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We address the quantum dynamics of a system composed of a qubit globally coupled to a many-body system
characterized by short-range interactions. We employ a dynamic finite-size scaling framework to investigate
the out-of-equilibrium dynamics arising from the sudden variation (turning on) of the interaction between
the qubit and the many-body system, in particular when the latter is in proximity to a quantum first-order or
continuous-phase transition. Although the approach is quite general, we consider d-dimensional quantum Ising
spin models in the presence of transverse and longitudinal fields as paradigmatic quantum many-body systems.
To characterize the out-of-equilibrium dynamics, we focus on a number of quantum-information-oriented
properties of the model. Namely, we concentrate on the decoherence features of the qubit, the energy interchange
between the qubit and the many-body system during the out-of-equilibrium dynamics, and the work distribution
associated with the quench. The scaling behaviors predicted by the dynamic finite-size scaling theory are verified
through extensive numerical computations for the one-dimensional Ising model, which reveal a fast convergence
to the expected asymptotic behavior with increasing system size.
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I. INTRODUCTION

The recent progress that has been achieved in the control
and manipulation of complex systems at the nanoscale has
enabled a wealth of unprecedented possibilities aimed at ad-
dressing the unitary quantum evolution of many-body objects.
These range from the (nearly) adiabatic dynamics induced by
a slow change in time of one of the control parameters to the
deep out-of-equilibrium dynamics following an abrupt quench
in the system [1–3]. In the latter scenario, several fundamental
issues have been investigated, including the onset of ther-
malization at long times, quantum transport, and localization
phenomena due to the mutual interplay between disorder and
interactions [4–11]. All of them are eventually devoted to
characterizing the highly nonlinear response of the system to
the drive, where nonequilibrium fluctuation relations may play
a pivotal role [12–15].

Closely related to the scenario we are going to focus on
in the present paper, we also mention the increasing interest
in monitoring the coherent quantum dynamics of mutually
coupled systems, with the purpose of addressing energy in-
terchanges or the relative decoherence properties among the
various subsystems [16]. This kind of study is relevant both
to understand whether quantum mechanics can enhance the
efficiency of energy conversion in complex networks [17,18]
and to devise novel quantum technologies which are able
to optimize energy storage in portions of the whole system
[19–23]. We will stress that energy flows are likely to be
influenced by the different quantum phases of the system.
Moreover, one would expect an enhanced response in prox-
imity to a quantum phase transition, which requires special
attention [24].

The aim of this paper is to shed light on this latter issue.
To this purpose, we consider the simplest scenario in which
to frame such an analysis: a single qubit globally coupled to a

d-dimensional quantum Ising spin model in a transverse and
a longitudinal field. This spin model acts as a prototypical
quantum many-body system since, when varying the intensity
of the two external fields, it may undergo both first-order
quantum transitions (FOQTs) and continuous quantum tran-
sitions (CQTs). The composite setup belongs to the class of
so-called central-spin models where one or a few qubits can be
globally or locally coupled to the environmental system (see,
e.g., Refs. [25–36]). We put forward a quantitative scaling
theory which generalizes the results of Ref. [35] focused on
the decoherence properties of the qubit, while also carefully
addressing the statistics of energy flow between the qubit and
the many-body system. Specifically, we employ the finite-size
scaling (FSS) framework, which has been shown to be able to
predict the behavior of a system in proximity to either a CQT
[37] or a FOQT [38], as well as in a dynamic context [39,40],
providing the asymptotic large-size scaling in a variety of
situations. A substantial part of this work is devoted to a
numerical validation of the dynamic FSS predictions through
extensive simulations with exact diagonalization techniques,
specialized to the one-dimensional case (d = 1).

In our setup, the global system is initialized in a state which
is a product of pure states of the qubit q and of the quantum
Ising system S. The qubit q is then suddenly coupled to all
the Ld spins of S such that a nontrivial unitary dynamics sets
in. Note that we admit the possibility to have an interaction
Hamiltonian which does not commute with the qubit Hamil-
tonian so that the decoherent effect on the qubit is not only
a pure dephasing. We focus on three quantum-information-
oriented properties of the model: the decoherence features of
q, the statistics of the work distribution associated with the
quench, and the statistics of the energy interchange between
q and S during the out-of-equilibrium dynamics. We show
that such properties develop dynamic FSS behaviors when
the system S is close to quantum transitions. In particular,
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our numerics for the one-dimensional Ising systems show that
the convergence to the dynamic FSS behavior is remarkably
fast, which would prompt a careful assessment of the role
of criticality in near-future experiments of quantum transport
in complex systems with few spins or particles (of the order
of 10).

The paper is structured as follows. We start in Sec. II with
the definition of the model and all the relevant quantities that
will be analyzed. In Sec. III we summarize the derivation of
the dynamic FSS framework, which is capable of address-
ing the dynamics of a quantum many-body system at either
FOQTs or CQTs. We also discuss differences which emerge
when considering a disordered phase, corresponding to a
general normal phase of many-body systems. The dynamic
FSS is then specialized to our system of interest in Sec. IV,
explicitly discussing the qubit decoherence functions, the
work associated with the initial quench, and the dynamics of
the qubit-system energy flow. We discuss the details of the
FSS behavior at the CQT point, where extensive numerical
simulations in support of the theory are presented (Sec. V),
and along the FOQT line, where we also consider a two-
level reduction of the many-body system (Sec. VI). Finally,
Sec. VII is devoted to a summary and perspectives for future
work. In the Appendixes we provide some analytic insight into
the special case in which the qubit Hamiltonian commutes
with the qubit-system interaction term and discuss in more de-
tail some limitations emerging in the two-level approximation
at the FOQT.

II. GENERAL SETTING OF THE PROBLEM

A. Model

Let us consider a d-dimensional quantum many-body sys-
tem S of size Ld , with Hamiltonian

HS (h) = Hc + Hh, Hh = hP, (1)

where P is the spatial integral of local operators, such that
[Hc, P] �= 0, and the parameter h drives a quantum transition
located at h = 0. As a paradigm, we will focus on the quantum
Ising model on an Ld lattice,

Hc = HIs = −J
∑
〈x,y〉

σ (3)
x σ (3)

y − g
∑

x

σ (1)
x , (2)

where σ (k) are the Pauli matrices, the first sum is over all
bonds connecting nearest-neighbor sites 〈x, y〉, and the other
sum is over all sites. Hereafter we assume that h̄ = 1, J = 1,
the lattice spacing a = 1, and g > 0. At g = gc (in one di-
mension, gc = 1), the model undergoes a CQT belonging to
the (d + 1)-dimensional Ising universality class [24,41,42],
separating a disordered phase (g > gc) from an ordered one
(g < gc). The presence of a homogeneous longitudinal exter-
nal field is taken into account by adding the term

hP = −h
∑

x

σ (3)
x (3)

to the Hamiltonian (2). The field h drives FOQTs along the
h = 0 line for any g < gc. At the continuous transition g = gc,
such a term is one of the relevant perturbations driving the

critical behavior, the other one being the transverse field term
(g − gc)

∑
x σ (1)

x .
In addition, let us consider a qubit q whose two-level

Hamiltonian can be generally written as

Hq =
∑
a=±

εa|a〉〈a| = αI2 + 1
2�(3), (4)

where I2 is the 2 × 2 identity matrix and the Pauli operator
�(3) is associated with the two states |±〉 of the qubit, so
�(3)|±〉 = ±|±〉. Therefore,

ε± = α ± 1
2δ, δ = ε+ − ε−. (5)

The qubit is globally and homogeneously coupled to the
many-body system S, through the Hamiltonian term

HqS = (u�(3) + v�(1) )P, (6)

where P is the operator appearing in Eq. (1) and thus
Eq. (3). Putting all the terms together, we obtain the global
Hamiltonian

H = HS + Hq + HqS. (7)

We are interested in the quantum evolution of the global
system starting from the initial t = 0 condition

|�0〉 = |q0〉 ⊗ |0h〉, (8)

where |q0〉 is a generic pure state of the qubit

|q0〉 = c+|+〉 + c−|−〉, |c+|2 + |c−|2 = 1, (9)

and |0h〉 is the ground state of the system with the Hamiltonian
HS (h). The global wave function describing the quantum
evolution for t > 0 must be a solution of the Schrödinger
equation

i
∂

∂t
|�(t )〉 = H |�(t )〉, |�(t = 0)〉 = |�0〉. (10)

In particular, we consider a dynamic protocol arising from a
sudden switching of the interaction HqS between the qubit and
the many-body system, at time t = 0, i.e., by quenching one
or both of the control parameters u and v in Eq. (6) from zero
to some finite value.

The above setting can be straightforwardly extended to
N-level systems coupled to an environmental system S and
also to the case in which the initial qubit state is mixed, and
thus described by a nontrivial density matrix. Most features
addressed in the rest of the paper, in particular the dynamic
scaling properties, can be straightforwardly extended as well.

B. Qubit decoherence, work, and qubit-system
energy exchanges

1. Coherence of the qubit

An interesting issue arising from the dynamics of the
problem outlined above concerns the coherence properties of
the qubit during the global quantum evolution. Starting from
a pure state, the interaction with the many-body system may
give rise to a loss of coherence of the qubit, depending on the
properties of its density matrix

ρq(t ) = TrS[ρ(t )], (11)
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where TrS[·] denotes the trace over the S degrees of freedom
of the global (pure) quantum state

ρ(t ) = |�(t )〉〈�(t )|, (12)

with |�(t )〉 given by the solution of Eq. (10). Of course,
Tr[ρq(t )] = 1.

A good candidate to quantify the coherence properties of
the qubit during its quantum evolution is provided by the so-
called purity, that is, the trace of its square density matrix ρq,

Tr[ρq(t )2] ≡ 1 − D(t ), (13)

where we have introduced the decoherence function D such
that 0 � D � 1. This function measures the quantum deco-
herence, quantifying the departure from a pure state. Indeed,
D = 0 implies that the qubit is in a pure state, and thus
D(t = 0) = 0. The other extreme value D = 1 indicates that
the qubit is totally unpolarized.

2. Quantum work associated with the initial quench

The initial quench, arising from turning on the interaction
between the qubit q and the many-body system S, can also
be characterized via the quantum work W done on the global
system [14,43]. The work performed by quenching the control
parameters u and v generally does not have a definite value,
while it can be defined as the difference of two projective
energy measurements [14]. The first one at t = 0 projects
onto the eigenstates |mi〉 of the initial Hamiltonian Hi with a
probability pi,m given by the initial density matrix. The second
energy measurement projects onto the eigenstates |nf〉 of the
postquench Hamiltonian Hf . Since the energy is conserved
after the quench, the latter measurement can be performed
at any time t during the evolution, ruled by the unitary
operator U (t, 0) = e−iHf t , without changing the distribution,
in particular for t → 0+. The work probability distribution
can be written as [14,44,45]

P(W ) =
∑
n,m

δ[W − (Ef,n − Ei,m)]|〈nf |mi〉|2 pi,m. (14)

The average work and its higher moments are given by

〈W k〉 =
∫

dW W kP(W ). (15)

As one can easily check, the average quantum work 〈W 〉
can be computed by taking the difference

〈W 〉 = 〈�(t )|H |�(t )〉 − 〈�0|Hq + HS|�0〉, (16)

where

〈�0|Hq + HS|�0〉 = 〈q|Hq|q〉 + 〈0h|HS|0h〉 ≡ Eq0 + ES0.

(17)

Since we are interested in a sudden quench at t = 0, we can
obtain the average work from the difference of the expectation
values of Hf = H and Hi = Hq + HS on the initial state,
obtaining

〈W 〉 = 〈�0|HqS|�0〉. (18)

An analogous expression can be derived for the average of the
square work, obtaining

〈W 2〉 = 〈�0|H2
qS|�0〉. (19)

Note that the above relatively simple equations for the first
two moments of the work distribution do not extend to higher
moments, i.e., 〈W k〉 �= 〈�0|Hk

qS|�0〉 for k > 2. Their expres-
sions are more complicated, requiring the computation of the
whole spectrum, due to the fact that HqS does not commute
with the other Hamiltonian terms.

3. Energy-difference distributions

In order to study the qubit-system energy exchanges, we
may consider the energy-difference distribution of the system
S along the quantum evolution, associated with two energy
measurements of S, at t = 0 and at a generic time t . We write
it as

PS (U, t ) =
∑
n,a,b

δ[U − (ESn − ES0)]|〈b, n|e−iHt |a, 0〉|2 pa,

(20)

where |b, n〉 ≡ |b〉 ⊗ |n〉, |n〉 and ESn indicate, respectively,
eigenstates and eigenvalues of the Hamiltonian HS (we as-
sume a discrete spectrum, as is generally appropriate for
finite-size systems), |a〉 and |b〉 indicate the eigenstates |±〉
of the qubit Hamiltonian, and p± = |c±|2 are the probabilities
of the initial qubit state at t = 0. One can check that

〈U 〉 ≡
∫

dy y P(y, t ) = ES (t ) − ES0. (21)

More general initial distributions also may be considered, for
example, associated with a bath at temperature T , replacing
the initial density matrix ρ0 = |q, 0〉〈q, 0| with the corre-
sponding density matrices. Of course one may also define an
analogous energy-difference distribution associated with the
qubit, obtained by a two-measurement procedure on it:

Pq(U, t ) =
∑
n,a,b

δ[U − (Eqb − Eqa)]|〈b, n|e−iHt |a, 0〉|2 pa.

(22)

III. FINITE-SIZE SCALING FRAMEWORK

In this section we summarize the main features of the
dynamic FSS framework that we will exploit to analyze the
out-of-equilibrium quantum dynamics of the coupled qubit
and many-body system and in particular the quantities intro-
duced in Sec. II B. The dynamic FSS framework has been
developed recently to deal with dynamic behaviors of finite-
size systems at quantum transitions [35,39,46], extending
equilibrium FSS frameworks to study CQTs and FOQTs
[37,47–50]. This framework allows one to study the interplay
among the Hamiltonian parameters, the finite linear size L,
and the finite temperature T , assuming that T is sufficiently
small and that the Hamiltonian parameters keep the system S
close to the transition point.
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A. Scaling variables at quantum transitions

The scaling hypothesis for the many-body system de-
scribed by the Hamiltonian HS is based on the existence of a
nontrivial large-volume limit, keeping the appropriate scaling
variables fixed. At both CQTs and FOQTs, the FSS variable
related to a relevant perturbation as Hh = hP [cf. Eq. (1)] can
be generally written as the ratio

κh = Eh(L)/�(L) (23)

between the energy variation associated with the Hh term (we
assume Eh = 0 at the transition point h = 0) and the energy
difference of the lowest-energy states, �(L) ≡ E1 − E0, at the
transition point h = 0. Nonzero temperatures are taken into
account by adding a further scaling variable

τ = T/�(L). (24)

More generally, any relevant low-energy scale E is expected
to behave as E ∼ �(L) in the FSS limit. Dynamic behaviors,
exhibiting nontrivial time dependences, also require a scaling
variable associated with the time variable, which is generally
given by

θ = �(L)t . (25)

The equilibrium and dynamic FSS limits are defined as large-
size limits, keeping the above scaling variables fixed.

The outlined framework provides a unified picture of the
FSS behaviors at quantum transitions, holding at both CQTs
and FOQTs. Within the dynamic FSS framework, their differ-
ences are essentially related to the functional dependence of
the above scaling variables on the size. Power laws generally
arise at CQTs [37], while exponential laws emerge at FOQTs
[47,48], in particular when boundary conditions do not favor
any particular phase.

B. First-order quantum transitions

As shown by earlier works [38,47–49], the FSS behavior
of isolated many-body systems at FOQTs turns out to depend
greatly on the type of boundary conditions, whether they
favor one of the phases or they are neutral, giving rise to
FSS characterized by exponential or power-law behaviors. To
simplify our presentation, in the following the system S will
be taken as a quantum Ising model with boundary conditions
that do not favor either of the two magnetized phases, such as
periodic and open boundary conditions, which generally lead
to exponential FSS laws.

The FOQT line for g < gc is related to the level crossing
of the two lowest states |↑〉 and |↓〉 for h = 0 such that
〈↑|σ (3)

x |↑〉 = m0 and 〈↓|σ (3)
x |↓〉 = −m0 (independently of x),

with m0 > 0. The degeneracy of these states is lifted by
the longitudinal field h. Therefore, h = 0 is a FOQT point,
where the longitudinal magnetization M = L−d

∑
x Mx, with

Mx ≡ 〈σ (3)
x 〉, becomes discontinuous in the infinite-volume

limit. The transition separates two different phases character-
ized by opposite values of the magnetization m0, i.e.,

lim
h→0±

lim
L→∞

M = ±m0. (26)

For one-dimensional systems [51], m0 = (1 − g2)1/8.

In a finite system of size L, the two lowest states are
superpositions of two magnetized states |+〉 and |−〉 such that
〈±|σ (3)

x |±〉 = ±m0 for all sites x. Due to tunneling effects, the
energy gap � at h = 0 vanishes exponentially as L increases
[38,52],

�(L) ∼ e−cLd
, (27)

apart from powers of L. In particular, for the one-dimensional
Ising system (2) at g < 1, it is exponentially suppressed as
[51,53]

�(L) = 2(1 − g2)gL[1 + O(g2L )] (28)

for open boundary conditions and

�(L) ≈ 2
√

(1 − g2)/(πL)gL (29)

for periodic boundary conditions. The differences Ei − E0 for
the higher excited states (i > 1) are finite for L → ∞.

Quantum Ising systems along the FOQT line develop FSS
behaviors [35,39,40,46], driven by the longitudinal field h.
Using Eq. (23), the corresponding scaling variable can be
written as [43,47]

κh = 2m0hLd

�(L)
, (30)

where 2m0hLd quantifies the energy associated with the cor-
responding longitudinal-field perturbation Hh. For example,
in the equilibrium FSS limit the magnetization is expected
to behave as [47] M(h, L) = m0M(κh), where M is a FSS
function.

Note that the FOQT scenario based on the avoided crossing
of two levels is not realized for any boundary condition [38]:
In some cases the energy difference �(L) of the lowest levels
may even display a power-law dependence on L. However,
the scaling variable κh obtained using the corresponding �(L)
turns out to be appropriate as well [38].

C. Continuous quantum transitions

Finite-size scaling theories were originally developed
at continuous transitions (see, e.g., Refs. [37,54,55] and
references therein). The CQT of the Ising model [cf.
Eqs. (2) and (3)] is characterized by two relevant parameters,
r ≡ g − gc and h (such that they vanish at the critical point),
with renormalization-group dimensions yr and yh, respec-
tively. The relevant FSS variables are

κr = Lyr r, κh = Lyh h. (31)

The FSS limit is obtained by taking L → ∞ and keeping κr

and κh fixed.
Note that the expression for κh in Eq. (31) can be obtained

using the more general definition (23). Indeed, at CQTs the
energy variation arising from the perturbation Hh = h

∑
x Px,

with Px = −σ (3)
x , is given by

Eh(L) ∼ hLd−yp, (32)

where yp is the renormalization-group critical dimension of
the local operators Px at the fixed point describing the quantum
critical behavior. Moreover, we have

�(L) ∼ L−z, (33)
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where z is the universal dynamic exponent. Then, using the
scaling relation among critical exponents [24,37]

yh + yp = d + z, (34)

where yh is the renormalization-group dimension of the per-
turbation h, we end up with the expression of κh reported in
Eq. (31). An analogous derivation can be obtained for κr .

The equilibrium critical exponents yr and yh of the quan-
tum Ising model are those of the (d + 1)-dimensional Ising
universality class [24,41,42]. Therefore, for one-dimensional
systems they are yr = 1/ν = 1 and yh = (d + z + 2 − η)/2
= (4 − η)/2 with η = 1/4. For two-dimensional models the
critical exponents are not known exactly, but there are very
accurate estimates (see, e.g., Refs. [56–60]); in particular
[59] yr = 1/ν with ν = 0.629 971(4) and yh = (5 − η)/2
with η = 0.036 298(2). For three-dimensional systems they
assume mean-field values yr = 2 and yh = 3 apart from loga-
rithms. The temperature T gives rise to a relevant perturbation
at CQTs associated with the scaling variable τ = LzT , where
z = 1 (for any spatial dimension) is the dynamic exponent
characterizing the behavior of the energy differences of the
lowest-energy states and in particular the gap � ∼ L−z.

A generic observable O in the FSS limit behaves as

O(r, h, L) ≈ L−yoO(κr, κh), (35)

where the exponent yo is the renormalization-group dimension
associated with O and O is a universal equilibrium FSS
function. The approach to such an asymptotic behavior is
characterized by power-law corrections, typically controlled
by irrelevant perturbations at the corresponding fixed point
[37]. The equilibrium FSS at quantum transitions has been ex-
tended also to quantum-information concepts [61–65], such as
the ground-state fidelity and its susceptibility, which measure
the change of the ground state when varying the Hamiltonian
parameters around a quantum transition [50].

D. Disordered phase

One may compare the above scaling behaviors with those
expected when the system S is not close to a phase transition,
for example, for g > gc in the case of quantum Ising models.
In this region the system is in the disordered phase, where the
length scale ξ of the correlations is finite. In particular, close to
the transition point gc, it behaves as ξ ∼ (g − gc)−ν . Thus the
ratio L/ξ diverges in the large-L limit. The many-body sys-
tem appears as effectively composed of (L/ξ )d uncorrelated
subsystems. The gap �(L) remains finite with increasing L.
Close to the CQT, i.e., for g � gc, it behaves as � ∼ ξ−z.

IV. DYNAMIC FSS ANSATZ FOR
THE QUBIT-SYSTEM SETUP

The dynamic processes arising from the instantaneous
turning on of the interaction term HqS can be described
within a dynamic FSS framework, extending the framework
outlined in Sec. III, to take into account the interaction of the
many-body system S with the qubit q. Besides the scaling
variable κh [cf. Eq. (23)] we also need to consider scaling
variables associated with the other parameters of the global
Hamiltonian H , i.e., u, v, and δ.

Since both u and v terms are coupled to the operator P con-
tained in the h term of the global Hamiltonian (1), we expect
the corresponding scaling variables to scale analogously as κh.
They can thus be obtained by replacing h with u (or v) in the
definition of κh. Given that κh is linear in h, one has

κu = uκh/h, κv = vκh/h. (36)

We must also associate a FSS variable with the energy differ-
ence δ of the eigenstates of the qubit Hamiltonian Hq,

εδ = δ/�(L), (37)

since δ is a further energy scale of the problem. Finally,
the scaling variable θ = �(L)t is associated with the time
variable.

A. Qubit decoherence functions

Let us first address the issue of the decoherence proper-
ties of the qubit along the global quantum evolution arising
from the interaction with the system S. The dynamic scaling
behavior of the decoherence function D(t ) [cf. Eq. (13)], as
a function of time, size, and Hamiltonian parameters of the
system S, has been discussed in Ref. [35] in the simplest case
where δ = 0 (i.e., the qubit Hamiltonian is trivial). As detailed
in Appendix A, each time [Hq, HqS] = 0 [as is the case for
v = 0 in Eq. (6)], D(t ) does not depend on the qubit spectrum.
We thus expect the same dynamic FSS behavior reported in
Ref. [35],

D(u, h, L, t ) = D(κu, κh, θ ), (38)

which is independent of δ, and therefore of εδ . For small
values of the coupling u, we have that

D(u, h, L, t ) = 1
2 u2Q(h, L, t ) + O(u3), (39)

where the growth-rate function Q measures the sensitivity of
the qubit coherence properties to the coupling u. Its scaling
behavior can be derived by matching that of D in Eq. (38),
obtaining [35]

Q(h, L, t ) ≈
(

∂κu

∂u

)2

Q(κh, θ ). (40)

We now focus on the more general case [Hq, HqS] �= 0,
restricted to the case u = 0 for simplicity, without loss of gen-
erality. The most natural working hypothesis is that analogous
scaling behaviors develop, with a further dependence on the
scaling variable εδ in Eq. (37) and replacing κu with κv . One
is then led to put forward the following FSS behavior:

D(δ, v, h, L, t ) = D(εδ, κv, κh, θ ). (41)

Assuming again analyticity at v = 0 and since D � 0, one
expects an expansion analogous to Eq. (39),

D(δ, v, h, L, t ) = 1
2v2Q(δ, h, L, t ) + O(v3), (42)

which can be matched to the scaling behavior in Eq. (41) to
obtain

Q(δ, h, L, t ) ≈
(

∂κv

∂v

)2

Q(εδ, κh, θ ). (43)
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Notice that the scaling relations for the growth-rate function
Q imply a power law for CQTs, i.e.,

Q(h, L, t ) ≈ L2yhQ(εδ, κh, θ ), (44)

while exponential laws arise at FOQTs (when considering
neutral boundary conditions), such as

Q(h, L, t ) ≈ L2d

�(L)2
Q(εδ, κh, θ ), (45)

thus increasing as ∼ exp(bLd ).
One may compare the above scaling behaviors with those

expected when the system S is not close to a phase transition,
for example, for g > gc in the case of the quantum Ising mod-
els. Taking into account that Q is equivalent to a generalized
susceptibility, the arguments reported in Sec. III D lead us to
the expectation that the growth-rate function should increase
as the volume of the system S, i.e.,

Q ∼ Ld . (46)

The above scaling relations (44) and (45) demonstrate that the
rate of the qubit decoherence gets enhanced when the system
S experiences a quantum transition. For example, we may
compare the Ld behavior expected in the disordered phase
with the significantly faster increase L2yh at g = gc where the
system is critical [cf. Eq. (44)] due to the fact that (z = 1)

2yh = d + z + 2 − η = d + 3 − η > d. (47)

We finally note that the scaling behavior in the critical
region g − gc  1, where ξ ≈ (g − gc)−ν � 1, can be in-
ferred by standard scaling arguments. It essentially amounts
to replacing L with ξ in the dynamic FSS equations.

B. Quantum work associated with the initial quench

We now discuss the scaling behavior of the quantum work
associated with the initial quench of the interaction term HqS .
We explicitly address the first and the second moment of the
work probability distribution defined in Eq. (14), but similar
arguments can be put forward for the higher moments, as
defined in Eq. (15).

To begin with, we report the scaling Ansätze of the average
work and average square work which are expected in the
simplest case [Hq, HqS] = 0 (for v = 0):

〈W 〉(δ, u, h, L) ≈ �(L)W1(κu, κh), (48a)

〈W 2〉(δ, u, h, L) ≈ �(L)2W2(κu, κh). (48b)

These are independent of the spectrum of the qubit, and in
particular of δ (analogous expressions hold for higher powers
of the work). In the case of CQTs, this Ansatz is supported
by equilibrium FSS arguments, exploiting Eq. (A11). Indeed,
since

〈0h|P|0h〉 ≈ Ld−yp fP(κh), (49)

it is easy to see that simple calculations lead to Eq. (48a) with
W1(κu, κh) ∝ κu fP(κh).

In the more general case [Hq, HqS] �= 0, we expect that
the scaling variable εδ associated with the gap δ of the qubit
Hamiltonian should also affect the dynamic FSS behavior.

However, for the average and the average square work [cf.
Eqs. (18) and (19), respectively], this is not the case:

〈W 〉(δ, u, v, h, L) ≈ �(L)W1(κu, κv, κh), (50a)

〈W 2〉(δ, u, v, h, L) ≈ �(L)2W2(κu, κv, κh). (50b)

Higher moments are expected to generally depend on εδ too.

C. Time dependence of the energy exchanges

Returning to the energy distribution defined in Eq. (20), let
us again begin with the simplest case v = 0. We expect the
scaling behavior

PS (U, u, h, L, t ) ≈ �(L)−1P (υ, κu, κh, θ ), (51)

where

υ = U/�(L). (52)

Thus the average of U and its fluctuations 〈U 2〉c =〈U 2〉−〈U 〉2

should scale, respectively, as

〈U 〉(u, h, L, t ) ≈ �(L) U1(κu, κh, θ ), (53a)

〈U 2〉c(u, h, L, t ) ≈ �(L)2 U2(κu, κh, θ ). (53b)

In the most general case v �= 0, one should add a further
dependence on the scaling variable εδ associated with the gap
of the qubit Hamiltonian. Therefore, we obtain

PS (U, δ, u, v, h, L, t ) ≈ �(L)−1P (υ, εδ, κu, κv, κh, θ ). (54)

V. DYNAMIC BEHAVIOR AT THE CQT

We have seen that the dynamic FSS theory specialized
to the qubit-system setup predicts a nontrivial scaling limit
for the different properties of the model. Here we focus on
the behavior at the CQT of the one-dimensional Ising model
and present the results of numerical exact diagonalization
simulations for the dynamics of a qubit, after it is suddenly
and homogeneously coupled to an Ising ring with Hamiltonian
(2). We recall that, as detailed in Appendix A, for v = 0 the
qubit exhibits pure dephasing in time while the system evolves
in two independent branches with the same Hamiltonian form
and different fields [27,28] [cf. Eq. (A2)]. A dynamic FSS
theory for the decoherence functions of the qubit coupled
to a many-body system at a quantum transition has been
already addressed in the literature, in this specific case and for
δ = 0 [35].

Here let us discuss the general case in which the Hamil-
tonian coupling term HqS does not commute with the qubit
Hamiltonian Hq, i.e., u = 0 and v �= 0 in Eq. (6). In passing
we note that the complexity of the numerical approaches dis-
cussed below is not affected by an eventual nonzero value of u,
since they require the manipulation of the full Hilbert space of
the system. We simulated setups where the Ising ring consists
of up to L = 24 sites for static calculations, while we limited
ourselves to L = 16 sites for the dynamics of such systems.
As we will see below, the dynamic FSS scaling behavior turns
out to emerge quite neatly already for these moderate lengths,
thus making unnecessary, in practice, any further extensive
check at larger size. A full exact diagonalization approach has
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FIG. 1. Decoherence function D for a qubit coupled to Ising
spin-chain systems of different lengths L (see the legend) at the
CQT (g = gc = 1). All numerical data presented here and in the
following figures are for a qubit-system coupling realized through
u = 0 and v �= 0 in Eq. (6) such that [Hq, HqS] �= 0. The three panels
display the behavior of D as a function of various scaling variables,
according to the following scheme: (a) εδ = 0.5, κv = 1, and varying
θ ; (b) κv = 1, θ = 10, and varying εδ; and (c) εδ = 0.5, θ = 10, and
varying κv . In all simulations we fixed κh = 0.8 and u = 0, while the
qubit was initialized with c+ = √

2/3. To facilitate the readability,
we kept the same scaling variables in all the panels, specified in the
legend, except the one entering the x axis. The dark square in each
panel corresponds to a common point in all plots.

been used for systems with L � 12, while a Lanczos diagonal-
ization followed by a fourth-order Runge-Kutta integration of
the unitary-evolution operator was employed for larger sizes
(13 � L � 16). We carefully checked that, for most of the
simulations, a time step dt = 10−3 is sufficient to reach a
high degree of convergence. As we will explain below, for
the calculation of second-order temporal fluctuations of the
statistics of energy exchanges, at the largest size considered, a
smaller time step dt = 10−4 turns out to be required.

We start with the analysis of the qubit decoherence func-
tion D defined in Eq. (11). Figure 1 displays the scaling
behavior of D as a function of several different scaling
variables, namely, the rescaled time θ [Fig. 1(a)], the qubit
detuning εδ [Fig. 1(b)], and the qubit-system coupling κv

[Fig. 1(c)]. Remarkably, data collapse appears already for
Ising-chain systems of L � 10 sites, as is evident from the
figure. This validates the Ansatz put forward in Eq. (41).
We note that the strongly oscillating behavior which emerges
as a function of θ , implying nearly perfect revivals of the
coherence at short times (e.g., at θ ≈ 5.3, 6.6, 12.3 in the
figure), is due to the fact that the dynamic FSS framework
is probing the postquench dynamics of a qubit coupled to a
many-body system within the critical regime of a quantum
transition. In particular, for a fixed value of the rescaled

FIG. 2. Scaling of the growth-rate function Q as a function of
time, for three distinct situations: (a) on the FOQT line, for g = 0.9;
(b) at the CQT, for g = gc = 1; and (c) in the disordered phase, for
g = 2. The evaluated growth-rate function quantifies the sensitivity
of the qubit coherence to the coupling v. We also fixed εδ = 0.5
and set the initial state as c+ = √

2/3. The longitudinal field h has
been chosen without loss of generality in such a way that (a) and
(b) κh = 0.8 and (c) h = 0.8.

qubit-system coupling (e.g., κv = 1 in the figure) the corre-
sponding coupling parameter v entering HqS scales to zero
polynomially with L [recall Eqs. (36) and (23)]. Therefore,
as observed in Refs. [35,39], one expects the global system
not to thermalize, and thus a complete decoherence of the
qubit not to occur, for finite and fixed rescaled coupling
constants.

A similar reasoning can be drawn for the decoherence
growth-rate function Q, which is defined as the second deriva-
tive of D with respect to the qubit-system coupling parameter
u or v [cf. Eqs. (39) and (42), respectively]. Specifically, we
have numerically computed the second derivative of D with
respect to v, through the evaluation of finite differences ob-
tained by varying κv around zero of a small step δκv = ±10−3

(results are stable to the choice of δκv around such a value).
The numerical outcomes of Fig. 2 display the temporal be-
havior of Q in three different situations, namely, at a FOQT
[Fig. 2(a); cf. Eq. (45)], at the CQT point [Fig. 2(b); cf.
Eq. (44)], and in the disordered phase [Fig. 2(c); cf. Eq. (46)].
A direct comparison of the various scaling behaviors, which
again present a notable data collapse at small sizes, reveals a
dependence on the chain length L, which turns from exponen-
tial (at the FOQT, g < 1) to power law proportional to L15/4 (at
the CQT, g = gc = 1) or proportional to L (in the disordered
phase, g > 1).

Other properties that we analyzed are related to the statis-
tics associated with the energy injected by quenching the
interaction strength HqS and with the energy distribution of
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FIG. 3. Scaling behavior of (a) the average work 〈W 〉 and
(b) the variance of the work distribution 〈W 2〉c = 〈W 2〉 − 〈W 〉2,
done by quenching the qubit-system interaction from zero to κv = 1,
as a function of the rescaled longitudinal field κh. The system
(Ising chain) is at the CQT point g = gc = 1 and εδ = 0.5, while
c+ = √

2/3. The two insets show the convergence with the system
size up to L = 24, at fixed κh = −1, of the average and of the
variance of the work, respectively, showing dominant contributions
in L−2 and L−1 (solid lines are fits of numerical data).

the system S during the time evolution. In Fig. 3 we show the
average work 〈W 〉 [Fig. 3(a)] and the variance of the work
distribution 〈W 2〉c = 〈W 2〉 − 〈W 〉2 [Fig. 3(b)] done by the
quench in the qubit-system setup, as a function of the rescaled
longitudinal field κh in the Ising-chain system at its CQT,
for fixed εδ . In analogy to the decoherence properties of the
qubit, numerical results indicate a nice scaling behavior, thus
confirming the dynamic FSS Ansätze of Eqs. (50). A closer
look at finite-size corrections for fixed κh reveals an approach
to the asymptotic behavior which is characterized by O(L−2)
and O(L−1) corrections, respectively (see the two insets). This
reflects a slower approach to the expected asymptotic behavior
of 〈W 2〉c, rather than that of 〈W 〉, as is qualitatively visible by
comparing the two main figures. These data suggest that the
global convergence of full work statistics to its dynamic FSS
may be O(L−1), as already pointed out in Ref. [46].

In an analogous spirit, it would be interesting to analyze the
first two moments of the energy-difference distribution of the
Ising system S along the dynamics at the CQT [cf. Eq. (20)].
Specifically, the behavior with respect to the rescaled time
θ of the average energy difference 〈U 〉 and of its fluctua-
tions 〈U 2〉c = 〈U 2〉 − 〈U 〉2 is shown in Figs. 4(a) and 4(b),
respectively. We observe nice convergence to the dynamic
FSS behavior predicted by Eqs. (53). We also observe that
the calculation of fluctuations is very sensitive to the numer-
ical accuracy of the simulated dynamics, essentially because
much larger precision is required when computing connected

FIG. 4. Scaling behavior in time of the energy-difference dis-
tribution of an Ising-chain system S at the CQT, coupled to a
qubit: (a) the average energy difference 〈U 〉 and (b) its fluctuations
〈U 2〉c = 〈U 2〉 − 〈U 〉2. The other scaling variables and the initial state
have been set as in Fig. 1(a).

quantities, generally arising from large cancellations of their
terms.

We point out that the numerical results presented in this
section have been obtained by fixing the same initial state
and adopting specific values for the various scaling variables
(for details, see the insets of the various figures). However, we
have also performed simulations using other sets of parame-
ters (not shown) and carefully checked that all our conclusions
are not affected by such choices.

VI. DYNAMIC BEHAVIOR AT THE FOQT

A. Two-level reduction of the system S

We now turn to a situation where the Ising-chain system S
is along the FOQT line (g < gc) and concentrate on boundary
conditions which do not favor any particular phase. In such a
case, one can try to simplify the description of the global sys-
tem by employing a two-level approximation for the system
S, as was done in Refs. [39,40], in different contexts. Under
the assumption that only the lowest levels of the system S are
effectively involved in the dynamic behavior arising from the
sudden quench of the qubit-system interaction in the dynamic
FSS limit, we may consider the two-level reduction of the
Hamiltonian HS ,

HS2 (h) = −β

2
σ (3) + γ

2
σ (1),

β = 2m0hLd , γ = �(L), κh = β/γ , (55)

which acts on two-component wave functions, corresponding
to the states |+〉 and |−〉 such that σ (3)|±〉 = ±|±〉. Then the
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qubit-system interaction term becomes

HqS2 = −ζ

2
�(1)σ (3) − η

2
�(3)σ (3),

η = 2m0Ld u, κu = η/γ ,

ζ = 2m0Ldv, κv = ζ/γ . (56)

The above Hamiltonian terms are completed by the qubit
Hamiltonian, which we can be written as

Hq = 1
2δ�(3), εδ = δ/γ , (57)

neglecting the irrelevant identity term of Eq. (6). Therefore, in
this approximation, the global Hamiltonian is given by

H2 = HS2 + Hq + HqS2 , (58)

to be compared with Eq. (7).
Within the two-level approximation for the system S at a

FOQT, we may thus write the global Hamiltonian as

Ĥ2 ≡ H2

γ
= −κh

2
σ (3) + 1

2
σ (1) + εδ

2
�(3)

− κu

2
�(3)σ (3) − κv

2
�(1)σ (3), (59)

or, using the bases where both �(3) and σ (3) are diagonal over
the qubit and S states, we may write Ĥ2 as the 4 × 4 matrix

1

2

⎛
⎜⎜⎜⎝

εδ − κh+u 1 −κv 0

1 εδ + κh+u 0 κv

−κv 0 −εδ − κh−u 1

0 κv 1 −εδ + κh−u

⎞
⎟⎟⎟⎠,

(60)

with κh±u ≡ κh ± κu. Note that the Hamiltonian (59) allows
us to write the corresponding Schrödinger problem in terms
of scaling variables only, i.e.,

i
∂

∂θ
|ψ (θ )〉 = Ĥ2|ψ (θ )〉, θ = γ t, (61)

where |ψ (θ )〉 denotes the wave function of the global system
in the reduced four-dimensional Hilbert space. Equation (61)
readily implies that, under the two-level reduction approxima-
tion for the system S, the dynamic FSS behavior put forward
in Sec. IV is automatically guaranteed.

B. Numerical results

We now report a numerical verification of the dynamic
FSS behavior outlined in Sec. IV within the one-dimensional
Ising model along its FOQT line and the comparison with the
results of the two-level approximation of the system S.

We start by commenting on the simpler case u �= 0 and
v = 0, where the qubit Hamiltonian commutes with the inter-
action term. In such a case, one can compute the correspond-
ing FSS functions in an analytic form. Indeed, the matrix rep-
resentation (60) of Ĥ2 reduces to a 2 × 2 block diagonal form,
for which analytic expressions can be obtained. Appendix A 2
reports the dynamic FSS functions of all the quantities defined
in Sec. II B.

The analytic calculations for the less trivial case, u = 0
and v �= 0, for which [Hq, HqS2 ] �= 0, are more cumbersome.

FIG. 5. Decoherence function D for a qubit coupled to an Ising
spin chain at the FOQT (g = 0.9), as a function of the rescaled
time θ . We fixed κv = 1 and εδ = 0.5 and set the initial state with
c+ = √

2/3, as in Fig. 1(a). The inset shows numerical data for
θ = 9, supporting an exponential convergence to the prediction D(2l )

given by the two-level approximation for the Ising chain (thick
dashed line in the main panel).

Indeed, the solution of the corresponding quantum problem
requires the diagonalization of the full 4 × 4 matrix Hamil-
tonian (60) over the four-dimensional Hilbert space of the
qubit and two levels associated with S. The analytical results
are not very illuminating, and for this reason we decided not
to report them here. In contrast, we prefer to concentrate on
a quantitative comparison between the outcomes of numeri-
cal exact diagonalization simulations for the full many-body
Hamiltonian H and those of the reduced 4 × 4 setup Ĥ2.

The analysis of the dynamic FSS for the decoherence
function D as a function of the rescaled time θ , when coupled
to the Ising spin chain at the FOQT, is reported in Fig. 5,
where we plotted the outcomes of the simulation of the full
model. They demonstrate a clear qualitative accordance with
those of the two-level approximation D(2l )(θ ), obtained by
solving Eq. (61) (brown long-dashed line). We notice the
appearance of strong revivals, as is the case in proximity to
a CQT (cf. Fig. 1). The convergence in L to the analytic
two-level approximation appears to be exponential, as shown
by the inset in Fig. 5 for a fixed value of θ = 9.

We now look at the statistics of energy exchanges. The first
two moments of the statistics of the work, for the Ising-chain
system at the FOQT, are reported in Fig. 6. Data collapse
to a dynamic FSS behavior in the infinite volume is clearly
evident. However, while the average work 〈W 〉 nicely con-
verges to the two-level prediction W (2l ), with an apparent
exponential dependence on L [Fig. 6(a) and its inset], this
is not the case for the work fluctuations 〈W 2〉c [Fig. 6(b)].
Specifically, the two-level prediction W (2l )

2c is apparently off
from the expected limiting behavior. In fact, the inset hints at
an O(L−1) convergence of the discrepancy to a value which is
different from zero, thus implying the failure of the two-level
reduction of the system S in exactly grasping the asymptotic
behavior of the higher momenta of the work statistics. Further
details on the accuracy of the two-level approximation are
given in Appendix B.
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FIG. 6. Same as in Fig. 3, but for a qubit coupled to an Ising
spin-chain system S at the FOQT, with g = 0.9. Curves are shown
for (a) the average work and (b) its fluctuations. Thick dashed lines
denote the predictions (a) W (2l )

1 and (b) W (2l )
2c , given by replacing

S with an approximate two-level model. The inset in (a) displays
an exponential convergence in L of the ratio 〈W 〉/�(L) to the two-
level prediction W (2l )

1 . The inset in (b) shows the behavior in L of the
difference between the work fluctuations 〈W 2〉c/�(L)2 and the two-
level prediction W (2l )

2c . In this case, an L−1 fit of the numerical data
leads to a finite discrepancy of 1.89(1) × 10−2 in the infinite-volume
limit. In both insets we fixed κh = −1.

Finally, in Fig. 7 we repeat the analysis of the statistics
of the energy-difference distribution in the system S, where
similar conclusions apply. In particular, we display the tempo-
ral behavior of the average [Fig. 7(a)] and of its fluctuations
[Fig. 7(b)]. Analogously to the outcomes we found at the
CQT (cf. Fig. 4), we observe that fluctuations 〈U 2〉c are
very sensitive to the accuracy of the simulation. It is also
worth noticing that the long-dashed curves which indicate the
two-level predictions (U (2l )

1 and U (2l )
2 , respectively) follow the

same behavior with θ . More precisely, it can be shown that
the ratio

U (2l )
2 /U (2l )

1 =
√

1 + κ2
h (62)

depends only on the value of κh (in the figure we used
κh = 0.8; therefore

√
1 + κ2

h ≈ 1.28). This is in analogy to
Eq. (A25), which can be easily proven for a longitudinal
qubit-system interaction (v = 0).

Before ending we stress that, similarly to the dynamic
behavior at the CQT, analogous results have been obtained (in
particular the collapse of numerical data to the FSS behavior
put forward in Sec. III B) for other values of scaling variables
and initial states.

FIG. 7. Same as in Fig. 4, but for a qubit coupled to an Ising-
chain system at the FOQT, with g = 0.9. Thick dashed lines denote
the predictions (a) U (2l )

1 and (b) U (2l )
2 , given by replacing S with

an approximate two-level model as depicted in Sec. VI A. A small
Runge-Kutta time step of dt = 10−4 was employed in order to
guarantee the numerical accuracy of the results plotted in (b).

VII. CONCLUSION

We have addressed the quantum dynamics of a system
composed of a qubit globally coupled to a many-body system
characterized by short-range interactions. We employed a
dynamic FSS framework to investigate the out-of-equilibrium
dynamics arising from the sudden variation (turning on) of
the interaction between the qubit and the many-body system,
in particular when the latter is in proximity to a quantum first-
order or a continuous phase transition. Although the approach
is quite general, we considered d-dimensional quantum Ising
spin models in the presence of transverse and longitudinal
fields, as paradigmatic quantum many-body systems.

To characterize the out-of-equilibrium dynamics, we fo-
cused on a number of quantum-information-oriented prop-
erties of the model. Generalizing the results of Ref. [35],
we considered the information and energy flow among the
various parts of the composite system: We studied the de-
coherence of the qubit and the statistics associated with the
energy injected by switching on the qubit-system interaction
and with the energy distribution of the system during the
temporal evolution. When the many-body system S was close
to a quantum transition, either at a CQT or at a FOQT,
we derived the asymptotic scaling behavior exploiting the
dynamic FSS framework. The scaling behaviors of the above
quantities were validated by means of extensive numerical
simulations specialized to one-dimensional Ising systems. We
always observed convergence to the expected asymptotic FSS
behavior when the system S was at both CQTs and FOQTs.

In the case of FOQTs, we also employed a two-level
approximation for the many-body system S to compute the
dynamic FSS functions associated with the out-of-equilibrium
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quantum evolution. The agreement with the numerical re-
sults was satisfactory. Quantitative differences between the
numerics and the two-level approximation emerged only when
monitoring fluctuations and higher momenta of the various
energy statistics.

It is however worth pointing out that, already with ten
spins, it is possible to infer the asymptotic FSS behavior with
fair accuracy. This paves the way toward an experimental
probe of the influence of criticality on the quantum transport
properties, spurred on by the recent developments in quantum
technologies with ultracold atoms and ions. Indeed, they
already demonstrated the capability to faithfully reproduce the
unitary dynamics of quantum Ising-like chains with approxi-
mately ten spins [66–72].

Finally, we mention that it is possible to extend our dy-
namic FSS analysis to more general situations. Besides those
based on sudden variations of the interactions between the
qubit and the many-body system, one may consider other
dynamic protocols, for example, by taking the opposite limit
of slow changes. This situation can be also analyzed within
appropriate FSS frameworks, such as that considered in
Ref. [40]. We may also devise extensions to more general
models, where the qubit is replaced by a generic N-level
quantum system, the environment is mapped in the continuum
limit (or, more generally, can be modeled by a many-body
system presenting CQTs or FOQTs), and the qubit-system
coupling is not homogeneous or may have a different and
more complicated shape.

APPENDIX A: THE COMMUTATIVE CASE [Hq, HqS] = 0

1. General features

A particular case of the general problem outlined
in Sec. II is realized when v = 0 in the qubit-system
Hamiltonian (6), i.e.,

HqS = u�(3)P, (A1)

which implies [Hq, HqS] = 0. This condition allows us to
write the time evolution of the global system in terms of
dynamic evolutions of the system S only. Indeed, one can eas-
ily prove that the solution of the corresponding Schrödinger
problem is given by

|�(t )〉 = e−iε+t c+|+〉 ⊗ |�h+u(t )〉
+ e−iε−t c−|−〉 ⊗ |�h−u(t )〉, (A2)

where

|�h±u(t )〉 = e−iHS (h±u)t |0h〉, (A3)

i.e., they are solutions of the Schrödinger equations for the
system S only,

i
∂

∂t
|�h±u(t )〉 = HS (h ± u)|�h±u(t )〉, (A4)

with |�h±u(t = 0)〉 = |0h〉.
Notable relations can be obtained by focusing on the evo-

lution of the qubit only. The elements of its reduced density

matrix [cf. Eq. (11)] read

ρq,11(t ) = |c+|2, ρq,22(t ) = |c−|2,
ρq,12(t ) = e−iδt c∗

−c+〈�h−u(t )|�h+u(t )〉 = ρq,21(t )∗. (A5)

The decoherence function D(t ) [cf. Eq. (13)] can be written as

D(t ) = 2|c+|2|c−|2FD(t ), (A6)

where

FD(t ) = 1 − |〈�h−u(t )|�h+u(t )〉|2 (A7)

and 0 � FD(t ) � 1. The function FD measures the quantum
decoherence, quantifying the departure from a pure state. In-
deed, FD(t ) = 0 implies that the qubit is in a pure state, while
FD(t ) = 1 indicates that the qubit is maximally entangled,
corresponding to a diagonal density matrix

ρq = diag[|c+|2, |c−|2]. (A8)

Notice that the decoherence functions D(t ) and FD(t ) do not
depend on the spectrum of the qubit Hamiltonian, and in
particular on δ.

We also note that, as a consequence of the commutativity
between the qubit Hamiltonian Hq and the interaction term
HqS , the average qubit energy Eq does not change along the
quantum evolution of the global system. Indeed, its value

Eq = 〈�(t )|Hq|�(t )〉 = Tr[ρqHq] =
∑
i=±

ε±|c±|2 (A9)

remains constant, and therefore it is determined by the initial
condition of the qubit.

Since the average total energy must remain constant during
the global evolution, Eq. (A9) also implies that

E − Eq = 〈�(t )|Hs + HqS|�(t )〉 (A10)

remains constant. Concerning the average work to perform the
quench [cf. Eq. (16)], simple calculations lead to

〈W 〉 = 〈�0|HqS|�0〉 = −u(|c+|2 − |c−|2)〈0h|P|0h〉. (A11)

Notice that 〈W 〉 = 0, when |c+| = |c−|.

2. Dynamic FSS at FOQTs for v = 0

As discussed in Sec. VI, at FOQTs one may effectively
replace the many-body system S with an approximate two-
level model such that the composite qubit-system Hamiltonian
is written in the matrix form (60). In the specific case v = 0,
the latter reduces to a block-diagonal form, for which analytic
expression can be derived easily.

In practice, the solution of the corresponding Schrödinger
problem (61) is still formally given by Eq. (A2). The many-
body states |�h±u(θ )〉 are now replaced by the two-level
system states |φh±u(θ )〉, as obtained by solving

i
∂

∂θ
|φh±u(θ )〉 = ĤS2 (h ± u)|φh±u(θ )〉, (A12)

ĤS2 (h ± u) = HS2 (h ± u)/γ , (A13)
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with HS2 (h) as in Eq. (55). The initial condition is given by
the ground state

|φh±u(θ = 0)〉 = |0h〉 = sin

(
αh

2

)
|−〉 − cos

(
αh

2

)
|+〉,

(A14)

with tan αh = κ−1
h and αh ∈ (0, π ). The quantum evolution

described by Eq. (A12) can be easily obtained by diagonaliz-
ing the 2 × 2 Hamiltonian HS2 (h ± u), whose eigenstates are

|0h±u〉 = sin

(
αh±u

2

)
|−〉 − cos

(
αh±u

2

)
|+〉, (A15a)

|1h±u〉 = cos

(
αh±u

2

)
|−〉 + sin

(
αh±u

2

)
|+〉, (A15b)

with tan αh±u = κ−1
h±u and αh±u ∈ (0, π ). The corresponding

energy eigenvalues are

E0/1 = �(L) E0/1, E0/1 = ∓ 1
2

√
1 + κ2

h±u. (A16)

The time-dependent state evolves as

|φh±u(θ )〉 = e−iE0θ cos

(
αh − αh±u

2

)
|0h±u〉

+ e−iE1θ sin

(
αh − αh±u

2

)
|1h±u〉. (A17)

Then, by rewriting them in terms of the original basis |±〉, us-
ing Eqs. (A15), and substituting into Eq. (A2), with |φh±u(θ )〉
instead of |�h±u(θ )〉, we obtain the solution of the dynamic
problem within the two-level approximation of the system S.
This reads

|ψ (θ )〉 = e−i(εδ/2)θc+|+〉 ⊗ |φh+u(θ )〉
+ e+i(εδ/2)θ c−|−〉 ⊗ |φh−u(θ )〉. (A18)

This solution is already written in terms of the scaling
variables, thus the scaling behaviors put forward in Sec. IV
are fully confirmed. The corresponding FSS functions can
be analytically computed from their definitions. The scaling
function D associated with the decoherence function D [cf.
Eqs. (13) and (38)] is given by

D(κu, κh, θ ) = 4|c+|2|c−|2κ2
u

1 − cos
(
θ

√
1 + κ2

h

)
(
1 + κ2

h

)2 . (A19)

Arriving at the average work defined in Eq. (16), whose
expected scaling behavior is reported in Eq. (48a), we obtain

W (2l )
1 (κu, κh) = −1

2
(|c+|2 − |c−|2)κu

[
1 − 2 sin

(
αh

2

)2]
.

(A20)

In contrast, for the second moment 〈W 2〉 we simply obtain

W (2l )
2 (κu, κh) = 1

4κ2
u . (A21)

For the energy fluctuations of the many-body system S,
we may obtain the time dependence of the average energy
variation [cf. Eq. (21)] using the formula

U (2l )
1 (θ ) = Tr[ĤS2 (h)ρ(θ )] − Es0, (A22)

where Es0 = − 1
2

√
1 + κ2

h . Then, using Eq. (A18), we may
write it as

U (2l )
1 (θ ) = |c+|2〈φh+u(θ )|ĤS2 (h)|φh+u(θ )〉

+ |c−|2〈φh−u(θ )|ĤS2 (h)|φh−u(θ )〉, (A23)

where

ĤS2 (h) = −κh

2
σ (3) + 1

2
σ (1). (A24)

Finally, for the average of the square energy variation we
obtain

U (2l )
2 (θ ) = Tr{[ĤS2 (h)]2ρ(θ )} − 2Es0U (2l )

1 (θ ) − E2
s0

=
√

1 + κ2
hU

(2l )
1 (θ ), (A25)

where we used the fact that [ĤS2 (h)]2 = (1 + κ2
h )I2.

APPENDIX B: ACCURACY OF THE TWO-LEVEL
APPROXIMATION AT THE FOQT

In Sec. VI B we observed that a two-level reduction of
the many-body system to which the qubit is coupled, when
the former is at a FOQT, is capable of accurately grasping the
asymptotic FSS behavior of several properties of the global
system, including the decoherence quantifiers for the qubit
and the averages of the work done by the quench and of the
energy pumped in the system S. All these quantities are linear
functionals of the Hamiltonian H , for which the adiabatic
theorem typically applies without any issue [40].

In contrast, Figs. 4 and 7 have spotlighted clear discrep-
ancies when comparing fluctuations of the work and of the
system energy (i.e., 〈W 2〉c and 〈U 2〉c), with numerically exact
diagonalization results for the quantum Ising chains. We
believe that such discrepancies are essentially related to the
limited accuracy of the two-level approximations, which of
course cannot capture the full complexity of a many-body
quantum system. Below we provide evidence of this, focusing
on a specific quantity. It would be tempting to investigate the
problem further, in such a way to achieve a more exhaustive
understanding of the accuracy of our approximation. This
however lies outside the purposes of this paper and will be
left for future work.

Figure 8 compares the time behavior of the system energy
and of its square value, evaluated either with the full Hamil-
tonian HS or by keeping only its two lowest-energy levels
|�1〉 and |�2〉 (associated with the two energies ε1 and ε2),
namely, 〈�(θ )|HS|�(θ )〉 or 〈�(θ )|H (2l )

S |�(θ )〉, respectively,
with H (2l )

S = ε1|�1〉 + ε2|�2〉. We observe general agreement
between the two approaches [Figs. 8(a) and 8(c)]; however, a
more detailed analysis reveals that the discrepancies among
them are typically one order of magnitude larger for 〈H2

S 〉
[Fig. 8(b)] than for 〈HS〉 [Fig. 8(d)]. Moreover, while the data
in Fig. 8(b) suggest that such discrepancies systematically
diminish with increasing size, the situation in Fig. 8(d) is
less clear and fluctuations at L = 16 are still quite large.
Notice also the appearance of wiggles in Figs. 8(a) and 8(c),
concerning the results obtained with a two-level truncation of
the Hamiltonian spectrum.
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FIG. 8. Comparison of (a) and (b) the average system energy
〈HS〉 and (c) and (d) its square value 〈H2

S 〉, evaluated using the full
many-body Hamiltonian and a truncation to its two lowest levels.
The Ising system is at the FOQT with g = 0.9, while all the other
parameters are set as in Fig. 7. (a) and (c) display the two evolutions,
with respect to the rescaled time θ , for a fixed chain length L = 16.
(b) and (d) highlight the absolute differences between the two cases,
for various system sizes.

The discrepancies highlighted above can be amplified
when measuring fluctuations. Indeed, in Fig. 9 we show
the ratio between the rescaled average energy of the system
〈U 〉/� and its rescaled fluctuations 〈U 2〉c/�

2. The two-level
reduction of system S would predict a value for such a
ratio which depends only on κh, since it can be shown that
Eq. (A25) still holds if v �= 0. In contrast, as displayed in
Fig. 9(a), the full simulation shows a nontrivial dependence
on θ as well. The comparison between the numerical values
averaged over θ (horizontal dashed lines) and the analytic

FIG. 9. (a) Ratio between the rescaled average energy of the
system and its rescaled fluctuations, as a function of θ . The various
curves are for different values of κh, as indicated in the legend (from
top to bottom, curves are for increasing κh). (b) Comparison between
numerical data averaged over the time [see the horizontal dashed
lines in (a)] and the analytic estimate U1/U2 = 1/

√
1 + κ2

h , as given
by Eq. (A25). Data are for an Ising-chain system with L = 12 sites,
while all the other parameters are set as in Fig. 8.

estimate ∼1/

√
1 + κ2

h given by Eq. (A25) is provided in
Fig. 9(b), as a function of κh. Similarly to what was observed
in Figs. 6(b) and 7(b), we highlight the emergence of a dis-
crepancy between the two approaches, which however cannot
be interpreted as a simple offset independent of the value
of κh.
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