j > 1 j = 1

L1 K23
1 J2

13I23(I13)j−1
− 3i

j + 1
(2C1 + C4) +

i

j(j + 1)

(
(2q + j − 1)C3

− (2q + j)C6 − 2(2q + 7j − 4)C2

)
L2 K23

1 I12(I23)2(I13)j−2 i

j(j + 1)

(
2(j − 1)(8C2 − C3)− (2q + j)C6

)
�

Table 22. Expansion of the supersymmetric correlator in the component 〈(QO)T (QO)〉 when QO

has spin (0, 12 (j − 1)) and QO has spin ( 1
2 (j + 1), 0). The unbarred entry in the j = 1 column can

be obtained by setting C6 = 0. Note that this table is identical to table 21.

Mi Structure j > 2 j = 2 j = 1

M1 (J2
13)2(I13)j−1

− 2i(2j − 1)

j
C1 +

2iΞ4

j2
C2 −

iΞ5

2j2
C3

+
iΞ6

j
C4 −

i(j − 1)(Ξ6 − 2q + j − 1)

2j2
C6

M2 J2
13I12I23(I13)j−2

6i(j − 1)

j
C1 −

2i(j − 1)Ξ7

j2
C2 +

3i(j − 1)

j
C4

+
i(j − 1)(Ξ7 + 9j − 12)

j2
C3 +

iΞ8

j2
C6

�

M3 (I12)2(I23)2(I13)j−3

2i(j − 1)(j − 2)

j2
(C3 − 8C2)

− i(j − 2)(j2 − 2jq + j − 6q + 2)

2j2
C6

� �

Table 23. Expansion of the supersymmetric correlator in the component 〈(QO)T (QO)〉 when QO

has spin (0, 12 (j − 1)) and QO has spin ( 1
2 (j − 1), 0). The unbarred entries in the j = 2 column are

identical and the ones in the j = 1 column are obtained by setting C6 = 0. We further defined:

Ξ4 = j3 − 2j2q − j2 − 2jq + 5j + 2q − 4 ,

Ξ5 = j3 − 2j2q + j2 − 2jq + 4q − 4 ,

Ξ6 = j2 − 2jq + j − 2q + 3 ,

Ξ7 = j2 − 2jq − 8j − 4q + 18 ,

Ξ8 = j3 − 2j2q − 2jq + 8q − 3 .
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Hi Structure j > 1 j = 1 j = 0

H1 I23I32J2
13J1

23(I13)j−1 3i

2
(C3 + C6) �

H2 I31(J2
13)2(I13)j

− 2i(C1 + 2q̄C2) + i(q̄ − 1)(C3 + C6)

− i(2q̄ − 1)C4

H3 I21I32J2
13(I13)j −i(6C1 + 2C3 − 3C4 + 2C6)

H4 I12I32(I23)2J1
23(I13)j−2 −3i

2
C6 � �

H5 I12I31I23J2
13(I13)j−1

4iq̄C2 − 2i(q̄ − 1)C3

− i(2q̄ − 3)C6

�

H6 I12I21J2
13J3

12(I13)j−1 3i

2
(C3 + C6) �

H7 I12I21I23I32(I13)j−1 i(C3 + 2C6) �

H8 (I12)2(I23)2J3
12J1

23(I13)j−3 0 � �

H9 (I12)2(I23)2I31(I13)j−2 i(q̄ − 2)C6 � �

H10 (I12)2I21I23J3
12(I13)j−2 −3i

2
C6 � �

Table 24. Expansion of the supersymmetric correlator in the component 〈(QO)T (QO)〉 when QO

has spin ( 1
2 ,

1
2j). The unbarred entries in the last two columns can be obtained by setting the absent

coefficients to zero (see caption of table 2).
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